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Abstract
Non sample information is hidden in frequentist statistics in the choice
of the hypothesis to be tested and of the confidence level. Explicit
treatment of these elements provides the connection between Bayesian
and frequentist statistics. A frequentist decision maker starts from a
judgmental decision and moves to the closest boundary of the confi-
dence interval of the first order conditions, for a given loss function.
This statistical decision rule does not perform worse than the judg-
mental decision with a probability equal to the confidence level. For
any given prior, there is a mapping from the sample realization to the
confidence level which makes Bayesian and frequentist decision rules
equivalent. Frequentist decision rules can be interpreted as decisions
under ambiguity.

Keywords: Statistical Decision Theory; Statistical Risk Aversion;
Portfolio Selection.
JEL Codes: C1; C11; C12; C13; D81.
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NON-TECHNICAL SUMMARY

Suppose you have AC100 in your bank account and are wondering whether you
should invest part of it in the stock market. You know that stock market
returns are uncertain, but you have decided that you are willing to take the
risk of losing part of your money due to adverse market movements, if you
can gain enough in other circumstances. What fraction of your AC100 should
you invest?

One answer to this question has been provided by the Nobel Laureate
Harry Markowitz more than sixty years ago, under the assumption that one
can perfectly characterise the uncertainty of the stock market. If one knows
the mean and the variance of the stock returns, Markowitz prescribes how to
optimally balance risk (as represented by the variance) and expected returns.
In reality, neither the mean, nor the variance of the stock returns are known
and therefore need to be estimated. There is a large empirical literature
showing that replacing the unknown mean and variance with their sample
estimates is usually a very bad idea, because it provides disastrous portfolio
performance.

This paper proposes a change of perspective on the problem, which has
surprising implications about the current practice of econometrics. It starts
from the observation that you are currently holding all your money in your
bank account, which implies a zero weight in the stock market. It then
takes explicitly into account the fact that mean and variance of the stock
market are imprecisely estimated, by asking the question: what would be
the amount of statistical evidence needed to convince you to invest AC1 in
the stock market? Suppose your answer is 10%, that is on average you are
willing to tolerate to wrongly invest in the stock market one time out of ten.
The method proposed in this paper tests whether this marginal investment
of AC1 in the stock market satisfies your statistical preferences of being wrong
only 10% of the times. If the probability of statistical error is less than 10%,
it suggests you to invest the euro in the stock market and then apply the
same procedure to the second euro of investment. Does the investment of
this extra euro (for a total now of AC2) satisfy your statistical preferences?
Again, if the answer is yes, you should keep investing at the margin, until
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you find the extra euro which is no longer compatible with your statistical
preferences. In technical jargon, the point where your investment should stop
is given by the boundary of the confidence interval. Investors with different
willingness to tolerate statistical error will choose different confidence levels.
An investor who is very worried about statistical mistakes could set her
statistical preferences at 1% instead of the 10% above. Since to different
confidence levels correspond different width of the confidence intervals, by
moving the confidence level between 0% and 100% one can trace all the
investment possibilities comprised between staying with the initial allocation
of no investment and the standard prescription of neglecting any statistical
error.

The paper shows that for particular choices of the confidence level this sta-
tistical approach to decision making is equivalent to the alternative Bayesian
approach, in the sense that they prescribe the same decisions for any sam-
ple realization. To stay within the current example, the Bayesian method
requires you to provide a probability distribution of what you think the
expected returns and variance of the stock returns are. This probability dis-
tribution is called prior, because it should be supplied before seeing the data.
Once you have provided the prior, it is optimally combined with the data
using the Bayes rule, arriving at a posterior distribution, which is then used
to fully characterize the uncertainty of the stock market and providing the
statistical solution to the asset allocation problem.

Your initial investment in the stock market (AC0, in this example) and your
willingness to tolerate statistical risk of the method proposed in this paper
serve a purpose similar to the prior in Bayesian econometrics: incorporate
non-sample information in the decision problem. The updating mechanisms
to combine sample and non-sample information are different. In Bayesian
econometrics, it is based on Bayes rule. In this paper, it is based on hypoth-
esis testing. There is however a mapping from priors to confidence levels
which makes the two methods equivalent.

The paper offers a new perspective on the long standing classical vs.
Bayesian debate. It argues that incorporating judgment in a classical frame-
work is easier and more intuitive than in a Bayesian framework. Bayesian
econometrics requires the decision maker to express her judgment on the
statistical parameters of the random variables, rather than on the decision
variables directly. Also, this paper argues that econometricians and decision
makers should be aware that imposing priors on parameters is equivalent to
imposing statistical risk preferences on the decision maker.
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The role of judgment makes clear that no statistical procedure will guar-
antee that your investment in the stock market will satisfy your optimal
trade-off between risk and returns. An empirical application to the Eu-
roStoxx50 and a statistical simulation vividly illustrate the importance of
non-sample information in arriving at good portfolio allocations. Estima-
tors with lower statistical risk propensity perform better when the initial
judgment is close to the optimal one, but perform worse otherwise. Or, in
plain English, investors with good judgment do better than investors with
no judgment, and investors with no judgment do better than investors with
bad judgment. �

1 Introduction
Most people take decisions in an uncertain environment without resorting to
formal statistical analysis. I refer to these decisions as judgmental decisions.
Statistical decision theory uses data to prescribe optimal choices under a set
of assumptions, but has not explicit role for judgmental decisions. This paper
is concerned with the following questions. Is a given judgmental decision
optimal? If not, how can it be improved in a precise statistical sense?

For concreteness, consider an investor who is about to take the decision ã,
say, to hold all her assets in cash. She asks an econometrician for advice on
whether she should invest some of her money in a stock market index. The
best prediction of the econometrician depends on an estimated parameter
θ̂, which is affected by estimation uncertainty. For a given utility function
provided by the investor, the econometrician can construct a loss function
L(θ, ã), the loss experienced by the investor if the decision ã is taken and
the true parameter is θ. Suppose the econometrician is able to recover the
distribution of the gradient ∇aL(θ̂, ã) around the true, but unknown θ. It
is possible to test whether the investor’s decision ã is optimal by testing the
null hypothesis that ∇aL(θ, ã) is equal to zero. If the null hypothesis is not
rejected, the econometrician cannot recommend any deviation from ã. If
the null hypothesis is rejected, statistical evidence suggests that marginal
deviations from ã decrease the loss function relative to L(θ, ã).

Denote with α the confidence level used to implement the hypothesis
testing. The investor is facing the decision problem depicted in figure 1. The
investor has two possible choices. She can hold on to her judgmental decision
ã, denoted by the action J , incurring in the loss L(θ, ã). Alternatively, she
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Figure 1: Statistical Decision Tree

can follow the econometrician’s advice, which is equivalent to accepting the
bet Lα. In this case, she does not know whether she is facing the upper part
of the decision tree, denoted by the node H0, or the lower part, denoted by
H1. H0 is the bad scenario, in which the null hypothesis is true, so that
any deviation from the judgmental decision ã results in a higher loss. A
marginal ε > 0 move away from ã results in the loss L(θ, ã) + |∇aL(θ, ã)|ε.
H1 is the favorable scenario, as one correctly rejects the null hypothesis that
ã is optimal, producing decisions with lower loss. In this case, a marginal ε
move away from ã results in the loss L(θ, ã) − |∇aL(θ, ã)|ε. The dash line
connecting the two nodes represents true uncertainty for the decision maker,
in the sense that it is not possible to attach any probability to being in H0 or
in H1. The decision maker can choose the confidence level α, which puts an
upper bound to the probability that the null is wrongly rejected when it is
true. Notice that α represents also the lower bound probability of correctly
rejecting H0 when it is false.

In case of rejection, the investor faces a new, but identical decision prob-
lem, except that ã is replaced by ã± ε (the sign depends on the sign of the
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empirical gradient). This new action will be rejected if ∇aL(θ̂, ã ± ε) also
falls in the rejection region. Iterating this argument forward, the preferred
decision of the investor is the action ã ± ∆ which lies at the boundary of
the (1 − α)-confidence interval of ∇aL(θ̂, ã ± ∆), the point where the null
hypothesis that the decision ã±∆ is optimal can no longer be rejected. This
decision is characterized by the fact that it will produce a higher loss than the
original judgmental decision ã with probability at most α. In other words, a
decision maker may prefer to abandon her judgmental decision ã (the action
J) and follow a statistical procedure (the bet Lα), if this produces a worse
decision only with probability at most α.

