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Abstract 

We estimate and forecast growth in euro area monthly GDP and its components from a 
dynamic factor model due to Doz et al. (2005), which handles unbalanced data sets in an 
efficient way. We extend the model to integrate interpolation and forecasting together 
with cross-equation accounting identities. A pseudo real-time forecasting exercise 
indicates that the model outperforms various benchmarks, such as quarterly time series 
models and bridge equations in forecasting growth in quarterly GDP and its components. 

Keywords: dynamic factor models, interpolation, nowcasting. 

JEL Classification: E37, C53 
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Non-technical summary 

 

Given the delays in the publication of macro-economic data, economic policy-making 
in real time faces the difficulty of uncovering the actual state of the economy. For the 
euro area, a flash estimate of GDP is available only about 6 weeks after the end of the 
respective quarter. The first estimate of the national accounts is released four weeks 
later. Meanwhile, when assessing the economic stance, participants have to rely on 
high-frequency indicators that arrive within the quarter, such as industrial production, 
surveys and financial market data. However, the large number of available indicators, 
the noise present in many of the series, and the different delays in their publication 
make the efficient exploitation of this information a difficult task. Under these 
circumstances, various approaches have been proposed to obtain measures of the 
economic stance from the monthly indicators. These include projections of quarterly 
GDP for the current and, possibly, next quarter, estimates of monthly GDP, and 
monthly coincident indicators of economic activity. 

In this paper, we propose a unified approach for interpolation and forecasting of GDP 
and of its demand and value added components. The framework is based on a 
dynamic factor model for a large data set and is suitable for real-time application in 
which data arrive in an asynchronous manner. Our objective is to obtain estimates and 
forecasts that satisfy temporal aggregation identities with respect to the quarterly 
figures. We also show how to take into account relevant accounting identities.  

One major advantage of our approach is being able to provide monthly estimates and 
predictions of quarterly GDP growth, which are mutually consistent. This greatly 
facilitates communicating the results to policy-makers, as it clarifies the implications 
of quarterly predictions for intra-quarter dynamics and vice versa. Our model can also 
deal with those irregular patterns of data availability at the end of the sample, which 
arise in real-time data sets due to differences in publication delays of individual 
monthly series. The model delivers efficient forecasts from such data sets and is 
therefore capable of exploiting the latest information.  

We find that for GDP the factor model forecasts beat the forecasts from alternative 
models, such as quarterly models and bridge equations. The evidence is also 
encouraging for the demand components with the exception of private and public 
consumption, for which none of the models does well. The historical monthly 
interpolates of GDP delivered by our model are very similar to those obtained from 
standard interpolation methods based on small number of indicators. However we 
argue that this might not be the case for the real-time GDP interpolates of the most 
recent periods. 
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1 Introduction

Given the delays in the publication of macro-economic data, economic policy-making in real time

faces the di¢ culty of uncovering the actual state of the economy. For the euro area, a �ash

estimate of GDP is available only about 6 weeks after the end of the respective quarter. The

�rst estimate of the national accounts is released four weeks later. Meanwhile, when assessing

the economic stance, participants have to rely on high-frequency indicators that arrive within the

quarter, such as industrial production, surveys and �nancial market data. However, the large

number of available indicators, the noise present in many of the series, and the di¤erent delays in

their publication make the e¢ cient exploitation of this information a di¢ cult task. Under these

circumstances, various approaches have been proposed to obtain measures of the economic stance

from the monthly indicators. Those include projections of quarterly GDP for the current and,

possibly, next quarter, estimates of monthly GDP, and monthly coincident indicators of economic

activity.

In this paper, we investigate a uni�ed approach for interpolation and forecasting of GDP and of

its demand and value added components. The framework is based on a dynamic factor model for

a large data set and is suitable for real-time application in which data arrive in an asynchronous

manner. Our objective is to obtain estimates and forecasts that satisfy temporal aggregation

identities with respect to quarterly �gures as well as appropriate accounting constraints in an

approximate way.

We build on the dynamic factor model due to Doz et al. (2005), which di¤ers from other ap-

proaches (e.g. Stock and Watson, 2002; Forni et al., 2000) in modelling factor dynamics in an

explicit manner. From a state-space representation of the model, forecasts are obtained through

application of the Kalman smoother. As a consequence, the model can deal with those irregular

patterns of data availability at the end of the sample, which arise in unbalanced real-time data

sets due to di¤erences in publication delays of individual monthly series (Giannone et al. 2008).

In addition, the state-space framework allows for a comprehensive analysis of the contributions of

individual data to the forecasts, which allows for a better understanding of the role of individual
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monthly series (Bańbura and Rünstler, 2007).

We combine the model with forecasting equations for monthly GDP and its demand compo-

nents together with appropriate temporal aggregation rules and the relevant accounting identities.

Hence, our approach provides monthly estimates and predictions of quarterly GDP growth and its

components, which are mutually consistent. This greatly facilitates communicating the results to

policy-makers, as it clari�es the implications of quarterly predictions for intra-quarter dynamics

and vice versa.

In the empirical part of the paper we evaluate forecasts for GDP and its demand and value

components in terms of out-of-sample forecast performance against various alternative models.

As to euro area GDP, Banerjee et al. (2005), Bańbura and Rünstler (2007) and Angelini et al.

(2008) report good forecasting performance of factor models. Alternatively, GDP growth has been

forecast from bridge equations using a small set of selected monthly indicators, notably measures

of production and sales (e.g. Rünstler and Sédillot, 2003; Ba¢ gi et al., 2004; Diron, 2006).

