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Abstract

We introduce a new dynamic clustering method for multivariate panel data char-

acterized by time-variation in cluster locations and shapes, cluster compositions,

and, possibly, the number of clusters. To avoid overly frequent cluster switching

(flickering), we extend standard cross-sectional clustering techniques with a penalty

that shrinks observations towards the current center of their previous cluster as-

signment. This links consecutive cross-sections in the panel together, substantially

reduces flickering, and enhances the economic interpretability of the outcome. We

choose the shrinkage parameter in a data-driven way and study its misclassification

properties theoretically as well as in several challenging simulation settings. The

method is illustrated using a multivariate panel of four accounting ratios for 28 large

European insurance firms between 2010 and 2020.

Key words: dynamic clustering, shrinkage, cluster membership persistence, sil-

houette index, insurance industry.

JEL classification: C33, C38, G22.

ECB Working Paper Series No 2780 / February 2023 1



Non-technical summary

This paper introduces a new dynamic clustering method for multivariate panel data

characterized by time-variation in cluster locations and shapes, cluster compositions, and,

possibly, the number of clusters. To avoid overly frequent cluster switching (flickering),

we extend standard cross-sectional clustering techniques with a penalty parameter that

shrinks observations towards the current center of their previous cluster assignment. This

links consecutive cross-sections in the panel together, substantially reduces flickering, and

enhances the economic interpretability of the outcome. The penalty parameter can be

chosen in a data-driven way, and we study the associated misclassification properties

theoretically as well as in several challenging simulation settings. As our approach ties the

different cross-sections together, changes happen gradually over time and cluster switches

become more persistent. These features can be important in several economic and financial

applications.

We illustrate the new method using multivariate panel data of N = 28 European in-

surance companies covering D = 4 accounting ratios sampled annually between 2010 and

2020 (T = 11). Our sample is related to the set of companies chosen by the European

Insurance and Occupational Pensions Authority (EIOPA) for its 2021 insurance sector

stress test. We allocate each insurer to one distinct business model (or peer group) at

each point in time. To our knowledge, our study is the first to do so for the European

insurance industry. Reliable up-to-date listings of peer groups are useful, for example,

for prudential supervision. Insurance supervisors, such as the Federal Insurance Office at

the U.S. Treasury, or EIOPA as a part of the European System of Financial Supervision,

routinely need to benchmark insurers’ capital positions, cost-to-income ratios, and prof-

itability measures. One way to do so is to compare each firm’s incoming data to that of

approximately similar other firms.

We recover four clusters in our empirical application: re-insurers, life insurers, non-

life insurers, and financial conglomerates. The shrinkage parameter is chosen to decrease

the number of incidental switches (flickering) while retaining a high overall fit to the

ECB Working Paper Series No 2780 / February 2023 2



data. Our clustering approach leads to stable cluster allocations over time. By contrast,

we verify that the clustering outcomes are visibly more volatile, and much harder to

interpret economically, if no shrinkage is imposed and each cross-section is considered in

isolation as a result. The results are qualitatively similar whether or not we allow the

number of clusters to also vary over time.
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1 Introduction

We propose a new method to cluster multivariate panel data in a dynamic yet stable and

economically meaningful way. Building on established cross-sectional clustering meth-

ods, such as e.g. k-means clustering, we provide a straightforward and intuitive algo-

rithm to link consecutive cross-sections over time by introducing persistence in cluster

assignments via a penalty parameter. This parameter can be chosen in a data-driven

way. The approach results in clusters that can be time-varying in location, dispersion,

size/composition, and (possibly) in the number of clusters. As our approach ties the dif-

ferent cross-sections together, changes happen gradually over time and cluster switches

become more persistent. Both of these features are important in many economic and

financial applications, see, for example, Bonhomme and Manresa (2015) for a clustering

model of economic development, and Patton and Weller (2021) for an asset pricing model

based on time-invariant clusters. Lumsdaine et al. (2022) present a panel model with

structural breaks, allowing for moderate time-variation in the cluster structure, which

they apply to describe firms’ sales growth over time. Custodio João et al. (2022) ana-

lyze the persistent dynamics of banks’ business models using a model-based clustering

technique.

Many existing econometric approaches for modeling grouped panel data fail to incorpo-

rate dynamics in cluster composition, i.e., potential changes in units’ cluster membership

over time. In economic applications, however, we often expect several units to switch clus-

ter over the sample period, particularly when the time series dimension is large and/or

the sample contains periods of stress. Most of the earlier work focuses on clustering entire

time-series, while allowing for different types of unobserved heterogeneity in the panel

units. Examples include Lin and Ng (2012), Bonhomme and Manresa (2015), Bonhomme

et al. (2022), Cheng et al. (2019) and Patton and Weller (2021), who use variations of k-

means to iteratively cluster time series and estimate the structure of a linear or nonlinear

regression model. A variety of model-based methods to cluster panel data are surveyed in

Frühwirth-Schnatter (2011); see also Frühwirth-Schnatter and Malsiner-Walli (2019) for
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a finite mixture model approach in which the number of mixtures can be different from

the number of clusters in the observed data.

Another line of literature studies clusters in panel data by means of repeated cross-

sectional clustering; see for example Oliveira and Gama (2012). This allows for cluster

switches, but typically generates clusters that are (too) unstable over time as the obtained

structure at one point in time has no bearing on the next cross-section. In addition, it is

often unclear how groups can be tracked over time as cluster labeling is partly arbitrary

and therefore cluster identification over different cross-sections is difficult; see Frühwirth-

Schnatter (2006). Cluster assignment instabilities are also likely to occur when the panel

is treated as one large cross-section, to which a hierarchical clustering algorithm is applied

that ignores the time-dimension entirely; see for instance Ayadi et al. (2021).

To accommodate economically meaningful cluster switching, while at the same time

avoiding too frequent switching behavior that ceases to be interpretable, we propose a

new penalized model-free approach. The approach extends the repeated cross-sectional

clustering framework of Oliveira and Gama (2012) by adding time-dependence to the

cluster assignments. The context we have in mind is one where units that switch, do

so gradually and persistently. For instance, when statistically describing firms’ business

models, we would not expect a unit to cross from group A to B in one period, only to

return back from B to A in the next. We label such erratic moves between clusters as

“flickering,” a feature that we wish to mitigate, while still allowing for flexible dynamics.

Specifically, we do so by shrinking observations towards the new (time t) centroid of their

previous (time t− 1) cluster, before grouping all observations into new clusters at time t.

To track the identity of the resulting dynamic clusters, we build on algorithmic ideas

that identify clusters by maximizing the overlap in cluster membership over time; see, for

instance, Kalnis et al. (2005) and Oliveira and Gama (2010).

The penalty parameter that determines the extent of shrinkage in our approach is set in

a data-driven way using a modified version of the silhouette index, which is a widely used

cluster validation index introduced by Rousseeuw (1987). We first study the properties of

this parameter in terms of mis-classification rates in a stylized setting. This allows us to
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determine optimal values for the penalty parameter analytically. Next, we investigate the

approach in a number of challenging simulation settings that are analytically untractable,

and verify the theoretical properties also numerically.

We apply our approach to multivariate panel data of N = 28 European insurance

companies covering D = 4 accounting ratios sampled annually between 2010 and 2020.

Our sample is close to the set of companies chosen by the European Insurance and Occu-

pational Pensions Authority (EIOPA) for its 2021 insurance sector stress test; see EIOPA

(2021, Annex A). We allocate each insurer to one distinct business model (peer) group at

each point in time. To our knowledge, our study is the first to do so for the insurance in-

dustry. Reliable up-to-date listings of business model peer groups are useful, for example,

for prudential supervision. Insurance supervisors, such as the Federal Insurance Office at

the U.S. Treasury, or EIOPA as an important part of the European System of Financial

Supervision, routinely need to benchmark insurers’ capital positions, cost-to-income ra-

tios, and profitability measures. They do so by comparing each firm’s incoming data to

that of approximately similar other firms; see e.g. SSM (2016) and Lucas et al. (2019) for

a discussion in a banking context.

We recover four clusters: re-insurers, life insurers, non-life insurers, and financial con-

glomerates. The shrinkage parameter is chosen to decrease the number of incidental

switches (flickering) while retaining a high overall fit to the data (in terms of silhouette

index). Our clustering approach leads to stable cluster allocations over time. By con-

trast, we verify that the clustering outcomes are visibly more volatile and much harder

to interpret economically if no shrinkage is imposed. The results are qualitatively similar

whether or not we allow the number of clusters to also vary over time.

Before proceeding, we also mention three other links to earlier literature. First, our

work also relates to the literature on segmenting audio recordings; see, for instance, Fox

et al. (2011). A typical finding in this literature is that hidden Markov models can pro-

duce over-segmentation, that is, too frequent jumping between states, or “flickering.”

The problem is typically addressed in a Bayesian way by introducing a parameter for

self-transitioning and imposing a prior on it. Our approach is different in that we re-
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duce the dynamic problem to a collection of static ones, and introduce a stickiness (or

self-transitioning) hyper-parameter chosen by well-known cluster validation criteria. In

addition, our approach is model-free and does not require the choice of a prior as in a

Bayesian setting.

Second, our work is also related to Catania (2021) and Custodio João et al. (2022).

Both papers use a dynamic mixture modeling approach that allows for changes in cluster

membership. The former does so in a score-driven way, and the latter uses a Hidden

Markov Model (HMM). Both papers are potentially subject to an over-segmentation or

flickering problem; see Fox et al. (2011). Custodio João et al. (2022) address this by

enlarging the HMM dynamics with inactive states, ruling out further transitions for some

time after an initial transition. Our methodology differs in at least two ways. First,

we adopt a more standard, non-parametric approach to the clustering problem without

leaning on explicit distributional assumptions as in Catania (2021) and Custodio João

et al. (2022). This allows for an easy generalization of our approach to different clustering

algorithms. Second, our penalty parameter determining the stickiness in cluster member-

ship is chosen in a data-driven way, whereas the one in Custodio João et al. (2022) is set

exogenously using economic arguments.

A final strand of recent literature that is somewhat related to us focusses on grouped

heterogeneity in panels and structural breaks; see, for instance, Lumsdaine et al. (2022),

Smith (2022) and Wang and Tsay (2019). Even though in these approaches the number

and timing of the structural breaks is unknown and can be estimated, a main assumption is

that there is a small number of breaks and that the breaks are common to the parameters

and group memberships of all units. Our method is different as it allows for cluster

switches of individual units at any point in time.

The remainder of this paper is set up as follows. In Section 2 we introduce the

methodology. Section 3 considers a simplified setting where we study misclassification

probabilities and optimal penalty parameters analytically. Section 4 studies the new

approach in a controlled environment and shows reductions in overall misclassification

rates in line with our analytical results. Section 5 discusses the empirical application, while
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Section 6 concludes. An appendix provides proofs and further technical and empirical

results.

2 Methodology

In this section, we first introduce our robust clustering methodology. Next, we explain

how we link cluster identities over time, which is a crucial step in our method. Finally,

we provide data-driven ways to select the shrinkage penalty parameter in our approach.

2.1 Penalized cross-sectional clustering

Consider a panel of multivariate financial data, with xi,t ∈ RD×1 denoting a vector of

observed characteristics for unit i = 1, . . . , N at time t = 1, . . . , T . Our goal is to assign

each unit i to a peer group of similar units at each point in time t. An example of such

a situation is the monitoring of business models in the financial industry by a prudential

supervisor as in Custodio João et al. (2022). In the realistic setting of changing market

conditions, technological advances, and shifts in regulatory requirements, we expect that

some firms may move to a different group or business model at some point in time.

