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Abstract

Early-warning models most commonly optimize signaling thresholds on crisis probabilities. The ex-
post threshold optimization is based upon a loss function accounting for preferences between forecast
errors, but comes with two crucial drawbacks: unstable thresholds in recursive estimations and an
in-sample over�t at the expense of out-of-sample performance. We propose two alternatives for
threshold setting: (i) including preferences in the estimation itself and (ii) setting thresholds ex-ante
according to preferences only. Given probabilistic model output, it is intuitive that a decision rule is
independent of the data or model speci�cation, as thresholds on probabilities represent a willingness
to issue a false alarm vis-à-vis missing a crisis. We provide simulated and real-world evidence that
this simpli�cation results in stable thresholds and improves out-of-sample performance. Our solution
is not restricted to binary-choice models, but directly transferable to the signaling approach and all
probabilistic early-warning models.
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Optimizing policymakers’ loss function in crisis prediction: before, within, 
or after? 

Non-Technical Summary 
 

In the wake of the crisis, much research has been devoted to early-warning models for signaling 
the vulnerability to crisis. This provides means for triggering macroprudential policy, such as 
countercyclical capital buffers, and for warnings of growing macroeconomic imbalances, such as 
the European Commission’s scoreboard. The most common setup of an early-warning model is 
to couple estimated crisis probabilities with a threshold on those probabilities. The threshold is 
a decision rule indicating when preventive action needs to be taken. The estimation is mostly 
performed using binary-choice methods. Sometimes, the estimation step is circumvented by 
applying thresholds to univariate signaling indicators directly (the so-called signaling approach). 
Currently, decision thresholds are obtained from a preference-weighted loss function. That is, 
they are optimized on the basis of (a) costs of, or preferences for, missed crises, (b) costs of, or 
preferences for, falsely predicted crises, and (c) estimated error probabilities in the past.  

This paper shows that such ex-post threshold optimization of the decision rule finds signal in 
noise, which leads to unnecessary variation in thresholds and produces an in-sample overfit of 
the decision rule at the expense of out-of-sample performance. We provide two simpler 
alternative approaches for threshold setting ex-ante or within estimations that provide stable 
thresholds (independent of the data and estimated crisis probabilities) as well as improved out-
of-sample performance. 

The current approach of optimizing thresholds, taking into account estimated error 
probabilities, suffers from estimation uncertainty. New observations affect estimation results 
and can lead to strong variation of decision thresholds over time. In practice, this variation in 
thresholds is problematic as the rationale for policy implementation needs to descend from 
changes in vulnerability rather than changing thresholds. Furthermore, the process of threshold 
optimization does not take estimation uncertainty into account (even though it is based on in-
sample data). Thereby, optimized thresholds produce an in-sample overfit and (more often than 
not) an out-of-sample underfit.  

The two alternatives for threshold optimization after the estimation step alleviate both 
problems. The first alternative is a weighted binary-choice model, where the weights are given 
by the above mentioned costs of, or preferences for, missed and falsely predicted crises. Instead 
of an optimized threshold, the fixed threshold of 50% transforms probabilistic into binary 
forecasts. This alternative approach combines threshold optimization and model estimation in 
one step. The second alternative uses the usual binary-choice model, but sets probability 
thresholds before the estimation, only based on preferences. It can be proven that this, 
independently of the data, is the long-run optimal threshold. Given probabilistic model output, it 
is intuitive that a decision rule is independent of the data or model specification. By way of a 
simple example, the decision of signaling for probabilities above 0.20 indicates a willingness to 
issue a false alarm (80%) vis-à-vis missing a crisis (20%). 

This paper postulates that early-warning models based upon binary-choice methods can and 
should account for policymakers’ preferences directly within the estimation or even before, 
rather than applying optimization of a loss function as a second step after the estimation. The 
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alternative approaches have three benefits. First, they assure stable thresholds for time-varying 
models (i.e., equal to 0.5 or equal to preferences, respectively), which is essential for policy 
conclusions to descend from variation in vulnerabilities rather than thresholds. Second, we 
show that they improve out-of-sample predictive power of the model and reduce the positive 
bias of in-sample performance on average. Thus, our methods provide better performing early-
warning models than the traditional threshold optimization. Third, the alternative approaches 
simplify the process, as the second optimization step of the traditional approach is left out. 
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1. Introduction

The recent �nancial crisis has stimulated research on early-warning models. These models signal
macro-�nancial risks and guide macroprudential policy to mitigate real implications of an impending
crisis. Early-warning models mostly involve two parts: (i) an estimated measure of crisis vulnerabil-
ity, and (ii) a threshold transforming these measures into binary signals for policy recommendation.
The currently predominant approach separates the two parts and optimizes thresholds ex-post. This
ignores estimation uncertainty, provides time-varying thresholds, and results in suboptimal policy
guidance. We propose two alternatives that avoid these problems: within-estimation and ex-ante
threshold setting.

The �rst part of an early-warning model is the estimation method. The two dominating ap-
proaches for this are binary-choice methods and the signaling approach. Binary-choice analysis
(like probit or logit models) was already applied by Frankel and Rose (1996) and Berg and Pattillo
(1999) to exchange-rate pressure, and has more recently been the predominant approach (Lo Duca
and Peltonen, 2013; Betz et al., 2014). The signaling approach is simpler in that it only monitors uni-
variate indicators vis-à-vis thresholds. It originally descends from Kaminsky and Reinhart (1999),
but has also been common in past years (Alessi and Detken, 2011; Knedlik and von Schweinitz,
2012). The second part of an early-warning model concerns the setting of thresholds that transform
probabilities (univariate indicators for the signaling approach) into signals. This transformation
is based upon loss functions tailored to the preferences of a decision-maker.1 These loss functions
rely on the notion of a policymaker facing costs for missing crises (type 1 errors) and issuing false
alarms (type 2 errors). Di�erent versions of a loss function have for example been introduced by
Demirgüç-Kunt and Detragiache (2000), Alessi and Detken (2011) and Sarlin (2013).

Common practice implies an estimation of a binary-choice model and an ex-post optimization
of the threshold within a loss function given prede�ned preferences for type 1 and type 2 errors.
Ex-post threshold optimization has econometric and practical drawbacks. From an econometric
perspective, it ignores uncertainty about the true data-generating process (DGP). Thus, optimized
thresholds falsely react to (unbiased) probability estimates. They �nd signal in noise by exhibiting
an in-sample over�t and (more often than not) an out-of-sample under�t. Further, as optimized
tresholds react to probability estimates, new observations and increased knowledge about the true
DGP lead to time variation in thresholds. For policy purposes, this is problematic as the rationale
for policy implementation needs to descend from changes in vulnerability rather than changing
thresholds.

