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Abstract

We estimate the approximate nonlinear solution of a small DSGE model on euro
area data, using the conditional particle �lter to compute the model likelihood. Our
results are consistent with previous �ndings, based on simulated data, suggesting that
this approach delivers sharper inference compared to the estimation of the linearised
model. We also show that the nonlinear model can account for richer economic dynam-
ics: the impulse responses to structural shocks vary depending on initial conditions
selected within our estimation sample.

JEL classi�cation: C11, C15, E31, E32, E52
Keywords: DSGE models, in�ation persistence, second order approximations,

sequential Monte Carlo, Bayesian estimation.
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Non-technical summary 
 
Dynamic stochastic general equilibrium (DSGE) models featuring nominal rigidities have 
become popular tools for monetary policy analysis. In most cases, only the linearised solution of 
these models is analysed and estimated, but there are reasons to be interested in also exploring the 
implications of their nonlinear features. 
    The first one is that, by construction, linearised models are only suitable to analyse 
macroeconomic dynamics in the presence of small deviations from the steady state. If large 
shocks occur over time, a linearised model might deliver a distorted picture and lead to incorrect 
inference.  
    The second reason to be interested in nonlinear models has to do with their econometric 
estimation. Based on simulated data, various authors have argued that nonlinear models provide 
sharper estimates of the structural parameters, compared to their linearised counterparts. 
Intuitively, the nonlinearities induce additional testable implications, which help to pin down the 
values of the parameters necessary to generate those implications. A straightforward example can 
be made for the case of nonlinear solutions obtained through second-order perturbation methods. 
These approximate solutions imply that the variances of exogenous shocks have an impact on the 
unconditional means of the observable variables. The link amounts to a restriction on the size of 
those variances, which is ignored in linearised solutions. 
    We provide new evidence on these issues, based on a relatively standard DSGE model solved 
using second-order perturbation methods. We estimate the model on euro area data, over the 
1970-2004 period, using the conditional particle filter to construct the likelihood.  
    Our preferred specification shows that our nonlinear DSGE model can account for richer 
economic dynamics. The amplitude and persistence of the responses of inflation to exogenous 
shocks differ, depending on whether they are computed starting from the "high inflation" values 
of the seventies, or from the "low inflation" levels observed in recent years. For example, our 
results suggest that sacrifice-ratios -- i.e. the output costs of disinflation -- derived from a 
linearised model may provide a misleading picture. Our linearised model would in fact suggest 
that a disinflation is always costly in terms of output. The nonlinear specification, however, only 
generates this result starting from a situation where inflation is already low. Starting from a high 
inflation level, we find that the expectational benefits of bringing inflation down through a 
progressive reduction of the central bank inflation objective are so large, that the fall in inflation 
would actually be expansionary.  
    We also tend to confirm that the nonlinear model can help to sharpen parameter estimates. 
However, this result is not as general as in the case of simulated data, which are drawn by 
construction from the "true" nonlinear model. When the model is only an approximation of 
reality, the tighter theoretical constraints imposed in the nonlinear estimation may just highlight 
any inconsistencies of the model with the data. Over the whole sample, the comparison between 
the linear and nonlinear models is not overwhelmingly in favour of either specification. The 
nonlinear model is superior to the linear one in terms of predictive (log-)density, but the linear 
one prevails in terms of marginal likelihood. However, the superior performance of the linear 
specification in terms of marginal likelihood is crucially determined by the initial four 
observations, while the nonlinear model tends to perform consistently better over the rest of the 
seventies, eighties and nineties. We therefore conclude that the nonlinear specification is to be 
preferred in our application. 
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models have become popular tools for

monetary policy analysis. The central feature of these models, emphasized in the the-

oretical work of Yun (1996) and Woodford (2003), is the presence of nominal rigidities

in the adjustment of goods prices. More recently, a number of additional frictions have

been introduced in the basic sticky-price framework and the resulting models have been

successfully taken to the data (see e.g. Christiano, Eichenbaum and Evans, 2005; Smets

and Wouters, 2003).

In all cases, however, what is estimated is only the reduced form emerging from the

solution of a linearized version of those models. This approach has obvious advantages

in terms of simplicity and possibility of comparison to other well-known empirical tools,

such as VARs. There are a number of reasons, however, to also be interested in exploring

the implications of the many nonlinear features built in DSGE models.

The �rst one is that they are more suited to characterize macroeconomic dynamics in

presence of large deviations from the steady state. Since 1970, average euro area in�ation

has reached a maximum and minimum of 14.56 and 0.69 percent, respectively, compared

to an average of 5.83 percent1. By construction, a linearized model is ill-suited to explain

such large deviations and it might deliver distorted estimates, at least in principle, if forced

to do so.

More speci�cally, it is conceivable that the dynamic properties of in�ation should

depend on its distance from the steady state. Small deviations could be characterized by

a relatively small degree of persistence and/or amplitude of in�ation responses to shocks.

Persistence and amplitude could become more pronounced in case of larger deviations,

when the in�ationary shock could more easily become entrenched in expectations. These

economic features can be captured by higher-order terms in a nonlinear solution, terms

which, by construction, would start playing a non-negligible role only when large deviations

from steady state do take place. A linearized model, on the contrary, would be forced to

account for all observed dynamics with linear terms, thus possibly delivering incorrect

estimates. We test this conjecture explicitly in our estimations.

1These statistics are computed by using the YoY percentage changes of the euro area GDP de�ator.
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have been argued to provide sharper estimates of the structural parameters than their

linearized counterparts. The nonlinearities induce additional testable implications, com-

pared to those characterizing the linearized version of the same model. A straightforward

example can be made for the case of solutions obtained through second-order perturba-

tion methods. These approximate solutions imply that the variance of exogenous shocks

have an impact on the unconditional means of observable variables. The link amounts to

a restriction on the size of those variances, which is ignored in linearized solutions.2 A

number of authors have therefore reported a superior performance of estimates based on

the nonlinear model, compared to estimates based on the linearized model (e.g. An and

Schorfheide, 2007; Fernandez-Villaverde and Rubio-Ramirez, 2006a, b). However, these

results are mostly based on simulated data, drawn by construction from the "true," non-

linear model. It is obviously interesting to test if nonlinear estimates can also do better on

actual data, where the model is only an approximation of reality. It is in fact conceivable

that the tighter theoretical constraints imposed in the estimation of a nonlinear model

may result in a worse �t, when compared to a linearized version of the same model.

We provide new evidence on these issue, based a relatively standard DSGE model

solved using second-order perturbation methods. We estimate the model on euro area

data over the 1970-2004 period using sequential Monte Carlo methods to construct the

likelihood.

Our results highlight that nonlinearities may have occasionally played a non-negligible

role over the past three decades. The nonlinear model tends to perform consistently better

than the linear one when in�ation is high. Over the whole sample, the comparison between

the linear and nonlinear models is not overwhelmingly in favour of either speci�cation. The

nonlinear model is superior to the linear one in terms of predictive (log-)density, but the

linear one prevails in terms of marginal likelihood. However, the superior performance

of the linear speci�cation in terms of marginal likelihood is crucially a¤ected by the �rst

four observations. We therefore conjecture that it could be due to auxiliary features of

the prior and conclude in favour of the nonlinear speci�cation.

2Fernandez-Villaverde, Rubio-Ramirez and Santos (2006) highlight a more general empirical advantage

of the estimation of nonlinear models, which has to do with the approximation errors made when computing

the the likelihood function.