Estimates of monthly GDP have so far mostly been derived from bottom-up approaches based

on estimates of its monthly components (e.g. Mitchell et al., 2005a, 2005b; Proietti and Frale,

2007), which again are based on selected indicators. The latter su¤ers from the potential weakness

that poor interpolates for certain components may hamper the aggregate GDP interpolate. One

exception is Breitung and Schumacher (2006), which have employed a di¤usion index model for

estimating monthly GDP this purpose. In a recent paper, Proietti (2008) proposes an iterative

non-linear estimator to interpolate the national accounts, which satis�es the national accounts

constraints exactly and also allows for implementing exact (non-linear) temporal constraints for

chain-linked data. The approach requires the data set to be balanced and, hence, is not applicable

to forecasting in real time. By contrast, we implement these constraints directly in the state-space

form and use log-linear approximisations, while ignoring issues related to chain-linking. This

allows us to deal with unbalanced real-time data sets. Proietti and Frale (2007) have shown that

ignoring chain-linking has only a very small impact on the interpolates.

We �nd that for GDP the factor model forecasts beat the forecasts from alternative models,
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such as quarterly models and bridge equations. The evidence is also encouraging for the demand

components with the exception of private and public consumption, for which none of the models

does well. Our conjecture is that for these speci�c series further research is required in order to

choose optimal monthly indicators. We also compare the monthly interpolates of GDP delivered

by our model to those obtained from standard interpolation methods based on small number of

indicators. The resulting in-sample monthly estimates are very similar. However we argue that

this might not be the case for real-time GDP interpolates of the most recent periods.

The paper is organised as follows. After a brief review of the DFM by Doz et al. (2005), the

integrated DFM version to forecast and interpolate the national accounts is presented in section

2. Section 3 reports the results of a pseudo real-time exercise to compare the performance of the

model with various alternative models. Section 4 shows estimates of monthly GDP and compares

them to results from standard interpolation methods.

2 The model

2.1 A dynamic factor model

Dynamic factor models (DFMs) are designed to explain the dynamics in a panel of series by a few

common sources of variation. Consider a vector of n stationary monthly series xt = (x1t; : : : ; xnt)0,

t = 1; : : : ; T , which have been standardised to mean zero and variance one. The DFM by Doz et

al. (2005) is given by the equations

xt = �ft + �t; �t � N(0;��) (1)

ft+1 =

pX
i=1

Aift�i+1 +B�t; �t � N(0; Iq): (2)

through a matrix of factor loadings �, equation (1) relates the monthly series xt to a r�1 vector of

latent factors ft = (f1;t; : : : ; fr;t)0 plus an idiosyncratic component �t = (�1;t; : : : ; �n;t)
0. The latter

is assumed to be multivariate white noise with diagonal covariance matrix ��. Equation (2) de-

scribes the law of motion for the latent factors ft, which are driven by q-dimensional standardised

white noise �t, where B is a r � q matrix.
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The fact that the dynamics of the latent factors is modelled explicitly, is a speci�c feature of this

model against alternative DFM versions (e.g. Stock and Watson, 2002: Forni et al., 2000, 2005).

Giannone et al. (2008) use a two-step approach to forecast quarterly GDP growth from the factor

model. In a �rst step, they obtain forecasts of the latent factors as from the state-space model

given by equations (1) and (2). In a second step, quarterly GDP is predicted from quarterly

aggregates of forecasts by means of a static regression.

2.2 Interpolation and state space form

Following Bańbura and Rünstler (2007) we use a mixed frequency approach to combine the

monthly factor model with equations to model monthly GDP growth within a single state space

form. Consider the m� 1 vector yQt = (y
Q
1t; : : : ; y

Q
mt)

0 of growth in quarterly GDP and its compo-

nents, which satisfy the national accounts identity

�0t�1y
Q
t = �

Q
t : (3)

with known, but possibly time-varying weights �t�1: The identity allows for an error term, �
Q
t .

Further, denote with yt = (y1t; : : : ; ymt)0 the month-on-month (m-o-m) growth rates in national

accounts and with y(3)t = (y
(3)
1t ; : : : ; y

(3)
mt)

0 the respective 3-month growth rates, i.e. growth rates vis-

a-vis the same month of the previous quarter. Using logarithmic approximation, the aggregation

rules to relate the latent monthly accounts to their observed quarterly counterparts are given by

yQt =
1

3
(y
(3)
t + y

(3)
t�1 + y

(3)
t�2) (4)

y
(3)
t = yt + yt�1 + yt�2 (5)

where yQt is to be understood as a monthly time series that contains the quarterly values in the

3rd month of each quarter and and is otherwise not de�ned. Expression (4) applies then to the

3rd month of the quarter. Combining the two rules gives

yQt =
1

3
(yt + 2yt�1 + 3yt�2 + 2yt�3 + yt�4)

as derived e.g. by Mariano and Murasawa (2003) or Breitung and Schumacher (2006).
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Monthly growth rates yt are related to the common factors by the static equation

yt+1 = �+ �yft+1 + "t+1; "t+1 � N(0;�") (6)

where � is a m� 1 constant term and �y is the m� r matrix of factor loadings for the national

accounts. The idiosyncratic component "t = ("1;t; : : : ; "m;t)0 is again assumed to be multivariate

white noise with diagonal covariance matrix �". We also ensure that monthly national accounts

satisfy constraint (3) by applying the monthly version

�0t�1yt = �t; �t � N(0; �2�) (7)

We assume that innovations �t; �t; "t;and �t are mutually uncorrelated.