This paper postulates that early-warning models should abstain from threshold optimization.
Instead, we present two alternatives to the currently predominant approach for threshold setting:
within-estimation and ex-ante threshold setting. The �rst alternative relies on a weighted binary-
choice model, where the weights are given by the above mentioned preferences. The invariant
threshold of 50% transforms probabilistic into binary forecasts. The second alternative is based
on the usual binary-choice model, but sets probability thresholds ex-ante according to preferences.
It can be proven that this is the long-run optimal threshold independently of the DGP. Given an
unbiased probabilistic model, it is intuitive that a decision rule is independent of the exact data or
model speci�cation. By way of a simple example, the decision of signaling for probabilities above
20% indicates a willingness to issue a false alarm (80%) vis-à-vis missing a crisis (20%).

The alternative approaches have three bene�ts. First, even in recursive estimations they assure
a stable threshold that only depends on preferences, which strictly relates policy guidance to macro-
�nancial vulnerability. Second, we show that within-estimation and ex-ante threshold setting on

1We do not herein summarize measures used for assessing model robustness that do not explicitly provide guidance
on optimal thresholds, such as the Receiver Operating Characteristics curve and the area below it.
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average improves out-of-sample predictive power and reduces the positive bias of in-sample perfor-
mance.2 Third, the alternative approaches simplify the process, as the second optimization step of
the traditional approach is left out. These bene�ts, and the underlying critique, can easily be ex-
tended to more general settings. The critique is not restricted to the speci�c loss functions analyzed
in this paper, but applies to any loss or usefulness function optimization that ignores estimation
uncertainty. In general, using di�erent loss functions does not alleviate the described problem.
Further, the critique extends to the signaling approach that consists solely of the optimization step,
but so do the proposed solutions via univariate binary-choice models. The proposed alternatives
also extend to methods beyond binary-choice models: accounting for preferences within estimation
is directly transferable to all methods used in the early-warning literature, while ex-ante threshold
setting is valid for any model resulting in unbiased crisis probabilities.

We provide two-fold evidence for our claims concerning model performance and threshold stabil-
ity. First, we run simulations with di�erent DGP to illustrate the superiority of weighted maximum-
likelihood estimation and ex-ante thresholds vis-à-vis ex-post optimization of thresholds on data
with known patterns. Second, we make use of two real-world cases to illustrate both threshold sta-
bility and in-sample versus out-of-sample performance for the three approaches. For the real-world
exercises, we replicate the early-warning model for currency crises in Berg and Pattillo (1999) and
the early-warning model for systemic �nancial crises in Lo Duca and Peltonen (2013). All exercises
are performed for the loss functions of Sarlin (2013) and Alessi and Detken (2011).

The paper is structured as follows. The next section presents the methods, followed by a discus-
sion of our experiments on simulated data in the third section and our exercises on real-world data
in the fourth section. The last section concludes.

2. Estimating and evaluating early-warning models

This section presents the three methods analyzed in this paper, namely the currently used
approach to derive an early-warning model as well as two alternatives. All three methods consist
of two elements: the estimation of a binary-choice model and the setting of a probability threshold
for the classi�cation into signals. These two elements will be described together with the current
approach in the �rst subsection, while the following subsections introduce the two alternatives.

In all cases, the binary event to be explained is a pre-crisis variable C(h). The pre-crisis variable
C(h) is set to one in the h periods before a crisis, and zero in all other, so-called �tranquil�, periods.3

That is, Cj(h) = 1 signi�es that a crisis is to happen in any of the h periods after observation
j ∈ {1, 2, . . . , N}, while Cj(h) = 0 indicates that all h subsequent periods are classi�ed as tranquil.

2.1. Binary-choice models and ex-post thresholds

Estimation: Binary-choice models (logit or probit models) have been the most important meth-
ods in the early-warning literature (Frankel and Rose, 1996; Kumar et al., 2003; Fuertes and Kalo-
tychou, 2007; Davis and Karim, 2008, see among many others). In a standard binary-choice model,

2This was also indicated by El-Shagi et al. (2013) and later by Holopainen and Sarlin (2015), which both show
and account for the fact that positive usefulness can be insigni�cant. We approach the problem of uncertainty and
signi�cance from a di�erent angle.

3In most applications, one would exclude actual crisis periods and possibly even some periods after a crisis from
the estimation altogether, as they may not be tranquil, and should therefore not be used for early-warning purposes
(Bussière and Fratzscher, 2006).
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it is assumed that the event Cj(h) is driven by a latent variable

y∗j = Xjβ + ε

Cj(h) =

{
1 , if y∗j > 0

0 , otherwise
.

Under the assumption ε ∼ N (0, 1), this leads to the probit log-likelihood function

LL(C(h)|β,X) =
N∑
j=1

1Cj(h)=1 ln(Φ(Xjβ)) + 1Cj(h)=0 ln(1− Φ(Xjβ)),

which is maximized with respect to β. If we assume a logistic distribution of errors, the likelihood
function changes only with respect to a distribution function F , which is logistic instead of normal.

Table 1: A contingency matrix.

Actual class Cj

Pre-crisis period Tranquil period

Predicted class Sj

Signal

Correct call False alarm

True positive (TP) False positive (FP)

Rel. cost: 0 Rel. cost: 1− µ

No signal

Missed crisis Correct silence

False negative (FN) True negative (TN)

Rel. cost: µ Rel. cost: 0

Threshold setting: The model returns probability forecasts pj = P(y∗j > 0) for the occurrence of
a crisis. While the level of crisis probabilities are of interest, a policymaker is mainly concerned with
whether the probability ought to trigger (or signal) preventive policy measures. Thus, estimated
event probabilities pj are turned into (non-probabilistic) binary point predictions Sj by assigning
the value of one if pj exceeds a threshold λ ∈ [0, 1] and zero otherwise. The resulting predictions
Sj and the true pre-crisis variable Cj(h) can be presented in a 2× 2 contingency matrix, see Table
1. Based upon the threshold λ, the contingency matrix allows us to compute a number of common
summarizing measures, such as unconditional probabilities P1 and P2, and type 1 and 2 error rates
T1 and T2.

4 It should be noted that all entries of the contingency matrix, and hence all measures
based upon its entries, depend on the threshold λ.