The contribution of this paper lies at the intersection between statistics
and decision theory. Statistical decision theory emerged as a discipline in
the 1950’s with the works of Wald (1950) and Savage (1954). Recent contri-
butions in decision theory focus on modeling behavior when beliefs cannot
be quantified by a unique Bayesian prior. See Gilboa and Marinacci (2013)
and Marinacci (2015) for comprehensive reviews. This paper, however, is not
concerned with the axiomatic foundations of decision theory, but rather with
how data can be used to help decision makers take better decisions. It falls
within Clive Granger’s tradition that ‘to obtain any kind of best value for a
point forecast, one requires a criterion against which various alternatives can
be judged’ (Granger and Newbold, 1986, p. 121). This tradition has been
duly continued by, among many, Patton and Timmermann (2007), Patton
and Timmermann (2012) and Elliott and Timmermann (2016). Papers on
forecasting using Bayesian statistical decision theory include Chamberlain
(2000) and Geweke and Whiteman (2006). Manski has published influential
contributions on the use of statistical decision theory in the presence of am-
biguity for partial identification of treatment response (Manski 2000, Manski
2004, Manski 2013, Dominitz and Manski 2017)

The paper is structured as follows. Section 2 sets up the decision environ-
ment and introduces the concept of judgment in frequentist statistics. The
judgment is defined as a pair formed by a judgmental decision ã and a con-
fidence level α associated with it. Judgment is used to set up the hypothesis
to test whether the action ã is optimal. Two key results of this section are
that the frequentist decision rule with judgment is admissible, and that it is
either the judgmental decision itself or is at the boundary of the confidence
interval of the sample gradient of the loss function. The admissibility result
holds generally also for the maximum likelihood estimate, thus solving Stein
paradox. The key element behind this result is that the frequentist decision
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rule incorporating judgment conditions on the observed sample realization.
Section 3 discusses the choice of the confidence level α. This is a mapping

from the p-value of the first order conditions evaluated at the judgmental de-
cision into the unit interval. The optimal frequentist decision rule has the
feature that it does not perform worse than the judgmental decision with
probability at most equal to α. Since the confidence level controls the prob-
ability of Type I errors, and these in turn determine whether the statistical
decision performs worse than the judgmental decision, α can be interpreted
as the willingness of the decision maker to take statistical risk. This concept
is closely linked to the idea of ambiguity aversion. The section also discusses
how the confidence level α can be elicited with a simple experiment involving
urns à la Ellsberg.

Section 4 establishes the equivalence between Bayesian and frequentist
decisions. To understand the link with Bayesian decision rules, consider that
since the confidence level determines the width of the confidence interval and
the optimal frequentist decision moves from the judgmental decision to the
closest boundary of the confidence interval, the confidence level determines
the deviation from the judgmental decision. This deviation is zero if the
confidence level is equal to the p-value and it is maximum if the confidence
level is equal to one, which implies a zero width confidence interval and coin-
cides with the maximum likelihood decision. By choosing different mappings
from the p-value to the confidence level, it is possible to choose different
confidence intervals and therefore generate any convex combination between
the judgmental and the maximum likelihood decisions. This provides the
bridge to establish the equivalence between Bayesian and frequentist deci-
sion rules: For a given sample realization and for any Bayesian posterior
distribution shrinking from the prior to the maximum likelihood decisions,
there is a mapping from the p-value to the confidence level which shrinks
from the judgmental to the maximum likelihood decisions by exactly the
same amount.

Section 5 uses an asset allocation problem as a working example to il-
lustrate the empirical performance of various decision rules. The decision
problem is a simple asset allocation of an investor who holds AC100 and has
to decide how much to invest in an Exchange Trading Fund replicating the
EuroStoxx50 index. Section 6 briefly concludes.
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2 Statistical Decision Rules
Judgmental information is usually incorporated in statistical analysis in the
form of prior distributions and exploited via the Bayesian updating. This
section introduces the concept of judgment in a frequentist context and shows
how hypothesis testing can be used to arrive at optimal frequentist decisions.

For concreteness, consider an asset allocation problem of an investor who
is holding all her wealth in cash and has to decide what fraction a ∈ R of her
wealth to invest in a stock market index. Let X ∼ N(θ, 1) denote the stock
market index return, with known variance, but unknown expected return
equal to the parameter θ ∈ R, and suppose that one realization x of the
random variable is available. Let also the return on cash be zero. Suppose
the investor wants to minimize a mean-variance loss function à la Markowitz
(1952), L(θ, a) ≡ −aθ + 0.5a2. The main object of interest of the analysis
will be the first derivative evaluated at the maximum likelihood estimator
θ̂(X) = X, that is ∇aL(θ̂(X), a) = −X + a. Notice that for this specific loss
function ∇aL(θ̂(X), a)−∇aL(θ, a) ∼ N(0, 1). I formally define the decision
environment as follows.

Definition 2.1 (Decision Environment). The decision environment is
characterized by the following elements:

1. X − θ ∼ Φ(x), for θ ∈ R, where Φ(x) is the cdf of the standard normal
distribution.

2. The sample realization x ∈ R is observed.

3. a ∈ R denotes the action of the decision maker.

4. The decision maker has loss function L(θ, a) = −aθ + 0.5a2.

Remark: General case — This example is more general than it may
seem.1 Let Xt ∈ Rq, q ∈ N, t = 1, 2, ..., be a vector of random variables,
with cdf F θ

t (xt), where θ ∈ Rp, p ∈ N, is a vector of unknown statistical pa-
rameters. Let θ̂n(X) ∈ Rp be an extremum estimator (in the sense of Newey
and Powell, 1994) which depends on X ≡ [X1, ...,Xn]′, a matrix of dimen-
sions (n, q), with n ∈ N large enough to allow for asymptotic approximation.
Assume that the sample x ≡ [x1, ...,xn]′ is observed and let b̃ ∈ Rp be a

1See also section 5 of Manganelli (2009) for a similar generalization.
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nonrandom vector (an exogenous judgmental decision, to be defined later in
this section). The decision variable a ∈ R determines the decision on the
parameter estimate via the following relationship: b(a) = ab̃ + (1− a)θ̂n(x).
Finally, assume that the loss function L(θ, a) is differentiable and strictly
convex. Using a mean value expansion of the first order conditions around
the population parameter θ:

∇aL(θ̂n(X), a) = ∇aL(θ, a) +∇aθL(θ̄n(X), a)(θ̂n(X)− θ)

where θ̄n(X) lies between θ̂n(X) and θ. Assuming standard regularity con-
ditions are satisfied (see for instance Newey and Powell, 1994, or White,
1994) so that

√
n(θ̂n(X)−θ) d∼ N(0,Σ), the statistic

√
nσ̂−1(∇aL(θ̂n(X), a)−

∇aL(θ, a)) d∼ N(0, 1), where the term σ̂ is a consistent estimate of the asymp-
totic variance σ2 ≡ ∇′aθ L(θ, a)Σ ∇aθL(θ, a). We are therefore in a situation
identical to the one represented by the decision environment of Definition
2.1, except for the fact that the gradient may now be a nonlinear function of
a. However, the strict convexity assumption guarantees that there is a one
to one mapping between a and the gradient. �

Before discussing the alternative decisions, consider the following stan-
dard definition of a decision rule (Wald, 1950):

Definition 2.2 (Decision Rule). δ(X) : R → R is a decision rule, such
that if X = x is the sample realization, δ(x) is the action that will be taken.

2.1 The Bayesian Decision
The Bayesian solution assumes that the decision maker uses subjective in-
formation in the form of a prior distribution over the unknown parameter
θ.

Definition 2.3 (Prior). The subjective information of the decision maker
is summarized by the prior cdf µ(θ) over the parameter θ ∈ R.

Once the prior information is specified, the optimal Bayesian decision
minimizes the expected loss function, using the posterior distribution to com-
pute the expectation.

Bayesian Decision — Consider the decision environment of Definition
2.1. If the decision maker knows her prior distribution µ(θ), the Bayesian
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decision is:
δµ(x) = arg min

a

∫
(−aθ + 0.5a2)dµ(θ|x)

where µ(θ|x) denotes the posterior distribution.

The Bayesian decision has the considerable merit of having an axiomatic
justification, being grounded in a decision theoretic framework.2 It has, how-
ever, been criticized along two main points. First, it implies lack of uncer-
tainty aversion, while the experimental evidence built on Ellsberg’s para-
dox suggests otherwise. Starting with Schmeidler (1989) and Gilboa and
Schmedler (1989), the literature has developed alternative axioms which ac-
count for ambiguity aversion: Agents do not optimize over a single known
prior, but they minimize the maximum loss with respect to a prespecified set
of priors.

A second criticism, leveled against both strands of literatures, is that
neither the prior distribution nor the set of prior distributions over which the
optimization is performed, are known. Without the specification of priors,
none of the above procedures is applicable. In fact, lack of knowledge of the
priors was one of the motivations to develop classical statistics.3

2.2 The Frequentist Decision
Classical statistics as developed by Neyman and Fisher has no explicit role
for epistemic uncertainty (as defined by Marinacci, 2015), as it was motivated
by the desire for objectivity. Non sample information is, nevertheless, implic-
itly introduced in various forms, in particular in the choice of the confidence
level and the choice of the hypothesis to be tested. This subsection shows
how to make explicit the non sample information hidden in the frequen-
tist approach. Explicit treatment of non sample information in the classical
paradigm provides a connection between Bayesian and frequentist statistics.