Equations (1), (2), and (4) to (7) can be cast in one single state-space form, which is illustrated

below for the case of p = 1. The transition equation contains the dynamic law of motion for

the state vector �0t = (f 0t; y
0
t; y

0
t�1; y

(3)
t ; Q

0
t) comprising the common factors (2), together with

forecasting equations (6) for the unobserved monthly national accounts. In the below state space

form, aggregation rule (4) is implemented in a recursive way from

Qt = �t�1Qt�1 +
1

3
y
(3)
t ;

where �t�1 = 0m�m in the 1st month and �t�1 = Im otherwise (see Harvey, 1989, p. 309¤).

As a result, expressions (4) hold in the 3rd month of the quarter, with yQt = Qt. The transition

equation is given by

266664
Ir 0 0 0 0
��y I 0 0 0
0 0 I 0 0
0 �I �I I 0
0 0 0 �1

3I I

377775
266664
ft+1
yt+1
yt

y
(3)
t+1

Qt+1

377775 =
266664
0
�
0
0
0

377775+
266664
A1 0 0 0 0
0 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 0 �t

377775
266664

ft
yt
yt�1

y
(3)
t

Qt

377775+
266664
B�t
"t+1
0
0
0

377775
where I denotes the m�m identity matrix. The equation is to be pre-multiplied with the inverse

of the left-hand matrix in the equation to achieve the standard state space form.
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The observation equation is

24 xt
0

yQt

35 =
24 � 0 0 0 0
0 �0t�1 0 0 0
0 0 0 0 Im

35
266664

ft
yt
yt�1ey(3)t
Qt

377775+
24 �t
�t
0

35

The �nal row of the observation equation, related to yQt , is de�ned only for the 3
rd month of the

quarter and otherwise skipped in application.

2.3 Estimation, interpolation and forecasting

As shown by Giannone et al. (2008), under certain regularity conditions consistent estimates of

the model parameters can be obtained as follows.

1. Apply principal components analysis to xt to estimate the �rst r common factors bft, together
with factor loadings b�; and variances of idiosyncratic components, b��.

2. Estimate the VAR bft = Pp
i=1Ai

bft�i + b�t to obtain estimates bAi and b�� : Further, apply
principal components to the estimated covariance matrix b�� of residuals b�t and extract the
�rst q components to obtain bB.

3. Obtain quarterly aggregates bfQt of estimates bft as from equations (4) and (5). Estimate a

quarterly version of (6),

yQt = �
Q + �y bfQt + "Qt ; "Qt � N(0; �Q" ),

by OLS. As equation (6) is static, the quarterly aggregates give consistent estimates of �y,

�" = 3=
p
19�Q" and � = 1=3�Q. Similarly, let �� = 3=

p
19�Q� .1

We now turn to the application of the model to interpolation and forecasting in real-time. Real-

time data sets typically contain missing observations at the end of the sample due to publication

lags. Moreover, the number of missing data di¤ers across series due to the di¤erent timing of data

1With "t being white noise, "
Q
t follows an MA(1) process with coe¢ cient 4=19. This does not a¤ect the consis-

tency of estimates from the quarterly version of equation (6). Doz et al. (2006) present an EM algorithm to obtain
maximum likelihood estimates, but report little gains in forecasting performance.
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releases. In our forecast exercise we will therefore apply pseudo-real time data sets Zt, which use

the �nal data releases but take account of the timing of data releases. This is achieved by shifting

the pattern of publication lags embodied in ZT recursively back in time. That is, observation

zi;t�k, k � 0 is eliminated in Zt, if and only if observation zi;T�k is missing in ZT . The quarterly

national accounts are treated in an equivalent way.

To obtain e¢ cient estimates and forecasts of GDP growth from unbalanced data sets, Kalman

�lter and smoother recursions can be applied. For state-space form

zt = Wt�t + ut ut � N(0;�u) (8)

�t+1 = c+ Tt�t + vt; vt � N(0;�v)

and any unbalanced data set Zt the Kalman �lter and smoother provide minimum mean square

linear (MMSE) estimates at+hjt of the state vector and their precision, Pt+hjt,

at+hjt = E [�t+hjZt] (9)

P jt+hjt = E
h
ajt+hjt � �t+h

i h
ajt+hjt � �t+h

i0
, (10)

for any h > �t. To handle missing observations, the rows in equation (8) corresponding to the

missing observations in zt are simply skipped when applying the Kalman �lter recursions (Durbin

and Koopman, 2003:92f). In the case of forecasting, h > 0, it is su¢ cient to run the Kalman

�lter, whereas ex-post estimates of monthly national accounts are derived from the smoother.

Finally, Bańbura and Rünstler (2007) have proposed to use an algorithm by Harvey and Koopman

(2003) to obtain the Kalman �lter and smoother weights of individual series in forecasts and

monthly estimates of national accounts. This allows expressing estimates at+hjt as

at+hjt =
t�1X
k=0

!k(h)zt�k . (11)

As data sets Zt embody �xed data release patterns, the 1 � n vector of weights !k(h) becomes

independent of time t, once the Kalman �lter approaches its steady state (see Bańbura and

Rünstler, 2007). We will consider the cumulative smoother weights
Pt�1
k=0 !k;i(h) for series i,

where !k;i(h) is the ith element of !k(h), i = 1; : : : ; n. The contribution of series i to estimate

at+hjt may be calculated as
Pt�1
k=0 !k;i(h)zi;t�k.
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3 Forecast evaluation

In this section we present a forecast exercise to evaluate the historical forecast performance of the

dynamic factor model against various rival models, including univariate time series models and

bridge equations. We consider forecasts over the period of 2000 Q1 to 2006 Q2. We address the

following questions. First, what is the forecastability of the components of GDP? While a number

of studies have inspected forecasts for GDP, components have been neglected. Second, how does

the DFM compare to benchmark models? Third, does constraint (3) help in forecasting?

