Options de recherche
Page d’accueil Médias Notes explicatives Recherche et publications Statistiques Politique monétaire L’euro Paiements et marchés Carrières
Suggestions
Trier par
Pas disponible en français

Igor Custodio Joao

13 February 2023
WORKING PAPER SERIES - No. 2780
Details
Abstract
We introduce a new dynamic clustering method for multivariate panel data char-acterized by time-variation in cluster locations and shapes, cluster compositions, and, possibly, the number of clusters. To avoid overly frequent cluster switching (flickering), we extend standard cross-sectional clustering techniques with a penalty that shrinks observations towards the current center of their previous cluster as-signment. This links consecutive cross-sections in the panel together, substantially reduces flickering, and enhances the economic interpretability of the outcome. We choose the shrinkage parameter in a data-driven way and study its misclassification properties theoretically as well as in several challenging simulation settings. The method is illustrated using a multivariate panel of four accounting ratios for 28 large European insurance firms between 2010 and 2020.
JEL Code
C33 : Mathematical and Quantitative Methods→Multiple or Simultaneous Equation Models, Multiple Variables→Panel Data Models, Spatio-temporal Models
C38 : Mathematical and Quantitative Methods→Multiple or Simultaneous Equation Models, Multiple Variables→Classification Methods, Cluster Analysis, Principal Components, Factor Models
G22 : Financial Economics→Financial Institutions and Services→Insurance, Insurance Companies, Actuarial Studies
29 July 2021
WORKING PAPER SERIES - No. 2577
Details
Abstract
We propose a dynamic clustering model for uncovering latent time-varying group structures in multivariate panel data. The model is dynamic in three ways. First, the cluster location and scale matrices are time-varying to track gradual changes in cluster characteristics over time. Second, all units can transition between clusters based on a Hidden Markov model (HMM). Finally, the HMM’s transition matrix can depend on lagged time-varying cluster distances as well as economic covariates. Monte Carlo experiments suggest that the units can be classified reliably in a variety of challenging settings. Incorporating dynamics in the cluster composition proves empirically important in an a study of 299 European banks between 2008Q1 and 2018Q2. We find that approximately 3% of banks transition per quarter on average. Transition probabilities are in part explained by differences in bank profitability, suggesting that low interest rates can lead to long-lasting changes in financial industry structure.
JEL Code
G21 : Financial Economics→Financial Institutions and Services→Banks, Depository Institutions, Micro Finance Institutions, Mortgages
C33 : Mathematical and Quantitative Methods→Multiple or Simultaneous Equation Models, Multiple Variables→Panel Data Models, Spatio-temporal Models