2The axiomatic foundation of the Bayesian approach goes back to the works of Ramsey,
De Finetti and Savage. See Gilboa (2009) and Gilboa and Marinacci (2013) for recent
surveys of the literature.

3Incidentally, until the first half of the 20th century, the term classical statistics was
referring to the Bayesian approach. Neyman and Fisher, the fathers of frequentist statis-
tics, had sharp scientific disagreements, but were united in their skepticism of using the
Bayesian framework for practical problems: “When a priori probabilities are not available
(which [Fisher] presumed to be always the case and which I agree is almost always the
case), then the formula of Bayes is not applicable” (Neyman, 1952, p. 193).
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2.2.1 Judgment

In a frequentist setting, there is no prior distribution to help arriving at a
decision. One solution often used is the plug-in estimator, which replaces
the unknown θ parameter with its sample counterpart (see, for instance,
chapter 3 of Elliott and Timmermann, 2016). In the decision environment
of Definition 2.1, this is given by x. Once θ is replaced by x, the optimal
decision is δPlug−in(x) = x. The problem with such decision is that it does
not minimize the loss function, but rather its sample equivalent, and neglects
estimation error.

The solution proposed in this paper is to explicitly incorporate subjec-
tive information of the decision maker also in a frequentist setting and use
hypothesis testing to arrive at a decision. Subjective information takes the
form of judgment, defined as follows:

Definition 2.4 (Judgment). The subjective information of the decision
maker is summarized by the pair A ≡ {ã, α}, which is referred to as judg-
ment. ã ∈ R is the judgmental decision. α ∈ [0, 1] is the confidence
level.

Judgment is routinely used in hypothesis testing, for instance when testing
whether a regression coefficient is statistically different from zero (with zero in
this case playing the role of the judgmental decision), for a given confidence
level (usually 1%, 5% or 10%). I say nothing about how the judgment is
formed. It is a primitive to the decision problem, like the loss function and
the Bayesian priors. Note that for any prior µ(θ), there is a judgmental
decision ãµ which is observationally equivalent to a Bayesian decision with
no posterior updating: ãµ solves the problem mina

∫
L(θ, a)dµ(θ).

α reflects the confidence that the decision maker has in her judgmental
decision and determines the amount of statistical evidence needed to abandon
ã. The choice of α is also closely linked to the choice of prior distributions and
determines the frequentist decision, after observing the realization X = x.
The decision in the light of the statistical evidence x is taken on the basis of
hypothesis testing, which is where I turn next.

2.2.2 Hypothesis Testing

Given the judgmental decision ã, the decision maker can test whether ã is
optimal by testing if the gradient ∇aL(θ, ã) = −θ+ ã is equal to zero. A test

ECB Working Paper Series No1947 / August 2016 11



statistic for the gradient can be obtained by replacing θ with its maximum
likelihood estimator X.

The exact hypothesis to be tested depends on the sample realization x.
Suppose without loss of generality that the empirical gradient ∇aL(x, ã) =
−x+ ã is negative. This implies that values of a higher than ã decrease the
empirical loss function. The decision maker is interested, however, in the
population value of the loss function. If the population gradient is positive,
higher values of a would increase the loss function, rather than decrease it.
The null hypothesis to be tested is therefore that the population gradient
has opposite sign relative to the sample gradient.

Two cases are possible:

i) −x+ ã ≤ 0

H0 : −θ + ã ≥ 0 vs H1 : −θ + ã < 0 (1)

ii) −x+ ã ≥ 0

H0 : −θ + ã ≤ 0 vs H1 : −θ + ã > 0 (2)

As in any hypothesis testing procedure, the decision maker can make two
types of errors. She can wrongly reject the null hypothesis (Type I error).
This occurs with probability p0 ≤ α, the confidence level chosen by the
decision maker. The economic interpretation of this type of error is that
although the decision maker decreases the sample approximation of the loss
function by moving from ã towards x, in fact she increases the loss function
in population. Alternatively, she can fail to reject the null hypothesis when it
is false (Type II error). This happens with probability 1−p1, where p1 ≥ α is
the power of the test. The economic interpretation in this state of the world is
that the decision maker could have decreased her loss function in population,
but statistical uncertainty prevented her from doing so. The trade-off is well
known: A small α generally implies also a small power for values of ã close
to θ. Therefore, a smaller probability of Type I errors results in a greater
probability of Type II errors. It is up to the preferences of the decision maker
to decide how to solve this trade-off. The reasoning is summarized in table
1, which is the reduced form representation of the bet Lα in the statistical
decision tree of figure 1.
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Table 1: Hypothesis testing

Decision
A R

T
ru

th

H0 Avoid higher loss
1− p0

Higher loss
p0 ≤ α

H1 Fail to lower loss
1− p1

Lower loss
p1 ≥ α

Note: The null hypothesis tests whether the gradient of
the loss function has opposite sign with respect to the
sample gradient. The alternative hypothesis is that pop-
ulation and sample gradients have the same sign.
α and p1 are the size and power of the test.

2.2.3 Decision

In an hypothesis testing decision problem, only two actions are possible: The
null hypothesis is either accepted or rejected. Given the confidence level α,
it is possible to define the rejection and acceptance regions to arrive at a
decision. Let 0 ≤ γ ≤ 1 and Φ(cα) = α, and consider again the two cases,
conditional on the sample realization x. Given the judgment A = {ã, α}, the
test functions ψAi (x), i = {1, 2} associated with the hypotheses (1)-(2) are:

i) −x+ ã ≤ 0

ψA1 (x) =


0 if cα/2 < −x+ ã ≤ 0
γ if − x+ ã = cα/2

1 if − x+ ã < cα/2

(3)

ii) −x+ ã ≥ 0

ψA2 (x) =


0 if 0 ≤ c1−α/2 < −x+ ã

γ if − x+ ã = c1−α/2

1 if − x+ ã > c1−α/2

(4)
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The test function determines whether the null hypothesis is rejected or
not. The null hypothesis is a statement about the population gradient eval-
uated at the judgmental decision ã. It says that marginal moves from ã
towards the observed maximum likelihood estimate x increase the loss func-
tion. If it is not rejected at the given confidence level α, the chosen action is ã.
Rejection of the null hypothesis, on the other hand, prescribes to marginally
move from ã towards x. Suppose that −x + ã < 0 and let’s denote the new
action marginally away from ã with aε = ã + ε, for ε > 0 and sufficiently
small. Notice that aε is not random and it is possible to test whether it is
optimal, by testing again whether additional marginal moves from aε towards
x increase the loss function. Iterative application of this hypothesis testing
procedure delivers the following frequentist decision:
Theorem 2.1. (Frequentist decision) Consider the decision environment
of Definition 2.1. If the decision maker has judgment A = {ã, α}, the fre-
quentist decision is:

δA(X) =

ã(1− ψA1 (X)) + (x+ cα/2)ψA1 (X) if − x+ ã ≤ 0
ã(1− ψA2 (X)) + (x+ c1−α/2)ψA2 (X) if − x+ ã ≥ 0

(5)

where cα ≡ Φ−1(α) and ψAi (X), i = {1, 2} are the test functions defined in
(3)-(4).
Proof — See Appendix.

The proof of the theorem clarifies the intuition behind this result. For
a given confidence level α, rejecting the initial null hypothesis (1) or (2)
automatically implies rejection of all null hypotheses for a ∈ (ã, x+ cα/2) or
a ∈ (x + c1−α/2, ã), i.e. until the closest boundary of the (1 − α) confidence
interval is reached. That is the action for which the gradient of the loss
function is no longer statistically different from zero.

The next theorem shows that the frequentist decision is optimal.
Theorem 2.2. (Admissibility) The decision δA(X) of Theorem 2.1 is ad-
missible.
Proof — See Appendix.

