Otsingu valikud
Avaleht Meedia Suunaviidad Uuringud & väljaanded Statistika Rahapoliitika Euro Maksed & turud Töövõimalused
Soovitused
Sorteeri
Ei ole eesti keeles kättesaadav

Tomasz Woźniak

22 May 2015
WORKING PAPER SERIES - No. 1794
Details
Abstract
We derive restrictions for Granger noncausality in Markov-switching vector autoregressive models and also show under which conditions a variable does not affect the forecast of the hidden Markov process. Based on Bayesian approach to evaluating the hypotheses, the computational tools for posterior inference include a novel block Metropolis-Hastings sampling algorithm for the estimation of the restricted models. We analyze a system of monthly US data on money and income. The test results in MS-VARs contradict those in linear VARs: the money aggregate M1 is useful for forecasting income and for predicting the next period
JEL Code
C11 : Mathematical and Quantitative Methods→Econometric and Statistical Methods and Methodology: General→Bayesian Analysis: General
C12 : Mathematical and Quantitative Methods→Econometric and Statistical Methods and Methodology: General→Hypothesis Testing: General
C32 : Mathematical and Quantitative Methods→Multiple or Simultaneous Equation Models, Multiple Variables→Time-Series Models, Dynamic Quantile Regressions, Dynamic Treatment Effect Models, Diffusion Processes
C53 : Mathematical and Quantitative Methods→Econometric Modeling→Forecasting and Prediction Methods, Simulation Methods
E32 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Business Fluctuations, Cycles