However, switching from group A to group B at one point in time, only to switch back

from B to A in the following period, is unrealistic in many situations that involve long-

term strategies. A suitable clustering method should therefore mitigate excessive cluster

switches.

To illustrate this, consider an example with D = 2 features in Figure 1. Assume

we cluster each cross-section t separately into two clusters by, for instance, a k-means

approach. Units are then assigned to the cluster with the closest cluster center. This

divides the space in two regions. If an observation xi,t at time t is close to the border that

separates the clusters, as in the left-hand panel, even a small disturbance to its position

might shift it to the other cluster. A second switch might then occur if it is subject to

another small and roughly opposite disturbance in the next period, and so on. We would

observe short-lived cluster switches, or “flickering”, caused by little actual movement.
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Cluster 1

Cluster 2

xi,t

(a) time t

Cluster 1

Cluster 2

xi,t+1

(b) time t+ 1

Figure 1: k-means clustering at two consecutive times. The red circles represent the
location of the cluster centers. The blue line separates the clusters and is halfway between
both cluster centers.

Such flickering might not be economically meaningful, and therefore undesirable.

The approach presented in this paper takes the cross-section at time t and combines

it with the t−1 cluster assignments to produce sticky assignments over consecutive cross-

sections. For instance, if a unit is assigned to cluster A at time t− 1, we first shrink that

unit’s observation at time t towards the mean of cluster A at time t before re-classifying

it. To solve the arbitrary labeling of clusters over different cross-sections, we propose

a mapping procedure based on the maximum overlap between cluster membership: for

instance, if 90% of the units in a particular cluster at time t have the same identity as

what was called ‘cluster A’ at time t − 1, then we label that cluster also ‘cluster A’ at

time t. The precise mapping procedure is explained in detail in Section 2.2.

We introduce some notation and present the formal algorithm, which is summarized

in Algorithm 1. Let hi,t denote the cluster assignment of unit i at time t, such that

ht = (h1,t, . . . , hN,t)
′ denotes the N × 1 vector of all cluster assignments for cross-section

t. We now start at time t = 1 with a standard cross-sectional clustering algorithm and

cluster selection criterion to obtain the number of clusters Kt and the cluster identities

ht at t = 1. Next we move to t = 2 and run a clustering algorithm to obtain a candidate

set of cluster assignments h̃t. Using the mapping methodology M of Section 2.2, we

relabel the cluster identities in h̃t to h̃′t = M(ht−1, h̃t), such that the identities in ht−1
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Center hi,t−1

Center h′i,t

xi,t

x̃i,t

Figure 2: We can interpret x̃i,t as an artificial position lying an ε fraction of the way from
the current position xi,t and the center of its last cluster hi,t−1

and h̃′t are comparable. Based on h̃′t, we compute the current (candidate) location of

each of the previous clusters in ht−1, except for the clusters that were discontinued. For

example, if we estimate the cluster location by its mean, the current (candidate) location

of unit i’s previous cluster can be estimated by c(hi,t−1, h̃
′
t) = (#Pi)

−1∑
j∈Pi

xj,t, where

Pi = {j | h̃′j,t = hi,t−1} is the set of current (candidate) units that are in the same cluster

now that unit i was in a period ago, and #Pi denotes the number of elements in Pi. If

the number of elements in Pi is positive, we then shrink xi,t towards the current location

of its previous cluster. We do so by defining

x̃i,t = (1− ε) · xi,t + ε · c(hi,t−1, h̃′t), (1)

where ε is a fixed penalty parameter in the unit interval. The effect can be seen in

Figure 2.

Using the shrunk observations x̃i,t, we run a second pass of the cluster assignments as

hi,t = 1i,t · h̃′i,t + (1− 1i,t) · hi,t−1, (2)

1i,t =


1 if #Pi = 0 or d

(
x̃i,t, c(h

′
i,t, h̃

′
t)
)
< d
(
x̃i,t, c(hi,t−1, h̃

′
t)
)
,

0 else,

(3)
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Algorithm 1: Dynamic clustering with shrinkage

input : The data, the maximum number of clusters Kmax per cross-section, a
shrinkage parameter ε.

output: T vectors of assignments ht.

for t ∈ [T ] :

for K̃ ∈ {2, 3, . . . , Kmax} :

Run clustering algorithm; obtain candidate cluster assignments h̃t
if t > 1 then

h̃′t ←M(ht−1, h̃t)
compute new locations of previous clusters: c(hi,t−1, h̃

′
t)

shrink observations to current means of previous clusters: x̃i,t
h(K̃) ← re-assign shrunk observations to clusters

else

h(K̃) = h̃1

sK̃t ← compute silhouette index for this cross-section based on current

cluster assignments h(K̃)

Kt ← arg maxK̃ s
K̃
t ; select number of clusters in cross-section t

ht ← h(Kt); store final assignments for cross-section t

where d is a distance measure. In words: if the shrunk observation x̃i,t is closer to the new

candidate cluster, or if the old cluster is discontinued, the unit switches to the new cluster.

Otherwise, the unit remains in the old cluster.1 The shrinkage of the observation towards

the current location of the previous cluster ensures that cluster switches become less likely.

If ε equals zero, there is no shrinkage and units can switch cluster identity freely from one

cross-section to the next. The steps are repeated for all cross-sections 1, . . . , T , including

a step to determine the number of clusters in each cross-section. The complete algorithm

is summarized in Algorithm 1. The initial clustering at t = 1 is the best approximation

of the true group structure in the absence of past data. By construction, any error made

then will persist for longer the higher ε is set. Section 3 studies conditions under which

the initial error tapers off.

It is important to note here that we have been silent thus far about which clustering

algorithm is used, which distance measure d, and which measure of cluster centroid c. This

means that the current shrinkage technique can be applied in a wide variety of settings.

1The procedure of candidate clustering, mapping, shrinking, and reassignment, could be iterated if
desired. Also note that the approach could, in principle, be extended from the current hard clustering
assignment procedure to a soft clustering assignment.
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Any cross-sectional clustering algorithm that produces a distance measure can be adapted

in the above way to feature stickiness. For example, in graph-based algorithms such as in

Zahn (1971) or Grundmann et al. (2010), we can shrink the weight of edges connecting

points that belonged to the same cluster at t − 1. For simplicity, we use k-means in our

simulations and empirical application, but other methods are possible if the data calls

for more exotic cluster shapes. We can be similarly flexible with regard to the choices of

distance measures d and centroids c. For instance, if distances are Mahalanobis-based, we

can choose to pool across all cross-sections to compute (cluster) covariance matrices, or

alternatively compute such matrices per cross-section, thus allowing for heteroskedasticity.

To select the number of clusters in each cross-section in Algorithm 1, we use the

silhouette index of Rousseeuw (1987). Like other cluster selection criteria, it favors ho-

mogeneity of units within each cluster as well as heterogeneity between clusters; better

scores on either dimension result in higher values of the index. We pick the number of

clusters Kt that maximizes the average silhouette index. The silhouette of point i at time

t for a given Kt is

sit =
b(xi,t)− a(xi,t)

max{a(xi,t), b(xi,t)}
, a(xi,t) = d(xi,t, Chi,t,t), b(xi,t) = min

k 6=hi,t
d(xi,t, Ck,t), (4)

where a(xi,t) is the average distance from point i to other points in its own cluster Chi,t,t,

and b(xi,t) is the average distance from point i to the points in the nearest other cluster.

Following Rousseeuw (1987), we set s(xi,t) = 0 if Chi,t,t only contains unit i. Intuitively,

the average silhouette index

st =
1

N

N∑
i=1

sit (5)

measures how tightly the observations are clustered around the cluster mean (when a(xi,t)

is low on average) and how separate the clusters are from each other (when b(xi,t) is high

on average). This makes it a useful measure of fit, which we adapt in Section 2.3 to obtain

a data-driven way to select the shrinkage parameter ε.
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2.2 Mapping

Standard cross-sectional clustering algorithms produce arbitrary cluster labels that have

no relation to the labels assigned in previous cross-sections. This complicates the identi-

fication of the current location of an observation’s previous cluster. To remedy this, we

need to find a correspondence between the labels at t − 1 and new candidate labels at

time t. We do so by looking at the overlap of every two clusters at consecutive times, as

in Kalnis et al. (2005). To illustrate, consider a setting where at time t the cross-sectional

clustering algorithm produces clusters A and B, while at time t + 1 it produces clusters

labeled C and D. If all units that belong to cluster A at time t also belong to cluster

D at time t + 1, and all units that belong to cluster B at time t belong to cluster C at

t+ 1, then the most natural correspondence is to assign the same label to A and D, and

similarly to B and C. Following Oliveira and Gama (2010), we refer to this procedure as

mapping.

To generalize this idea to the less obvious case where there are switches, we form a

contingency matrix where the elements in row i and column j represents how many points

were assigned to cluster i at time t and to cluster j at time t+ 1. We can then formalize

the idea of maximizing overlap between clusters at different times as maximizing the trace

of this matrix with respect to the ordering of the columns. For example, if both periods

have two clusters and the maximum is attained when the contingency matrix is formed

with the column corresponding to cluster D on the left and the one for cluster C on the

right, then cluster D at t + 1 maps to cluster A (row 1) at t, and so on, as is the case in

the example below:

C D

A :

B :
tr

3 2

5 1

 = 4
→

D C

A :

B :
tr

2 3

1 5

 = 7.
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This formal problem can be written as

max
P

tr(C∗t P ), (6)

where C∗t is the contingency matrix from time t to t+ 1, and P is a permutation matrix.

The optimal P can easily be interpreted: cluster i at t+1 maps to cluster j at t if Pi,j = 1.

For a small number of clusters at t+1 (7 or 8, say), (6) can be easily solved by exhaustive

search. For larger numbers of clusters, an efficient algorithm has been developed, known

as the Hungarian algorithm (Kuhn, 1955).

An extension of the above method to the situation where the number of clusters

increases or decreases over time can be defined as follows. The contingency matrix then

becomes rectangular, so it is no longer possible to compute its trace. This is solved by

maximizing the trace of the largest square matrix inside it by switching the columns of

the rectangular matrix. That is, the extra clusters’ overlap will not go into the objective

function. We can still formulate the problem as in equation (6) if we augment C∗t with a

matrix of zeroes such that the resulting matrix is square, i.e.,

C∗∗t =

 C∗t

Om−n×m

 , C∗∗t =

(
C∗t On×n−m

)
, (7)

for the case n < m and n > m, respectively, where Oa×b is the matrix of zeroes of

dimension a × b. The problem can then again be written as (6), with C∗∗t taking the

place of C∗t . This formulation is equivalent to stating that the extra clusters exist in both

time steps but have no members in one of them (as Frühwirth-Schnatter and Malsiner-

Walli (2019) do in their paper). Therefore, this extended problem can still be solved by

the Hungarian algorithm. It does not, however, provide a solution for ties, i.e. when

two relabellings of the clusters at t + 1 provide the same trace tr(C∗t P ). Luckily, such

situations are empirically exceedingly rare. Still, in such rare cases ties can be broken in

a variety of ways, for instance by considering the overlap with the cross-section at t− 2,

or by using the correspondence with the closest cluster means.
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2.3 Selection of the shrinkage parameter

In this section, we propose a modification of the silhouette index to set the shrinkage

parameter ε in (1). In Section 4 we benchmark this statistic against the cross-validation

approach of Fu and Perry (2020), which we also briefly introduce here. The latter, how-

ever, turns out to work less well.