The admissibility result is a direct consequence of Karlin-Rubin theorem
applied to the test functions (3)-(4), which is itself an extension of the cel-
ebrated Neyman-Pearson lemma. An implication of Theorem 2.2 is that it
solves Stein paradox, as illustrated in the following remark.
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Remark: Stein paradox is no longer a paradox — Stein (1956) con-
sidered the following example. Let Y = [Y1, ..., Yp]′ be independent random
variables with Yi ∼ N(ϑi, 1), i = 1, ..., p, and assume that a single draw
y = [y1, ..., yp]′ is observed for each of them. He showed that the maxi-
mum likelihood estimator ϑ̂(Y) = Y is not admissible with a quadratic loss
function L(ϑ, ϑ̂(Y)) = 0.5||ϑ− ϑ̂(Y)||2 when p ≥ 3. Stein’s example can be
reformulated in the context of this paper as follows. Define the action b(a) ≡
ab̃+(1−a)y, where a ∈ R, b̃ ∈ Rp is some non stochastic vector and y is the
sample realization. The quadratic loss function can be expressed as a function
of the decision variable a, L(ϑ, a) = 0.5Σp

i=1(ϑi− bi(a))2, where bi(a) denotes
the ith element of the p-vector b(a). Also, any given judgment A = {b̃, α} can
be equivalently expressed as A = {ã, α}, where ã = 1. The gradient of the
loss function evaluated at ϑ̂(Y) = Y is ∇aL(Y, ã) = Σp

i=1(Yi− bi(ã))(yi− b̃i),
which is normally distributed with mean µ(a) = Σp

i=1(ϑi − bi(a))(yi − b̃i)
and variance σ2 = Σp

i=1(yi − b̃i)2. It is therefore possible to test whether the
judgmental decision ã is optimal, using the same procedure illustrated in the
previous subsections. Suppose that ∇aL(y, ã) ≤ 0, so that the hypothesis to
be tested is H0 : ∇aL(ϑ, ã) ≥ 0. The maximum likelihood estimate can be
recovered by choosing a confidence level α = 1, as this implies that the test
statistic will always fall in the rejection region and the frequentist decision
is δA(Y) = â, where â is such that ∇aL(y, â) = 0.4 In Stein’s example this
is given by â = 0. Since the conditions for the admissibility of δA(X) in
Theorem 2.2 do not exclude α = 1, it is possible to conclude that the deci-
sion associated with the maximum likelihood estimate is admissible also for
p ≥ 3.

This result is in fact quite obvious if one realizes that the maximum
likelihood estimate (as opposed to the estimator) is not random. Any action
which is always equal to a fixed quantity is admissible, since it has lowest risk
when the optimal action coincides with that fixed quantity. The paradox is
resolved by considering the expression for δA(X) in Theorem 2.1. When α =
1, it follows that cα/2 = 0 and ψi(X) = 1, ∀X, which in turn implies that the
optimal decision δA(X) = x coincides with the maximum likelihood estimate.
The formula conditions on the observed value x, which is nonrandom. Stein’s
formulation of the frequentist decision does not condition on the sample
realization, but treats x as a random variable. It is this lack of conditioning
— that is the replacement of the sample realization x with its random variable

4See the next section for a formal justification of this result.
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X in the formula for δA(X) — that generates the paradox. �

3 Choosing the Confidence Level
Careful choice of the confidence level α generates the most common esti-
mators in econometrics as a special case of the decision rule δA(X). A key
insight of this section is that although α is chosen before seeing the data and
remains a primitive of the decision problem, its choice is conditional on the
realization of the random variable x.

The choice of the confidence level α may generally be considered as a
mapping into the interval [0, 1] from the p-value of the test statistic −X + ã
that determines the test functions (3)-(4) under H0 : ∇aL(θ, ã) = −θ+ã = 0.

Definition 3.1 (Choice of the Confidence Level). The confidence level
of the decision maker is:

α|x = g(α̃) : (0, 1]→ [0, 1]

where

α̃ ≡

2Φ(−x+ ã) if − x+ ã ≤ 0
2(1− Φ(−x+ ã)) if − x+ ã ≥ 0

Since the p-value α̃ is determined by the sample realization x, the choice of
α is conditional on x. I have made explicit this fact with the notation α|x.

Any judgmental decision ã with p-value α̃ ≥ α implies that the decision
taken is the judgmental decision itself, because in this case −x + ã falls
within the confidence interval of the decision rule (5). One can therefore
impose the condition that g(α̃) ≥ α̃ without affecting the decision rule (5).
This condition ensures that decisions are always at the boundary of the
confidence interval. Note that in this case the decision rule (5) simplifies to:

δA|x(x) =

x+ cα/2|x if − x+ ã ≤ 0
x+ c1−α/2|x if − x+ ã ≥ 0

(6)

after imposing ψAi (x) = 1, i = {1, 2}. The notation δA|x is equivalent to δA,
but makes explicit the conditioning on x. When computing the risk function
of δA|x(X) in (5), the expectation is taken with respect to the test functions
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ψAi (X), i = {1, 2}, but the confidence level α will continue to be conditioned
on the observed sample realization x.

Here are some common examples of how the function g(α̃) in Definition
3.1 is chosen:

1. Maximum likelihood:

α|x = 1, ∀ α̃ ∈ (0, 1]

2. Pretest estimator with threshold ᾱ:

α|x =
{

1 if α̃ ∈ (0, ᾱ)
α̃ if α̃ ∈ [ᾱ, 1]

3. Subjective classical estimator with threshold ᾱ (Manganelli, 2009):

α|x =
{
ᾱ if α̃ ∈ (0, ᾱ)
α̃ if α̃ ∈ [ᾱ, 1]

4. Judgmental decision:

α|x = α̃, ∀ α̃ ∈ (0, 1]

It is easy to verify that each of these estimators is obtained by replacing
the corresponding choice of g(α̃) in the decision rule (6). The maximum
likelihood estimator always disregards any judgmental decision, by setting
the confidence level equal to 1. In this case, cα/2|x = c1−α/2|x = 0 and
δA|x(x) = x. The pretest estimator maintains the confidence level α̃ if the
test statistic falls within the confidence interval determined by ᾱ, but it is
increased to 1 otherwise. The subjective classical estimator maintains the
threshold probability ᾱ for p-values lower than ᾱ, otherwise it is equal to
α̃. The judgmental decision coincides in this case with an unconstrained
minimax decision rule, which never abandons the judgmental decision, by
setting the confidence level always equal to α̃.

3.1 Interpreting the confidence level as statistical risk
aversion

The confidence level α has an intuitive economic interpretation provided by
the following theorem.
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Theorem 3.1 (Economic interpretation of the confidence level). Con-
sider the decision environment of Definition 2.1 and assume the decision
maker has judgment A|x ≡ (ã, α|x). The decision rule δA|x(X) in (5) per-
forms worse than the judgmental decision ã with probability not greater than
α|x:

Pθ(L(θ, δA|x(X)) > L(θ, ã)) ≤ α|x (7)
Proof — See Appendix.

For a given judgmental decision ã and sample realization x, moving away
from ã will either increase or decrease the loss function. The decision maker
can attach a probability to these events by performing the following frequen-
tist thought experiment: Draw an infinite amount of samples {xi}∞i=1 from
X ∼ N(θ, 1) and compute the fraction of times the statistical decision rule
δA|x(xi) performs worse than the judgmental decision. This probability will
depend on the unknown population value of θ, but Theorem 3.1 shows that
it is bounded from above by the chosen confidence level. It formalizes the
intuition that a decision maker may be willing to abandon her judgmental
decision and follow a statistical procedure only if there are sufficient guaran-
tees that it does not result in an action that is worse than the judgmental
decision. Since statistical procedures are subject to randomness, the decision
maker cannot be sure that this will be the case and the guarantee can only
be expressed in terms of a probability.

Theorem 3.1 suggests an alternative interpretation of the confidence level.
Given that α|x represents the upper bound of the probability that the sta-
tistical decision rule performs worse than the judgmental decision, the con-
fidence level reflects the willingness of the decision maker to take statistical
risk. Notice that this concept is distinct from the standard concept of risk
aversion, as summarized by the weight given to the portfolio variance in the
loss function L(θ, a) in the decision environment of Definition 2.1.

The idea of statistical risk aversion is closely linked to the concept of
ambiguity (or uncertainty) aversion. The decision tree of figure 1 can be
used to define the decision maker’s attitude towards statistical risk. Classical
statistics imposes α = 1, which is equivalent to assuming that the decision
maker is statistical risk lover, that is L1 � J . An extreme statistical risk
averse decision maker, on the other hand, always prefers sure outcomes to
situations involving uncertainty, that is J � Lα, ∀α ∈ (0, 1]. Intermediate
degrees of statistical risk aversion can be represented by appropriate choices
of the confidence level α, such that Lα � J .
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The decision tree of figure 1 can also be used to give a heuristic proof
that the optimal decision must be at the boundary of the confidence interval.
Given the statistical risk preference α, ã cannot be optimal if α̃ < α, because
Lα � Lα̃. Suppose that −x + ã ≤ 0 and the preferred action is a∆ =
x + cα/2|x + ∆. If ∆ < 0, α∆ ≡ P (−X + a∆ < −x + a∆|θ = a∆) < α.
Since Lα � Lα∆ , it is preferred to marginally move away from a∆. If ∆ > 0,
α∆ > α. This implies that action a∆−ε was preferred to action a0 for ε > 0
sufficiently small, which is a contradiction because Lα � Lα∆−ε

.

