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it is assumed that the event Cj(h) is driven by a latent variable

y∗j = Xjβ + ε

Cj(h) =

{
1 , if y∗j > 0

0 , otherwise
.

Under the assumption ε ∼ N (0, 1), this leads to the probit log-likelihood function

LL(C(h)|β,X) =
N∑
j=1

1Cj(h)=1 ln(Φ(Xjβ)) + 1Cj(h)=0 ln(1− Φ(Xjβ)),

which is maximized with respect to β. If we assume a logistic distribution of errors, the likelihood
function changes only with respect to a distribution function F , which is logistic instead of normal.

Table 1: A contingency matrix.

Actual class Cj

Pre-crisis period Tranquil period

Predicted class Sj

Signal

Correct call False alarm

True positive (TP) False positive (FP)

Rel. cost: 0 Rel. cost: 1− µ

No signal

Missed crisis Correct silence

False negative (FN) True negative (TN)

Rel. cost: µ Rel. cost: 0

Threshold setting: The model returns probability forecasts pj = P(y∗j > 0) for the occurrence of
a crisis. While the level of crisis probabilities are of interest, a policymaker is mainly concerned with
whether the probability ought to trigger (or signal) preventive policy measures. Thus, estimated
event probabilities pj are turned into (non-probabilistic) binary point predictions Sj by assigning
the value of one if pj exceeds a threshold λ ∈ [0, 1] and zero otherwise. The resulting predictions
Sj and the true pre-crisis variable Cj(h) can be presented in a 2× 2 contingency matrix, see Table
1. Based upon the threshold λ, the contingency matrix allows us to compute a number of common
summarizing measures, such as unconditional probabilities P1 and P2, and type 1 and 2 error rates
T1 and T2.

4 It should be noted that all entries of the contingency matrix, and hence all measures
based upon its entries, depend on the threshold λ.

An intuitive threshold would be 50%. However, as crises are (luckily) scarce and (sadly) often
very costly, one would usually choose a threshold below 50% in order to balance the frequency and
costs of the two types of errors. The entries of the contingency matrix, as well as error rates, can
be used to de�ne a large palette of loss functions to optimize the threshold λ. We mainly use the
the loss and usefulness measures de�ned in Sarlin (2013). Three components de�ne these measures:
unconditional probabilities, type 1 and 2 error rates, and error preferences. To set policymakers'
preferences of individual errors in relative terms (including economic and political costs, among
others), falsely predicted events (FP) get a weight of µ ∈ [0, 1], missed events (FN) a weight of
1−µ. Accordingly, the preference parameter µ is a free parameter that should in practice be set ex-
ante by the policymaker. From the three components, three equivalent measures are derived. The

4Following the literature, the measures are de�ned as follows: P1 = P(Cj(h) = 1) = (TP + FN)/N , P2 = 1− P1,
T1 = P(Pj = 0|Cj = 1) = FN/(FN + TP ), and T2 = P(Pj = 1|Cj = 0) = FP/(FP + TN).
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�rst is a loss function L(µ) of preference-weighted errors, the second is absolute usefulness Ua(µ)
that relates the loss of the model to disregarding the model altogether, and the third is a scaled
relative usefulness Ur(µ) that relates absolute usefulness to the maximal achievable usefulness:

L(µ) = µP1T1 + (1− µ)P2T2 = µFN/N + (1− µ)FP/N.

Ua(µ) = min(µP1, (1− µ)P2)− L(µ).

Ur(µ) =
Ua(µ)

min(µP1, (1− µ)P2)
.

It should be clear that the relation between the three measures is strictly monotonic. When
interpreting models, we can hence focus mainly on Ur. The current approach in early-warning
modeling chooses the threshold that optimizes the three measures (loss function, absolute and
relative usefulness) simultaneously based on the results of the probabilistic model. We call this the
optimized threshold λ∗.

While the optimized threshold λ∗ produces the best in-sample �t given preferences µ, it has
two undesirable properties. First, it is not an analytical function of the preferences, but also
depends on the realization of the data-generating process (DGP). Thus, if new data are added to
the sample, the optimized threshold will most likely change. This is extremely relevant in practice,
where the early-warning model is estimated recursively over time, re-optimizing the threshold with
every new estimation. Second, good in-sample performance is not necessarily a sign of good out-
of-sample performance. In principle, the best out-of-sample performance would be achieved by the
threshold that maximizes usefulness out-of-sample. Thus, the optimized threshold λ∗ may prove to
be suboptimal out-of-sample.

Alternative speci�cations: The loss function of Alessi and Detken (2011) is conceptually close,
but preferences θ apply to type 1 and type 2 error rates instead of shares of all observations:
LAD(θ) = θT1 + (1− θ)T2.5 If we set θ = µP1

µP1+(1−µ)P2
, then the loss function of Alessi and Detken

(2011) becomes

LAD(θ) = LAD
(

µP1

µP1 + (1− µ)P2

)
=
µP1T1 + (1− µ)P2T2
µP1 + (1− µ)P2

=
1

µP1 + (1− µ)P2
L(µ).