Our aim is to reduce misclassification rates of observations to clusters. As clustering

is an unsupervised learning technique, such misclassification can only be studied in a

controlled setting, as we do in Sections 3 and 4. For real data, misclassification cannot

be measured and we look instead at measures of cluster fit based on the silhouette index.

Here a trade-off has to be made between the best fit on the one hand, and stability of

cluster assignments (no undue flickering) on the other. As flickering is a highly transitory

phenomenon, we take advantage of this fact to inform our choice of ε. Specifically, we

look for values of ε that have a large effect on bringing down the number of switches, but

only a modest effect on the overall clustering fit as measured by the silhouette index.

To aggregate the silhouette index across cross-sections, we use the Gini-weighted av-

erage version as in David (1968), re-scaled by N :

Gt =

∑Kt

k=1(2k −Kt − 1) ·#Pk:Kt

Kt ·N
=

∑Kt

i=1

∑Kt

j=1

∣∣#Pi − #Pj
∣∣

2Kt ·N
,

GWS =
T∑
t=1

(1−Gt) · st,

where #Pk:Kt is the number of units in the k-th smallest cluster, and st denotes the

silhouette index of cross-section t. The second expression for Gt clearly shows that Gt

equals zero when the clusters have homogeneous sizes, and increases as inequality in

cluster size increases.

An important reason for choosing the GWS over other measures is that it penalizes

clusters with a single outlying observation. Rousseeuw (1987) already notes that the

simple average silhouette could be vulnerable to outliers: “a situation where the data

set contains one far outlier is also an example of a strong clustering structure. Indeed,
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when the outlier is far enough, the other data look like a tight cluster by comparison.”

By applying the Gini weights rather than computing a simple average, we avoid picking

cluster numbers that result in single (outlying) observation clusters. This is also in line

with our objective to reduce flickering: we want to discourage the short-lived birth and

death of small, isolated clusters from one cross-section to the next. The GWS statistic is

easy to compute and a direct by-product of Algorithm 1.2

To benchmark the Gini weighted silhouette (GWS) index, we also compute the cross-

validation statistic for clustering proposed by Fu and Perry (2020). In their paper, Fu and

Perry use cross-validation to determine the optimal number of clusters in a cross-sectional

clustering problem. We, instead, use their approach to set the shrinkage parameter ε.

Following Fu and Perry (2020), we first randomly split the units of our dataset in (three)

equal groups, as well as the variables (in two groups). Next we build six folds out of

these groups in the following way. One of the three groups of units is assigned to be the

training set, while the other two are the test set. Also, one group of variables is taken as

predictor variables (X tr
t and X te

t for the train and test sample, respectively). The other

variables are called response variables (Y tr
t and Y te

t ). In each data fold, we apply four

steps to reach a measure of cross-validation error. First, we cluster Y tr
t using our shrinkage

methodology to obtain labels ctrt and corresponding cluster means µtr,Yt,k for the training

response variables and the k = 1, . . . , Kt clusters. We also cluster the observations in Y te
t

using the same shrinkage approach, but based on the already estimated cluster means

µtr,Yt,k and the same number of clusters Kt. This gives us cluster labels ctet . We treat

the labels ctrt and ctet as observed ‘pseudo-labels’ in the next step. Next, we perform a

classification step on X te
t . Though in principle any classification model could be used, we

follow Fu and Perry (2020) and use a simple classifier that estimates cluster means µtr,Xt,k

of X tr
t based on the assignments ctrt . We then predict cluster assignments ĉtet for X te

t by

assigning each observation in X te
t to the cluster with the closest mean µtr,Xt,k . Our cross-

2The silhouette index is available at the level of each unit i, (see equation (4)), on average across i
at any point in time t, and for the entire data. At the unit level, it compares the closest fit of unit i to
its second-best cluster alternative at time t, taking into account all other possible cluster allocations. As
a result, sit can play a role similar to the role that the cluster probabilities τij,1:T play in Lucas et al.
(2019), and that the filtered cluster probabilities τij,t|t play in Custodio João et al. (2022).
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validation error is then ||Y te
t − µ

te,Y
t,ĉtet
||2, i.e., the prediction error for the response variable

in the testing sample based on the predictor variables’ classification model. The squared

cross-validation errors are averaged over all observations and all folds, and subsequently

minimized to compute the optimal shrinkage parameter ε.

3 Analytical results for a simplified model

This section presents a simplified clustering model that allows us to investigate analytically

under which conditions a higher shrinkage parameter ε improves correct classification

rates. We consider a univariate data generating process, where the observation xt depends

on its cluster center ct, according to

xt = ct + ηt,

where ηt has cdf F (ηt) with zero mean and variance σ2. The clusters are labeled based

on their cluster center ct, which we normalize to 0 and 1, i.e., ct ∈ {0, 1}. The similarity

of the clusters is then fully determined by the cdf F ( · ). If the support of F (ηt) is

highly concentrated around ηt = 0, then the clusters are well-separated. If, by contrast,

the support of F (ηt) is widespread around zero, then the clusters are very similar and

difficult to distinguish.

We allow for potential switching of cluster membership by assuming that ct follows a

Markov chain with transition probability p, i.e. a transition matrix P of the form

P =

P(ct = 0|ct−1 = 0) P(ct = 0|ct−1 = 1)

P(ct = 1|ct−1 = 0) P(ct = 1|ct−1 = 1)

 =

1− p p

p 1− p

 .

The repeated k-means clustering procedure in this setting then corresponds to classifying

xt to either the cluster with center 0 (ĉt = 0) or 1 (ĉt = 1), regardless of the previous cluster

assignment ĉt−1, i.e., using ε = 0 and basing the assignment on ĉt = arg minc∈{0,1} |xt−c|.3

3Of course, knowing that the data are generated by a Markov chain, optimal filters would be available
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The penalized clustering methodology introduced in Section 2 relies on the previous

assignment ĉt−1. It can be written as

ĉεt = ĉε(xt|ĉt−1) =


1 if xt(1− ε) + εĉt−1 > 1/2,

0 otherwise.

(8)

We call this the ε-classifier. The repeated k-means procedure is a special case of this

approach for ε = 0.

Using the above set-up, we can analytically derive the probability of misclassification

P(ĉεt 6= ct). In our first result, we define the one-step-ahead misclassification rate as

the misclassification probability at t given perfect information about the true cluster

membership at t− 1.

Proposition 1. Given ct−1, the one-step-ahead misclassification probability of the ε-

classifier is

P(ĉεt 6= ct|ct−1) =F

(
ε− 1/2

1− ε

)
p+ F

(
−1/2

1− ε

)
(1− p), (9)

where F denotes the cdf of ηt.

All proofs can be found in Appendix A. A few features of (9) are worth noting. The k-

means error (ε = 0) simplifies to P(ĉt 6= ct|ct−1) = F (−1/2), which is insensitive to p. On

the other extreme, as ε→ 1, the error approaches p. Figure 3 plots the misclassification

probability for the more interesting intermediate values of ε using a normal distribution

N(0, σ2) for F (ηt). The minimum of each curve is marked by a dot. In most cases the

minimum classification error is obtained at some intermediate value of ε. The reduction in

classification errors is larger for smaller values of p, i.e., situations where there is infrequent

switching and where time t− 1 information is most informative about the cluster identity

at time t. Improvements are also larger for more cluster similarity (high σ2). Only for

(Hamilton, 1989). We are, however, interested in settings that require only minimal assumptions about
the data generating process. Our algorithm can be used with any cross-sectional clustering method, while
being flexible over time.
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Figure 3: Plot of the one-step-ahead misclassification probability (9)
The dot on each curve indicates the lowest misclassification rate. The figure is based on ηt ∼ N(0, σ2),
xt = ct + ηt, and ct ∈ {0, 1} a Markov chain with switching probability p. For σ = 0.25 the clusters are
well-separated, while for σ = 1 the clusters largely overlap.

p = 0.5 the position at t − 1 does not bear any information for the cluster assignment

at t, and there is no benefit in introducing membership persistence via ε > 0. Later in

Section 4, we will see that the current analytical results bear close resemblance to the

simulation results.

Using Proposition 1, we can analytically characterize the optimal value of ε that

minimizes the misclassification rate.

Proposition 2. If ηt
iid∼ N(0, σ2), the value ε∗ which minimizes the misclassification rate

(9) for 0 < p < 1
2

is

ε∗ =
2σ2 log

(
p

1−p

)
2σ2 log

(
p

1−p

)
− 1

. (10)

Proposition 2 confirms what can be seen from Figure 3. Higher levels of noise and

lower switching probabilities p push ε∗ upwards, implying that higher shrinkage and thus

more persistence in the classifier is optimal in such cases. In most cases of empirical

interest, switching is present but infrequent (0 < p < 0.5), leading to strictly positive

values of ε∗.

We can extend Proposition 1 to the case where xt exhibits mean-reverting dynamics
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in addition to a Markov switching center.

Corollary 1. If xt follows the dynamics xt = ct+β(xt−1−ct)+ηt, then the one-step-ahead

probability of error of the ε-classifier is

P(ĉεt 6= ct|ct−1) =F

(
ε− 1/2

1− ε
+ β(xt−1(2ct−1 − 1) + 1− ct−1)

)
p (11)

+ F

(
−1/2

1− ε
+ β(xt−1(1− 2ct−1) + ct−1)

)
(1− p),

where F denotes the cdf of ηt.

We note that the introduction of the term β(xt−1 − ct) does not change the main

features of the misclassification probability (11) when compared to (9). In particular, the

concavity of the misclassification rate is still present, as is the strictly positive optimal

value of ε; see Figure B.1 in the Appendix B.

Proposition 1 assumes that the true past cluster mean ct−1 is known. This is admittedly

unrealistic. To arrive at an unconditional misclassification rate, and a corresponding

optimal shrinkage parameter ε∗, we propagate the classification process n steps ahead to

derive the misclassification rate P(ĉεt 6= ct|ct−n). Let the conditional correct classification

probabilities at time t be qi,t = P(ĉεt = i|ct = i) for i = 0, 1, and let qt = (q0,t, q1,t)
′. Also

define the marginal probabilities of the true states πi,t = P(ct = i) with πt = (π0,t, π1,t)
′,

such that the probability of correct classification can be written as π′tqt = q0,tπ0,t+q1,tπ1,t.

Then the following proposition gives the recursion for qt+1.

Proposition 3. The conditional correct classification probabilities qt follow the recursion

qt+1 =

 z00·(1−p)·π0,t
π0,t+1

− z10·(1−p)·π0,t
π0,t+1

z10·p·π1,t
π0,t+1

− z00·p·π1,t
π0,t+1

z01·p·π0,t
π1,t+1

− z11·p·π0,t
π1,t+1

z11·(1−p)·π1,t
π1,t+1

− z01·(1−p)·π1,t
π1,t+1

 · qt (12)

+

 z00·p·π1,t
π0,t+1

+ z10·(1−p)·π0,t
π0,t+1

z01·(1−p)·π1,t
π1,t+1

+ z11·p·π0,t
π1,t+1

,
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where

zi0 = F

(
1/2− i · ε

1− ε

)
, zi1 = 1− F

(
1/2− i · ε

1− ε
− 1

)
.

We note that Proposition 1 is a special case of (12) by taking qt = (1, 1)′. Other

values can be chosen to reflect the uncertainty in the first step. In particular, we can

use the output of the first step as input for a second step to obtain the 2-step-head

error rate. This process can be repeated n steps. By iterating further and further, we

can study whether introducing persistence in clustering (ε > 0) has a lasting benefit,

whatever the initialization used. The following two corollaries present the results for

n→∞, establishing that some strictly positive shrinkage parameter is generally optimal

even if no information is available about the previous cluster label ct−1. The result is

established for our case of a symmetric Markov chain for ct, where limt→∞ πi,t = 0.5 for

p > 0. Derivations for an asymmetric Markov chain are very similar.