The second reason to be interested in nonlinear models is empirical. Nonlinear models
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shows that notable di¤erences can be found between linear and nonlinear estimates of

our DSGE model. The amplitude and persistence of the responses of in�ation to shocks

di¤er, depending on whether they are computed starting from the "high in�ation" values

of the seventies, or from the "low in�ation" levels observed in recent years. For example, a

positive in�ation target shock has temporarily expansionary e¤ects on output, if it occurs

in a low-in�ation environment, while it has contractionary e¤ects if it takes place when

in�ation is high.

The rest of the paper is organized as follows. Section 2 provides a broad description

of the two theoretical models employed in the empirical exercise. The main di¤erence

between those models concerns the behaviour of monetary policy. While always following

a Taylor-type rule, the central bank is assumed to have a stationary stochastic in�ation

target in the �rst case and an integrated target in the second case. Section 3 discusses

brie�y the solution method. It is well-known that approximate nonlinear solutions can

be computed using a variety of methods (see Aruoba, Fernandez-Villaverde and Rubio-

Ramirez, 2006a). We focus on second-order perturbation methods, because they are a

direct extension of the standard linearisation and because they are fast to implement. The

estimation methodology is presented next, in Section 4, with particular emphasis on the

construction of the likelihood function, which is performed using a method not previously

used in macroeconomic applications: the conditional particle �lter. We also discuss brie�y

some of the choices available to the researcher in this context and the importance of a

plausible speci�cation of the priors for the variance of the shocks. Section 5 presents

the estimation results, including posterior means of the parameters and comparisons of

stationary and nonstationary, linear and nonlinear models. We also look at nonlinear

impulse responses and document the di¤erences which can be observed starting from

di¤erent points in time. Section 6 concludes.

2 The theoretical framework

One of the conclusions of the "In�ation Persistence Network" (IPN) coordinated by the

European Central Bank is that di¤erent estimates of the persistence of aggregate euro

area in�ation are obtained depending on whether the researcher allows, or not, for shifts

in the in�ation mean (see e.g. Angeloni et al., 2005). Empirical estimates of in�ation

Concerning the dynamic features of euro area in�ation, our preferred speci�cation
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persistence are high if a single in�ation mean is assumed, while they fall considerably

in the second case. For example, Bilke (2005) argues that a structural break in French

CPI in�ation occurred in the mid-eighties. Controlling for this break, both aggregate and

sectoral in�ation persistence are stable and low. Levin and Piger (2004) also �nd strong

evidence for a break in the mean of in�ation in the late 1980s or early 1990s for twelve

industrial countries. Allowing for such break, the in�ation measures generally exhibit

relatively low in�ation persistence. Similar results are obtained by Corvoisier and Mojon

(2005) for most OECD countries. Dossche and Everaert (2005) �nd similar results when

they allow for shifts in the in�ation target in the form of a random walk.

By and large, the existence of shifts in the mean of in�ation has been tested within

statistical or reduced-form frameworks (see e.g. Levin and Piger, 2004; Corvoisier and

Mojon, 2005). As a result, it could be argued that there are two di¢ culties with the

interpretation of these results. First, it remains unclear whether the hypothesis of one or

more shifts in the mean of in�ation would be rejected within a richer model. Secondly,

the reasons for a potential shift in the in�ation mean are left unspeci�ed, while it would

be interesting to understand their determinants.

To shed further light on the �rst issues, we explore the empirical plausibility of two

variants of a simple DSGE model of in�ation and output dynamics. The �rst one is a

benchmark model which embodies the assumption of no permanent shifts in the average

in�ation rate. The second model allows instead for smooth shifts in the mean of in�ation

through an integrated in�ation target. Comparing the empirical performance of these two

speci�cations, we will be able to assess the plausibility of the structural break hypothesis.3

In the rest of this section, we present in more detail the main features of the micro-

economic environment and the two alternative policy rules.

2.1 A simple DSGE model

The model is based on the framework developed by Woodford (2003) and extended in a

number of directions by Christiano, Eichenbaum and Evans (2005).

Consumers maximize the discounted sum of the period utility

U (Ct;Ht; Lt) =
(Ct � hCt�1)1�

1�  �
Z 1

0
�Lt (i)

� di (1)

3Our results are obviously contingent on our particular model of the evolution of the in�ation mean.

9
ECB 

Working Paper Series No 754 
May 2007



where C is a consumption index satisfying

C =

�Z 1

0
C (i)

��1
�

� �
��1

; (2)

Ht = hCt�1 is the habit stock, L (i) are hours of labour provided to �rm i.

For consistency with Smets and Wouters (2003) and Christiano, Eichenbaum and

Evans (2005), habit formation is modelled in di¤erence form. However, habit is inter-

nal, so that households care about their own lagged consumption.

The household�s budget constraint is given by

PtCt +Bt 6
�
1� � t

1 + � t

�Z 1

0
wt (i)Lt (i) di+

Z 1

0
�t (i) di+Wt (3)

with the price level Pt de�ned as the minimal cost of buying one unit of Ct, hence equal

to

Pt =

�Z 1

0
p (i)1��

� 1
1��

: (4)

In the budget constraint, Bt denotes end of period holdings of a complete portfolio of

state contingent assets. Wt denotes the beginning of period value of the assets, wt (i) is the

nominal wage rate and �t (i) are the pro�ts received from investment in �rm i. Following

Steinsson (2003), we also introduce a stochastic income tax, which will lead to a trade-o¤

between in�ation and the output gap. We write the tax rate as � t
1+� t

to ensure that the

total tax is bounded between 0 and 1, given that

log � t = (1� �� ) � + �� log � t�1 + v�t ; v�t � N
�
0; �2�

�
: (5)

The �rst order conditions w.r.t intertemporal aggregate consumption allocations and

labour supply can be written as�
1� � t

1 + � t

�
wt (i)

Pt
=

��L (i)��1

�t

�t = (Ct � hCt�1)� � �hEt
�
(Ct+1 � hCt)�

�
(6)

1

It
= Et

�
�
Pt
Pt+1

�t+1
�t

�
:

where It is the gross nominal interest rate.

Turning to the �rm�s problem, the production function is given by

Yt (i) = AtL (i)
� ; At = A

�a
t�1e

vat (7)
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where At is a technology shock and vat is a normally distributed innovation with constant

variance �2a.

We assume Calvo (1983) contracts, so that �rms face a constant probability � of being

unable to change their price at each point in time t. Firms will take this constraint into

account when trying to maximize expected pro�ts, namely

max
P it

Et

1X
s=t

�s�t�s
Pt
Pt+s

�t+s
�t

�
P isY

i
s � TCis

�
; (8)

where TC denotes total costs and, as in Smets and Wouters (2003), �rms not chang-

ing prices optimally are assumed to modify them using a rule of thumb that indexes them

partly to lagged in�ation and partly to steady-state in�ation �, namely P it
�
�
�1�� �Ps�1

Pt�1

��
,

where 0 � � � 1. When we assume an integrated in�ation target, steady state in�ation is

not de�ned and we set � = 1. We introduce indexation in the model for two reasons. First,

aggregate in�ation will be driven to some extent by lagged in�ation, which is an empir-

ically plausible hypothesis �though not immediately consistent with the microeconomic

evidence. Second, �rms not allowed to update their prices optimally for a long time will

still �nd themselves with a price which is not too far from the optimum.