An intuitive threshold would be 50%. However, as crises are (luckily) scarce and (sadly) often
very costly, one would usually choose a threshold below 50% in order to balance the frequency and
costs of the two types of errors. The entries of the contingency matrix, as well as error rates, can
be used to de�ne a large palette of loss functions to optimize the threshold λ. We mainly use the
the loss and usefulness measures de�ned in Sarlin (2013). Three components de�ne these measures:
unconditional probabilities, type 1 and 2 error rates, and error preferences. To set policymakers'
preferences of individual errors in relative terms (including economic and political costs, among
others), falsely predicted events (FP) get a weight of µ ∈ [0, 1], missed events (FN) a weight of
1−µ. Accordingly, the preference parameter µ is a free parameter that should in practice be set ex-
ante by the policymaker. From the three components, three equivalent measures are derived. The

4Following the literature, the measures are de�ned as follows: P1 = P(Cj(h) = 1) = (TP + FN)/N , P2 = 1− P1,
T1 = P(Pj = 0|Cj = 1) = FN/(FN + TP ), and T2 = P(Pj = 1|Cj = 0) = FP/(FP + TN).
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�rst is a loss function L(µ) of preference-weighted errors, the second is absolute usefulness Ua(µ)
that relates the loss of the model to disregarding the model altogether, and the third is a scaled
relative usefulness Ur(µ) that relates absolute usefulness to the maximal achievable usefulness:

L(µ) = µP1T1 + (1− µ)P2T2 = µFN/N + (1− µ)FP/N.

Ua(µ) = min(µP1, (1− µ)P2)− L(µ).

Ur(µ) =
Ua(µ)

min(µP1, (1− µ)P2)
.

It should be clear that the relation between the three measures is strictly monotonic. When
interpreting models, we can hence focus mainly on Ur. The current approach in early-warning
modeling chooses the threshold that optimizes the three measures (loss function, absolute and
relative usefulness) simultaneously based on the results of the probabilistic model. We call this the
optimized threshold λ∗.

While the optimized threshold λ∗ produces the best in-sample �t given preferences µ, it has
two undesirable properties. First, it is not an analytical function of the preferences, but also
depends on the realization of the data-generating process (DGP). Thus, if new data are added to
the sample, the optimized threshold will most likely change. This is extremely relevant in practice,
where the early-warning model is estimated recursively over time, re-optimizing the threshold with
every new estimation. Second, good in-sample performance is not necessarily a sign of good out-
of-sample performance. In principle, the best out-of-sample performance would be achieved by the
threshold that maximizes usefulness out-of-sample. Thus, the optimized threshold λ∗ may prove to
be suboptimal out-of-sample.

Alternative speci�cations: The loss function of Alessi and Detken (2011) is conceptually close,
but preferences θ apply to type 1 and type 2 error rates instead of shares of all observations:
LAD(θ) = θT1 + (1− θ)T2.5 If we set θ = µP1

µP1+(1−µ)P2
, then the loss function of Alessi and Detken

(2011) becomes

LAD(θ) = LAD
(

µP1

µP1 + (1− µ)P2

)
=
µP1T1 + (1− µ)P2T2
µP1 + (1− µ)P2

=
1

µP1 + (1− µ)P2
L(µ).

That is, the two loss functions are equal (up to a factor). The correspondence between the
preference parameters µ and θ has several consequences. First, it has to be noted that the factor

1
µP1+(1−µ)P2

does not depend on model output and thus also not on the threshold. Thus, if θ and

µ are set correspondingly, they result in an identical threshold λ (independent of the approach
taken to set λ). That is, all results reported in later sections equally apply to both preference
settings. Second, to assure that costs of individual (i.e., observation-speci�c) errors are re�ected by
preferences, θ should vary with the probability of the two classes P1 and P2. In recursive estimations,
θ should thus be time-varying.

An alternative to binary-choice models in the early-warning literature is the signaling approach
(Kaminsky and Reinhart, 1999). It derives predictions from applying a threshold directly on in-
dicator values, and proceeds with calculating the contingency matrix and a usefulness measure as

5There exists a myriad of alternative performance measures with larger di�erences. Two other measures have been
commonly applied in the early-warning literature. The noise-to-signal ratio (Kaminsky and Reinhart, 1999) has been
shown to lead to corner solutions, resulting in a high share of missed crisis episodes if crises are rare (Demirgüç-Kunt
and Detragiache, 2000; El-Shagi et al., 2013). Bussière and Fratzscher (2008) and Fuertes and Kalotychou (2007) use
a slightly di�erent loss function. Many additional measures are summarized in Wilks (2011).
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described above. The large appeal it has for policymakers' is due to the direct interpretability of
the results and the low data requirements. It is straightforward to show that the signaling approach
can be directly mapped to a univariate binary-choice model. Therefore, the results presented in this
paper extend to the signaling approach as well.

2.2. Alternative 1: Thresholds within binary-choice models

Instead of using preferences µ to optimize thresholds, one could also include preferences as class
weights in the log-likelihood function of the binary-choice model (King and Zeng, 2001). Thus,
pre-crisis observations in the estimation sample will receive a higher weight in the likelihood if the
policymaker aims at avoiding false negatives. The log-likelihood function of the weighted probit
model is the following:

LL(C(h)|β,X,w) =

N∑
j=1

1Cj(h)=1w1 ln(Φ(Xjβ)) + 1Cj(h)=0w2 ln(1− Φ(Xjβ)).

For the usefulness function of Sarlin (2013), we set w1 = µ and w2 = 1 − µ.6 In the case of
Alessi and Detken (2011), we use weights w1 = θ/P1 and w2 = (1− θ)/P2.

Class-speci�c weights have previously been used for other purposes in binary-choice models.
Manski and Lerman (1977) and Prentice and Pyke (1979) use them to adjust for non-representativeness
of an estimation sample in cases where an average e�ect for the whole population is of interest. In
other disciplines, (penalized) weights are one possibility to avoid an estimation bias in severely un-
balanced samples with an absolute low number of events (Oommen et al., 2011; Maalouf and Siddiqi,
2014). All of these strategies share the same conceptual goal with our proposal. The imbalance
introduced in our sample is due to the di�erences in preferences, i.e. di�erent weights of type 1
and type 2 errors in the loss function, and is thus independent of class frequencies. Setting weights
according to preferences accounts for the imbalance of errors in the loss function.

This function can be maximized just as easily as the standard binary-choice model. However,
the resulting �tted values should be interpreted as preference-adjusted probabilities. The appealing
feature of the weighted binary-choice model is that optimizing a probability threshold ex-post is
not necessary anymore. Instead, the intuitive threshold of λw = 50% already accounts for all policy
preferences captured in µ (or θ). This provides a means to replace ex-post threshold optimization
in both multivariate binary-choice and univariate signaling exercises.