3.1 Data, publication lags and forecast design

Our euro area data set (ZT ) was downloaded on 20, February, 2007. It comprises 85 monthly

series starting in January 1993.2 Among o¢ cial data on euro area economic activity, the monthly

series contain components of industrial production (17), employment and unemployment data (5),

extra euro area trade values from the balance of payments (4), and retail sales, new passenger

car registrations. As to survey data, we use 24 series from the European Commission business,

consumer, retail and construction surveys. Financial data comprise 17 series including exchange

rates (6), interest rates (7), and equity price indices (4). In addition, the data contain monetary

aggregates and loans (5) and 11 series on the international economy including raw material prices

(5) and key macro-economic indicators for the U.S. (6). The series are given in annex A together

with the data transformations that we use for all models in this study.

The monthly data are published with di¤erent delays. The survey and �nancial data and the raw

material prices are available right at the end of the respective month. By contrast, most of the

o¢ cial data on euro area economic activity, such as industrial production, employment and retail

sales are published with a delay of 6 to 8 weeks after the end of the month. The same applies to

the euro area monetary aggregates. For our data set this implies that surveys, �nancial data and

raw material prices are available for January, but most of the real activity data only for December

2006. Again, publication lags are listed in annex A.

2We are grateful to F. Altissimo and B. Ro¢ a (ECB) for providing us with the original version of the data set.
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Our euro area quarterly national accounts data include GDP and the major demand components

with inventories being subsumed under the statistical discrepancy �t. In addition, we consider

value added and its two major components, i.e. industry (incl. construction and agriculture)

and services. The national accounts are published about 10 weeks after the end of the respective

quarter, but a �ash estimate of GDP is available about one month earlier. Hence, our data contain

the GDP �ash estimate for 2006 Q4, but �rst releases of the components only for 2006 Q3.

With our forecast design, we aim at replicating the real-time application of the models as closely

as possible. We do not have real-time data sets at hand. However, following Rünstler and Sédillot

(2003) and Giannone et al. (2008) we take account of publication lags in the series and use pseudo

real-time data sets Zt as de�ned in section 2.3. In addition, we re-estimate the models at each

point in time based on the available data at the time the forecast is made.

Since our data have been downloaded on 20, February 2007, our forecasts will replicate the data

availability situation on the 20th day of the month.

We inspect eight forecasts for growth in GDP and its components in a certain quarter. These

forecasts are obtained in consecutive months. We start with forecasting in the 1st month of the

previous quarter and stop in the 2nd month of the subsequent (next) quarter, one month before

the �rst estimate of national accounts is released by Eurostat. The design will be illustrated in

more detail in section 3.2.

3.2 Forecast evaluation

The forecasts are evaluated over the period of 2000 Q1 to 2006 Q2, with recursive estimation

starting in 1993Q1.3 We consider the following models:

- As benchmarks we use naive (random walk) forecasts and �rst-order autoregressive processes

(AR(1)) for quarterly GDP and its components. The naive forecast is simply the uncondi-

tional mean of the growth rate in each quarterly series, which amounts to a random walk

3Value added data start only in 1995 Q1. Hence, estimates of equation (6) for these series start in this period.
We ignore the chain-linking issue and instead set �� > 0 in equation (7) as from an estimate of the deviation from
the idendity.
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with drift forecast in the level of the series. Again, both forecasts are calculated recursively,

i.e. each forecast being based on the available data at the time the forecast is made.

- As another model based on purely quarterly data, we consider vector autoregressions (VARs)

that use the quarterly aggregates xQjt of monthly indicators xjt, j = 1; : : : ; n. Kitchen and

Monaco (2006) have proposed to obtain forecasts for a quarterly series yQi;t from a set of

monthly indicators xt = (x1t; : : : ; xnt)0 by averaging across bivariate models based on single

indicators. For each component yQit we run j bivariate VARs

Aij(L)

"
yQit
xQjt

#
= uQijt

to obtain forecasts byQ;(j)i;t+h. The lengths of lag polynomials Aij(L) are determined from the

Schwartz information criterion (SIC). The �nal forecast byQi;t+h for component yQit is found as
a simple average across the forecasts from the j VARs,

byQi;t+h = n�1 nX
j=1

byQ;(j)i;t+h (12)

- Bridge equations are widely used for the short-term forecasting of GDP and its components

(e.g., Ba¢ gi et al., 2004; Rünstler and Sédillot, 2003; Diron, 2006), as they employ intra-

quarter information from the individual indicators. We again follow the approach proposed

by Kitchen and Monaco (2006). We, �rst, forecast the individual monthly indicators from

monthly AR(p) models, '(L)x(3)jt = ejt over the desired horizon, where we use 3-month rates

x
(3)
jt as this tends to give better forecasts. Again, we use the SIC to determine lag length

p. Second, forecasts bx(3)jt+h are aggregated to quarterly frequency, bxQjt+h and the quarterly
target series yQi;t is predicted from the �bridge�equation

byQ;(j)i;t+h = cij + �ijbxQj;t+h
We estimate parameters cij and �ij by OLS. Third, the �nal forecast byQi;t+h is again obtained
as the average of the forecasts as from equation (12).