3.2 Eliciting the Confidence Level
One possible strategy to elicit the degree of statistical risk aversion (i.e., the
confidence level α) could be to run an experiment à la Ellsberg (1961) where
the decision maker can choose among different couples of urns. Consider two
urns with 100 balls each. Urn 1 contains only white and black balls, Urn 2
contains white and red balls. If the black ball is extracted, the respondent
loses AC100. If the red ball is extracted, the respondent wins an amount in
euros which gives an increase in utility equivalent to the reduction in utility
produced by the loss of AC100. If the white ball is extracted, nothing happens.
The respondent can choose among the composition of the urns described in
table 2.

The respondent faces uncertainty, as she does not know whether the balls
are drawn from Urn 1 or Urn 2 and their exact composition. By accepting
one of the bets from 0 to 100, she can control the upper bound probability
of losing in case balls are drawn from Urn 1. By choosing this upper bound
probability, she automatically chooses the lower bound probability of winning
in case the ball is drawn from Urn 2. An extreme statistical risk averse player
would always choose bet 0, which is equivalent to not participating to the bet
and holding on to the judgmental decision ã. A statistical risk loving player
would choose bet 100. In general, players with higher degrees of statistical
risk aversion would choose bets with lower numbers.

4 Equivalence between Bayesian and Frequen-
tist Decisions

Careful choice of the confidence level α|x allows one to arrive at frequentist
decisions which are equivalent to Bayesian decisions.
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Table 2: Experiment to elicit the confidence level α

Urn 1 Urn 2
Bet White Black White Red
0 100 0 100 0
1 ≥ 99 ≤ 1 ≤ 99 ≥ 1
2 ≥ 98 ≤ 2 ≤ 98 ≥ 2
... ... ... ... ...
98 ≥ 2 ≤ 98 ≤ 2 ≥ 98
99 ≥ 1 ≤ 99 ≤ 1 ≥ 99
100 0 100 0 100

Note: The decision maker can choose one of the bets from 0 to 100. By accepting the
bet, she will face Urn 1 or Urn 2 without knowing the probability with which the urn is
chosen. If a white ball is extracted, nothing happens. If a black ball is extracted, the
decision maker loses AC100. If a red ball is extracted, she wins a utility equivalent euro
amount. In accepting the bet, the decision maker can partially choose the composition of
the urns. For instance, by choosing bet 2, she knows that Urn 1 does not contain more
than 2 black balls and Urn 2 contains at least 2 red balls. A statistical risk loving decision
maker chooses bet 100. An extreme statistical risk averse decision maker chooses bet 0.
Decision makers with higher degrees of statistical risk aversion choose bets with lower
numbers.
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Let’s start by noticing that the decision rule δA|x(x) of equation (5) is a
shrinkage estimate.

Proposition 4.1 (Skrinkage). Given the judgment A|x ≡ (ã, α|x), for any
sample realization x, the decision rule δA|x(x) of Theorem 2.1 is a shrink-
age estimate of the type δA|x(x) = (1 − h)x + hã, where h ≡ cα/2|x/cα̃/2 =
c1−α/2|x/c1−α̃/2 ∈ [0, 1].

Proof — See Appendix.

This decision rule is a convex combination of the judgmental decision and
the maximum likelihood estimate. The amount of shrinkage is determined
by the factor h, which is a combination of data (as represented by x) and
judgmental information (as represented by the judgmental decision ã and the
associated confidence level α|x). Note the similarity with Bayesian estimators
of a model with unknown mean, known variance, and Normal prior (see
example 1, p.127 of Berger 1985). Let the prior be a Normal density N(ã, τ 2).
Since X ∼ N(θ, 1), the posterior mean is (τ 2/(1 + τ 2))x + (1/(1 + τ 2))ã.
Informative priors (that is, low τ 2) imply a posterior mean close to the prior
mean. In Proposition 4.1, judgment with low confidence level (that is, an
α|x close to α̃) implies h close to 1 and therefore a decision which is close to
the judgmental decision ã. On the other hand, uninformative priors (that is,
large τ 2) imply a posterior mean close to the maximum likelihood estimator,
which in turn is equivalent to judgment with high confidence level (that is,
an α|x close to 1 and h close to 0).

The following Theorem shows that for any Bayesian decision associated
with a given prior there is a corresponding choice of α|x = g(α̃) which pro-
duces an equivalent frequentist decision.

Theorem 4.1 (Equivalence between Bayesian and Frequentist De-
cisions). Consider the decision environment of Definition 2.1. For any
prior distribution µ(θ) such that ã = arg mina

∫
(−aθ + 0.5a2) dµ(θ) and

the Bayesian decision δµ(x) lies between ã and x, the Bayesian decision is
equivalent to the frequentist decision δA|x(x), when

α|x =

2Φ(δµ(x)− x) if − x+ ã ≤ 0
2(1− Φ(δµ(x)− x)) if − x+ ã ≥ 0

(8)

Proof — See Appendix.
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I consider here the comparison with two special Bayesian estimators,
which have been analyzed at length by Magnus (2002) in the case ã = 0.

Bayesian estimator based on Normal prior — Assuming that the prior
over the parameter θ is Normally distributed with mean zero and variance
1/c, the optimal Bayesian decision is:

δN(x) = (1 + c)−1x (9)

Bayesian estimator based on Laplace prior — If the prior over the
parameter θ is distributed as a Laplace with mean zero and scale parameter
c, the optimal Bayesian decision is:

δL(x) = x− c ·
1− exp(2cx)Φ(−x−c)

Φ(x−c)

1 + exp(2cx)Φ(−x−c)
Φ(x−c)

(10)

In figure 2, I compare in the space (α|x, α̃) the confidence levels associated
with the decision rules discussed in section 3 and the two Bayesian decision
rules above. The mapping α|x = g(α̃) for the Bayesian decisions is obtained
by substituting (9) and (10) in (8), and considering that there is a one to
one mapping between x and α̃, which is the p-value associated with the test
statistic −x+ α̃ (conditional on −x+ α̃ being positive or negative).

Note how all statistical decision rules have a confidence level mapping
which falls between the two extreme decision behaviors: the judgmental de-
cision (which corresponds to the decision of an extreme statistical risk averse
decision maker, where no data is taken into consideration) and the maximum
likelihood estimator (which corresponds to the decision of a statistical risk
loving decision maker, where no judgment is taken into consideration). The
judgmental decision is described by the diagonal line in the space (α|x, α̃).
As already discussed in section 3, any point below this diagonal line is equiv-
alent to its vertical projection on the diagonal, in the sense that they all
imply that the frequentist decision (5) coincides with the judgmental deci-
sion ã. The confidence level α|x associated with the maximum likelihood
estimator, instead, does not depend on α̃ and is always equal to 1.

The confidence level of the pretest estimator is equal to that of the judg-
mental decision for intermediate values of α̃, but jumps discontinuously to
the maximum likelihood for extreme values of α̃ (less than 10% in the ex-
ample of figure 2). It has the feature that small changes in α̃ may trigger
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Figure 2: Relationship between p-values and confidence levels

Note: The horizontal axis reports the p-value (α) of the gradient ∇aL(θ, a) evaluated at
θ = x and ã = 0, the judgmental decision. The vertical axis is the chosen confidence level
α|x = g(α̃). The figure plots the mapping corresponding to six alternative estimators. Pre-
test and subjective classical estimators (Manganelli, 2009) are based on 10% confidence
levels. The Normal and Laplace Bayesian estimators are based on priors with zero mean
and unit variance.
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abrupt changes in the confidence level. The choice of the confidence level of
the subjective classical estimator proposed by Manganelli (2009) avoids the
discontinuity of the pretest estimator.

The figure reports also the confidence levels associated with the two
Bayesian estimators. The plot reveals a few interesting features.

First, the figure shows that the confidence levels associated with the Nor-
mal Bayesian estimator converges to zero as α̃ goes to zero. It shrinks rela-
tively less when the initial judgment is extremely bad, an odd choice of the
statistical risk preference.

Second, Bayesian econometrics requires the decision maker to express her
judgment on the statistical parameters of the random variables, rather than
on the decision variables directly. The whole literature on prior elicitation
notwithstanding, choosing priors is often a formidable task, and, as already
mentioned, it was one of the main motivations driving Neyman and Fisher to
develop frequentist statistics. In the context of the asset allocation problem
discussed in this paper, two prior distributions with same mean and standard
deviation can lead to very different portfolio allocations. Asking whether her
prior distribution of the mean has fat or thin tails strikes me as putting an
unrealistic burden on the decision maker. If one leaves the unconditional,
univariate domain, the requests in terms of prior specification become even
more challenging.