An advantage of this approach is the possible extension to full observation-speci�c weights. In a
cross-country study, one could argue that the potential loss of an error depends not only on the type
of error, but also on the (time-varying) size of the a�ected economy (see Sarlin (2013)). A second
advantage is that this extension can be applied to all methods that employ maximum-likelihood
estimation. Yet, weighted binary-choice models come at the disadvantage that di�erent preferences
have a direct impact on estimation results. Thus, when the early-warning model is used with a
set of di�erent preferences, the outcome does not only di�er in the contingency matrix, but also in
di�erent probability and parameter estimates. Moreover, the dependence of class weights on class
probabilities P1 and P2 in the case of the loss function of Alessi and Detken (2011) may prove to
be problematic as weights will in general not be constant in a real-time recursive estimation.

6This is in principle equivalent to the approach of King and Zeng (2001), where weights are normalized to have a
sample mean of unity (i.e., w1 = µ

µP1+(1−µ)P2
and w2 = 1−µ

µP1+(1−µ)P2
).
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Figure 1: Type 1 and type 2 error shares at di�erent event probabilities.
Note: The total share of errors (FN/N and FP/N) is the area under the triangle bounded by the threshold λ.

2.3. Alternative 2: Ex-ante thresholds in binary-choice models

Rather than after or within the binary-choice estimation, our �nal approach proposes setting the
threshold before estimating the model. The choice of the long-run optimal threshold is based on an
argument already put forward by classical decision theory in the vein of the seminal contributions
by Wald (1950). First, we note that the selection of a threshold is a decision rule. If the (estimated)
probability is above the threshold, a signal is given, guiding policy towards action. For probabilities
below the threshold, no signal is given. Savage (1951) shows that the optimal decision rule only
depends on the costs of di�erent outcomes in the contingency matrix. Thus, a threshold λ can be
derived independently of the data-generating process. Instead, λ should be set at a probability of
vulnerability such that a policymaker is in expectation indi�erent between a signal and no signal.

We call the threshold given by this optimal decision rule the long-run optimal threshold λ∞. As
correct signals have no costs, policymakers should choose a probability threshold which equalizes
total costs from false negatives and false positives. Appendix A provides a mathematical derivation
of λ∞ for the usefulness functions of Sarlin (2013) and Alessi and Detken (2011). It is shown that
policymakers are indi�erent between a signal and no signal at a threshold of

λ∞ =

{
1− µ, for the loss function of Sarlin (2013)

(1−θ)P1

(1−θ)P1+θP2
, for the loss function of Alessi and Detken (2011)

. (1)

In general, higher costs of missed events (i.e., a higher µ or higher θ) will lower the long-run optimal
threshold, increasing the frequency of false alarms and reducing the frequency of missed events.

The intuition for setting λ∞ = 1 − µ in the case of Sarlin (2013) is the following: For every
possible threshold λ, the share of false negatives and false positives is just the integral over the
respective areas in Figure 1. Let's assume for the sake of the argument, that observations are
equally distributed. Then the share of false negatives would be

∫ λ
0 pdp = λ2/2, and the share of

false positives would be
∫ 1
λ (1− p)dp = (1−λ)2/2. Minimizing the loss function over λ now returns

λ∞ = 1− µ.
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Figure 2: ROC curve for three simulations with random events (N=100, 1000, 10'000) from the probit estimation.
Note: The type 2 error probability is given on the x-axis, (1 - type 1 error probability) on the y-axis. The absolute

usefulness of the model for the drawn number of observations is given in the title.

The long-run optimal thresholds λ∞ for the loss function of Alessi and Detken (2011) depends not
only on policymakers preferences, but also on the frequency of classes P1 and P2. The reason is again
that the loss function depends on error rates. In practice, class frequencies have to be estimated.
Thus, long-run optimal thresholds in recursive estimations will vary with these estimates.

3. Comparing optimal thresholds with simulated data

In this section, we compare the use of ex-post threshold optimization in early-warning models
vis-à-vis direct use of a loss function when optimizing likelihoods, as well as with ex-ante thresholds.
To illustrate di�erences among the approaches, we provide a large number of experiments on a range
of di�erent simulated data. Given that λ∗ is selected to optimize the loss function on in-sample
data, we expect λ∗ to perform best on that part of the data. However, we are mainly interested
in the out-of-sample performance of the the three approaches to threshold selection. There, we
expect the optimized threshold to fare much worse, possibly to be outperformed by our proposed
alternatives.

3.1. Randomness of the usefulness

Before testing our approach with real data, we apply it to simulated, simple data. First, let us
take a look at a data generating process, where explanatory variables and events are unrelated, and
where the event probability is 50% in every period. Figure 2 shows the in-sample Receiver Operator
Characteristics (ROC) curves from a probit model for three simulations with di�erent numbers of
observations N . An ROC curve shows the trade-o� between type 1 errors and type 2 errors that
one has to face at di�erent thresholds. Usefulness optimization basically chooses the combination
of type 1 and 2 errors on the black curve that maximizes the weighted distance to the red diagonal
(for a discussion of the ROC curve see Drehmann and Juselius (2014)).

Ideally, the distance (and therefore absolute usefulness) should be zero, because explanatory
variables X and events C(h) are unrelated in this speci�cation. However, in practice this is not the
case. For small N , β is estimated to produce an optimal �t. This means that the ROC curve will
be above the diagonal on average (otherwise, the �t would be worse than for coe�cients equal to
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zero). In fact, the area under the ROC curve (that is, the AUC) is signi�cantly above 0.5 at the
10% level for the three simulations.

With less observations there is more uncertainty concerning true coe�cients, resulting in a
stronger upward bias of the ROC.7 If now, in a second step, the weighted distance of the ROC
curve is maximized in order to maximize usefulness, this produces an over�t. Essentially, threshold
optimization chooses the best possible outcome (in-sample) instead of the most likely possible
outcome.

The distance of the ROC curve to the diagonal, and therefore usefulness of the random model,
decreases strongly with increasing N . This happens because, as N increases, uncertainty on the
true DGP decreases, bringing the ROC curve closer to the diagonal and bringing usefulness closer
towards its true level of zero.

3.2. Simulation setup

In this section, we compare our approaches in a simulation setup where explanatory variables and
events are related, i.e., where the estimation of event probabilities is actually meaningful. We present
the setup of the baseline scenario here. A number of robustness checks are introduced in a later
subsection. In our (simple) simulated data, we use three explanatory variables X = (X1, X2, X3), a
coe�cient vector β = (1, 0, 0) and a negative constant of −1. That is, only X1 contains information
on the latent variable y∗ and therefore the observable event. The constant is chosen such that the
probability of an event is slightly below 25%, in-line with usual event frequencies in early-warning
models.