Under the assumption that �rms are perfectly symmetric in all other respects than

the ability to change prices, all �rms that do get to change their price will set it at the

same optimal level P �t . The �rst order conditions of the �rms�problem can be written

recursively as implying�
P �t
Pt

�1��(1� �
�)

=
���

� (� � 1)
K2;t

K1;t

K2;t =
A
� �
�

t�
1� � t

1+� t

�
�t
Y

�
�
t + Et��

�� �
�
(1��)

�
�t+1
�t

K2;t+1�
�� �

�
�

t �
� �
�
t+1 (9)

K1;t = Yt + Et��
(1��)(1��)

�
�t+1
�t

K1;t+1�
(1��)�
t ���1t+1

where �t is the in�ation rate de�ned as �t � Pt
Pt�1

and

P �t
Pt
=

0B@1� �
�
�
1����t�1

�t

�1��
(1� �)

1CA
1

1��

(10)

expresses the optimal price at time t as a function of aggregate variables.4

4Similar nonlinear expressions are used, amongst others, by Ascari (2004) and Benigno and Woodford

(2005).
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Note that we can use equation (10) in the system (9) to write aggregate in�ation as

an implicit function of expected future in�ation

�t = �
1��
��t�1

 
1

�
� 1� �

�

�
���

� (� � 1)
K2;t

K1;t

� 1��
1��(1� �

�)
! 1

��1

(11)

It is well known that a �rst order approximation of this equation yields the new-

Keynesian Phillips curve, where in�ation is positively related to expected future in�ation.

The second-order approximation of equation (11) is more elaborate, so that the relation-

ship between current and future in�ation is not immediately apparent (see Benigno and

Woodford, 2005, for an example in the simpler case without habits nor in�ation indexa-

tion). Nevertheless, equation (11) is suggestive of two features.

First, past in�ation only enters log-linearly in the equation, since it never appears in

the K2;t and K1;t terms. Even with indexation, the fact that past in�ation is high does

not per se matter in inducing a nonlinearity in in�ation as a function of the state of the

economy. Indexation does, however, matter in changing expectations of future in�ation.

The second known feature of equation (11) is that its quadratic approximation will

be either concave or convex, regardless of whether in�ation deviations from the long run

mean are positive or negative. The e¤ects of the second order terms in the solution will

therefore be asymmetric. If, ceteris paribus, in�ation is a convex function of expected

future in�ation, �rms will try to increase current prices more and more aggressively, the

larger is the expected future deviation of in�ation from steady state. They will however cut

their prices less than they would in the linear case, in case of negative in�ation deviations

from the steady state.

2.2 Two Taylor rules

Equations (5), (7), (9) and (10) describe aggregate economic dynamics. We close the

model with a Taylor rule with interest rate smoothing. A key decision that has to be

taken in the speci�cation of the rule concerns the in�ation target. Since in�ation displays

a noticeable downward trend over the sample period, the assumption of a constant target

is not very appealing. In empirical applications, it is therefore often assumed that the

decline in in�ation corresponds to a decline in the in�ation target. This is also what we

do here. However, this assumption is likely to have important implications in terms of
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the persistence of in�ation. In order to explore this issue, we analyse two variants of the

policy rule.

The �rst rule assumes that the in�ation target follows a stationary AR(1) process. In

this case, the idea is that the long run target of the central bank is actually constant, but

that there are shifts in the horizon at which the central bank tries to get in�ation back

to that long run level. If the target is temporarily high when in�ation is high, then the

central bank is willing to tolerate a slow return to the long run target. If, instead, there

are no changes in the long run target when in�ation is high, in�ation will be brought back

on target more quickly.

In logarithmic terms (lower case letters), the �rst rule takes the form

it = (1� �I) ((� � ln�) +  � (�t � ��t ) +  y (yt � ynt )) + �Iit�1 + vit (12)

��t = (1� ��)� + ����t�1 + v�
�

t (13)

where it is the logarithm of the gross nominal interest rate, ��t is the in�ation target, v
i
t is a

policy shock and ynt is the logarithm of the level of natural output. The innovations v
i
t and

v�
�

t are white noise with variances �2i and �
2
�� , respectively. In this model, considerable

deviations from the mean of in�ation can arise from short-term movements in the in�ation

target. The model solved using the �rst policy rule is dubbed M1.

The second policy rule is identical to the �rst, except for the property that the in�ation

target becomes integrated (and the steady state level of the interest rate is modi�ed

accordingly)

it = (1� �I)
�
(��t � ln�) +  � (�t � ��t ) +  y (yt � ynt )

�
+ �Iit�1 + v

i
t (14)

��t = ��t�1 + v
��
t (15)

In this case, smooth changes of the in�ation mean occur over time as the central bank

target is revised. The idea here is that the in�ation target process captures true shifts

in the objective of the central bank. Given the slow decline in in�ation over our sample

period, this should supposedly re�ect a shift in public preferences in favour of lower and

lower in�ation levels. The integrated in�ation target induces a non-stationary behaviour

also in actual in�ation and the nominal interest rate. These nominal variables are also

co-integrated, so that the model can be written in stationary form in terms of the rate of

growth of in�ation, ��t = �t � �t�1, and the de�ated in�ation target and interest rate,
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de�ned as e��t = ��t � �t and eit = it � �t, respectively (see the appendix). This model is

dubbed M2.

3 Second-order approximate solution

We solve the model using a second order approximation around the non-stochastic steady

state. The model dynamics will then be described by two systems of equations: a quadratic

law of motion for the predetermined variables of the model and a quadratic relationship

linking each non-predetermined variable to the predetermined variables.

The solution is obtained numerically. A few methods have been proposed in the lit-

erature, including those in Schmitt-Grohé and Uribe (2004), Kim, Kim, Schaumburg and

Sims (2003, henceforth KKSS), Lombardo and Sutherland (2007). For our applications we

select the implementation proposed by Gomme and Klein (2006), that has the advantage

of being relatively faster. Speed is particularly important for estimation, since the model

needs to be solved at every evaluation of the likelihood. For this reason, we also rely on

analytical derivatives to evaluate the second order terms of the approximation.

The solution can be written as follows. The vector xt of predetermined variables,

expressed in terms as deviations from its non-stochastic steady state value, follows the

quadratic law of motion

xt+1 =
1

2
h�� +Hxxt +

1

2
Hxx (xt 
 xt) + �Jvt+1 (16)

vt+1 v NID(0; Ins) (17)

where h��;Hx and Hxx are nx�1; nx�nx, and nx�n2x matrices, respectively. The vector

of shocks has variance covariance matrix Ins , where ns is typically di¤erent from nx. The

scalar � is the perturbation parameter: when � = 0 the system becomes deterministic.

Non-predetermined variables, yt, also expressed as deviations from their non-stochastic

steady-state values, are linked to predetermined variables by the solution

yt =
1

2
g�� +Gxxt +

1

2
Gxx (xt 
 xt) (18)

where g��, Gx and Gxx are ny � 1, ny � nx and nx � nxny matrices, respectively.
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3.1 Simulation and impulse responses

Some care needs to be taken when simulating the approximate second-order solution (16)-

(18). KKSS emphasise that a standard simulation procedure would introduce undesired

higher order elements in the simulated path. Such elements are compounded over the

simulation period and could conceivably lead to explosionary paths.

We therefore follow the alternative recursive approach suggestion by KKSS. This ap-

proach is also the basic intuition for the solution method proposed in Lombardo and

Sutherland (2007). The approach amounts to using jointly both the second order solution

(16)-(18) and the �rst order solution

xt+1 = Hxxt + �Jvt+1: (19)

Given past realisations of the �rst order state vector, xLt , and second order state vector,

xQt , we proceed as follows:

1. draw vLt+1 and simulate x
L
t+1

xLt+1 = Hxx
L
t + �Jv

L
t+1

2. construct xQt+1 without further simulations (i.e. using v
L
t+1) as

xQt+1 =
1

2
h�� +Hxx

Q
t�1 +

1

2
Hxx

�
xLt�1 
 xLt�1

�
+ �JvLt+1

3. construct the second order jump vector

yt =
1

2
g�� +Gxx

Q
t +

1

2
Gxx

�
xLt 
 xLt

�
4. Go back to 1.