Third, this paper shows that imposing priors on parameters is equiva-
lent to imposing specific statistical risk preferences on the decision maker.
Consider the case in which the decision maker is a central banker who has
to decide the level of interest rates. The Bayesian approach requires central
bankers to express their priors for the parameters of the macro-econometric
model of the economy. Even though there is by now a rich literature on
Bayesian estimation of Dynamic Stochastic General Equilibrium models (see
for instance Smets and Wouters 2007 and subsequent applications), it is my
impression that the decision making body of a central bank has little clue
about the construction of these models, let alone the multivariate priors of
the underlying parameters. It is usually the expert who imposes priors to
arrive at some reasonable estimate of the model. Econometricians and deci-
sion makers should be aware that this is not an innocuous exercise and that
it has direct implications on the willingness of the central banker to tolerate
statistical risk in her decision process.

Figure 3 reports the confidence level mappings associated with the Bayesian
decision with Normal priors of different precision, one with high variance and
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Figure 3: Confidence level mappings for Normal priors with different vari-
ances

Note: The horizontal axis reports the p-value (α) of the gradient ∇aL(θ, a) evaluated at
θ = x and ã = 0, the judgmental decision. The vertical axis is the chosen confidence level
α|x = g(α̃). The figure plots the confidence level mappings corresponding to Bayesian
decisions based on Normal priors with mean zero and different variances.
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another one with low variance. The estimator with low variance attaches
greater weight to the prior and results in a confidence level mapping closer
to the judgmental decision. In the limit, as the variance goes to zero, the
confidence level mapping of the Normal Bayesian decision converges to the
mapping of the judgmental decision. At the other extreme, as the variance of
the prior goes to infinity, the Bayesian estimator attaches lower weight to the
prior and its confidence level mapping converges to the one of the maximum
likelihood estimator.

The same figure can be given the interpretation of a Normal Bayesian de-
cision with different sample sizes. As the sample size increases, the Bayesian
decision attaches less weight to the prior and more weight to the data.
Asymptotically, the confidence level mapping of the Bayesian decision con-
verges to the one of the maximum likelihood estimator. This represents an
additional idiosyncrasy of the Bayesian approach: The Bayesian posterior
updating imposes time varying statistical risk preferences on the decision
maker.5

4.1 Equivalence with Ambiguity Averse Decisions
The previous discussion has highlighted a serious shortcoming of Bayesian
decisions, namely that the choice of priors imposes specific, sample dependent
statistical risk preferences on the decision maker. More standard criticism
of the Bayesian approach focuses on two other issues, which are linked to
the broader issue of prior robustness: It requires the decision maker to know
the prior distribution and imposes that the decision maker is not averse to
uncertainty.

Figure 2 presents a simple example of how prior robustness may be a
real issue. The two Bayesian estimators are based on prior distributions
which have been calibrated to have both zero mean and unit variance. One
key difference is that the Laplace priors, unlike the Normal distribution,
has fat tails. As already shown by the risk analysis of Magnus (2002) and

5In its extreme interpretation, the Bayesian approach requires that states of the world
resolve all uncertainty, so that each individual chooses her strategy only once at the begin-
ning of their lifetime. See the discussion in section 2.4 of Gilboa and Marinacci (2013). This
is clearly unrealistic. Still, inconsistencies of static theories of ambiguity when extended
to dynamic decision problems and in particular the lack of a useful notion of updating
mechanism are a major source of controversy among Bayesians (see, for instance, Al-Najjar
and Weinstein, 2009, and the follow up comment by Siniscalchi, 2009).
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Manganelli (2009), Bayesian estimators based on apparently ‘close’ priors
can have very different properties. The issue of prior robustness is well-
known and acknowledged in the literature. It is known, for instance, that
one of main sources of nonrobustness in Bayesian estimation is linked to the
thickness of the tails of the prior distributions (see the discussion at page
197 in Berger 1985). The example 2, p. 111, of Berger (1985) raises similar
issues by comparing decisions based on Normal and Cauchy priors matched
to have the same median and interquartiles.

Both issues of prior robustness and ambiguity aversion may be partly
addressed by considering classes of priors, instead of a single prior. Gilboa
and Schmeidler (1989) have shown that an ambiguity averse decision maker
characterized by a set of priors Γ minimizes the expected loss using the
worst possible prior from the set Γ. Cerreia Vioglio et al. (2013a and 2013b)
provide an axiomatic characterization which clarifies the relationship between
the maxmin approach of decision theory under ambiguity and the minimax
approach of robust statistics in the presence of parametric prior uncertainty.
Formally:

Definition 4.1 (Set of Priors). The subjective information of the decision
maker is summarized by the set of priors Γ ≡ {µ(θ), θ ∈ Θ ⊂ R}.

Ambiguity Averse Decision — Consider the decision environment of
Definition 2.1. If the decision maker knows her set of prior distributions Γ,
the ambiguity averse decision is:

δΓ(x) = arg min
a

max
µ∈Γ

∫
(−aθ + 0.5a2)dµ(θ|x)

where µ(θ|x) denotes the posterior distribution for a given µ ∈ Γ.

The frequentist decision (5) is flexible enough to cover also the case of
ambiguity aversion. The equivalence between frequentist decision and am-
biguity averse decision can be proven in a similar way to that of Theorem
4.1. For each sample realization x, there is a confidence level mapping α|x
which sets δΓ(x) = δA|x(x). It may be helpful to illustrate this equivalence
by considering a specific example.

Consider again the decision environment of Definition 2.1 and let Γ =
{µ : µ is N(π, c−1), π ≤ π ≤ π̄}. Since the posterior mean of θ is given by
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(1 + c)−1(x+ cπ) and the loss function is linear in θ, it must be:

max
µ∈Γ

∫
(−aθ + 0.5a2)dF µ(θ|x) =

= −a(πI(a > 0) + π̄I(a < 0))(1 + c)−1c− a(1 + c)−1x+ 0.5a2

where F µ(θ|x) denotes the posterior updating of a given µ distribution in Γ.
The ambiguity averse decision associated with the set of priors Γ is ob-

tained by setting the first derivative with respect to a of the above expression
equal to 0:

δΓ(x) =


(1 + c)−1(x+ cπ) if x > −cπ
0 if − cπ̄ ≤ x ≤ −cπ
(1 + c)−1(x+ cπ̄) if x < −cπ̄

(11)

The confidence level associated with decision (11) is reported in figure 4
for π = −1, π̄ = 1 and c = {1, 0.5, 0.1}. The figure reveals a link between the
subjective classical estimator of Manganelli (2009) and ambiguity aversion.
If the sample realization falls within the interval (−cπ̄,−cπ), the ambiguity
averse investor chooses not to enter the stock market. This is like the situ-
ation of the frequentist decision rule (5) when the test function ψAi (x) = 0,
which occurs when the test statistic −x+ ã falls within the frequentist con-
fidence interval.

The link between frequentist confidence intervals and Knightian uncer-
tainty was first suggested by Bewley (1988), who showed how classical con-
fidence regions correspond to sets of posterior means derived from a stan-
dardized set of prior distributions.6 He, however, did not formulate the
frequentist non sample information in the form of judgment as done in this
paper, which makes the use of frequentist procedures both practical and
theoretically sound.

A comparison of figures 3 and 4 also illustrates how Bayesian decisions
do not take uncertainty into account. Looking at the Bayesian confidence
level of figure 3, it is clear that α|x > α̃ ∀α̃, which in turn implies that the
null hypothesis that the judgmental decision ã is optimal is always rejected.
For the subjective classical decision of Manganelli (2009) and the ambiguity
averse decision (11) this is not the case.

6Bewley’s work on decision under uncertainty has an interesting history, as told by
Gilboa (2009), footnotes 127 and 128. Bewley’s (1988) working paper was later published
as Bewley (2011).
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Figure 4: Relationship with ambiguity averse decision rule

Note: The horizontal axis reports the p-value (α) of the gradient ∇aL(θ, a) evaluated at
θ = x and ã = 0, the judgmental decision. The vertical axis is the chosen confidence level
α|x = g(α̃). The figure plots the confidence level mappings corresponding to an ambiguity
averse decision maker, who chooses from the set of priors Γ = {µ : µ is N(π, c−1), π ≤ π ≤
p̄i}, for π = −1, π̄ = 1, and different levels of precision c.
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5 Empirical evidence
Section 4 highlighted the statistical differences among the estimators. An
equally important question is whether the estimators produce portfolio allo-
cations with significant economic differences. I address this issue by bringing
the estimators to the data, solving a standard portfolio allocation problem.

The empirical implementation of the mean-variance asset allocation model
introduced by Markowitz (1952) has puzzled economists for a long time. De-
spite its theoretical success, it is well-known that plug-in estimators of the
portfolio weights produce volatile asset allocations which usually perform
poorly out of sample, due to estimation errors. Bayesian approaches offer
no better performance. There is a vast literature documenting the empirical
failures of the mean-variance model and suggesting possible fixes (Jobson and
Korkie 1981, Brandt 2007). DeMiguel, Garlappi and Uppal (2009), however,
provide evidence that none of the existing solutions consistently outperforms
a simple, non-statistically driven equal weight portfolio allocation. Other
examples of non-statistically driven portfolios could be that of an investment
manager with some benchmark against which she is evaluated, or that of
a private household who may have all her savings in a bank account (and
therefore a zero weight in the risky investment). DeMiguel et al. (2009)
raise an important point: How to improve on a given judgmental allocation?
The framework of this paper offers an answer to this question: For a given
sample realization and confidence level, the frequentist decision rules will not
perform worse than the given judgmental allocation with a probability equal
to the confidence level.