Corollary 2. The limiting probabilities of correct classification q for a symmetric Markov

chain P(ct = 1|ct−1 = 0) = P(ct = 0|ct−1 = 1) = p are

q =

1− (1− p)(z00 − z10) p · (z00 − z10)

p · (z11 − z01) 1− (1− p)(z11 − z01)


−1

×

z10 + p · (z00 − z10)

z01 + p · (z11 − z01)

 .

The corresponding limiting misclassification probability is

lim
t→∞

P(ĉεt 6= ct) = 1− 1

2

z01(1− z̃00) + z10(1− z̃11) + p(z̃00 + z̃11 − 2z̃11z̃00)

1− (1− p)(z̃00 + z̃11) + (1− 2p)z̃00z̃11
, (13)

where z̃00 = z00 − z10 and z̃11 = z11 − z01.

Corollary 3. Let f(ηt) be the pdf of ηt, corresponding to the cdf F (ηt), and the limiting

misclassification probability q̃ = 1 − 1
2
(ι2 · q) where ι2 ∈ R2 is a vector of ones. Then

under the same conditions as Corollary 2, the derivative of the limiting misclassification

ECB Working Paper Series No 2780 / February 2023 21



Figure 4: The n-step-ahead misclassification rate π′tqt for n = 1, 5 and n→∞ using (12)
and σ = 0.5.

probability at ε = 0 is given by

∂ q̃

∂ε

∣∣∣∣
ε=0

= 1
4

(
f(1

2
)− f(−1

2
)
)

+ 1
2
p
(
f(−1

2
)F (1

2
)− f(1

2
)F (−1

2
)
)

+ 1
2
(p− 1)

(
f(1

2
)F (1

2
)− f(−1

2
)F (−1

2
)
)
.

If the pdf f is symmetric around zero, this expression simplifies to

∂ q̃

∂ε

∣∣∣∣
ε=0

= −1
2
(1− 2p) f(1

2
)
(
2F (1

2
)− 1

)
,

which is negative for p < 0.5.

Figure 4 plots the n-step-ahead misclassification rate from Proposition 3 and its limit

from Corollary 2 for n ∈ {1, 5,∞}, and ηt ∼ N(0, 0.52). Introducing clustering persistence

clearly pays off both in the short and the long term. The minimum misclassification rate

is reached at some ε > 0 as long as p < 0.5. This follows from the derivative of the

misclassification rate at the origin ε = 0 in Corollary 3, which is negative for any p < 0.5

and any distribution F of ηt that is symmetric around zero. We also note that the

drop in the misclassification rate remains substantial for the limiting case n → ∞ for

p ≤ 0.1. Finally, all these results also align with our simulations results in Section 4:
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under moderate switching, the error rate is concave in ε, and more so if clusters are less

well separated (i.e., higher σ). This helps to recognize situations for which it is advisable

to allow for cluster switching over time, balanced with the shrinkage approach proposed

in this paper.

4 Simulation study

In this section, we investigate the ability of our method to assign units to their respective

clusters at each point in time. All simulations are done using a six-dimensional Gaussian

distribution (D = 6) to allow for at least three variables in each fold of the cross-validation

approach of Fu and Perry (2020). The different cluster centers are drawn randomly from

the vertices of a six-dimensional unit hypercube. In the baseline simulation setting, the

cluster covariance matrices are set equal to the identity matrix. Unit variances for cluster

centers on the vertices of a unit cube imply that there is substantial cluster overlap and

thus substantial misclassification risk. We therefore also consider a second setting with

variances equal to 0.5 for each component. Throughout the simulations, the true number

of clusters is fixed at two (K = 2).

At each time, observations are drawn from their current cluster distribution. Units

switch clusters from time t to t + 1 with probability p, where we vary p from 0 to 0.25

across different designs. In all settings we use T = 20 time points, N = 120 units, and 100

simulations runs. As our first-pass cross-sectional clustering algorithm we choose a simple

k-means approach, although, as stated before, our approach can also accommodate other

cross-sectional clustering methods, distance definitions, and centroid measures.

The baseline simulation results are shown in Figure 5. Overall, the shape of the

misclassification curve closely aligns with our analytical results in Figures 9 and 12 in

Section 3. At low levels of switching in the DGP, i.e. p ∈ {0, 0.01, 0.1}, our method with

positive ε improves on the repeated k-means case (ε = 0). Moreover, there are clearly

optimal values for ε in the misclassification plot (upper left panel). Setting ε to these

optimal values leads to reductions of misclassification errors from 16% down to 9% for
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both p = 0 and p = 0.01. The shrinkage approach performs worse than repeated cross-

sectional clustering only for highly-frequent actual switching (p = 0.25). We do not expect

this to be a major problem in practice, as our model is primarily intended for dynamic

settings with only occasional switches and substantial persistence in cluster membership.

Without knowing the true classifications, it is still striking that the Gini-weighted Sil-

houette index peaks at about the optimal ε (lower-right panel), while the cross-validation

(CV) error flattens out around the same point (upper-right panel). The switching rate

(lower-left panel) combined with the Gini-weighted silhouette index shows exactly what

the approach seeks to achieve – a drastic reduction in the number of cluster switches

(lower-left), without sacrificing the fit in terms of the silhouette index (lower-right). In-

creasing ε avoids frequent reclassification of observations on the borderline between clus-

ters. Such observations only marginally affect the silhouette index as it takes the distances

of the observations to the nearest clusters into account. It does, however, bring down the

switching rate considerably. This may help setting the value of ε in empirical applica-

tions: we are looking for values of ε that reduce the switching rate, without considerable

decreases in the silhouette index.

We emphasize that our baseline setting implies a major challenge to any clustering

algorithm, owing to the substantial cluster overlap. In a setting with lower variances,

such as Figure B.2 in Appendix B, we find much smaller misclassification rates, while

still achieving reductions in misclassification rates of about 67% (from around 7.5% to

around 2.5%) for p = 0.00 and 0.01. Again, the pronounced concavity and minimum of

the misclassification reflect the theoretical results in Section 3.

Figure 5 also suggests that the cross-validation error approach to select ε works less

well. Cross-validation errors appear lowest for high values of ε that yield too much

persistence in cluster membership. If ε were set based on this criterion, misclassification

rates would be higher than those associated to the Gini-weighted silhouette approach. We

therefore prefer the latter over the former in our empirical work in Section 5.

To see the effect of choosing the number of clusters, we extend the previous simulation

setup by also letting the algorithm choose the number of clusters Kt in each cross-section.
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Figure 5: Simulation results for four values of p. Baseline setting.

We vary the number of clusters in the model from 2 to 4, whereas the true number

of clusters is always 2. The results are presented in Figures B.3 and B.4 in Appendix

B. The case of an unknown number of clusters, combined with a large cluster overlap,

poses a substantial challenge for any clustering method. Misclassification rates are high

throughout, and only for p = 0.00, 0.01 we observe a clear dependence on the shrinkage

parameter ε. For those two cases, the reduction in misclassification is substantial, at

more than 15 percentage points when the optimal penalty parameter is chosen. The Gini-

weighted silhouette index points to values of ε between 0.3 and 0.6, where the sharpest
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declines in the Gini-weighted silhouette index occurs. These values appear slightly below

the optimal values for misclassification at around ε = 0.6. The CV error, by contrast,

seems to flatten out around too high a value of around ε = 0.8, and thus again exhibits

a worse behavior. The picture is even clearer if we bring down the error variances to

0.5, reducing cluster overlap. For low values of p, the Gini-weighted silhouette index now

decreases sharply after the optimal (from a misclassification perspective) value of ε has

been reached. This allows us to cut misclassification by close to 50% in a data-driven

way without sacrificing much of the fit in terms of the Gini-weighted silhouette index. By

contrast, applying the cross-validation-based approach again results in too high values of

ε and may therefore miss important aspects in the dynamics of the data.

Finally, to benchmark our new clustering approach, we compare it to three versions of

Ward’s hierarchical clustering. The first approach (Ward plain) clusters each cross-section

separately and links the labels through the mapping step as in Section 2.2. Second, the

pooled Ward takes all observations of all units over time and treats them as a single cross-

section of N × T separate units. Third, time-aggregated Ward stacks the xi,t over time

into a vector xt and considers each of its coordinates as one of N ×D separate variables.

This last approach does not allow for switches and effectively clusters the whole time

series of a unit.

The results are presented in Table 1 and can be compared to the left-hand curves in

Figures 5 and B.2. All benchmark approaches produce larger misclassification errors than

our new penalized dynamic clustering approach. Only Ward’s time-aggregated approach

for small p appears to fare slightly better, but at the cost of not allowing for any switches

at all. As a consequence, it produces disproportionately large misclassification rates as

p increases, exceeding those of the penalized clustering approach of this paper. The

difference in misclassification rates are substantial: even for a large set of sub-optimal

choices of ε, the new method still beats the benchmarks. For instance, in the baseline

design with p set at 0 and 0.01, any choice of ε produces lower errors than either the

Ward plain or the Ward pooled benchmark. For p = 0.1 the misclassification rate in our

approach is only higher when ε ≥ 0.65. This suggests that also if cluster switches happen
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Misclassification Switching rate
Baseline Half-var. Baseline Half-var.

Model p

Ward 0.0 0.182 0.101 0.391 0.285
plain 0.01 0.182 0.108 0.392 0.305

0.1 0.183 0.119 0.408 0.348
0.25 0.208 0.133 0.431 0.393

Ward 0.0 0.182 0.117 0.368 0.267
pooled 0.01 0.170 0.128 0.368 0.284

0.1 0.176 0.122 0.386 0.330
0.25 0.185 0.121 0.423 0.379

Ward 0.0 0.019 0.001
time-aggregated 0.01 0.045 0.043

0.1 0.212 0.195
0.25 0.284 0.281

Table 1: Misclassification rates and switches for the benchmark models. The time-
aggregated setting does not allow for switches. The baseline has σ = 1, and thus large
cluster overlaps. For the Half-variance case, σ = 0.5, and the overlap is smaller.

more often, a wide range of (optimal or sup-optimal) shrinkage parameters ε results in

improvements over the considered benchmarks.

5 Empirical illustration

This section applies the clustering methodology of Section 2 to multivariate panel of D = 4

accounting ratios for N = 28 European insurance companies’ over the period 2010 and

2020 (T = 11). Each year, we allocate insurers to one of k = 1, . . . , Kt distinct business

model (peer) groups. We proceed by first describing the data, followed by the empirical

results.

5.1 Data

Our sample of N = 28 European insurance companies overlaps strongly with a set of 44

insurance companies chosen by EIOPA for its 2021 insurance sector stress test; see EIOPA

(2021, Annex A). We observe annual insurer-level accounting data from InsuranceFocus

(Bureau van Dijk). We start with the EIOPA’s selection of insurers, which together cover
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approximately 75% of the European Economic Area’s insurance market based on total

assets. We exclude companies for which a complete set of data is not available, resulting

in 26 companies, before adding two large Swiss insurance companies to complement the

sample (Swiss Re and Zurich insurance). Table B.1 in Appendix B provides a listing of

all firms, along with a subset of estimated cluster allocations.

We select a parsimonious set of variables to classify our selection of European insurers

into broadly similar peer-groups. Our choice of variables is motivated by the desire to tell

apart four types of insurers: re-insurance, non-life insurance, life insurance, and financial

conglomerate. The first three types are insurers that focus on a specific part of the

insurance business. The fourth type is a large insurer that owns at least one sizable

deposit-taking (bank) subsidiary.