We draw the explanatory variables independently from a standard normal distribution. Every
simulation study is performed with 21 logarithmic-spaced number of observations between N = 100
and N = 10′000. For every N , we draw X, calculate the event probabilities Φ(Xβ) and draw C(h)
from these probabilities (abstracting from index j).8 Drawing events from a normal distribution
means that we simulate data from a probit model. Every simulated dataset is split evenly into an
in-sample and an out-of-sample part.

We then apply the three approaches presented in Section 2 to the in-sample part of the data,
using both probit and logit estimations. That is, for every dataset and policy preference µ, we
construct six di�erent early-warning models. First, a probit with optimized thresholds λ∗. Second,
a weighted probit with threshold λw = 0.5. Third, a probit with �xed thresholds λ∞ = 1− µ. The
fourth, �fth and sixth model are equal to the �rst three, replacing the probit estimation by a logit
estimation. Logit estimations are a simple way to test if the results are robust against an admittedly
very mild form of misspeci�cation. For all models, we calculate the in-sample and out-of-sample
measures of goodness-of-�t de�ned in the previous section. The above steps are performed for four
di�erent preference settings. To start with, µ = 0.95 and µ = 0.8 give a strong preference to avoiding
crises, which accounts for the fact that missing a crisis may be very costly. µ = 0.5 gives equal
weights to both errors and is a setting, where the weighted models boil down to standard binary-
choice estimation (without threshold optimization). µ = 0.2 gives strong preference to avoiding false
alarms, which accounts for high costs related to external announcements and reputation losses.

Every simulation is performed R times to get a clear picture of the in�uence of sampling un-
certainty. This allows us to provide a measure for the uncertainty of optimized thresholds λ∗, as

7El-Shagi et al. (2013) therefore argue that � in order to judge the quality of an early-warning model � it is
paramount to obtain a distribution of the usefulness under the null hypothesis of no relation between X and C(h),
instead of only a measure of usefulness itself.

8This procedure introduces one di�erence to usual early-warning models: there is no continuous chain of events in
an early-warning window of prede�ned length. However, this di�erence is irrelevant from an econometric perspective.
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Figure 3: Mean λ∗ with 90% con�dence bands, for di�erent values of µ.

well as the size of the in- and out-of-sample bias of usefulness. Furthermore, we can calculate the
probability that the current early-warning model (probit/logit with threshold optimization) is out-
performed by our alternatives. The probabilities of outperformance are bootstrap estimates. That
is, they vary slightly with the number of replications R. To be sure that probabilities of outper-
formance are truly larger than 50% (and not only by chance), one can either choose a very large
number of replications R, or adopt the approach of Davidson and MacKinnon (2000) to select R
endogeneously. We follow the latter approach.

In the following, we will only present results from the baseline speci�cation. Many other speci�-
cations, as described in the last subsection on robustness, yield both qualitatively and quantitatively
very similar results.

3.3. Variation and limit of optimized thresholds

In this subsection, we analyze the behavior of the optimized threshold λ∗ in our simulation setup.
We are speci�cally interested in the question if λ∗ approaches the long-run optimal threshold λ∞

as N →∞. Figure 3 presents the mean λ∗ together with con�dence bands from R replications for
the di�erent policy preferences µ and di�erent number of observations N .

As the true DGP is always identical, all uncertainty on λ∗ comes from the estimation uncertainty,
which depends mainly on the number of observations. Therefore, the width of the con�dence
bands of λ∗ does not depend on preferences µ and decreases with N . However, even for a large
number of observations there remains considerable uncertainty. As expected and in line with the
mathematical proof of our second alternative, λ∗ approaches µ as N increases. Figure 3 depicts
another frequently found result: the di�erence between probit and logit estimations is marginal. If
anything, the optimized threshold from logit estimations seems to approach µ faster � even though
the logit model is misspeci�ed.

3.4. Comparison of out-of-sample performance

This subsection analyzes the out-of-sample performance of the three approaches to threshold
setting. We are particularly interested in the question if the in-sample superiority of the current
approach has negative e�ects on its out-of-sample performance or not.

Under the assumption that data are created by a constant DGP, and that this process can be
captured by the estimated model, in-sample and out-of-sample usefulness should both converge
to the true long-run usefulness of that process. As in-sample models are �tted to the data, we
would expect that in-sample usefulness is higher for a lower number of observations and that it
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Figure 4: Mean relative usefulness of the three probit models.
Note: In-sample (is) usefulness is higher than out-of-sample (oos) usefulness for every number of observations N .

The black line at zero signi�es the boundary below which it is optimal not to use the model.

drops towards a boundary value. This view is con�rmed by Figure 4 for probit models (and for
logit models Figure B.2 in the appendix).9 These �gures show the mean relative usefulness from
simulations with di�erent numbers of observations for the three di�erent approaches. In-sample
results are presented in the �rst row of plots, out-of-sample results in the second row, di�erentiating
for di�erent preferences µ. Contrary to in-sample usefulness, the out-of-sample usefulness improves
as N goes to in�nity. The reason is the slow uncovering of the true DGP, which improves inference
from in- to out-of-sample data.

In addition to these general results holding for all estimation methods, we see that the usefulness
(in- and out-of-sample) of our proposals is on average closer to their true value than those of the
benchmark models. Concerning in-sample usefulness, this seems to be bad at �rst sight. However,
it has to be acknowledged that one of the main reasons for calculating in-sample usefulness is
an evaluation of the quality of the early-warning model. If there is an upward bias, it induces
an overstated sense of con�dence, trust and security. This bias is much lower for our proposals.
However, what really matters in the early-warning practice is out-of-sample usefulness. Here, our
proposals perform on average better. This holds both for the weighted model and for the ex-ante
threshold setting.

9An alternative way to look at this would be the di�erence of relative usefulness between the benchmark model
and our two proposals. This is shown in Figures B.1 and B.3 in the Appendix.
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Figure 5: Probability of outperformance of alternative approaches out-of-sample (probit estimations)

Even though out-of-sample usefulness of our proposals is on average better than that of threshold
optimization, this di�erence is not statistically signi�cant in most cases. By construction, our
proposals produce nearly always worse in-sample usefulness than their threshold peer. Out-of-
sample, our proposals outperform the benchmark in slightly more than 50% of the cases, see Figure
5 (and Figure B.4 in Appendix B for the logit model). Why do our alternatives often outperform
the benchmark model only in slightly more than 50% of the cases, while still providing (on average)
sizable higher out-of-sample relative usefulness? The reason for this is the uncertainty in the DGP
that makes threshold optimization prone to variation. As the innovations in- and out-of-sample
are uncorrelated, there is a (roughly) 50% chance that the out-of-sample innovations would push
the optimized threshold in a similar direction as the in-sample innovations. Therefore, there is a
50% chance that thresholds optimized based on in-sample data perform (slightly) better for out-
of-sample data than the �xed thresholds of our two alternatives. However, in the other 50% the
performance losses are much higher.