- As to the DFM, we consider the multivariate model both with and without constraint (7).4

4The model without the constraint is equivalent to a running models, which contain single quarterly series (the
case of m = 1.)
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We apply the model to two sets of national accounts data. The �rst data set includes

GDP and its demand components, i.e. private and public consumption, gross �xed capital

formation (GFCF), export and imports and the statistical discrepancy. The second version

contains total value added (VAD) plus its breakdown into VAD industry and VAD services.

As to the speci�cation of the DFM, we determine the number of static factors r from the

information criterion developed by Bai and Ng (2002), which gives r = 4, while the number

of lags in factor dynamics is found from the SIC with p = 3. Studies have argued that two

shocks are su¢ cient to model economic activity and we therefore set q = 2 (Giannone et al.,

2008). Compared to speci�cation selection based on forecast performance, this approach

has the advantage that the speci�cation choice is independent of the target series, as we

want to evaluate our model across a set of target series.

Table 1 shows the RMSE from the naive forecast. The table also exempli�es the timing of the

forecasts and data releases for the 2nd quarter of the year. As noted above, we inspect eight

forecasts for growth in GDP and its components in a certain quarter, which are obtained in

consecutive months. We start with forecasting in the 1st month of the previous quarter and stop

in the 2nd month of the subsequent (next) quarter, one month before the �rst estimate of national

accounts is released by Eurostat. In our example of the 2nd quarter of the year, we run the 1st

forecast on 20, January and the �nal (8th) one on 20, August. Note that the last two �forecasts�

are actually a backcasts, whereas �forecasts�4 to 6 amount to nowcasting the current quarter.

Table 1: RMSE of naive forecast

Fcst Example GDP Priv Gov GFCF Export Import Stat VAD VAD VAD
2nd quarter cons cons discr total ind serv

8 August .000 .314 .356 .798 1.509 1.438 .320 .364 .629 .301
7 July .332 .314 .356 .798 1.509 1.438 .320 .364 .629 .301
6 June .332 .314 .356 .798 1.509 1.438 .320 .364 .629 .301
5 May .332 .316 .354 .807 1.526 1.460 .317 .372 .642 .307
4 April .338 .316 .354 .807 1.526 1.460 .317 .372 .642 .307
3 March .338 .316 .354 .807 1.526 1.460 .317 .372 .642 .307
2 Feb .338 .317 .358 .819 1.538 1.474 .316 .380 .652 .314
1 Jan .347 .317 .358 .819 1.538 1.474 .316 .380 .652 .314



17
ECB

Working Paper Series No 953
October 2008

Since, the naive forecast is based on the quarterly data, the RMSE measures shift only in 3-

month terms. The timing of these shifts re�ects the publication dates of the individual series.

New observations for GDP become available in the 2nd month of the quarter, while data for

components are published only one month later.

Table 2: RMSE of benchmark models (relative to naive forecast)

Quarterly AR(1)

GDP Priv Gov GFCF Exp Imp Stat VAD VAD VAD
cons cons discr total ind serv

8 1.04 .97 1.10 .95 .91 .91 .89 .94 .96
7 .82 1.04 .97 1.10 .95 .91 .91 .89 .94 .96
6 .82 1.04 .97 1.10 .95 .91 .91 .89 .94 .96
5 .82 1.07 .96 1.01 1.00 1.01 1.01 .97 1.00 .97
4 .98 1.07 .96 1.01 1.00 1.01 1.01 .97 1.00 .97
3 .98 1.07 .96 1.01 1.00 1.01 1.01 .97 1.00 .97
2 .98 1.07 .99 1.03 1.01 1.05 1.01 1.02 1.01 1.03
1 1.03 1.07 .99 1.03 1.01 1.05 1.01 1.02 1.01 1.03

Quarterly VARs

GDP Priv Gov GFCF Exp Imp Stat VAD VAD VAD
cons cons discr total ind serv

8 1.05 .95 1.18 .92 .90 .95 .85 .88 .89
7 .82 1.05 .95 1.18 .92 .90 .95 .85 .88 .89
6 .82 1.05 .95 1.18 .92 .90 .95 .85 .88 .89
5 .82 1.07 .95 .99 .98 1.00 1.01 1.01 .96 .94
4 .98 1.07 .95 .99 .98 1.00 1.01 1.01 .96 .94
3 .98 1.07 .95 .99 .98 1.00 1.01 1.01 .96 .94
2 .98 1.09 .98 1.12 1.00 1.05 1.00 1.00 1.02 1.01
1 1.05 1.09 .98 1.12 1.00 1.05 1.00 1.00 1.02 1.01

Bridge equations

GDP Priv Gov GFCF Exp Imp Stat VAD VAD VAD
cons cons discr total ind serv

8 1.02 .97 1.06 .86 .94 .99 .80 .76 .83
7 .84 1.02 .97 1.06 .86 .94 .99 .80 .76 .83
6 .85 1.04 1.00 1.06 .87 .94 1.00 .81 .77 .84
5 .88 1.04 1.04 1.08 .87 .95 .99 .79 .79 .86
4 .87 1.04 1.01 1.09 .89 .96 .99 .79 .79 .87
3 .89 1.03 1.00 1.08 .92 .99 .99 .82 .82 .88
2 .93 1.03 1.00 1.10 .98 1.02 .99 .86 .87 .89
1 .95 1.04 .99 1.09 .99 1.02 .99 .85 .90 .88
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Table 2 presents the results for the AR(1), VARs and bridge equations in terms of the RMSE

relative to the RMSE of the naive forecast. For both the VARs and the bridge equations we

construct the forecasts from a limited set of 8 series, which on average give smaller RMSE measures

as compared to forecasts from the entire set of 87 series.5

As regards GDP, all 3 models improve upon the naive forecast for the very short horizons, i.e.

forecasts 5 to 8 (the back- and late nowcasts). There, the gains in the RMSE are close to 20%.