To allocate insurers into peer groups we consider the following variables: insurers’ i)

ratio of total reinsurance premia received over total traditional (life and non-life) insurance

premia; ii) share of life insurance premia to total premia, iii) share of non-life insurance

premia to total premia, and iv) share of banking assets (loans and mortgages) to total

assets. The first three variables are taken from the insurers’ profit-and-loss (“technical

accounts”) statements, while the fourth variable is taken from the insurers’ consolidated

balance sheets. The first variable allows us to distinguish reinsurance firms from “regular”

insurers. The second and third variable allow us to further subdivide regular insurers into

life- and nonlife insurers. The fourth variable allows us to distinguish financial conglom-

erates. We rely on International Financial Reporting Standards (IFRS) accounting data,

and use domestic-GAAP accounting data when IFRS data are not available.

5.2 Clustering outcomes

We first discuss the results for a fixed number of clusters K = 4, which is in line with

the highest Gini-weighted silhouette index at almost all time points (see below), and

our reading of the general industry perception. As a robustness check, we also provide

clustering outcomes when Kt is allowed to vary between two and six, corroborating that
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K = 4 is an appropriate choice.

We initialize our clustering method by applying threshold rules to the first cross-

section. These threshold rules divide the data into four mutually exclusive and eco-

nomically interpretable clusters. Firms receiving more reinsurance premia than non-

reinsurance premia are allocated to cluster 1 (“reinsurance”). Non-reinsurance firms re-

ceiving more than half of their total premium income from life contracts are allocated

to cluster 2 (“life”). Non-reinsurance firms receiving most premium income from non-life

insurance are allocated to cluster 3 (“non-life”). Firms exhibiting banking assets (total

loans and mortgages) of more than a third of total assets are allocated to cluster 4 (“con-

glomerate”), potentially overriding the other splits. This approach allocates each firm

uniquely to one of the four clusters.

We then use our dynamic clustering method, in conjunction with k-means clustering,

to allocate the remaining cross-sections conditional on the initial allocation. Our initial-

ization approach has no effect on subsequent cross sections when no shrinkage is imposed

(ε = 0). In that case the clustering outcomes quickly revert to the outcomes implied by

independent k-means clustering of each cross section in isolation. The higher the amount

of shrinkage, however, the stickier and the more important the initialization.

Figure 6 presents clustering diagnostics as a function of the shrinkage parameter ε.

Our goal is to decrease the number of incidental switches (flickering) while retaining a

high overall fit to the data. Figure 6 allows us to compare the Gini-weighted silhouette

index (our measure of fit, in the bottom panel) to the number of switches (in the top

panel) associated to each value of ε. The bottom panel of Figure 6 indicates that there

is a local maximum in fit at ε = 0.45, coinciding with a low number of cluster switches.4

After ε = 0.45, the fit decreases sharply. We therefore choose ε = 0.45 for the remainder

of the analysis based on K = 4.

Our clustering approach leads to stable cluster allocations over time. Figure 7a sum-

marizes our cluster allocation outcomes for K ≡ 4 and ε = 0.45. Each column refers to

4The Gini-weighted silhouette index need not be monotonically decreasing in the shrinkage parameter
ε. The clustering outcomes at time t can influence the clustering outcomes at later times, leading to
non-monotonicity in the aggregate fit; see also the discussion in Section 2.3.
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Figure 6: Clustering diagnostics as a function of the shrinkage parameter ε. Top panel:
total number of cluster switches. Bottom panel: average Gini-weighted silhouette index.

one cluster indexed by k = 1, . . . , 4. Each row denotes one year between 2010 and 2020.

Two cluster transitions are indicated by arrows. The four clusters contain three, eight,

fifteen, and two members, respectively, most of the time, with a slight variation in mem-

bership only across the last three groups. Traditional non-life and life insurers are the

most frequently observed (popular) business models in our sample, ahead of re-insurers

and financial conglomerates.

The labels given to each cluster correspond closely with what an inspection of the em-

pirical cluster centroids (means) would suggest. Figure 7b plots the time-varying cluster

means for all the variables contained in xit. The first cluster is characterized by a large

ratio of reinsurance premia to life and non-life premia. The second and third clusters are

characterized by large ratios of life and non-life premia to total non-reinsurance premia,

respectively. The fourth cluster is characterized by a substantial ratio of banking assets

to total assets.

Figure 8a summarizes the cluster allocation outcomes for K ≡ 4 and ε = 0. The
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Figure 7: Clustering composition and transitions and cluster means for K ≡ 4 and
ε = 0.45. Each column in the left-hand panel refers to one cluster indexed by k = 1, . . . , 4.
Each row in the same panel denotes one year between 2010 and 2020, while an arrow
represents a transition across clusters. The right hand panel shows the evolution of the
cluster means over time.

(a) cluster composition (b) cluster means

clustering outcomes are visibly more volatile, and much harder to interpret economically

if no shrinkage is imposed to link the cross-sections over time. Two outcomes are worth

noting. First, the reinsurance cluster now shrinks in membership early on in the sample

(in 2012), from three to only one member. This can be traced to the first variable being

substantially higher for one firm (Swiss Re) than for the other two reinsurance firms

(Munich Re, Hannover Re). The fact that the two migrating firms carry “Re” in their

names may suggest that these transitions may not necessarily be interpretable. Imposing

shrinkage removes these transitions; cf. Figure 7a. Second, there is some noticeable going

back- and forth between the life and non-life clusters. This can be traced back to a few

insurers that engage in both life and non-life business, with the precise split between the
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Figure 8: Clustering composition and transitions for K ≡ 4 and ε = 0.00 (panel (a)) as
well as Kt ∈ {2, . . . , 6} and ε = 0.55 (panel (b)). Each column in the figures refers to
one cluster. Each row denotes one year between 2010 and 2020. Each arrow represents a
transition across clusters.

(a) ε = 0.00; K ≡ 4 (b) ε = 0.55; Kt ∈ {2, . . . , 6}

two being subject to accounting windfalls and other one-off effects (similarly to the setting

in Figure 1). Such “middle-of-the-road” or “multi-line” insurers are relatively harder to

cluster. Imposing shrinkage avoids these firms flickering back and forth between the life

and non-life clusters, yielding more stable clustering outcomes and, in turn, enhancing

economic interpretability.

Finally, we allow Kt ∈ {2, 3, 4, 5, 6} to vary over time. As indicated by Algorithm 1,

Kt can be chosen to maximize the local time-t silhouette index. We continue to start our

clustering algorithm at Kt = 4 for t = 1, and increase the amount of shrinkage slightly to

ε = 0.55 to balance the additional source of instability, trading off goodness-of-fit against

clustering stability as before.

Figure 8b presents the clustering outcomes. We note two features. First, four clusters

are selected almost always even though Kt is allowed to vary. We see that Kt = 2, Kt = 5
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and Kt = 6 are never selected, and that Kt = 3 is only selected twice. This supports our

initial choice of K = 4. Second, the fourth (“conglomerate”) cluster appears to merge with

the second (“life”) cluster late in the sample (in 2019 and 2020). This can be traced back

to the two cluster means moving closer together at that time. Whether this corresponds

to a permanent “structural” feature of our data going forward is currently unclear and

left for future research. Finally, we observe that choosing ε > 0 at a moderately high

value allows us to obtain stable clustering results for multivariate panel data both when

Kt is time-invariant and when it is time-varying.

6 Conclusion

In this paper, we propose a new approach to clustering in a panel setting, allowing for

dynamics in the cluster location, cluster composition and number of clusters, while en-

suring stability and persistence of assignments via a shrinkage penalty parameter. The

method is widely applicable and extends to many cross-sectional clustering algorithm that

produces a distance measure, including, for instance, k-means, k-medians, or hierarchical

clustering. We show how the penalty parameter can be chosen in a data-driven way with

a simple weighted version of the well-known silhouette index. We also show analytically

and in simulations that selecting a strictly positive shrinkage parameter helps to reduce

misclassification in empirically relevant conditions.

An application to business models in the European insurance sector underlines the

usefulness of our method in balancing flexibility, i.e. allowing for cluster transitions, and

penalizing excessive back-and-forth switching between clusters in economic settings.
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Appendix A Proofs of propositions

This appendix presents the proofs of the propositions in Section 3.

Consider a univariate data generating process, where the observation xt depends on its cluster center

ct, given by

xt = ct + ηt,

where ηt has cdf F (ηt). The cluster center ct follows a Markov chain with transition probability p. In

this setting, our clustering methodology can be written as

ĉεt = ĉε(xt|ĉt−1) =


1 if xt(1− ε) + εĉt−1 > 1/2,

0 otherwise.

(A.1)

We call this the ε-classifier.

Before discussing the results of Section 3, we present Lemma 1, which will be useful below.

Lemma 1. Given three real numbers x, a, and b:

|a+ x| < |b+ x| ⇐⇒


x > −(a+ b)/2 if b > a

x < −(a+ b)/2 if b < a

and |a+ x| = |b+ x| if a = b or x = −(a+ b)/2.

Proof. Assume b < a and that |a+x| < |b+x|. Then b+x < a+x ≤ |a+x| < |b+x| ⇐⇒ b+x < |b+x|,

which implies that b + x < 0. So |a + x| < −(b + x). If a + x < 0 ⇐⇒ −a − x > −b − x ⇐⇒ a < b,

which is a contradiction. So a+ x > 0. If a+ x > 0 ⇐⇒ a+ x < −b− x ⇐⇒ x < −(a+ b)/2.

Similarly, assume b > a and that |a+ x| < |b+ x|. Then a+ x < b+ x. If b+ x < 0 then we would

have |a+ x| > |b+ x|, so b+ x > 0. So |a+ x| < b+ x. If x ≥ −a ⇐⇒ a+ x ≥ 0 =⇒ |a+ x| < |b+ x|.

If |a+ x| < 0 ⇐⇒ −a− x < b+ x ⇐⇒ x > −(a+ b)/2.

In our first result, we define the 1-step-ahead misclassification rate as the misclassification probability

at t given the information of the true cluster assignment at t− 1. Recall Proposition 1 from Section 3:

Proposition 1. Given ct−1, the one-step-ahead misclassification probability of the ε-classifier is

P(ĉεt 6= ct|ct−1) =F

(
ε− 1/2

1− ε

)
p+ F

(
−1/2

1− ε

)
(1− p), (9)

where F denotes the cdf of ηt.
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Proof. First, decompose the misclassification probability in a case where a switch happens at t− 1, and

a case where it does not:

P(ĉεt 6= ct|ct−1) =P(ĉεt = ct−1|ct 6= ct−1)P(ct 6= ct−1) + P(ĉεt 6= ct−1|ct = ct−1)P(ct = ct−1)

P(ĉεt 6= ct|ct−1) =P(ĉεt = ct−1|ct 6= ct−1)p+ P(ĉεt 6= ct−1|ct = ct−1)(1− p) (A.2)

(A.2) is composed of two probabilities: the error given a switch (i.e. P(ĉεt = ct−1|ct 6= ct−1)) and the

error given no switch (i.e. P(ĉεt 6= ct−1|ct = ct−1)). We split the proof in two parts, each calculating one

of these two probabilities.

Calculation of the probability of error given a switch P(ĉεt = ct−1|ct 6= ct−1).