To implement the statistical decision rules, I take a monthly series of
closing prices for the EuroStoxx50 index, from January 1999 until December
2015. EuroStoxx50 covers the 50 leading Blue-chip stocks for the Eurozone.
The data is taken from Bloomberg. The closing prices are converted into
period log returns. Table 3 reports summary statistics.

Table 3: Summary statistics
Obs Mean Std. Dev. Median Min Max Jarque Bera
206 -0.06% 5.57% 0.66% -20.62% 13.70% 0.0032

Note: Summary statistics of the monthly returns of the EuroStoxx50 index from
January 1999 to December 2015. The Jarque Bera statistic is the p-value of the
null hypothesis that the time series is normally distributed.
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The exercise consists of forecasting the next period optimal investment
in the Eurostoxx50 index of a person who holds AC100 cash. I take the first 7
years of data as pre-sample observations, to estimate the optimal investment
for January 2006. The estimation window then expands by one observation
at a time, the new allocation is estimated, and the whole exercise is repeated
until the end of the sample.

To directly apply the decision rules discussed in the previous sections,
which assume the variance to be known, I transform the data as follows. I first
divide the return series of each window by the full sample standard deviation,
and next multiply them by the square root of the number of observations in
the estimation sample. Denoting by {x̃t}nt=1 the original time series of log
returns, let σ be the full sample standard deviation and n1 < n the size of
the first estimation sample. Then, for each n1 + s, s = 0, 1, 2, ..., n− n1 − 1,
define:

{xt}n1+s
t=1 ≡ {

√
(n1 + s)x̃t/σ}n1+s

t=1 and x̄n1+s ≡ (n1 + s)−1
n1+s∑
t=1

xt (12)

I ‘help’ the estimates by providing the full sample standard deviation,
so that the only parameter to be estimated is the mean return. Under the
assumption that the full sample standard deviation is the population value,
by the central limit theorem x̄n1+s is normally distributed with variance equal
to one and unknown mean. We can therefore implement the decision rules
discussed in the preceding sections of the paper, using the single observation
x̄n1+s for each period n1 + s.

The results of this exercise are reported in figures 5 and 6. Figure 5
plots the optimal weights obtained from the different decision rules. A few
things are worth noticing. First, the weight associated with the maximum
likelihood decision is the most volatile, as it is the one that suffers the most
from estimation error. The Bayesian decision rules are shrunk towards zero,
the one based on a Normal prior being shrunk less than the one based on
Laplace prior, consistently with the pattern shown in figure 2. Pretest and
subjective classical decision rules predict an optimal weight equal to zero,
as the p-value is almost always greater than the chosen threshold ᾱ: The
data is just too noisy to suggest a departure from the judgmental decision.
One needs to increase the threshold to 40% for this to be the case. That is
the spike observed in February 2009 for the pretest decision, which for that
month coincides with the maximum likelihood decision (remember that when
the p-value is less than ᾱ, the pretest decision rule reverts to the maximum
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Figure 5: Optimal portfolio weights

Note: Optimal weights according to the different decision rules of an investor choosing
between cash and the EuroStoxx50 index. Weights are re-estimated each month by ex-
panding the estimation window by one data point. The first 7 years — from January 1999
until December 2005 — are used to produce the first estimate in January 2006.

likelihood). The weight associated with the subjective classical decision rule
with 40% confidence threshold exhibits just a small blip, as it goes to the
boundary of the confidence interval associated with α instead of moving all
the way to the maximum likelihood.

Figure 6 reports the portfolio values associated with the strategy of an
investor who would re-optimize each month and decide how much to allocate
in the EuroStoxx50 index on the basis of the decision rules associated with
different confidence thresholds. Suppose the starting value of the portfolio
in January 2006 is AC100. By the end of the sample, after 10 years, an
investor using the maximum likelihood decision rule would have lost one
quarter of the value of her portfolio. The situation is slightly better with the
Bayesian decision rules, as they imply a loss of between 9% and 12%. The
pretest decision rule with threshold of 40% would have lost little less than
5%. Note that the entire loss comes from shorting the position and following
the predictions of the maximum likelihood decision in February 2009. In
all the other months there is no investment in the stock market. The other
three decision rules – the pretest with 1% and the subjective classical with
confidence thresholds at 1% and 40% – do not lose anything because they
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Figure 6: Evolution of portfolio values

Note: Time evolution of the value of a portfolio invested in cash and the EuroStoxx50
index following the investment recommendations of the different decision rules.

never predict deviating from the judgmental allocation of holding all the
money in cash.7 In fact, the subjective classical decision rule with confidence
threshold of 40% does lose something, as like the pretest decision it rejects the
judgmental allocation in February 2009. However, unlike the pretest decision
which goes to the boundary of the 0% confidence interval (the maximum
likelihood), the subjective classical decision only moves to the boundary of
the 60% confidence interval, so that the overall losses are contained to less
than 1% and barely visible from the chart.

The point of this discussion is not to evaluate whether one decision rule
is better than the other, as the decision rules differ only with respect to the
choice of the confidence level, which is a subjective choice like the choice
of the loss function. The purpose is rather to illustrate the implications of
choosing different confidence levels. By choosing the maximum likelihood es-
timator, one has no control on the statistical risk she is going to bear. With
the subjective classical estimator, instead, the investor chooses a constant

7This finding is consistent with results from the literature on portfolio choice under
ambiguity, which shows that there exists an interval of prices within which no trade occurs.
See for instance Guidolin and Rinaldi (2013) and the references therein.
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probability of underperforming the judgmental allocation: she can be sure
that the resulting asset allocation is not worse than the judgmental allocation
with the chosen probability. The case of the EuroStoxx50, however, repre-
sents only one possible draw, which turned out to be particularly adverse to
the maximum likelihood and Bayesian estimators. Had the resulting alloca-
tion implied positive returns by the end of the sample, maximum likelihood
and Bayesian estimators would have outperformed the subjective classical
estimators. There is no free lunch: decision rules with lower confidence
thresholds produce allocations with greater protection to underperformance
relative to the judgmental allocation, but also have lower upside potential.
In statistical jargon, lower confidence levels protect the decision maker from
Type I errors, but imply higher probabilities of Type II errors.

I illustrate this intuition with a simulation. I generate several sets of 500
random samples of 206 observations using the empirical distribution of the
EuroStoxx50 time series from January 1999 until December 2015. Each set
is generated by adding different means to the empirical distribution, starting
from zero (which would be the equivalent of replicating EuroStoxx50 500
times, after subtracting its empirical mean) and then progressively increasing
it, so that the zero judgmental allocation becomes less and less accurate.
I then replicate the same estimation strategy used to produce the results
in figures 5 and 6, i.e. I use the first 85 observations (the equivalent of 7
years of data) to estimate the optimal allocation and increase the sample one
observation at a time to estimate the next period allocation. This exercise is
repeated for all random samples, 500 of them, and for each of the different
means. The results are reported in figures 7 and 8.

Figure 7 plots the average expected loss associated with each estimator
against the different means simulated in the exercise. Remember that the
judgmental decision implies zero allocation in the risky asset, which would
be the optimal allocation when the population mean is equal to zero. As we
move to the right of the horizontal axis, we are therefore considering data
generation processes which are less and less in line with the judgmental alloca-
tion. Since I know the data generation process, I can compute the population
expected loss. For values of the mean close to zero, the subjective classical
estimators dominate all the others, the one with 1% confidence thresholds
being better than the one with 10% confidence thresholds for smaller values
of the mean. As the population mean increases beyond 0.3% the Bayesian
estimators start to perform better than the subjective classical estimators.
It is only when the population mean exceeds 0.6% that the maximum like-
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Figure 7: Expected losses under alternative Data Generation Processes

Note: Expected losses generated by the different decision rules under alternative speci-
fications for the mean (reported on the horizontal axis). For each mean, I generate 500
samples of 206 observations and replicate the same estimation as for the EuroStoxx50. The
observations are drawn from the empirical distribution of the EuroStoxx50 time series. I
then add different means to the sample, to simulate situations in which the judgmental
decision of holding zero risky assets becomes less and less accurate. Expected losses are
out-of-sample averages over the 500 samples for each mean.

lihood estimator starts to dominate the others. Not surprisingly, decisions
based on higher confidence levels generate relatively lower expected loss only
when the judgmental allocation is far from the optimal one, as can be seen
by the Normal Bayesian estimator dominating the Laplace Bayesian one for
values of the mean greater than 0.3%. To paraphrase a famous quote by
Clive Granger, investors with good judgment do better than investors with
no judgment, who do better than investors with bad judgment.8

Figure 8 shows the percentage of times the statistical rule does worse
than the judgmental allocation. It reports the unconditional percentage of
times (out of the 500 replications) that the various estimators underperform
the zero judgmental allocation.9 When the population mean is equal to zero,

8The original quote is ‘a good Bayesian... is better than a non-Bayesian. And a bad
Bayesian... is worse than a non-Bayesian’ (see Phillips 1997, p. 270).