This issue is particularly important for us, since we make extensive use of simulation

methods in the rest of the paper. More speci�cally, we use these methods to:

� compute the likelihood, relying on the conditional particle �lter (see next section);

� compute nonlinear impulse responses, which are obtained simply going through steps

2-3 described above, starting from a certain value xt = x, and given two di¤erent

paths for the structural shocks [v(1)t+1;vt+2; :::;vt+h] and [v
(2)
t+1;vt+2; :::;vt+h] (see

section 5.4).
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4 Estimation method

4.1 Non linear-non Gaussian state space models

The system (16)-(18) can be cast in the general form

(measurement equation) yot = G(xt;wt;�) (20)

(state equation) xt = H(xt�1;vt;�) (21)

where yot is the subset of imperfectly observable elements of the vector yt, � is the parame-

ter vector, vt �
�
vat ; v

��
t ; v�t ; v

i
t

�0
is the vector of structural shocks and wt are measurement

errors.

In order to be able to do inference on the unobservables (parameters and state vector)

we need to solve a �ltering problem, i.e. given p(xtjyot ;�) obtain p(xt+1jyot+1;�); t =

0; 1; :::T � 1; where

yo
t
=
�
yo

0
1 yo

0
2 ::: yo

0
t

�0
(22)

collects all the data evidence up to time t.

The �ltering problem is conceptually straightforward and consists of two steps:

� projection

p(xt+1jyot ;�) =
Z
p(xt+1jxt;�)p(xtjyot ;�)dxt (23)

� update

p(xt+1jyot+1;�) =
p(xt+1jyot ;�)p(y

o
t+1jxt+1;�)

p(yot+1jyot ;�)
(24)

The �ltering recursion yields the likelihood of each observation as

p(yot+1jyot ;�) =
Z
p(xt+1jyot ;�)p(y

o
t+1jxt+1;�)dxt+1 (25)

When the state space is linear and the shocks are Gaussian, the integral required by the

projection and the update steps can be performed analytically giving rise to the Kalman

�ltering recursion. In our context, with non-linear state and measurement equations, it

is necessary to compute those integrals by using either some approximation or numerical

methods.

In this paper, the integration steps which are inherent in the �ltering recursion are

performed using Sequential Monte Carlo methods. For concise and e¤ective introduc-

tions to these methods, see Arulampalam et al. (2002), Doucet et al. (2001). To date,
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sequential Monte Carlo methods have been used in statistics and (only marginally) in

�nancial econometrics, while in macroeconomic applications they have been used very sel-

dom. Fernandez-Villaverde and Rubio-Ramirez (2006a, b) and An and Schorfheide (2007)

are the �rst studies in which these techniques are used for DSGE models, while in Casar-

ing and Trecroci (2006) these methods are used to investigate the dynamics of univariate

volatilities of macroeconomic aggregates.

The intuition behind the simplest version of these methods, which is called the particle

�lter is to perform the �ltering recursion and compute the likelihood p(yot+1jyot ;�). The

particle �lter is based on the following identity

p(xt+1jyot+1;�) =

Z
p(xt+1jxt;yot ;�)p(xtjy

o
t
;�) �

p(yot+1jxt+1;xt;yot ;�)
p(yot+1jyot ;�)

dxt

=

Z
p(xt+1jxt;�)p(xtjyot ;�)

p(yot+1jxt+1;�)
p(yot+1jyot ;�)

dxt (26)

Suppose we have a sample of size N of draws from the distribution p(xtjyot ;�) (a swarm

of N particles)

x
(i)
t v p(xtjyot ;�); i = 1; 2; :::; N (27)

then it is possible to obtain a sample of N draws from the distribution p(xt+1jyot+1;�)

applying the following three steps:

1. (projection) draw a large number of realisations from the distribution of xt+1 con-

ditioned on yo
t
; this amounts to simulating the state equation

x
(i)
t+1 v p(xt+1jx(i)t ;�); i = 1; 2; :::; N ;

2. (update) assign to each draw a weight which is determined by its "distance" from

(compatibility with) yot+1. The weight assigned to each of the draws is p(y
o
t+1jxt+1;�)

w
(i)
t+1 = p(yot+1jxt+1;�); i = 1; 2; :::; N ; (28)

3. resample (with re-immission) the draws x(i)t+1 using probabilities

p
(i)
t+1 =

w
(i)
t+1

NX
j=1

w
(j)
t+1

: (29)
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Note that the unnormalised weights (28) are very important for inference: their

sample mean is the tth observation conditional density:

1

N

NX
j=1

p(yot+1jx
(j)
t+1;�) t

ZZ
p(yot+1jxt+1;�)p(xt+1jxt;�)p(xtjyot ;�)dxt+1dxt =

= p(yot+1jyot ;�) (30)

This likelihood can be used as a basis for full information inference (Bayesian or not) on

the parameters of the model, while the whole �ltering procedure can be used for carrying

out smoothed or �ltered inference on the unobservable variables.

If we call p(xt+1jyot ;�) the prior distribution (prior to observing y
o
t+1) and p(y

o
t+1jxt+1;�)

the "likelihood", the particle �lter algorithm can be given a very simple Bayesian inter-

pretation which immediately clari�es its limitations: it is as if we were doing posterior

simulation drawing from the prior and then using the likelihood as weights. This is a very

straightforward procedure to implement but hardly a computationally e¢ cient one in the

case the "likelihood" is much more concentrated than the "prior".

It is well-known that the particle �lter can be quite ine¢ cient, especially in the presence

of outliers in the data or in situations in which the measurement error is nearly absent.

A few variants have therefore been proposed in the literature, including the auxiliary-

variable particle �lter and the conditional particle �lter. Details on the relative merits

of each of them in a DSGE framework can be found in Amisano and Tristani (2007).

Here we focus on the conditional particle �lter, proposed by Ionides (2007), which displays

useful properties when dealing with data characterised by a low signal-to-noise ratio (see

Fernandez-Villaverde and Rubio-Ramirez, 2006b, on the di¢ culties posed by the absence

of measurement errors for the particle �lter).

The conditional particle �lter is based on the following identity

p(xt+1jyot+1;�) =

Z
p(xt+1jxt;yot+1;�) � p(xtjy

o
t+1

;�)dxt =

=

Z
p(xt+1jxt;yot+1;�) � p(xtjyot ;�) �

p(yot+1jxt;yot ;�)
p(yot+1jyot ;�)

dxt

=

Z
p(xt+1jxt;yot+1;�) � p(xtjyot ;�) �

p(yot+1jxt;�)
p(yot+1jyot ;�)

dxt (31)

The conditional particle �lter is applied by repeating the following steps:

1. (projection) draw x(i)t+1 from the distribution of xt+1 conditioned on yot+1

x
(i)
t+1 v p(xt+1jyot+1;x

(i)
t ;�); i = 1; 2; :::; N ;
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2. (update) assign weights

w(x
(i)
t+1) = p(yot+1jx

(i)
t ;�);

3. resample (with re-immission) the draws x(i)t+1 using probabilities p
(i)
t+1 =

w
(i)
t+1

NX
j=1

w
(j)
t+1

.