Forecast averages from VARs and bridge equations do not improve upon the AR(1). For the

1-quarter ahead forecasts (1 to 3) only bridge equations outperform the naive forecast, but the

gains remain below 10%.

Similar patterns arise for the components of value added (VAD), but in this case the VARs and,

in particular, the bridge equations beat the benchmark AR(1). Among demand components,

some gains emerge for exports and imports, but these hardly ever exceed 10%. For private and

public consumption as well as GFCF, the benchmark models give largely uninformative forecasts.

Generally, with the exception of exports and the components of value added, the gains from the

VARs and bridge equations upon the AR(1) are small.

The results for the DFM version without constraint (7) are shown in the upper panel of Table

3. The model shows substantial improvements upon the alternative models for GDP and many

components. For the short horizons, the RMSE of the GDP forecast is now 30% lower as compared

to the naive forecast. For the 1st forecast, in particular, 8 months ahead of the data release, the

improvement still amounts to 20%. Similar gains occur for gross �xed capital formation, exports

and imports, and the components of value added. One exception of is VAD services, where the

bridge equations also fare pretty well.

While the absence of any gains for private and public consumption may re�ect a lack of fore-

castability of the series per se, it also may be a consequence of a lack of appropriate monthly

indicators in our data set. It has been argued that private consumption follows a random walk

5The series are: industrial production in manufacturing, retail sales, new car registrations, the unemployment
rate, and the European Commission business, consumer, building and retail con�dence indices. They are used in
bridge equations for euro area GDP proposed by Rünstler and Sédillot, 2003) and Diron (2006). We have also
experimented with some of the equations used in these studies. They did not outperform our approach.
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(Hall, 1988), and this also seems plausible for government consumption. However, the lack of fore-

castability does not necessarily preclude informative nowcasts of the series based on intra-quarter

information.

Table 3: RMSE of dynamic factor models (relative to naive forecast)

w/o constraint (7)

GDP Priv Gov GFCF Exp Imp Stat VAD VAD VAD
cons cons discr total ind serv

8 1.01 1.13 .81 .77 .69 1.13 .72 .64 .85
7 .70 .98 1.15 .81 .77 .72 1.13 .70 .64 .84
6 .72 .98 1.20 .84 .77 .70 1.11 .75 .70 .86
5 .74 .98 1.04 .81 .72 .74 .99 .75 .75 .86
4 .73 .97 1.02 .82 .70 .68 .98 .77 .76 .87
3 .73 .96 1.01 .81 .82 .80 .98 .76 .70 .88
2 .80 .96 1.01 .82 .86 .86 .99 .76 .77 .85
1 .81 .98 1.01 .86 .90 .90 .98 .80 .84 .86

incl constraint (7)

GDP Priv Gov GFCF Exp Imp Stat VAD VAD VAD
cons cons discr total ind serv

8 .94 1.13 .78 .74 .69 1.20 .72 .62 .87
7 .67 .97 1.16 .82 .78 .72 1.13 .72 .63 .86
6 .70 .96 1.21 .85 .77 .70 1.12 .75 .68 .88
5 .76 .97 1.04 .78 .73 .74 .99 .76 .73 .87
4 .74 .96 1.03 .80 .70 .68 .99 .76 .73 .88
3 .73 .96 1.01 .78 .82 .80 .98 .74 .68 .87
2 .79 .95 1.02 .80 .85 .87 .99 .78 .77 .87
1 .79 .97 1.01 .84 .89 .91 .98 .84 .84 .91

Finally, the lower panel of Table 3 shows the results for the DFM using constraint (7). For the

demand components, the inclusion of the constraint tends to slightly improve the RMSE in the

very short-term, but to leave it unchanged thereafter. This appears to be related to the fact

that the �ash estimate of quarterly GDP is released about 4 weeks before the release of full

national accounts. In this situation, the information contained in the �ash estimate contributes

to forecasting the demand components. For the components of value added, the inclusion of the

constraint does not matter. Figure 1 shows forecasts from the DFM and the benchmarks. The
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graphs visualize the higher precision of the DFM forecasts compared to the AR(1) and the forecast

averages from bridge equations.6

Figure 1: GDP forecasts

4 Estimates of the monthly national accounts

The smoothed estimates of growth in monthly GDP and its components from the DFM using

constraint (7) are shown in Figure 2. The graph shows estimates of both 3-month and month-

on-month rates, multiplied with 3, together with the observed quarterly rates. Note that these

estimates are obtained from the Kalman smoother based on the entire data set ZT .