3.5. Robustness to other speci�cations

Above, we reported only results for a very simple speci�cation where no estimation problems are
to be expected. This may change if the complexity of the DGP is increased. For example, it could
well be that estimation su�ers disproportionately in slightly more complicated weighted models.
Therefore, we test many di�erent speci�cations. The only unchanged properties in these robustness
tests are that we keep the number of exogenous variables at three, and that we keep the constant
at −1. The following adjustments were tested:

1. Correlation of 50% among all exogenous variables. Multicollinearity is known to be a bigger
problem for binary-choice models than it is for OLS. Thus, it could potentially a�ect the
weighted estimations strongly. The relevance in practice is evident, where an early warning
model with non-correlated exogenous variables is virtually non-existent.

2. Autocorrelation of all exogenous variables with lag coe�cients 0.7 (�rst lag) and −0.3 (sec-
ond lag) in order to allow for cyclical behavior of X. Autocorrelation is highly relevant for
macroeconomic variables that are usually used in early-warning models.

3. Combination of correlated and autocorrelated exogenous variables.
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4. Testing omitted variables, excluding X1 in the correlated model. Now, X1 is correlated with
X2 and X3. Thus, y

∗ given X2 andd X3 is not completely random. We would therefore expect
results close to the correlated model.

5. Having multiple exogenous variables explaining the latent variable. We change the coe�cient
vector to β = (1, 1, 0), allowing X2 to in�uence y∗ as well.

6. Varying the explained variance of the model. We use di�erent coe�cient vectors (β1 =
(10, 0, 0), β2 = (0.1, 0, 0), β3 = (10, 10, 0), β4 = (0.1, 0.1, 0), β5 = (10, 0.1, 0)) that increase or
decrease the in�uence of the exogenous variables. As they are drawn from a standard normal
distribution, this changes both the total variance of y∗ as well as the share of (potentially)
explained variance in y∗.

7. Changing the DGP of exogenous variables. It may be that di�erent underlying distributions of
X in�uence both the inference on y∗ and the speed with wich optimized thresholds approach
the long-run optimal threshold. For example, extreme events (outliers) that a�ect coe�cient
estimates disproportionately will be more likely if the distribution of X has heavy tails. We
test the robustness of our results by changing the distribution of X1, X2, X3 to a Cauchy
distribution and a shifted exponential distribution. Both distributions are calibrated to have
mean zero, and are tested with di�erent standard deviations.

In short, the results are nearly identical for di�erent models. That is, our baseline results are
representative for the full battery of di�erent model speci�cations.10

4. Real-world evidence of threshold setting

To compare both threshold stability and in-sample versus out-of-sample performance in a real-
world setting, this section provides empirical evidence on threshold setting based upon policymakers'
preferences. We again test the three di�erent approaches for deriving early-warning models and
thresholds: (i) binary-choice models with optimized thresholds, (ii) weighted binary-choice models,
and (iii) binary-choice models with pre-set thresholds. This section provides two types of evidence
for the three di�erent approaches: in-sample versus out-of-sample performance for a one-o� split of
the data in Subsection 4.2, and in-sample versus out-of-sample performance and threshold stability
in real-time recursive estimations in Subsection 4.3.

4.1. Two datasets

We replicate the (logit) early-warning model for systemic �nancial crises by Lo Duca and Pelto-
nen (2013) and the (probit) early-warning model for currency crises by Berg and Pattillo (1999).

The �rst model is the logit model of systemic �nancial crises of Lo Duca and Peltonen (2013)
(referred to as LDP). The dataset includes quarterly data for 28 countries, 18 emerging market
and 10 advanced economies, for the period 1990Q1 to 2010Q4 (a total of 1,729 observations).
The crisis de�nition uses a Financial Stress Index (FSI) with �ve components: the spread of the
3-month interbank rate over the 3-month government bill rate, quarterly equity returns, equity
index volatility, exchange-rate volatility, and volatility of the yield on the 3-month government bill.
Following LDP, a crisis is de�ned to occur if the FSI of an economy exceeds its country-speci�c 90th

percentile. That threshold on the FSI de�nes 10% of the quarters to be systemic events. It is derived
such that the events led, on average, to negative consequences for the real economy. To enable policy
actions for avoiding a further build-up of vulnerabilities, the focus is on identifying pre-crisis periods

10Detailed results can be obtained from the authors on request.
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with a forecast horizon of two years. This goal is achieved by employing 14 macro-�nancial indicators
that proxy for a large variety of sources of vulnerability, such as asset price developments, asset
valuations, credit developments and leverage, as well as traditional macroeconomic measures, such
as GDP growth and current account imbalances. The variables are used both on a domestic and a
global level, where the latter is an average of data for the Euro area, Japan, UK and US. The dataset
is divided into two partitions: in-sample data (1990Q4 to 2005Q1) and out-of-sample data (2005Q2
to 2009Q2, out of which LDP use only data until 2007Q2 for analysis). It should be noted that
the out-of-sample data contain the run-up to the great �nancial crisis, increasing the unconditional
probability of being in an pre-crisis window from 22% in-sample to 33% out-of-sample.

The second model is the probit model for currency crises by Berg and Pattillo (1999) (referred
to as BP). The dataset consists of �ve monthly indicators for 23 emerging market economies from
1986:1 to 1996:12 with a total of 2,916 country-month observations: foreign reserve loss, export loss,
real exchange-rate overvaluation relative to trend, current account de�cit relative to GDP, and short-
term debt to reserves. To control for cross-country di�erences, each indicator is transformed into its
country-speci�c percentile distribution. In order to date crises, BP uses an exchange market pressure
index. A crisis occurs if the weighted average of monthly currency depreciation and monthly declines
in reserves exceeds its mean by more than three standard deviations. BP de�nes an observation
to be in a vulnerable state, or pre-crisis period, if it experienced a crisis within the following 24
months. To replicate the set-up in BP, the data is divided into an estimation sample for in-sample
�tting from 1986:1 to 1995:4, and a test dataset for out-of-sample analysis from 1995:5 to 1996:12
(around 15% of the sample). Despite the short period of the test sample, nearly 25% of all events
happen in that window due to the Asian crisis.

4.2. In-sample versus out-of-sample performance

In this subsection, we test in-sample and out-of-sample performance for a one-o� split of the data
for µ ranging between 0 and 1. That is, we test over all potential preferences that a policymaker
may have.