9If one were to do this exercise conditional on the sample realization x (or equivalently
on the observed p-value α̃), the percentage of violations would of course correspond to
α|x = g(α̃).
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Figure 8: Percentage of times statistical decisions underperform the judg-
mental decision under alternative Data Generation Processes

Note: Percentage of times the expected losses are greater than with the judgmental alloca-
tion, under alternative specifications for the mean (reported on the horizontal axis). The
simulated data are the same as in Figure 5. Underperformance occurs more often when
the judgmental allocation is close to the population mean. The maximum probability of
underperformance is 100% for both Bayesian and maximum likelihood estimators.
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subjective and pretest estimators underperform the same number of times.
The underperformance rate does not coincide with the confidence levels of
1% and 10%, because for each simulated sample an out of sample exercise
is conducted for the period January 2006 - December 2015. If one were to
replicate this exercise only for one out of sample period, one would obtain an
underperformance rate equal to the confidence level. As soon as one moves
away from the zero mean, the underperformance rate of the pretest estimator
deteriorates because it reverts to the maximum likelihood estimator. It is
only for values of the population mean sufficiently far away from zero, that
the underperformance rate starts to decline. The subjective classical esti-
mator, instead, does not suffer from this drawback. Finally, the maximum
likelihood and Bayesian estimators all have a maximum underperformance
rate of 100%: when the judgmental allocation coincides with the population
mean, allocations based on these estimators will underperform the judgmen-
tal allocation with probability one. In other words, these estimators cannot
put an upper bound to the unconditional probability that their decision rule
may be worse than the judgmental decision.

6 Conclusion
Bayesian statistics applies Bayes formula to combine a prior distribution with
the likelihood distribution of the data, constructing a posterior distribution
which exploits non sample and sample information. Bayesian decisions are
obtained by minimizing the expected loss, using the posterior distribution to
compute the expectation. In the decision space, this corresponds to a convex
combination of the judgmental and maximum likelihood decisions, where the
judgmental decision corresponds to the no data decision, that is the decision
which minimizes the expected loss using the prior distribution. There must
therefore exist a confidence interval around the maximum likelihood deci-
sion, whose edge coincides with the Bayesian decision. By making explicit
the judgmental decision and the choice of the confidence level in a frequen-
tist setting, it is possible to establish the equivalence between Bayesian and
frequentist procedures.

The confidence level is chosen as a mapping from the p-value of the first
order conditions evaluated at the judgmental decision onto the unit inter-
val. The frequentist decision maker selects decisions which are always at the
boundary of the confidence interval. Beyond this boundary, the probability
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of obtaining higher expected losses than those implied by the judgmental de-
cision becomes greater than the given confidence level. The confidence level
reflects the attitude of the decision maker towards statistical uncertainty, re-
ferred to as statistical risk aversion. The incorporation of non sample infor-
mation via prior distributions and Bayesian updating imposes time varying,
decreasing statistical risk aversion on the decision maker, a fact which is at
odds at least with my own preferences.

Appendix — Proofs
Proof of Theorem 2.1 — Consider only the case i)− x + ã ≤ 0. The

other case can be proven in a similar way. If ψ1(x) = 0, the null hypothesis
H0 : −θ+ ã ≥ 0 is not rejected at the given confidence level α. ã is therefore
retained as the chosen action.

If ψ1(x) = 1, the null hypothesis is rejected. Recalling its economic
interpretation, rejection of the null implies that marginal moves away from
ã by a sufficiently small amount ∆ > 0 decrease the loss function.

Consider now the family of null hypotheses of all the follow-up tests to
H0 : −θ + ã ≥ 0, that is H∆ : −θ + ã + ∆ ≥ 0 for ∆ > 0. Define also
the family of rejection regions R∆ ≡ {ẋ ∈ R : −ẋ + ã + ∆ < cα/2}, where
I have used the notation ẋ to distinguish the potential realizations of the
random variable X from the observed realization x. Clearly, x /∈ R∆ for any
∆ ≥ ∆̄ ≡ cα/2 + x− ã, that is the null hypothesis H∆ is not rejected at the
confidence level α for any ∆ ≥ ∆̄.

Denote with â the chosen action and suppose that â 6= ã + ∆̄. If â =
ã + ∆ < ã + ∆̄, this implies that x ∈ R∆, that is H∆ : −θ + ã + ∆ ≥ 0 is
rejected. Therefore this decision cannot be chosen.

If â = ã + ∆ > ã + ∆̄, continuity implies that it exists ε > 0 such that
the null H∆−ε : −θ + (â + ∆ − ε) ≥ 0 was rejected at the given confidence
level α, even though x /∈ R∆−ε, which implies a contradiction.

The chosen action must therefore be â = ã+ ∆̄ = cα/2 + x. �

Proof of Theorem 2.2 — Consider the case when −x + ã ≤ 0. The
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other case is similar.

L(θ, δA(x)|ψ1(x) = 0)− L(θ,δA(x)|ψ1(x) = 1)
= −θ(ã− x− cα/2) + 0.5(ã2 − (x+ cα/2)2)

This function is linear in θ and therefore changes sign only once as a function
of θ, specifically at the finite value θ = 0.5(ã + x + cα/2). Since ψ1(x) is a
monotone procedure, the conditions of theorem 4 of Karlin and Rubin (1956)
are satisfied and the result follows. �

Proof of Theorem3.1 — Let’s find out first the values of a for which
L(θ, a) > L(θ, ã). This is equivalent to finding out when the function −aθ+
0.5a2+ãθ−0.5ã2 is positive, which it is for a < θ−|−θ+ã| and a > θ+|−θ+ã|.
Therefore:

Pθ(L(θ, δA|x(X)) > L(θ, ã)) = Pθ(δA|x(X) < θ − | − θ + ã|)+ (13)
+ Pθ(δA|x(X) > θ + | − θ + ã|) (14)

Consider again only the case i)− x+ ã ≤ 0, as the other one is similar, and
note that in this case δA|x(X) can be rewritten as:

δA|x(X) =ã+ (x+ cα/2|x − ã)ψA1 (X)

Suppose first that −θ + ã > 0. Substituting the decision rule and rear-
ranging the terms, probability (13) is equal to:

Pθ(δA|x(X) < θ − | − θ + ã|) = Pθ(δA|x(X) < 2θ − ã)
= Pθ((x+ cα/2|x − ã)ψA1 (X) < 2θ − 2ã)
= 0

because (x+ cα/2|x − ã)ψA1 (X) ≥ 0, and probability (14) is equal to:

Pθ(δA|x(X) > θ + | − θ + ã|) = Pθ(δA|x(X) > ã)
= Pθ((x+ cα/2|x − ã)ψA1 (X) > 0)
= Pθ(ψA1 (X) = 1)
≤ α
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because by Bayes rule:

Pθ(ψA1 (X) = 1) = Pθ(−X + ã < cα/2|x)
Pθ(−X + ã ≤ 0)

= Pθ(−X + θ < cα/2|x + θ − ã)
Pθ(−X + θ ≤ θ − ã)

≤ 2Pθ(−X + θ < cα/2|x)
= α

where the inequality follows from the fact that the case currently analyzed
is −θ + ã > 0.

Suppose now that −θ+ ã < 0. Following a similar procedure, probability
(13) is equal to:

Pθ(δA|x(X) < θ − | − θ + ã|) = Pθ(δA|x(X) < ã)
= Pθ((x+ cα/2|x − ã)ψA1 (X) < 0)
= 0

and probability (14) is equal to:

Pθ(δA|x(X) > θ + | − θ + ã|) = Pθ(δA|x(X) > 2θ − ã)
= Pθ((x+ cα/2|x − ã)ψA1 (X) > 2θ − 2ã)
≤ Pθ(ψA1 (X) = 1)
≤ α

�

Proof of Proposition 4.1 — Consider the simplified decision rule (6).
If −x + ã ≤ 0, δA|x(x) = x + cα̃h = x + (−x + ã)h. If −x + ã ≥ 0,
δA|x(x) = x+ c1−α̃h = x+ (−x+ ã)h. �

Proof of Theorem 4.1 — Impose that (6) is equal to δµ(x). This is
possible because I have assumed that δµ(x) shrinks from ã towards x. Solving
for α|x gives the result. �
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