Recalling our definition of ĉεt in (A.1), we can write the two conditional probabilities in terms of the

distance between xt and the centers, and then in terms of the noise. For P(ĉεt = ct−1|ct 6= ct−1) we have

P(ĉεt =ct−1|ct 6= ct−1)

=P(|xt(1− ε) + εct−1 − ct−1| < |xt(1− ε) + εct−1 − (1− ct−1)||ct 6= ct−1)

=P(|(ct + ηt)(1− ε) + εct−1 − ct−1| < |(ct + ηt)(1− ε) + εct−1 − (1− ct−1)||ct 6= ct−1)

=P(|(1− ct−1 + ηt)(1− ε) + εct−1 − ct−1| < |(1− ct−1 + ηt)(1− ε) + εct−1 − 1 + ct−1)||ct 6= ct−1)

=P(|(1− 2ct−1 + ηt)(1− ε)| < |(1− 2ct−1 + ηt)(1− ε)− 1 + 2ct−1||ct 6= ct−1)

=P(|1− 2ct−1 + ηt| < |1− 2ct−1 + ηt + (2ct−1 − 1)/(1− ε)||ct 6= ct−1).

And finally

P(ĉεt = ct−1|ct 6= ct−1) = P(|1− 2ct−1 + ηt| < |1− 2ct−1 + ηt + (2ct−1 − 1)/(1− ε)||ct 6= ct−1). (A.3)

Applying Lemma 1 we can do away with the absolute value. First, write (A.3) it in terms of a and b:

P(ĉεt =ct−1|ct 6= ct−1) = P(1− 2ct−1︸ ︷︷ ︸
a

+ηt| < | 1− 2ct−1 + (2ct−1 − 1)/(1− ε)︸ ︷︷ ︸
b

+ηt||ct 6= ct−1).

Now check if a < b or a > b:

a < b ⇐⇒ 1− 2ct−1 < 1− 2ct−1 + (2ct−1 − 1)/(1− ε) ⇐⇒ 0 < 2ct−1 − 1

⇐⇒ 1/2 < ct−1 ⇐⇒ ct−1 = 1.
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And the other case:

a > b ⇐⇒ 1− 2ct−1 > 1− 2ct−1 + (2ct−1 − 1)/(1− ε) ⇐⇒ 1/2 > ct−1 ⇐⇒ ct−1 = 0.

So we have two cases depending on the true cluster at ct−1. Then, applying Lemma 1 to (A.3) we have

P(ĉεt = ct−1|ct 6= ct−1) = P(|1− 2ct−1 + ηt| < |1− 2ct−1 + ηt + (2ct−1 − 1)/(1− ε)||ct 6= ct−1)

=

P(ηt > − 1
2 (a+ b)|ct 6= ct−1) if ct−1 = 1

P(ηt < − 1
2 (a+ b)|ct 6= ct−1) if ct−1 = 0.

First, calculating the term − 1
2 (a+ b) for each case

− 1
2 (a+ b) = − 1

2 (1− 2ct−1 + 1− 2ct−1 + (2ct−1 − 1)/(1− ε))

= 2ct−1 − 1 +
1/2− ct−1

1− ε

− 1
2 (a+ b) =


1/2− ε
1− ε

if ct−1 = 1

ε− 1/2

1− ε
if ct−1 = 0.

Substituting in each of these cases

P(ĉεt = ct−1|ct 6= ct−1) =

P(ηt > (1/2− ε)/(1− ε)|ct 6= ct−1) if ct−1 = 1

P(ηt < (ε− 1/2)/(1− ε)|ct 6= ct−1) if ct−1 = 0.

Using F , the cdf of ηt, and its symmetry we have

P(ĉεt = ct−1|ct 6= ct−1) =

1− F ((1/2− ε)/(1− ε)) if ct−1 = 0

F ((ε− 1/2)/(1− ε)) if ct−1 = 1

P(ĉεt = ct−1|ct 6= ct−1) = F

(
ε− 1/2

1− ε

)
. (A.4)

Calculation of the probability of error given no switch P(ĉεt 6= ct−1|ct = ct−1).

We follow the same steps as for the probability of error given a switch. We have, for the second
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conditional probability on (A.2)

P(ĉεt 6=ct−1|ct = ct−1)

=P(|xt(1− ε) + εct−1 − ct−1| > |xt(1− ε) + εct−1 − (1− ct−1)||ct = ct−1)

=P(|(ct + ηt)(1− ε) + εct−1 − ct−1| > |(ct + ηt)(1− ε) + εct−1 − (1− ct−1)||ct = ct−1)

=P(|ηt(1− ε)| > |ηt(1− ε)− 1 + 2ct−1||ct = ct−1).

And finally

P(ĉεt 6= ct−1|ct = ct−1) = P(|ηt| > |ηt + (2ct−1 − 1)/(1− ε)||ct = ct−1). (A.5)

Again we apply Lemma 1 so that we can do away with the absolute value. First, write (A.5) it in

terms of a and b:

P(ĉεt 6= ct−1|ct = ct−1) = P( 0︸︷︷︸
a

+ηt| < | (2ct−1 − 1)/(1− ε)︸ ︷︷ ︸
b

+ηt||ct = ct−1).

We can immediately check when a < b and a > b:

a < b ⇐⇒ ct−1 = 1

a > b ⇐⇒ ct−1 = 0,

and − 1
2 (a+ b) = (1/2− ct−1)/(1− ε). Then, applying Lemma 1 to (A.5) we have

P(ĉεt 6= ct−1|ct = ct−1) = P(0 + ηt| < |(2ct−1 − 1)/(1− ε) + ηt||ct = ct−1)

=

P(ηt > − 1
2 (a+ b)|ct = ct−1) if ct−1 = 0

P(ηt < − 1
2 (a+ b)|ct = ct−1) if ct−1 = 1

=

P(ηt > +(1/2)/(1− ε)|ct = ct−1) if ct−1 = 0

P(ηt < −(1/2)/(1− ε)|ct = ct−1) if ct−1 = 1

=

1− F ((1/2)/(1− ε)) if ct−1 = 0

F (−(1/2)/(1− ε)) if ct−1 = 1.

Finally, using the symmetry of F ,

P(ĉεt 6= ct−1|ct = ct−1) = F (−(1/2)/(1− ε)) . (A.6)
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We conclude the proof by substituting (A.4) and (A.6) into (A.2), yielding

P(ĉεt 6= ct|ct−1) =P(ĉεt = ct−1|ct 6= ct−1)p+ P(ĉεt 6= ct−1|ct = ct−1)(1− p)

P(ĉεt 6= ct|ct−1) =F

(
ε− 1/2

1− ε

)
p+ F

(
− 1/2

1− ε

)
(1− p).

Next we prove Proposition 2. Recall that it states:

Proposition 2. If ηt
iid∼ N(0, σ2), the value ε∗ which minimizes the misclassification rate (9) for 0 < p <

1
2 is

ε∗ =
2σ2 log

(
p

1−p

)
2σ2 log

(
p

1−p

)
− 1

. (10)

Proof. The proof is a straightforward optimization of the function (9) with ηt ∼ N(0, σ2). That is,

min
ε

P(ĉεt 6= ct|ct−1) = min
ε
F

(
ε− 1/2

1− ε

)
p+ F

(
− 1/2

1− ε

)
(1− p).

Taking the derivative we have

∂P(.)

∂ε
=pf((ε− 1/2)/(1− ε)) 1

2(1− ε)2
+ (1− p)f(−1/2(1− ε))(−1)

1

2(1− ε)2
.

Setting it to zero:

0 = pf((ε∗ − 1/2)/(1− ε∗)) 1

2(1− ε∗)2
+ (1− p)f(−1/2(1− ε∗))(−1)

1

2(1− ε∗)2

0 = pf((ε∗ − 1/2)/(1− ε∗))− (1− p)f(−1/2(1− ε∗))

0 = p exp

(
−0.5(ε∗ − 1/2)2

(1− ε∗)2σ2

)
− (1− p) exp

(
− 0.5

(2(1− ε∗))2σ2

)
0.5

(2(1− ε∗))2σ2
= − log

(
p

1− p

)
+

0.5(ε∗ − 1/2)2

(1− ε∗)2σ2

2−2 − (ε∗ − 2−1)2

(1− ε∗)2σ2
= −2 log

(
p

1− p

)
2−2 − (ε∗2 − ε∗ + 2−2)

(1− ε∗)2σ2
= −2 log

(
p

1− p

)
ε∗

1− ε∗
= −2σ2 log

(
p

1− p

)

ε∗ =
2σ2 log

(
p

1−p

)
2σ2 log

(
p

1−p

)
− 1

.

where f is the Gaussian PDF.
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Corollary 1 extends Proposition 1 to the case of a mean-reverting process.

Corollary 1. If xt follows the dynamics xt = ct + β(xt−1 − ct) + ηt, then the one-step-ahead probability

of error of the ε-classifier is

P(ĉεt 6= ct|ct−1) =F

(
ε− 1/2

1− ε
+ β(xt−1(2ct−1 − 1) + 1− ct−1)

)
p (11)

+ F

(
−1/2

1− ε
+ β(xt−1(1− 2ct−1) + ct−1)

)
(1− p),

where F denotes the cdf of ηt.

Proof. This proof follows closely that of Proposition 1.

As before. First decompose the misclassification probability in a case where a switch happens at t − 1,

and a case where it does not:

P(ĉεt 6= ct|ct−1) =P(ĉεt = ct−1|ct 6= ct−1)P(ct 6= ct−1) + P(ĉεt 6= ct−1|ct = ct−1)P(ct = ct−1)

P(ĉεt 6= ct|ct−1) =P(ĉεt = ct−1|ct 6= ct−1)p+ P(ĉεt 6= ct−1|ct = ct−1)(1− p). (A.7)

We also split the proof in two parts, each calculating one of these two probabilities.

Calculation of the probability of error given a switch P(ĉεt = ct−1|ct 6= ct−1).

Recalling our definition of ĉεt in (A.1), we can write the two conditional probabilities in terms of the

distance between xt and the centers, and then in terms of the noise. For P(ĉεt = ct−1|ct 6= ct−1),

P(ĉεt =ct−1|ct 6= ct−1)

=P(|xt(1− ε) + εct−1 − ct−1| < |xt(1− ε) + εct−1 − (1− ct−1)||ct 6= ct−1)

=P(|(ct + β(xt−1 − ct) + ηt)(1− ε) + εct−1 − ct−1|

< |(ct + β(xt−1 − ct) + ηt)(1− ε) + εct−1 − (1− ct−1)||ct 6= ct−1)

=P(|(1− ct−1 + β(xt−1 − 1 + ct−1) + ηt)(1− ε) + εct−1 − ct−1|

< |(1− ct−1 + β(xt−1 − 1 + ct−1) + ηt)(1− ε) + εct−1 − 1 + ct−1)||ct 6= ct−1).

And finally

P(ĉεt = ct−1|ct 6= ct−1) =P(|1− 2ct−1 + β(xt−1 − 1 + ct−1) + ηt| (A.8)

< |1− 2ct−1 + β(xt−1 − 1 + ct−1) + ηt + (2ct−1 − 1)/(1− ε)||ct 6= ct−1).
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Applying Lemma 1 we can do away with the absolute value. Writing (A.8) in terms of a and b we have

a = 1− 2ct−1 + β(xt−1 − 1 + ct−1)

b = 1− 2ct−1 + β(xt−1 − 1 + ct−1) + (2ct−1 − 1)/(1− ε).

Now check if a < b or a > b:

a < b ⇐⇒ 1− 2ct−1 < 1− 2ct−1 + (2ct−1 − 1)/(1− ε) ⇐⇒ 0 < 2ct−1 − 1

⇐⇒ 1/2 < ct−1 ⇐⇒ ct−1 = 1.