To start with, we report results for LDP. Figure 6 shows in-sample performance in the top and
out-of-sample performance in the middle for all the approaches for di�erent µ. The bottom panel
shows the probability that the two alternatives (weighted logit and logit with ex-ante set thresholds)
are better out-of-sample than the current approach. This probability is derived from 1'000 draws
of a panel block bootstrap over in-sample data with a block-length of 12 quarters.11

In-sample usefulness is by de�nition always equal to or above 0 (for optimized thresholds). The
�gure shows that out-of-sample relative usefulness is mostly negative for µ < 0.5, i.e., for preferences
that pay comparatively little regard to correctly predicting crises. Across di�erent threshold setting
approaches, the �gure provides evidence of generally similar performance on in-sample data, with
slightly higher performance of ex-post threshold optimization. The picture reverses for out-of-
sample usefulness. The optimized threshold λ∗ leads to inferior out-of-sample performance. For
preferences µ ≥ 0.7, out-of-sample relative usefulness of the weighted logit is on average 0.1 higher,
while the average gain is 0.03 for ex-ante threshold setting. This result is further con�rmed by the
bottom panel of Figure 6, which shows that our two alternatives outperform optimized tresholds in
more than 50%, independently of preferences. As in our simulation studies, we thus �nd that our
alternatives are better than the current approach in the majority of the cases, and that their average
out-of-sample performance is higher. Moreover, the weighted logit is slightly better than threshold

11We combine the two approaches by El-Shagi et al. (2013) and Holopainen and Sarlin (2015). To allow measuring
uncertainty around usefulness (taking countries as given) we use a simple panel block bootstrap that accounts for
cross-sectional and autocorrelation of both right and left-hand side variables and pairs events and indicators.
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Figure 6: In-sample and out-of-sample analysis with the LDP model.
Note: The LDP model is estimated on in-sample data (top panel) and applied to out-of-sample data (mid and

bottom panel).
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setting ex-ante for µ ≥ 0.7, both in terms of mean usefulness and the probability of outperformance.
As expected due to the relationship θ = µP1

µP1+(1−µ)P2
, we obtain similar results for the loss function

of Alessi and Detken (2011), as reported in Figure 7.
Turning to the BP model, Figure 8 shows out-of-sample performance for all three approaches

for the loss function of Sarlin (2013) in the top and Alessi and Detken (2011) in the bottom panel.
The results are qualitatively very comparable the ones in the LDP case. Especially the logit with
ex-ante set thresholds strongly outperforms ex-post threshold optimization for the majority of µ
(and θ).

4.3. Real-time recursive behavior

The second line of evidence that we put forward is based upon recursive real-time estimations.
With the same division of data as in the two original papers, we explore the performance of the
three approaches when applying them recursively over the out-of-sample part of the data. This
mimics a real-time setting when applying early-warning models. The recursive analysis implies
that we use information available at each period t to derive model output for the same period in
question. Due to the panel dimension of the dataset, we have enough observations in every period
to calculate period-speci�c performance measures. Another aspect that recursive models allow to
explicitly illustrate is the (in)stability of thresholds λ∗, while ex-ante and within estimation setting
of thresholds assure stability by de�nition.

For the LDP paper, the recursive tests run from 2005Q2 to 2007Q2. Figure 9 shows the resulting
absolute usefulness in each quarter in the out-of-sample data. We can see that the the two alter-
natives often outperform the current approach of ex-post threshold optimization. Weighted logit is
again the better of the two approaches. In line with Figure 6, we �nd negative usefulness for µ values
below 0.5, for which the di�erence among approaches is smaller. However, usefulness is calculated
on a much smaller number of observations. Therefore, the results are much less stable than in the
previous subsection, which can be seen by the large �uctuations of period-speci�c usefulness.

In the case of BP, our recursive tests run from 1995:5 to 1996:12.12 The results are stronger in
favour of our two proposed alternatives than in the LDP case. For most values of µ (especially for
values above 0.5) and for most of the out-of-sample periods, the alternative approaches outperform
the benchmark in regions of positive usefulness where the model provides added value.

A major source of uncertainty (and potentially confusion) is the variability of thresholds in
ex-post optimization. We illustrate this by showing threshold variation for the LDP model with
ex-post optimization. Figure 11 shows a heatmap coloring of thresholds λ∗ for di�erent preferences
µ. For a given µ value (horizontal row), a model with stable thresholds would also have a constant
color over time. We can observe that this is not the case. For instance, for µ = 0.8 the thresholds
seem to vary between 13% and 28%. This points to signi�cant uncertainty that would have serious
implications in policy use. A similar result can be seen in the corresponding Figure B.5 in Appendix
B for the BP model.

5. Conclusion

The traditional approach for deriving early-warning models relies on a separate ex-post threshold
optimization step. We show in this paper that this ex-post optimization of thresholds is prone to
su�er from estimation uncertainty, resulting in potentially reduced out-of-sample usefulness and
unstable probability thresholds. Accordingly, we show that the traditional approach is exposed to

12The original authors do not perform this type of a test
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Figure 7: In-sample and out-of-sample analysis with the LDP model for Alessi-Detken preferences.
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identifying positive usefulness even in random data (see Figure2). Rather than looking for signals
in noise, this paper provides simple means for noise reduction.

We propose two alternative approaches for threshold setting in early-warning models, where
preferences for forecast errors are accounted for by setting thresholds within (weighted models with
λw = 0.5) or even before (λ∞ = 1− µ).

Including preferences as estimation weights (resulting in λw = 0.5) in the early-warning model
outperforms optimized thresholds out-of-sample in the large majority of the cases. Thus, weighted
binary-choice models are a valid alternative to the current approach of threshold optimization.
Moreover, the idea of weighting classes according to preferences is not restricted to binary-choice
or even maximum likelihood methods. As weighting can be implemented by resampling data, our
approach can be extended to any classi�cation method employed in the early-warning literature
(Chawla et al., 2004). However, weighting comes with two drawbacks: First, �tted values can only
be interpreted as weighted probabilities. Second, introducing weights into an estimation requires
moving away from standard statistical packages.13

Contrary to the two other approaches, the long-run optimal threshold λ∞ = 1−µ is independent
of estimated vulnerabilities and the DGP as a whole. Moreover, λ∗ will approach λ∞ as the true
DGP is uncovered over time, see Figure 3. That is, in case of a correctly speci�ed model, the long-
run optimal threshold will alleviate all challenges to optimized thresholds. However, in comparison
to the two other approaches, the performance of long-run optimal thresholds depends more on the
correct estimation of the true DGP. For example, a DGP with clustered events could easily lead to
biased probability estimates in-sample, which a�ects the performance of long-run optimal thresholds
both in- and out-of-sample.