Angelini et al. (2005) compare factor-based interpolation methods with the traditional method

by Chow and Lin (1971) and conclude that both methods fare well. We therefore also inspect

estimates of monthly GDP growth from applying the Chow-Lin method to a single equation.
6Model versions that use 3-month growth rates of the indicators give a very similar forecast performance com-

pared to to our baseline model. Results are obtainable upon request.
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Following existing studies on estimating euro area monthly GDP (Mitchell et al., 2005a,2005b;

Proietti and Frale, 2007), we choose euro area industrial production in manufacturing, total

employment, the business con�dence indicator, and retail sales as explanatory variables.7

Figure 2: Estimates of monthly growth in GDP and demand components

The grey bars show quarterly growth in the component, while the bold and thin lines show estimates
of 3-month and month-on-month growth rates, respectively. The latter are multiplied with 3.

7 It should also be noted that the aforementioned studies actually use more series as they derive monthly GDP
as the sum of estimates of its value-added components. However, the estimates mostly use sectoral equivalents of
these series. Other equations give very similar results, as long as major industrial production items are included.
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Figure 3 demonstrates high correspondence among monthly growth estimates rates from the two

methods with a contemporaneous correlation of 0.86 among the monthly series over the period

of 1998 M1 to 2006 M6. This turns out to re�ect the fact that the Kalman smoother attaches

high weights to items of industrial production and, to a lesser extent, business surveys, when

backcasting monthly growth rates. In this case, the DFM e¤ectively uses very similar information

to what has been chosen in the aforementioned studies.

Figure 3: Estimates of monthly GDP growth

Bańbura and Rünstler (2007) have however shown that the weights of individual series in quarterly

GDP forecasts may change considerably with the forecast horizon. From contribution analysis as

from equation (11) it can be shown that the same applies to estimates and forecasts of monthly

growth. Table 4 presents the mean absolute contributions (MACs) of individual data groups to

the forecasts of monthly GDP growth. Sample contributions have been estimated from the same

pseudo real-time forecast design over the period 2000 Q1 to 2006 Q2 as used in section 3. Table

4 shows the mean absolute values of the contributions of data groups as de�ned in Table A.1.

The table demonstrates the shifts in the contributions of the individual data groups over the

forecast horizon. �Forecasts� 8 and 9 are actually estimates of monthly GDP, where quarterly

GDP is already known. In this case, the model attaches very high weights to industrial production

data. As the horizon increases, survey and �nancial data gain more weight relative to industrial
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production and (quarterly) GDP decline. This situation emerges already for nowcasts of monthly

GDP in the current quarter.

Table 4: MAC to forecasts of monthly GDP growth
Industr Surveys Financial Int�l Labour Money GDP
Prod

9 85 % 18 % 18 % 2 % 1 % 0 % 18 %

8 90 % 18 % 19 % 2 % 0 % 0 % 18 %

7 90 % 22 % 30 % 5 % 1 % 0 % 11 %

6 44 % 63 % 35 % 6 % 1 % 0 % 11 %

5 21 % 32 % 33 % 10 % 1 % 0 % 11 %

4 10 % 21 % 20 % 4 % 0 % 0 % 0 %

3 5 % 14 % 21 % 3 % 0 % 0 % 0 %

2 6 % 7 % 12 % 5 % 0 % 0 % 0 %

1 4 % 11 % 10 % 2 % 0 % 0 % 0 %

Contributions are expressed in percentages of the mean absolute deviation of
monthly GDP growth. Column �GDP�shows the MAC of quarterly GDP growth.
See Table annex A.1 for the de�nition of data groups.

Overall these �ndings parallel those of Bańbura and Rünstler (2007) for quarterly GDP forecasts.

They indicate that equations that have been designed to estimate historical monthly growth in

GDP and therefore rely heavily on industrial production data, are not necessarily optimal for the

purpose of assessing the economic stance in real time.

5 Conclusions

The paper has combined a dynamic factor model due to Doz et al. (2005) with equations to

simultaneously obtain both short-term forecasts and estimates of monthly growth in GDP and its

components from a large monthly information set. Forecasts and monthly estimates are therefore

consistent, which has advantages when the model is used for monitoring economic developments

in real time.

We �nd that, for GDP and a number of components, the model beats forecasts from time series

models based on quarterly data and from forecast averages from bridge equations. For public and

private consumption, however, the forecasts remain uninformative. While these series are gener-

ally di¢ cult to forecast given a lack of persistence, this not does preclude informative nowcasts.
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Our �ndings therefore suggest that better monthly information on euro area consumption might

be useful in the short-term forecasting of GDP. They also suggest that a bottom-up approach

as used e.g. by Mitchell et al. (2005) su¤ers from the de�ciency that poor estimates of certain

components may translate into worsened estimates of overall GDP. An approach that achieves

consistency by incorporating national accounts identities into the model may be preferable.

As to interpolation, ex-post estimates of monthly GDP growth are very similar compared to those

derived from single equation methods that employ standard sets of monthly indicators, such as

industrial production and con�dence indicators, as the factor model attaches high weights to

precisely those series used in the standard estimates. Weights change however substantially in

forecasting. This suggests that equations that have been designed to estimate historical monthly

growth in GDP and rely heavily on industrial production data, are not necessarily optimal for

the purpose of assessing the economic stance in real time.
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No.                             Series Group
Publi-

cation  lag 
(months)