Note that, once again, the sample mean of the weights w(i)t+1 is the conditional likelihood

of yot+1

1

N

NX
j=1

p(yot+1jx
(j)
t ;�) t

ZZ
p(yot+1jxt;�)p(xt+1jxt;yot+1;�)p(xtjyot ;�)dxt+1dxt =

= p(yot+1jyot ;�) (32)

It is easy to see why this �ltering procedure works more e¢ ciently than the particle

�lter: in drawing xt+1 from p(xt+1jyot+1;x
(i)
t ;�) we use already the information contained

in yot+1. This feature is called "adaption" and it is the starkest di¤erence with respect

to the particle �lter algorithm, which, on the other hand, does not use any information

on yot+1 to draw xt+1. Table (1) conceptually compares how the particle �lter and the

conditional particle �lter work.

The main di¢ culty with the conditional particle �lter is that the distribution p(xt+1jyot+1;x
(i)
t ;�)

is not known analytically when the measurement equation is nonlinear. An approximate

solution to this problem is to use a linearization of the measurement equation around the

expected future value of the state vector. In this way, we can draw from an approximate

probability distribution ep(xt+1jyot+1;x(i)t ;�), the distribution implied by the linearization
procedure, and compute the weights ew(x(i)t+1) as proportional to ep(yot+1jx(i)t ;�).

To be more speci�c, consider again our quadratic DSGE state space model with mea-

surement errors

yot+1 =
1

2
g�� +Gx (xt+1) +

1

2
Gxx (xt+1 
 xt+1) +�1=2wt+1 (33)

xt+1 =
1

2
h�� +Hx (xt) +

1

2
Hxx (xt 
 xt) + �Jvt+1

At each t, we compute the value of the state vector expected at t+ 1

xt+1jt �
1

N

NX
i=1

�
1

2
h�� +Hx

�
x
(i)
t

�
+
1

2
Hxx

�
x
(i)
t 
 x(i)t

��
(34)

and linearise the measurement equation around this value as

yt+1 = yt+1jt +wt+1jt (35)
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where

yt+1jt =
1

2
g�� +

�
Gx +

1

2
GxxDk

�
xt+1jt +

1

2
Gxx

��
xt+1jt 
 xt+1jt

�
�Dkxt+1jt

�
(36)

wt+1jt = �GxJvt+1 +�
1=2wt+1 v N(0;Gx
G

0
x +�);
 = �

2JJ
0

(37)

Gx =

�
Gx +

1

2
GxxDk

�
; (38)

Dk =

�
@ (xt+1 
 xt+1)

@xt+1

�
xt+1=xt+1jt

= [(Inx 
 xt+1) + (xt+1 
 Inx)]xt+1=xt+1jt(39)

Hence, the joint distribution of xt+1 and yot+1 conditioned on xt is Gaussian and we

can use the standard multivariate Normal formulae for conditional moments to write

(xt+1jxt;yot+1;�) v N
�
E(xt+1jxt;yot+1); V (xt+1jxt;yt+1)

�
(40)

E(xt+1jxt;yot+1;�) = xt+1jt +
G
0
x

h
Gx
G

0
x +�

i�1 �
yot+1 � yot+1jt

�
(41)

V(xt+1jxt;yot+1;�) =

�

�
G0

x

h
Gx
G

0
x +�

i�1
Gx


�
These are approximate results but, using the importance sampling principle, it is

possible to correct for the approximation induced by the linearization when constructing

the likelihood, by assigning weights

w(x
(i)
t+1) =

p(x
(i)
t+1jx

(i)
t ;�)� p(yot+1jx

(i)
t ;�)ep(x(i)t+1jyot+1x(i)t ;�) (42)

In this paper, however, we neglect the approximation error and directly assign the

draws weights equal to ew(x(i)t+1) = ep(yot+1jx(i)t ;�) (43)

In Amisano and Tristani (2007) we document that the two procedures yield very similar

results in this type of model.

Note that the linearised conditional particle �lter algorithm that we use is connected

with the extended Kalman �lter (see Arulampalam et al., 2002, section IV). The di¤erence

is that both the measurement and the state equations are linearised at any point in time

in the extended Kalman �lter.

4.2 Inference on the parameters of the model

Once the likelihood has been obtained, it can be used either in a maximum likelihood

estimation framework or in a Bayesian posterior simulation algorithm.
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In this paper we use a random walk Metropolis Hastings algorithm (see Chib, 2001)

which works by sequentially repeating the following steps:

� draw �� from a symmetric candidate distribution q(�(i�1);��) = q(��;�(i�1));

� compute the solution of the DSGE model and the implied state space form;

� carry out the simulation �lter which will produce also the likelihood of the model

p(yo
T
j��) =

T�1Y
t=1

p(yot+1jyot ;�
�);

� accept �� and therefore set �(i) = �� with probability

p(��)p(yo
T
j��)

p(�(i�1))p(yo
T
j�(i�1))

(44)

if the draw is not accepted the MH simulator sets �(i) = �(i�1).

In other words, we use sequential Monte Carlo methods to compute the likelihood

of the model and we plug this likelihood in a MCMC framework. As is customary, we

chose q(�(i�1);��) to be a multivariate Gaussian distribution centered on �(i�1) and with

covariance matrix proportional to the empirical sample covariance matrix obtained from

preliminary long simulations from the linearised model. This procedure is appealing be-

cause, unlike alternative approaches to the choice of the covariance matrix of the candidate

distribution, it does not require any log-posterior maximization. The tuning parameter on

the covariance matrix was calibrated to achieve acceptance rates between 20% and 40%.

In order to avoid numerical problems, we transformed the parameters in order to get rid

of the constraints on their domain.

4.3 Prior elicitation

One of the hardest parts in implementing Bayesian techniques is how to specify sensible

priors. There are parameters for which this task is less di¢ cult, and these are parameters

such as those describing preferences or technology, for which there are well grounded beliefs

which can be cast in probabilistic terms to form priors. For some others (typically the

second order parameters, i.e. the standard errors of shocks) this task is more di¢ cult.

For most of the macro parameters in the �rst group, we have adopted priors consistent

with those of Smets and Wouters (2003), while for parameters associated to second order
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moments, which play a more determinant role for the second order approximation, we

have resorted to prior predictive analysis (see Geweke, 2005, section 8.3.1): we draw

parameter values from the joint prior, we solve the model and we compute the moments

of the stationary distribution of the data. We obtain in this way a prior distribution of

these model-based features. We calibrated the prior hyperparameters in order to have a

prior distribution of the �rst and second moments of the model-based ergodic distribution

centered around resonable values, i.e. of the same order of magnitude of the unconditional

sample data moments. We have experienced that a bit of thought in the speci�cation of

the prior usually helps in eliminating some of the numerical problems encountered by the

sequential Monte Carlo �ltering procedures.

We decided to dogmatically set measurement standard errors equal to 10�6 to concen-

trate on the role of the four di¤erent structural shocks.

The prior used in estimation are described in Table (2). We decided to take into

considerations constraints on the parameter domain by aptly specifying prior distribu-

tions which automatically satisfy these constraints: non negative parameters were given a

Gamma prior, parameters constrained on the unit simplex were given a Beta prior, and

parameter which cannot be smaller than 1 were given a Gamma distribution for their dif-

ference with respect to one. The standard errors of the shocks were also assigned Gamma

distributions.5

5 Results

All our results are based on output, nominal interest rate and in�ation data taken from the

Area Wide Model database (see Fagan, Henry and Mestre, 2005). Following Smets and

Wouters (2003), we remove a deterministic trend from the GDP series prior to estimation.