And the other case:

a > b ⇐⇒ 1− 2ct−1 > 1− 2ct−1 + (2ct−1 − 1)/(1− ε) ⇐⇒ 1/2 > ct−1 ⇐⇒ ct−1 = 0

So we have two cases depending on the true cluster at ct−1. Applying Lemma 1 to (A.8) we have

P(ĉεt = ct−1|ct 6= ct−1) = P(|1− 2ct−1 + β(xt−1 − 1 + ct−1) + ηt|

< |1− 2ct−1 + β(xt−1 − 1 + ct−1) + ηt + (2ct−1 − 1)/(1− ε)||ct 6= ct−1)

=

P(ηt > − 1
2 (a+ b)|ct 6= ct−1) if ct−1 = 1

P(ηt < − 1
2 (a+ b)|ct 6= ct−1) if ct−1 = 0.

First calculate the term − 1
2 (a+ b) for each case:

− 1
2 (a+ b) = − 1

2 (1− 2ct−1 + 1− 2ct−1 + 2β(xt−1 − 1 + ct−1) + (2ct−1 − 1)/(1− ε))

= 2ct−1 − 1 + β(xt−1 − 1 + ct−1) +
1/2− ct−1

1− ε

− 1
2 (a+ b) =


βxt−1 +

1/2− ε
1− ε

if ct−1 = 1

β(xt−1 − 1) +
ε− 1/2

1− ε
if ct−1 = 0.

Substituting in each of these cases we have

P(ĉεt = ct−1|ct 6= ct−1) =

 P(ηt > βxt−1 + (1/2− ε)/(1− ε)|ct 6= ct−1) if ct−1 = 1

P(ηt < β(xt−1 − 1) + (ε− 1/2)/(1− ε)|ct 6= ct−1) if ct−1 = 0.
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Using F , the cdf of ηt, and its symmetry,

P(ĉεt = ct−1|ct 6= ct−1) =

 1− F (βxt−1 + (1/2− ε)/(1− ε)) if ct−1 = 0

F (β(xt−1 − 1) + (ε− 1/2)/(1− ε)) if ct−1 = 1.

Which we can write more compactly as

P(ĉεt = ct−1|ct 6= ct−1) = F

(
β(xt−1(2ct−1 − 1) + 1− ct−1) +

ε− 1/2

1− ε

)
. (A.9)

Calculation of the probability of error given no switch P(ĉεt 6= ct−1|ct = ct−1).

We follow the same steps as for the probability of error given a switch. We have, for the second

conditional probability on (A.2),

P(ĉεt 6=ct−1|ct = ct−1)

=P(|xt(1− ε) + εct−1 − ct−1| > |xt(1− ε) + εct−1 − (1− ct−1)||ct = ct−1)

=P(|(ct + β(xt−1 − ct) + ηt)(1− ε) + εct−1 − ct−1|

> |(ct + β(xt−1 − ct) + ηt)(1− ε) + εct−1 − (1− ct−1)||ct = ct−1)

=P(|(β(xt−1 − ct−1) + ηt)(1− ε)| > |(β(xt−1 − ct−1) + ηt)(1− ε)− 1 + 2ct−1||ct = ct−1).

And finally

P(ĉεt 6= ct−1|ct = ct−1) = P(|β(xt−1 − ct−1) + ηt| > |β(xt−1 − ct−1) + ηt + (2ct−1 − 1)/(1− ε)||ct = ct−1).

Again we apply Lemma 1 so that we can do away with the absolute value. Writing the equation

above in terms of a and b we have:

a = β(xt−1 − ct−1)

b = β(xt−1 − ct−1) + (2ct−1 − 1)/(1− ε).

Now check if a < b or a > b:

a < b ⇐⇒ ct−1 = 1

a > b ⇐⇒ ct−1 = 0,
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and − 1
2 (a+ b) = −β(xt−1 − ct−1) + (1/2− ct−1)/(1− ε). Then, applying Lemma 1 we have

P(ĉεt 6= ct−1|ct = ct−1) = P(β(xt−1 − ct−1) + ηt| < |β(xt−1 − ct−1) + (2ct−1 − 1)/(1− ε) + ηt||ct = ct−1)

=

P(ηt > − 1
2 (a+ b)|ct = ct−1) if ct−1 = 0

P(ηt < − 1
2 (a+ b)|ct = ct−1) if ct−1 = 1

=

 P(ηt > −βxt−1 + (1/2)/(1− ε)|ct = ct−1) if ct−1 = 0

P(ηt < −β(xt−1 − 1)− (1/2)/(1− ε)|ct = ct−1) if ct−1 = 1

=

 1− F (−βxt−1 + (1/2)/(1− ε)) if ct−1 = 0

F (−β(xt−1 − 1)− (1/2)/(1− ε)) if ct−1 = 1.

Finally, using the symmetry of F ,

P(ĉεt 6= ct−1|ct = ct−1) = F

(
β(xt−1(1− 2ct−1) + ct−1)− 1/2

1− ε

)
. (A.10)

We conclude the proof by substituting (A.9) and (A.10) into (A.7), yielding

P(ĉεt 6= ct|ct−1) =P(ĉεt = ct−1|ct 6= ct−1)p+ P(ĉεt 6= ct−1|ct = ct−1)(1− p)

P(ĉεt 6= ct|ct−1) =F

(
ε− 1/2

1− ε
+ β(xt−1(2ct−1 − 1) + 1− ct−1)

)
p

+ F

(
−1/2

1− ε
+ β(xt−1(1− 2ct−1) + ct−1)

)
(1− p).

Proposition 3 states the probabilities of correct classification in a recursive form.

Proposition 3. The conditional correct classification probabilities qt follow the recursion

qt+1 =

 z00·(1−p)·π0,t

π0,t+1
− z10·(1−p)·π0,t

π0,t+1

z10·p·π1,t

π0,t+1
− z00·p·π1,t

π0,t+1

z01·p·π0,t

π1,t+1
− z11·p·π0,t

π1,t+1

z11·(1−p)·π1,t

π1,t+1
− z01·(1−p)·π1,t

π1,t+1

 · qt (12)

+

 z00·p·π1,t

π0,t+1
+

z10·(1−p)·π0,t

π0,t+1

z01·(1−p)·π1,t

π1,t+1
+

z11·p·π0,t

π1,t+1
,


where

zi0 = F

(
1/2− i · ε

1− ε

)
, zi1 = 1− F

(
1/2− i · ε

1− ε
− 1

)
.

Proof. Define the marginal probability for the true state as πi,t = P(ct = i). Also define the conditional
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correct classification probabilities

qt =

q0,t
q1,t

 =

P(ĉεt+1 = 0 | ct+1 = 0)

P(ĉεt+1 = 1 | ct+1 = 1)

 .

The correct classification probability is now given by

q0,tπ0,t + q1,tπ1,t.

Finally, define

z00 = F

(
0.5− ε · 0

1− ε
− 0

)
,

z10 = F

(
0.5− ε · 1

1− ε
− 0

)
,

z01 = 1− F
(

0.5− ε · 0
1− ε

− 1

)
,

z11 = 1− F
(

0.5− ε · 1
1− ε

− 1

)
.

We split the proof into the calculation of the terms q0,t+1 and q1,t+1.
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Note that

q0,t+1 = P(ĉεt+1 = 0 | ct+1 = 0)

= P(ĉεt+1 = 0 | ĉεt = 0, ct+1 = 0) · P(ĉεt = 0 | ct+1 = 0)+

P(ĉεt+1 = 0 | ĉεt = 1, ct+1 = 0) · P(ĉεt = 1 | ct+1 = 0)

= F

(
0.5− ε · 0

1− ε
− 0

)
· P(ĉεt = 0 | ct+1 = 0)+

F

(
0.5− ε · 1

1− ε
− 0

)
· P(ĉεt = 1 | ct+1 = 0)

= z00 · P(ĉεt = 0 | ct+1 = 0) + z10 · P(ĉεt = 1 | ct+1 = 0)

= z00 ·
P(ĉεt = 0, ct+1 = 0, ct = 0) + Pĉεt = 0, ct+1 = 0, ct = 1)

P(ct+1 = 0)
+

z10 ·
P(ĉεt = 1, ct+1 = 0, ct = 0) + P(ĉεt = 1, ct+1 = 0, ct = 1)

P(ct+1 = 0)

=
z00
π0,t+1

· P(ĉεt = 0, ct+1 = 0, ct = 0)+

z00
π0,t+1

· P(ĉεt = 0, ct+1 = 0, ct = 1)+

z10
π0,t+1

· P(ĉεt = 1, ct+1 = 0, ct = 0)+

z10
π0,t+1

· P(ĉεt = 1, ct+1 = 0, ct = 1)

=
z00
π0,t+1

· P(ct+1 = 0 | ct = 0) · P(ĉεt = 0 | ct = 0) · P(ct = 0)+

z00
π0,t+1

· P(ct+1 = 0 | ct = 1) · P(ĉεt = 0 | ct = 1) · P(ct = 1)+

z10
π0,t+1

· P(ct+1 = 0 | ct = 0) · P(ĉεt = 1 | ct = 0) · P(ct = 0)+

z10
π0,t+1

· P(ct+1 = 0 | ct = 1) · P(ĉεt = 1 | ct = 1) · P(ct = 1)

=
z00
π0,t+1

· (1− p) · q0,t · π0,t +
z00
π0,t+1

· p · (1− q1,t) · π1,t+

z10
π0,t+1

· (1− p) · (1− q0,t) · π0,t +
z10
π0,t+1

· p · q1,t · π1,t.
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We also have

q1,t+1 = P(ĉεt+1 = 1 | ct+1 = 1)

= P(ĉεt+1 = 1 | ĉεt = 0, ct+1 = 1) · P(ĉεt = 0 | ct+1 = 1)+

P(ĉεt+1 = 1 | ĉεt = 1, ct+1 = 1) · P(ĉεt = 1 | ct+1 = 1)

=

(
1− F

(
0.5− ε · 0

1− ε
− 1

))
· P(ĉεt = 0 | ct+1 = 1)+(

1− F
(

0.5− ε · 1
1− ε

− 1

))
· P(ĉεt = 1 | ct+1 = 1)

= z01 · P(ĉεt = 0 | ct+1 = 1) + z11 · P(ĉεt = 1 | ct+1 = 1)

= z01 ·
P(ĉεt = 0, ct+1 = 0, ct = 0) + P(ĉεt = 0, ct+1 = 0, ct = 1)

P(ct+1 = 0)
+

z11 ·
P(ĉεt = 1, ct+1 = 0, ct = 0) + P(ĉεt = 1, ct+1 = 0, ct = 1)

P(ct+1 = 0)

=
z01
π1,t+1

· P(ĉεt = 0, ct+1 = 1, ct = 0)+

z01
π1,t+1

· P(ĉεt = 0, ct+1 = 1, ct = 1)+

z11
π1,t+1

· P(ĉεt = 1, ct+1 = 1, ct = 0)+

z11
π1,t+1

· P(ĉεt = 1, ct+1 = 1, ct = 1)

=
z01
π1,t+1

· P(ct+1 = 1 | ct = 0) · P(ĉεt = 0 | ct = 0) · P(ct = 0)+

z01
π1,t+1

· P(ct+1 = 1 | ct = 1) · P(ĉεt = 0 | ct = 1) · P(ct = 1)+

z11
π1,t+1

· P(ct+1 = 1 | ct = 0) · P(ĉεt = 1 | ct = 0) · P(ct = 0)+

z11
π1,t+1

· P(ct+1 = 1 | ct = 1) · P(ĉεt = 1 | ct = 1) · P(ct = 1)

=
z01
π1,t+1

· p · q0,t · π0,t +
z01
π1,t+1

· (1− p) · (1− q1,t) · π1,t+

z11
π1,t+1

· p · (1− q0,t) · π0,t +
z11
π1,t+1

· (1− p) · q1,t · π1,t.
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Putting q0,t+1 and q1,t+1 together in a system of equations, we can write

qt+1 =

 z00·(1−p)·π0,t

π0,t+1
− z10·(1−p)·π0,t

π0,t+1

z10·p·π1,t

π0,t+1
− z00·p·π1,t

π0,t+1

z01·p·π0,t

π1,t+1
− z11·p·π0,t

π1,t+1

z11·(1−p)·π1,t

π1,t+1
− z01·(1−p)·π1,t

π1,t+1

 · qt

+

 z00·p·π1,t

π0,t+1
+

z10·(1−p)·π0,t

π0,t+1

z01·(1−p)·π1,t

π1,t+1
+

z11·p·π0,t

π1,t+1

 .