Trans-
formation 

code

1 IP-Total industry  IndProd 3 2
2 IP-Total Industry ( )excl construction   IndProd 2 2
3 IP-Manufacturing  IndProd 2 2
4 IP-Construction  IndProd 3 2
5 IP-Total Industry excl construction and MIG Energy  IndProd 2 2
6 IP-Energy IndProd 2 2
7 IP-MIG Cap yital Goods Industr   IndProd 2 2
8 IP-MIG Durable Consumer Goods Industry  IndProd 2 2
9 IP-MIG Energy  IndProd 3 2
10 IP-MIG Intermediate Goods Industry  IndProd 2 2
11 IP-MIG Non-durable Consumer Goods Industry  IndProd 2 2
12 IP-Manufacture of basic metals  IndProd 2 2
13 IP-Manufacture of chemicals and chemical products  IndProd 2 2
14 IP-Manufacture of electrical machinery and apparatus  IndProd 2 2
15 IP-Manufacture of machinery q p and e ui ment IndProd 2 2
16 IP-Manufacture of pulp pap pap p, er and er roducts  IndProd 2 2
17 IP-Manufacture of rubber and p plastic roducts  IndProd 2 2
18 Retail trade, excep yt of motor vehicles and motorc cles  IndProd 2 2
19 New passenger car registrations IndProd 1 2
20 Unemployment rate, total Emp 2 3
21 Index of Employment, Construction Emp 3 2
22 Index of Employ gment, Manufacturin Emp 3 2
23 Index of Employ yment, Total Industr Emp 3 2
24 Index of Employ y ( g )ment, Total Industr excludin  construction Emp 3 2
25 Industry Survey: Industrial Confidence Indicator  Surveys 0 1
26 Industry Survey: Production trend observed in recent months  Surveys 0 1
27 Industry Survey: Assessment of order-book levels  Surveys 0 1
28 Industry Survey p: Assessment of ex ort order-book levels  Surveys 0 1
29 Industry Survey p: Assessment of stocks of finished roducts  Surveys 0 1
30 Industry Survey p: Production ex ectations for the months ahead  Surveys 0 1
31 Industry Survey: Employ pment ex ectations for the months ahead  Surveys 0 1
32 Industry Survey: Selling p price ex ectations for the months ahead  Surveys 0 1
33 Consumer Survey: Consumer Confidence Indicator  Surveys 0 1
34 Consumer Survey: General economic situation over last 12 months  Surveys 0 1
35 Consumer Survey: General economic situation over next 12 months  Surveys 0 1
36 Consumer Survey: Price trends over last 12 months  Surveys 0 1
37 Consumer Survey: Price trends over next 12 months  Surveys 0 1
38 Consumer Survey p y p: Unem lo ment ex ectations over next 12 months  Surveys 0 1
39 Construction Survey: Construction Confidence Indicator  Surveys 0 1
40 Construction Survey y p p g: Trend of activit  com ared with recedin  months  Surveys 0 1
41 Construction Survey: Assessment of order books  Surveys 0 1
42 Construction Survey p y p: Em lo ment ex ectations for the months ahead  Surveys 0 1
43 Construction Survey g p p: Sellin rice ex ectations for the months ahead  Surveys 0 1
44 Retail Trade Survey: Retail Confidence Indicator  Surveys 0 1
45 Retail Trade Survey: Present business situation  Surveys 0 1
46 Retail Trade Survey: Assessment of stocks  Surveys 0 1
47 Retail Trade Survey: Expected business situation  Surveys 0 1
48 Retail Trade Survey p y p: Em lo ment ex ectations  Surveys 0 1
49 Total trade - Intra Euro 12 trade, Export Value Int'l 2 2
50 Total trade - Extra Euro 12 trade, Export Value Int'l 2 2
51 Total trade - Intra Euro 12 trade, Import Value Int'l 2 2
52 Total trade - Extra Euro 12 trade, Import Value Int'l 2 2
53 US, Unemployment rate Int'l 1 1
54 US, IP total excl construction Int'l 1 2
55 US, Employment, civilian Int'l 1 2
56 US, Retail trade Int'l 1 2
57 US, Production exp gectations in manufacturin Int'l 0 1
58 US, Consumer expectations index Int'l 0 1
59 World market prices of raw materials in Euro, total, HWWA Int'l 0 2
60 World market prices of raw materials in Euro, total, excl energy, HWWA Int'l 0 2
61 World market prices, crude oil, USD, HWWA Int'l 1 2
62 Gold price, USD, fine ounce Int'l 0 2
63 Brent Crude, 1 month fwd, USD/BBL converted in euro Int'l 0 2
64 ECB Nominal effective exch. rate Financial 0 2
65 ECB Real effective exch. rate CPI deflated Financial 0 2
66 ECB Real effective exch. rate p producer rices deflated Financial 0 2
67 Exch. rate: USD/EUR Financial 0 2
68 Exch. rate: GBP/EUR Financial 0 2
69 Exch. rate: YEN/EUR Financial 0 2
70 Eurostoxx 500 Financial 0 2
71 Eurostoxx 325 Financial 0 2
72 US S&P 500 composite index Financial 0 2
73 US, Dow Jones, industrial average Financial 0 2
74 US, Treasury Bill rate, 3-month Financial 0 1
75 US Treasury y y notes & bonds ield, 10 ears Financial 0 1
76 10-year g yovernment bond ield Financial 0 1
77 3-month interest rate, Euribor Financial 0 1
78  1-year g yovernment bond ield Financial 0 1
79 2-year g yovernment bond ield Financial 0 1
80 5-year g yovernment bond ield Financial 0 1
81 Index of notional stock - Money M1 Money 2 2
82 Index of notional stock - Money M2 Money 2 2
83 Index of notional stock - Money M3 Money 2 2
84 Index of Loans Money 2 2
85 Money M2 in the U.S. Money 2 2

Transformation code:     1 = 3-month difference,   2 = 3-month growth rate

Annex   A: Data
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