No transformations are applied to in�ation and interest rate data. The estimation period

runs from 1970Q1 to 2004Q4. The data are shown in Figure 1. Note that Model M2 uses

the changes of in�ation and the di¤erence between interest rate and in�ation in order to

eliminate the unit root behaviour induced by the random walk hypothesis on the in�ation

target process.

5The inverse Gamma distribution is a more customary choice for standard errors, as it generates conju-

gate priors in particular models. Since we compute posterior distributions by simulation in any case, there

is no reason for us to use an inverse Gamma distribution.
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We highlight four main features of our results. First, we brie�y discuss our parame-

ter estimates, focusing on di¤erences across models/speci�cations and compared to the

existing literature. Secondly, we compare the estimates based on the two speci�cations

M1 and M2 and show that the �rst model is overwhelmingly preferred by the data. This

conclusion is also informally supported by the fact that the 95% Highest Posterior Density

credible sets (henceforth HPD sets, see Geweke, 2005, Section 2.5) constructed using the

marginal posterior distribution of �� and � (see Table 3) in Model M1 do not contain the

unit value. We therefore focus on M1 for the rest of our analysis. Next, we compare the

linear and nonlinear speci�cations for model M1 and conclude that the nonlinear version is

marginally superior to the linear one. Finally, we discuss the implications of the nonlinear

M1 model for the dynamics of in�ation, in particular looking at the way in which initial

conditions a¤ect the magnitude and the persistence of the e¤ects of shocks in a nonlinear

world.

All results are based on 55,000 MCMC replications, the �rst 5000 of which are dis-

carded. In the nonlinear models, 10,000 particles are used to construct the likelihood.

In order to test the general stability of our results, we run several di¤erent simulation

rounds. Estimates are quite stable for the M1 model, but a bit less so for the M2 model,

for which across di¤erent simulation, one observes quite some variability in the results.

5.1 Parameter estimates

Tables 3 and 4 present the results of the estimation of �rst and second order versions of

M1 and M2. The evidence can be summarised as follows.

� In both models and both speci�cations (linear and quadratic), posterior distributions

tend to have a mean which is far from the prior mean. As an example, the RRA has

a posterior distribution that hovers around 4:0 while the prior distribution is cen-

tered around 2:0. Not all parameters, however, have marginal posterior distributions

which are tighter than the corresponding priors. See for example  (RRA), � (labor

disutility), the policy rule parameters  � and  y, and the parameters describing the

properties of the tax shock (�� , �� and �).

� The posterior means of the deep parameters are mostly stable across the di¤erent

speci�cation. See for example � (discount factor),  (RRA), h (habit persistence),
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� For both models, linear and nonlinear speci�cations tend to produce similar parame-

ter estimates: di¤erences in mean estimates tend to be small and always insigni�cant

from a statistical viewpoint.

� In general it seems that the quadratic estimation procedure is capable of generating

sharper estimates. Looking just at the univariate marginal posterior of model M1, 11

parameters out 19 have posterior HPD sets based on the quadratic approximation

which are narrower than their counterparts based on linear estimation. For the

remaining parameters there is no gain (in terms of reduced uncertainty) in the use

of the quadratic approximation. Similar considerations attain to the estimation of

model M2: tighter posterior distributions are obtained for 9 out of 16 parameters. In

synthesis, the documented bene�ts in using a higher order solution to estimate the

parameters (see Fernandez-Villaverde and Rubio-Ramirez, 2006a, b) are con�rmed

in our evidence even if not for all parameters.

� For model M1, we observe that mean posteriors are consistent with a very reasonable

degree of price stickiness, implying average price durations of just over 1.5 quarters.

Our estimates of the habit formation parameter h and of the parameters of the

policy rule are also broadly in line with other existing results, notably those in

Smets and Wouters (2003). The main, important exception concerns the in�ation

indexation parameter. Irrespective of the speci�cation (linear or nonlinear), our

estimates (� ' 0:1) are particularly small and imply a very minor degree of in�ation

persistence. This result is quite surprising in view of the high serial correlation

of actual in�ation, and also if compared to �ndings of existing studies. Given the

negligible role played by the tax shock in the model (see the forecast error variance

decomposition in Table 6), it would appear to be the case that (de facto) three shocks

are not su¢ cient to replicate all the dynamic properties of the data.

� In terms of overall �t, however, both models do quite well. Figure 2 shows the

observed series used for estimation and the posterior mean of their �ltered one step

ahead forecasts for model M1. This seems to indicate a good �t of the data, and

similar evidence holds for model M2.
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� in order to check the reliability of the estimated models, we have also looked at

the posterior distribution of the latent variables implied by the estimated model.

As an example, Figure 3 reports the posterior mean of the in�ation target for M1,

showing that its range of values and its dynamics are not unreasonable. The target

is higher during the seventies and early eighties, but not as high as actual in�ation,

then declines to values around 2% (annualised) during the EMU period.

5.2 Model comparison

To test whether the assumption of permanent shifts in the average in�ation rate is borne

in the data, we compare formally models M1 and M2.

It is useful to note that model M2 is almost nested in M1. With the exception of the

intercept term in the Taylor rule, it amounts to �xing two parameters in model M1: � = 1

(the in�ation indexation parameter) and �� = 1 (the persistence of the in�ation target).

The second restriction is unlikely to have a strong impact on the marginal likelihood, given

that it is in any case estimated to be very close to 1 in model M1 (even if its HPD set

does not contain 1). Given the estimates of � in M1, however, the �rst restriction is likely

to be more binding.

In the literature, model comparison exercises are often based on the marginal likeli-

hood. We also follow this approach here, even if it must be kept in mind that marginal

likelihoods are subject to a number of caveats (see for instance Gelman et al., 2004, sec-

tion 6.7, Del Negro and Schorfheide, 2006, Sims, 2003). An alternative model-evaluation

criterion that has been proposed in the literature is to compare the predictive densities

implied by the competing models with a recursive estimation approach (see Geweke, 2005,

section 2.6.2). We therefore apply a variant of this approach to shed further light on the

comparison between models that are similar in terms of marginal likelihood.

The marginal likelihood (ML) of each modelMj is de�ned as

ln(p(yjMj) = ln

�Z
p(yj�;Mj)p(�jy;Mj)d�

�
(45)

The di¤erence between these two quantities for modelsMj andMi gives the log Bayes

Factor of one model versus the other. Computed values largely di¤erent from zero suggest

dominance of one model vs the other. The MLs are computed based on the modi�ed

Gelfand and Dey approach described in Geweke (1999). This method is very accurate
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when the posterior PDF is unimodal. Here we use the MLs to compare models M1 and

M2 and also the linear versus the quadratic speci�cations.

There is an issue of detail which has to be emphasised when comparing marginal like-

lihoods across our two di¤erent models. The two models do not use the same observable

variables, since in M2 data on in�ation and interest rate are transformed to achieve sta-

tionarity (we use di¤erenced in�ation and the real interest rate). Nevertheless, conditional

on past information, the Jacobian determinant of the transformation from the variables

in M1 to the ones in M2 is unity. This can be shown if we de�ne y(M1)
t = [�t; rt; yt]

0 and

y
(M2)
t = [��t; rt � �t; yt]0. Then y(M2)

t can be rewritten as

y
(M2)
t =

24 1 0 0
�1 1 0
0 0 1

35y(M1)
t �

24 1 0 0
0 0 0
0 0 0

35y(M1)
t�1

so that ����� @y(M2)
t

@y
(M1)

0

t

jy(M1)
t�1

����� =
������
24 1 0 0
�1 1 0
0 0 1

35������ = 1
It follows that marginal likelihoods are directly comparable if we condition on y0.6

Looking at Table 5, it seems that model M1, in either speci�cation (linear or quadratic)

is superior to model M2. Given that the log Bayes factor is very large (more than 27 points)

and that in the estimation of M1 the posterior 95% HPD sets for �� and � do not contain

respectively the unit and zero values, we conclude that in this application model M1 is

clearly preferred to M2. We thus focus on model M1 for the rest of the paper.