Corollary 2. The limiting probabilities of correct classification q for a symmetric Markov chain P(ct =

1|ct−1 = 0) = P(ct = 0|ct−1 = 1) = p are

q =

1− (1− p)(z00 − z10) p · (z00 − z10)

p · (z11 − z01) 1− (1− p)(z11 − z01)


−1

×

z10 + p · (z00 − z10)

z01 + p · (z11 − z01)

 .

The corresponding limiting misclassification probability is

lim
t→∞

P(ĉεt 6= ct) = 1− 1

2

z01(1− z̃00) + z10(1− z̃11) + p(z̃00 + z̃11 − 2z̃11z̃00)

1− (1− p)(z̃00 + z̃11) + (1− 2p)z̃00z̃11
, (13)

where z̃00 = z00 − z10 and z̃11 = z11 − z01.

Proof. First note that for the current symmetric Markov chain limt→∞ πi,t = 0.5. Then, the statement

in Proposition 3 becomes:

qt+1 =

z00 · (1− p)− z10 · (1− p) z10 · p− z00 · p

z01 · p− z11 · p z11 · (1− p)− z01 · (1− p)

 · qt
+

z00 · p+ z10 · (1− p)

z01 · (1− p) + z11 · p


qt+1 = A · qt + b.

At the limit, qt+1 = qt = q and so

(I2 −A)q = b.

Using this and writing z̃00 = z00 − z10 and z̃11 = z11 − z01, we can solve for

q =

1− (1− p)z̃00 p · z̃00

p · z̃11 1− (1− p)z̃11


−1

×

z10 + p · z̃00

z01 + p · z̃11

 .
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Calculating the inverse we get

(I2 −A)−1 =

 −pz̃11+z̃11−1
pz̃00(2z̃11−1)−pz̃11+z̃00(−z̃11)+z̃00+z̃11−1

pz̃00
pz̃00(2z̃11−1)−pz̃11+z̃00(−z̃11)+z̃00+z̃11−1

pz̃11
pz̃00(2z̃11−1)−pz̃11+z̃00(−z̃11)+z̃00+z̃11−1

−pz̃00+z̃00−1
pz̃00(2z̃11−1)−pz̃11+z̃00(−z̃11)+z̃00+z̃11−1

 ,

and,

q = (I2 −A)−1b =

 pz̃00(z01+z̃11−1)−pz10z̃11+z10(z̃11−1)
pz̃00(2z̃11−1)−pz̃11+z̃00(−z̃11)+z̃00+z̃11−1

z01(−pz̃00+z̃00−1)+pz̃11(z̃00+z10−1)
pz̃00(2z̃11−1)−pz̃11+z̃00(−z̃11)+z̃00+z̃11−1

 .

The limiting misclassification probability (0.5, 0.5) · q then is

lim
t→∞

P(ĉεt 6= ct) = 1− 1

2

z01(1− z̃00) + z10(1− z̃11) + p(z̃00 + z̃11 − 2z̃11z̃00)

1− (1− p)(z̃00 + z̃11) + (1− 2p)z̃00z̃11
.

Corollary 3. Let f(ηt) be the pdf of ηt, corresponding to the cdf F (ηt), and the limiting misclassification

probability q̃ = 1 − 1
2 (ι2 · q) where ι2 ∈ R2 is a vector of ones. Then under the same conditions as

Corollary 2, the derivative of the limiting misclassification probability at ε = 0 is given by

∂ q̃

∂ε

∣∣∣∣
ε=0

= 1
4

(
f( 1

2 )− f(− 1
2 )
)

+ 1
2p
(
f(− 1

2 )F ( 1
2 )− f( 1

2 )F (− 1
2 )
)

+ 1
2 (p− 1)

(
f( 1

2 )F ( 1
2 )− f(− 1

2 )F (− 1
2 )
)
.

If the pdf f is symmetric around zero, this expression simplifies to

∂ q̃

∂ε

∣∣∣∣
ε=0

= − 1
2 (1− 2p) f( 1

2 )
(
2F ( 1

2 )− 1
)
,

which is negative for p < 0.5.

Proof. From Corollary 2, write the limiting misclassification probability

q̃ = 1− 1
2 ι
′
2A
−1b (A.11)

with

A =

1− (1− p)(z00 − z10) p · (z00 − z10)

p · (z11 − z01) 1− (1− p)(z11 − z01)


and

b =

z10 + p · (z00 − z10)

z01 + p · (z11 − z01)

 .
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Let also ∇z denote ∂z/∂ε |ε=0. The derivative of (A.11) can be written

− 1
2 |A|

−2
(
|A| · (1 , 1)(∇A?)b+ |A| · (1 , 1)A?(∇b)− (∇|A|) · (1 , 1)A?b

)
, (A.12)

where A? denotes the transposed matrix of co-factors such that A−1 = A?/|A|. Define f(η) = dF (η) /dη.

Then:

z00 = F

(
0.5− ε · 0

1− ε
− 0

)
=⇒ ∇z00 = 1

2f( 1
2 ),

z10 = F

(
0.5− ε · 1

1− ε
− 0

)
=⇒ ∇z10 = − 1

2f( 1
2 ),

z01 = 1− F
(

0.5− ε · 0
1− ε

− 1

)
=⇒ ∇z01 = − 1

2f(− 1
2 ),

z11 = 1− F
(

0.5− ε · 1
1− ε

− 1

)
=⇒ ∇z11 = 1

2f(− 1
2 ),

z00
∣∣
ε=0

= z10
∣∣
ε=0

= F ( 1
2 ),

z01
∣∣
ε=0

= z11
∣∣
ε=0

= 1− F (− 1
2 ).

And also, for A and b,

A
∣∣
ε=0

= A?
∣∣
ε=0

= I2,

|A|
∣∣
ε=0

= 1,

∇A? = −

(1− p) f(− 1
2 ) p f( 1

2 )

p f(− 1
2 ) (1− p) f( 1

2 )

 ,

∇|A| = −(1− p)f( 1
2 )− (1− p)f(− 1

2 )

= −(1− p)
(
f( 1

2 ) + f(− 1
2 )
)
,

b
∣∣
ε=0

=
(
F ( 1

2 ) , 1− F (− 1
2 )
)′
,

∇b =
(
− 1

2f( 1
2 ) + p f( 1

2 ) , − 1
2f(− 1

2 ) + p f(− 1
2 )
)′

= − 1
2

(
f( 1

2 )(1− 2p) , f(− 1
2 )(1− 2p)

)′
= − 1

2 (1− 2p)
(
f( 1

2 ) , f(− 1
2 )
)′
.
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Then, going through each term of (A.12) we have:

|A| · (1 , 1)(∇A?)b
∣∣
ε=0

= −
(
f(− 1

2 ) , f( 1
2 )
)
b
∣∣
ε=0

= −f(− 1
2 )F ( 1

2 )− f( 1
2 )(1− F (− 1

2 )),

|A| · (1 , 1)A?(∇b) = − 1
2 (1− 2p)

(
f( 1

2 ) + f(− 1
2 )
)
,

−(∇|A|) (1 , 1)A?b = (1− p)
(
f( 1

2 ) + f(− 1
2 )
)(
F ( 1

2 ) + 1− F (− 1
2 )
)
.

Gathering all terms, we obtain the following expression for the derivative:

∂ q̃

∂ε

∣∣∣∣
ε=0

= 1
4

(
f( 1

2 )− f(− 1
2 )
)

+ 1
2p
(
f(− 1

2 )F ( 1
2 )− f( 1

2 )F (− 1
2 )
)

+ 1
2 (p− 1)

(
f( 1

2 )F ( 1
2 )− f(− 1

2 )F (− 1
2 )
)
.

Under symmetry of f around zero, we have f(− 1
2 ) = f( 1

2 ) and F (− 1
2 ) = 1− F ( 1

2 ). The expression then

simplifies to

∂ q̃

∂ε

∣∣∣∣
ε=0

= 1
2p f( 1

2 )
(
F ( 1

2 )− F (− 1
2 )
)

+ 1
2 (p− 1) f( 1

2 )
(
F ( 1

2 )− F (− 1
2 )
)

1
2p f( 1

2 )
(
2F ( 1

2 )− 1
)

+ 1
2 (p− 1) f( 1

2 )
(
2F ( 1

2 )− 1
)

∂ q̃

∂ε

∣∣∣∣
ε=0

=− 1
2 (1− 2p) f( 1

2 )
(
2F ( 1

2 )− 1
)
.
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Appendix B Additional figures and tables

Figure B.1: 1-step-ahead misclassification rate using (11) and ct−1 = 0. The minimum of
each curve is marked by a dot. The misclassification rate still presents a minimum, as in
the case where β = 0, and the minimum misclassification probability is usually realized
at non-trivial values of ε.
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Figure B.2: Simulation results for four values of p. Half-variance setting.
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Figure B.3: Simulation results for four values of p. Benchmark setting. The number of
clusters Kt may vary between 2 and 4, while the true number is always 2.
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Figure B.4: Simulation results for four values of p. Half-variance setting. The number of
clusters Kt may vary between 2 and 4, while the true number is always 2.
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Table B.1: Cluster assignments for K ≡ 4 and ε = 0.45.

Name 2010 2012 2016 2020

Achmea Schadeverzekeringen NV 3 3 3 3
Allianz SE 3 3 3 3
Alte Leipziger 4 4 4 4
Assicurazioni Generali Spa 3 3 3 3
Covea 3 3 3 3
Credit Agricole Assurances 3 3 3 3
Danica Pension Livsforsikringsaktieselskab 2 2 2 2
Fidelidade - Companhia De Seguros SA 3 3 2 2
Gjensidige Forsikring Asa 3 3 3 3
Groupe Des Assurances Credit Mutuel SA 2 2 2 2
Hannover Re AG 1 1 1 1
KBC Verzekeringen 2 2 2 2
Livforsakringsbolaget Skandia, Omsesidigt 2 2 2 2
Mapfre SA 3 3 3 3
Munich Re AG 1 1 1 1
Nn Group NV 2 2 2 4
Pfa Holding AS 2 2 2 2
Pohjola Vakuutus OY 3 3 3 3
Powszechny Zaklad Ubezpieczen SA 3 3 3 3
R+V Versicherung AG 4 4 4 4
Sampo Oyj 3 3 3 3
Swiss Re AG 1 1 1 1
Ethniki Hellenic General Insurance Co. SA 3 3 3 3
Unipol Gruppo Spa 3 3 3 3
Vidacaixa Sa De Seguros Y Reaseguros 2 2 2 2
Vienna Insurance Group AG 3 3 3 3
Zavarovalnica Triglav 2 2 2 2
Zurich Insurance Group AG 3 3 3 3
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