That is, the two loss functions are equal (up to a factor). The correspondence between the
preference parameters µ and θ has several consequences. First, it has to be noted that the factor

1
µP1+(1−µ)P2

does not depend on model output and thus also not on the threshold. Thus, if θ and

µ are set correspondingly, they result in an identical threshold λ (independent of the approach
taken to set λ). That is, all results reported in later sections equally apply to both preference
settings. Second, to assure that costs of individual (i.e., observation-speci�c) errors are re�ected by
preferences, θ should vary with the probability of the two classes P1 and P2. In recursive estimations,
θ should thus be time-varying.

An alternative to binary-choice models in the early-warning literature is the signaling approach
(Kaminsky and Reinhart, 1999). It derives predictions from applying a threshold directly on in-
dicator values, and proceeds with calculating the contingency matrix and a usefulness measure as

5There exists a myriad of alternative performance measures with larger di�erences. Two other measures have been
commonly applied in the early-warning literature. The noise-to-signal ratio (Kaminsky and Reinhart, 1999) has been
shown to lead to corner solutions, resulting in a high share of missed crisis episodes if crises are rare (Demirgüç-Kunt
and Detragiache, 2000; El-Shagi et al., 2013). Bussière and Fratzscher (2008) and Fuertes and Kalotychou (2007) use
a slightly di�erent loss function. Many additional measures are summarized in Wilks (2011).
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described above. The large appeal it has for policymakers' is due to the direct interpretability of
the results and the low data requirements. It is straightforward to show that the signaling approach
can be directly mapped to a univariate binary-choice model. Therefore, the results presented in this
paper extend to the signaling approach as well.

2.2. Alternative 1: Thresholds within binary-choice models

Instead of using preferences µ to optimize thresholds, one could also include preferences as class
weights in the log-likelihood function of the binary-choice model (King and Zeng, 2001). Thus,
pre-crisis observations in the estimation sample will receive a higher weight in the likelihood if the
policymaker aims at avoiding false negatives. The log-likelihood function of the weighted probit
model is the following:

LL(C(h)|β,X,w) =

N∑
j=1

1Cj(h)=1w1 ln(Φ(Xjβ)) + 1Cj(h)=0w2 ln(1− Φ(Xjβ)).

For the usefulness function of Sarlin (2013), we set w1 = µ and w2 = 1 − µ.6 In the case of
Alessi and Detken (2011), we use weights w1 = θ/P1 and w2 = (1− θ)/P2.

Class-speci�c weights have previously been used for other purposes in binary-choice models.
Manski and Lerman (1977) and Prentice and Pyke (1979) use them to adjust for non-representativeness
of an estimation sample in cases where an average e�ect for the whole population is of interest. In
other disciplines, (penalized) weights are one possibility to avoid an estimation bias in severely un-
balanced samples with an absolute low number of events (Oommen et al., 2011; Maalouf and Siddiqi,
2014). All of these strategies share the same conceptual goal with our proposal. The imbalance
introduced in our sample is due to the di�erences in preferences, i.e. di�erent weights of type 1
and type 2 errors in the loss function, and is thus independent of class frequencies. Setting weights
according to preferences accounts for the imbalance of errors in the loss function.

This function can be maximized just as easily as the standard binary-choice model. However,
the resulting �tted values should be interpreted as preference-adjusted probabilities. The appealing
feature of the weighted binary-choice model is that optimizing a probability threshold ex-post is
not necessary anymore. Instead, the intuitive threshold of λw = 50% already accounts for all policy
preferences captured in µ (or θ). This provides a means to replace ex-post threshold optimization
in both multivariate binary-choice and univariate signaling exercises.

An advantage of this approach is the possible extension to full observation-speci�c weights. In a
cross-country study, one could argue that the potential loss of an error depends not only on the type
of error, but also on the (time-varying) size of the a�ected economy (see Sarlin (2013)). A second
advantage is that this extension can be applied to all methods that employ maximum-likelihood
estimation. Yet, weighted binary-choice models come at the disadvantage that di�erent preferences
have a direct impact on estimation results. Thus, when the early-warning model is used with a
set of di�erent preferences, the outcome does not only di�er in the contingency matrix, but also in
di�erent probability and parameter estimates. Moreover, the dependence of class weights on class
probabilities P1 and P2 in the case of the loss function of Alessi and Detken (2011) may prove to
be problematic as weights will in general not be constant in a real-time recursive estimation.

6This is in principle equivalent to the approach of King and Zeng (2001), where weights are normalized to have a
sample mean of unity (i.e., w1 = µ

µP1+(1−µ)P2
and w2 = 1−µ

µP1+(1−µ)P2
).
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Figure B.2: Mean relative usefulness of the three logit models.
Note: In-sample usefulness is higher than out-of-sample usefulness for every number of observations N . The black

line at zero signi�es the boundary below which it is optimal not to use the model.
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Figure B.3: Mean di�erence of relative usefulness of alternative logit methods to a logit with optimized λ∗.
Note: The estimation with optimized λ∗ outperforms the two alternative approaches in-sample (is, negative

di�erence), but provides lower usefulness out-of-sample (oos, positive di�erence).
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Figure B.4: Probability of outperformance of alternative approaches out-of-sample (logit estimations)
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Figure B.5: λ variation in recursive analysis with the BP model.
Note: The color scale refers to λ values for each µ and month. The models are estimated in a recursive manner by

using only information available up to each month between 1995:5 and 1996:12.
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