In terms of the euro area in�ation process, the aforementioned result seems to imply

that that process is best characterised by a constant mean, even if considerable and per-

sistent deviations from the mean have occurred over the years. This is however only a

tentative conclusion, given that both the M1 and the M2 models can only capture the

cross-covariances of the data to a limited extent.

5.3 Linear vs. nonlinear

Conclusions on the superiority between the linear and quadratic versions of model M1 are

more di¢ cult to draw.
6A side issue concerns the sample size. Model M1 is estimated on a sample size that includes 1970:1

whereas M2 starts from 1970:2. To make the comparison completely fair, we should re-estimate M1

excluding the �rst observation. Given the strongly superior performance of M1 with respect to M2, this is

unlikely to make a substantive di¤erence.

26
ECB 
Working Paper Series No 754 
May 2007



Table 5 shows that the ML of these two speci�cations are very close, even if the linear

model prevails marginally (with a ML around 1659, compared to 1658 for the quadratic

case). In order to have further elements for this comparison, we also compute conditional

predictive densities.

To compute conditional predictive densities, the model has to be reestimated at each

point in time. In other words we need to compute

p(yot+1;y
o
t+2:::;y

o
T jyot ;Mj) =

TY
�=t

p(yo�+1jyo� ;Mj) (46)

for some date 0 � t � T � 1: Doing this by brute force, i.e. re-estimating the model at

each point in time is computationally infeasible for the quadratic model. Therefore we

resort to two di¤erent alternative approaches

1. In an empirical Bayes spirit, we can proxy the factors entering the conditional predic-

tive likelihood p(yo�+1jyo� ;Mj) as p(yo�+1jyo� ; b�;Mj),where b� is the posterior mean of
the parameters, based on the full sample. Of course in this way we neglect the role

of parameter uncertainty in conditional predictive density based model comparison,

but not the role of the uncertainty on the latent variables of the model. This of

course will tend to penalise the quadratic model with respect to the linear one, since

the quadratic posterior distribution tends to be less dispersed.

2. An alternative approach is to exploit the full sample posterior distribution of the

parameters and compute the recursive predictive densities by simulation as follows

1

M

MX
i=1

1

p(yoT0+1;y
o
T0+2

:::;yoT jyoT0 ;�
(i);Mj)

(47)

p!
Z
p(yoT0+1;y

o
T0+2:::;y

o
T jyoT0 ;�;Mj)� p(�jyoT ;Mj)d�

=

Z p(�jyoT0 ;Mj)

p(yoT0+1;y
o
T0+2

:::;yoT jyoT0 ;Mj)
d� =

1

p(yoT0+1;y
o
T0+2

:::;yoT jyoT0 ;Mj)
(48)

i.e. by using the harmonic mean of the relevant conditional densities. This approach

is computationally not demanding (it uses the output of the posterior simulation of

the model based on the whole sample size), but is has the drawback that the accuracy

of the approximation in the simulation based integral (47) can be subjected to large

errors for a �nite number of simulations M .
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The results of both approaches are presented in Figure 4, where we plot the log di¤er-

ence

ln

 
p(yot+1;y

o
t+2:::;y

o
T jyot ;b�linear;Mlinear)

p(yot+1;y
o
t+2:::;y

o
T jyot ;b�linear;Mlinear)

!
; t = 0; 1; :::T � 1 (49)

Each point in the �gure shows the log predictive density from that point until the end of

the sample.

From this comparison we see that the quadratic model seems to be superior to the linear

one for most of the possible partitions of the sample. Consistently with the results of the

marginal likelihood comparison, the conditional predictive distribution ratio is favourable

to the linear speci�cation over the full sample (the �rst observation in the �gure). At this

point, however, the prior plays a disproportionately important role on the result, which

could therefore be a¤ected by the fact that the same priors have di¤erent implications for

the marginal likelihoods of the two models. If we were to use a training sample for both

versions of the model to "level the playing �eld" (see Sims, 2003), a training sample of only

4 observations would be enough to tilt the evidence drawn from the marginal likelihood

comparison in favour of the quadratic model.

The comparison would then continue to favour the quadratic model for most of the

sample. Only at the very end, namely as of the beginning of EMU, the conditional

predictive distribution ratio becomes favourable to the linear speci�cation. This suggests

that nonlinearities are important in case of very large and persistent shocks, but tend to

be less relevant during periods of moderate �uctuations.

On the basis of these results, we conclude that the quadratic version of M1 is marginally

superior to the linear one for most of the sample, and especially over the years where

in�ation is more distant from its steady state value.

These results are broadly consistent with those obtained on the basis of simulated data.

Recent literature has emphasised that estimates of the second order model tend to be more

precise � e.g. An and Schorfheide (2007). Canova and Sala (2006) has emphasised the

chronic under-identi�cation of many DSGE models. It is possible to verify that resorting

to higher order approximation induces sensibly more curvature in the likelihood function

hence increases identi�ability of the parameters. We have veri�ed this feature also for the

models that we estimate in this paper and it does generally hold on simulated data (see

Amisano and Tristani, 2007).
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i�cation. This result suggests the existence of a trade-o¤ between parameter identi�cation

and mis-speci�cation in nonlinear DSGE models, similar to the one encountered when

increasing the information set in the estimation of linearised models. More information

increases the ability of the researcher to pin down various parameters, but it tends to

highlight any weaknesses of the model at the same time. Similarly, estimating a nonlinear

model amounts to extracting more testable implications from the theory, hence achieving

more e¢ cient, or even less biased, parameter estimates when the model is approximately

correct. If the model is only a rough approximation of reality, however, its nonlinear im-

plications are likely to make it more at odds with the data (compared to its linearised

counterpart). The �nding of more spread-out posterior parameter distributions may be a

signal of the latter phenomenon.

5.4 Euro area in�ation dynamics

In this section, we discuss the dynamic implications of the model focusing in particular on

the persistence and the amplitude of the responses of in�ation to shocks. All the discussion

is based on the posterior simulation of model M1 in its quadratic version.

First of all, in order to understand the relative importance of the di¤erent shocks

hitting the system (technology, target, tax and policy shocks), we look at the forecast error

variance decomposition (FEVD) coe¢ cients which are reported in Table 6 and graphed in

Figure 5. Four main features immediately stand out:

1. the tax shock has negligible importance on all variables at all horizons (always well

below 1%).

2. Technology explains the bulk of output variability also at short horizons: the poste-

rior 1 step ahead FEVD coe¢ cient for output is nearly 89%.

3. In�ation is mainly driven by target shocks and policy shocks: respectively 80% and

16% at 1-step ahead, 86% and 12% after one year and 91% and 8% after 3 years.