We �rst show our results in simulation studies with simple and known data-generating processes.
These examples already show that all our results are robust to small degrees of misspeci�cation (if
a logit model is applied to data generated by a probit process). In a second part, we apply our
approaches to real-world examples, strengthening our simulation results. Compared to the simula-
tions, the mismatch between in- and out-of-sample �t may be further enhanced by the possibility
that the importance of explanatory variables changes over time. Although this may not necessarily
be due to a change in the DGP, it will make an estimation of the true process harder with lim-
ited number of observations. The resulting uncertainty, in turn, in�uences threshold optimization
more negatively than the alternative approaches. In practice, it is very likely that di�erent crises
have slightly di�erent origins. That is, the importance of explanatory variables will most de�nitely
change over time. Therefore, our example with real data provides evidence that early-warning mod-
els relying on within or ex-ante setting of thresholds are more robust to these changes than their
traditional counterparts. It is central to note that beyond evidence on out-of-sample outperfor-
mance, the most valuable merits of the two approaches relate to the stability of thresholds. In the
vein of real-world cases, this is a key concern for policy as variations in thresholds due to uncertainty
might be challenging to communicate. How could a policymaker be convinced to implement policies
in a country with unchanged macro-�nancial conditions only due to a shift in �optimal� λ? Signals
should depend on changes in the vulnerability indicators, not on unjusti�ed (random) variation in
thresholds. Accordingly, thresholds equaling 0.5 or µ allow by de�nition for constant thresholds.

To subsume, we �nd that our two alternative proposals outperform their traditional counterpart
in three ways. First, we eliminate unjusti�ed (random) variation in thresholds and allow hence all
signals to descend purely from variation in probabilities. This supports policy implementation and
communication based upon these models. Second, out-of-sample performance can on average be

13An R-package for weighted binary-choice models can be obtained from the authors.
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improved by our approaches, while the bias on in-sample usefulness is reduced. Third, our proposals
are simpler.

As our results hold not only for the simple binary-choice models tested in this paper, but for every
early-warning model using threshold optimization (including the much-used signaling approach), we
strongly recommend to include policymakers' preferences as weights in the estimated likelihood or
specifying thresholds ex-ante, and thus to move away from threshold optimization in general.
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Appendix A: Mathematical derivation of the long-run optimal threshold

This appendix provides a mathematical derivation of the long-run optimal threshold given in
equation (1).

In the following, we assume that the estimated model is correctly speci�ed.14 This entails (a)

that predicted probabilities p̂(y) approach true probabilities p(y) (and observed frequencies) as
N increases (Hosmer and Lemeshow, 1980), and (b) that out-of-sample forecasting errors are not
systematically related to in-sample estimation errors. Due to this, we can work in the following with
the true event probabilities p (abstracting from y). Furthermore, we observe that the probability
of a missed event is just equal to the event probability (for observations with probabilities below
the signaling threshold). Similarly, the probability of a false alarm is equal to one minus the event
probability. This relation is shown in Figure 1. To the left of the threshold λ = 0.3, only missed
events can occur (with increasing probability as p increases). For event probabilities p > λ, only
false alarms are a concern.

In general, event probabilities p and their density f(p) both depend on the DGP of explanatory
variablesX and events C(h). Therefore, p and their density f(p) are unknown a priori. Furthermore,
while the probabilities p themselves come from the binary-choice model, the density f(p) can take
arbitrary forms. If, for example, the distribution of X is bimodal, so will be f(p). However, as we
will see, knowledge about f(p) is not required to derive the long-run optimal threshold λ for given
preferences µ.

The expected value of false negatives and false positives (depending on λ) is the following:

P(FN(λ)) = T1(λ)P1 =

∫ λ

0
pf(p)dp

P(FP (λ)) = T2(λ)P2 =

∫ 1

λ
(1− p)f(p)dp.

Using these in the loss function of Sarlin (2013) results in

L(µ) = L(µ, λ) = µ

∫ λ

0
pf(p)dp+ (1− µ)

∫ 1

λ
(1− p)f(p)dp

Now, we are looking for the threshold λ∞ that minimizes L(µ, λ), i.e. the value λ∞ for which
∂
∂λL(µ, λ) = 0. As a derivation of an integral with respect to its boundary is just the value of
the integrated function at the boundary (multiplied by −1 if the derivative is taken at the lower
boundary), we get

∂

∂λ
L(µ, λ) = µλf(λ)− (1− µ)(1− λ)f(λ) = λf(λ)− (1− µ)f(λ)

!
= 0.

The unique solution is λ∞ = (1 − µ), minimizing the loss function.15 This proves the long-run

14Note that this assumption is not only necessary for the derivation of the long-run optimal threshold, but also
needs to be ful�lled by the estimation model itself. Strictly speaking, we also need the assumption that the model
provides some explanatory power for events. However, in the two limiting cases of no relation and perfect explanation
of the latent variable, the setting of thresholds is unnecessary.

15In order to prove that λ∞ = (1− µ) indeed provides the minimum of L(µ, λ), it su�ces to note that the second
derivative of L(µ, λ) is

∂2

∂λ2
L(µ, λ)|λ=λ∞ = f(λ∞) + (λ∞ − (1− µ))f ′(λ∞) = f(λ∞) ≥ 0.

This follows due to λ∞ = µ and the fact that f is a density, which is by de�nition greater or equal to zero for all
values.
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optimality of the ex-ante thresholds.
For the loss function of Alessi and Detken (2011), the solution is nearly as easy to derive. The

loss function to be minimized is

L(θ, λ) = θT1 + (1− θ)T2 = θ
1

P1

∫ λ

0
pf(p)dp+ (1− θ) 1

P2

∫ 1

λ
(1− p)f(p)dp.

Setting the partial derivative of L(θ, λ) with respect to λ to zero results in the long-run optimal

threshold of λ∞ = (1−θ)P1

(1−θ)P1+θP2
.

This shows that we may as well set the threshold to λ∞ as in equation (1) before estimating a
model.

Appendix B: Additional �gures
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Figure B.1: Mean di�erence of relative usefulness of alternative probit methods to a probit with optimized λ∗.
Note: The estimation with optimized λ∗ outperforms the two alternative approaches in-sample (is, negative

di�erence), but provides lower usefulness out-of-sample (oos, positive di�erence).
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Figure B.2: Mean relative usefulness of the three logit models.
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Figure B.3: Mean di�erence of relative usefulness of alternative logit methods to a logit with optimized λ∗.
Note: The estimation with optimized λ∗ outperforms the two alternative approaches in-sample (is, negative

di�erence), but provides lower usefulness out-of-sample (oos, positive di�erence).
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Figure B.4: Probability of outperformance of alternative approaches out-of-sample (logit estimations)
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