4. The policy rate is moved by the same shocks as in�ation but with reversed relative

importance: in the short run it is nearly all (91%) policy shocks and much less the

target shocks (7%). As the horizon increases the target shocks become more and

more important: at 3 years target shocks account for more than 80% and policy

shocks only 18%.
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Next, we turn to the impulse response functions and test whether responses starting

from a high-in�ation level are signi�cantly more persistent than those starting from a low

level. At the same time, we analyse whether the amplitude of the response of in�ation

after a shock of a given size varies depending on the starting value.

The dependence of nonlinear impulse response functions on initial conditions is well-

known (see e.g. Gallant, Rossi and Tauchen, 1993). Our aim, however, is exactly to point

out the extent to which economic dynamics are di¤erent over time, depending on cyclical

conditions. We therefore study standard nonlinear impulse response functions, de�ned as

the di¤erence between the expected future sample path of a variable conditional on the

state xt, and the expected future path conditional on x0t, where xt is equal to x
0
t except

for an individual element which is perturbed by a known amount.7

Rather than selecting arbitrarily various initial con�gurations of the state vector, we

focus on its two realisations estimated at the extreme values of in�ation observed in our

sample. Looking at Table 3, the maximum and minimum of in�ation are equal to 16.58% in

1976:01 and 0.59% in 1998:03, respectively. In order to highlight how the impulse responses

vary over time, we calculate them starting from the �ltered state vectors on these dates,

referred to as tmax (high in�ation) and tmin (low in�ation). IRFs are then computed using

the KKSS simulation strategy illustrated in Section 3.1, and by integrating out future

values of shocks. However, di¤erent ways to compute IRFs, namely by projecting the

quadratic laws of motions and/or by setting to zero all shocks but one, led to virtually the

same results. Posterior median responses and the bounds corresponding to a 95% posterior

coverage are reported in Figures 6 and 7.

The response of in�ation to a technology shock (row 1, column 1 of Figure 6), for

which the posterior mean of the standard error is equal to 1.46%, follows the broad pattern

typically observed in linearised models, if the shock occurs when in�ation is low (the "Low

in�ation" line). In�ation falls for a few quarters and returns to baseline thereafter. The

initial fall is also statistically signi�cant at the 95% level for 2 quarters. The nonlinear

e¤ects triggered by the technology shock are quantitatively modest. Starting from a high

in�ation level (the "High in�ation" line), the fall in in�ation is reduced and ceases to be

signi�cant after 2 periods, but the di¤erences are not statistically signi�cant.

7This is also the de�nition used in Gallant, Rossi and Tauchen (1993). See also Koop, Pesaran and

Potter (1996).
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The response of in�ation to a positive in�ation target shocks (posterior mean of �� =

0:14%) is more markedly dependent on the starting point (see �rst row, second column of

Figure 6). The low estimated value of the in�ation indexation parameter, �, implies that

in�ation is highly forward-looking. As a result, a positive and highly persistent increase

in the in�ation target has immediate consequences on current in�ation, which rises more

than the target itself [by how much on impact?]. In turn, this implies that the policy

interest rate increases on impact to counter the rising in�ationary pressure. Nevertheless,

the shock continues to produce expansionary e¤ects on output, if it occurs when in�ation

is low.

This result, however, changes dramatically if the shock takes place when in�ation is

already high. In this case, there is a much bigger upward increase in in�ation, nearly twice

as big as in the previous case, and also more persistent in terms of median half-life. As

a result, the policy tightening must be much more severe, so as to progressively contract

aggregate demand. Hence, the impulse response of output to an in�ation target shock

changes sign depending on the state of the world prevailing when the shock occurs.

The response of in�ation to a monetary policy shocks (posterior mean of �i = 0:19%)

is again more marked when in�ation at the starting point is high. For given size of the

shock, the top row, second column of Figure 7 shows that it falls on impact by around 0:21

percent in this case, compared to a fall of 0:14 after a low-in�ation starting point. These

di¤erences are nevertheless short-lived and they disappear completely after 5-6 quarters.

In synthesis, the two main shocks driving in�ation (target and policy) have quanti-

tatively di¤erent impact and persistence behaviours depending on the initial conditions.

Our results are important, for example because they suggest that sacri�ce-ratios derived

from a linearised model may provide a misleading picture. In the case we analyze, the

bene�ts on expectations of cutting a high in�ation target are so large, that the cut would

have an expansionary e¤ect. This is not the conclusion that one would reach focusing

solely on the linearised model.

6 Conclusions

We have presented the results of an empirical analysis of the nonlinear features of a

relatively standard, small DSGE model. With the limitations posed by the simplicity of
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First, the nonlinear macroeconomic dynamics intrinsic in the model can have pro-

nounced and statistically signi�cant e¤ects in case of moderately large movements in the

in�ation rate. The amplitude and persistence of the responses of in�ation to shocks di¤er

at di¤erent points in the sample. For example, a given surprise increase in the in�ation

target produces stronger in�ationary consequences if it occurs in a high in�ation envi-

ronment, compared to an environment where price stability is maintained. Even starker

di¤erences can be observed for the response of output, which can change sign depending

on initial conditions.

When comparing formally linear and nonlinear models, we tend to conclude slightly in

favour of the latter speci�cation. We show that this result has an intuitive interpretation in

terms of better performance when observed variables are furthest away from their steady

state levels.

From a more general viewpoint, our results illustrate some of the promises of exploring

estimated version of nonlinear DSGE models, including the possibility to increase the

identi�ability of parameters.

Nevertheless, we wish to end with a word of caution, since the estimation on nonlinear

models does have drawbacks. The �rst one, induced by the need of resorting to simulation

�ltering to carry out likelihood based inference, is that much more computation time is

required. A second drawback is that sequential Monte Carlo methods are sensitive to

outliers and degeneracies which can arise in actual data. Nevertheless, the conditional

particle �lter has proven to be a robust tool in our application.
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7 Appendix

7.1 The complete model(s)

The models are composed of the following equations

K2;t =
� (� � 1)
���

0B@1� �
�
�t�1
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�1��
(1� �)
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1+ �
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1��

A�t e
vt+1

� t = (1� �� ) � + ��� t�1 + v�t

plus either of the policy rules (12)-(13) or (14)-(15).

In the case of M1 the solution is standard. For M2, we �rst remove the stochastic

trend from nominal variables. More precisely, we de�ne the detrended variables

e��t � ��t
�teIt � It
�teQt;t+1 � Qt;t+1�t+1
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and rewrite the system as

K2;t =
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7.2 Model solution

The approximate solution of the model is computed following Gomme and Klein (2006).

First, we collect all �rst order conditions in a vector function F such that

Ft (xt; �) � Etf (yt+1;yt;xt+1;xt) = 0

where xt is the vector of (natural logarithms of the) predetermined variables and yt is the

vector of (natural logarithms of the) non-predetermined variables. More speci�cally, in the

case of M1 xt =
�
�t�1; ynatt�1; yt�1; it�1; at; �

�
t ; � t; v

i
t

�0 and yt = �ynatt ; k1;t; k2;t; �t; it; yt; �t
�0,

while for M2 xt =
he��t�1; ynatt�1; yt�1;eit�1; at; v�t ; � t; viti0 and yt = hynatt ; k1;t; k2;t;��t;eit; yt; �t; e��t i0.

In Ft, � denotes a scalar perturbation parameter, such that the law of motion of the ex-

ogenous state variables xexogt (where xexogt =
�
at; �

�
t ; � t; v

i
t

�0) can be written as xexogt+1 =

Hexog
x xexogt +��vt+1, where the variance-covariance matrix of vt+1 is the identity matrix.
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Figure 6: Impulse responses for model M1: technology and target shocks
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Figure 7: Impulse responses for model M1: tax and monetary policy shocks
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