


















































Corollary 5 (More innovative firms hold more cash) Suppose that ε is sufficiently

small. Then, the target cash level C∗ is monotone increasing in λ and φ, and is monotone

decreasing in ζ.

Corollary 5 is very intuitive: More innovative firms naturally spend more on innova-

tions. Since the outcome of R&D is inherently uncertain, they need to hold a large liquid-

ity buffer in our to remain active in R&D even in bad, liquidity constrained times. The re-

sult of Corollary 5 is also consistent with the empirical evidence in Falato, Kadyrzhanova,

and Sim (2013), Lyandres and Palazzo (2014), and Begenau and Palazzo (2015) suggest-

ing that there is a strong positive link between cash holdings and innovations.

Production and markups. We next analyze the firm’s optimal production rate X(c).

Equation (26) highlights that the dynamics of X(c) are fully determined by the firm’s

effective risk aversion γ(c) in (24) and the function F in equation (25). Since the function

F (γ) is monotone decreasing in γ, so is X(c). The intuition is the following. When

liquidity constraints tighten (the cash reserves decrease), effective risk aversion increases

and the firm becomes reluctant to take on idiosyncratic risk. To limit operating volatility,

the firm scales down production. Since liquidity constraints become negligible at the

target cash level in that v′′(C∗) = 0, the production rate at C∗ equals the (constant)

production rate X0 = X∗ = (1−β)1/β of the benchmark economy. As a result, X(c) < X0

for all c < C∗. Thus, the model predicts that liquidity constraints lead the firm to decrease

the production rate. This relation is monotonic: the tighter the firm’s liquidity constraints

are (and the smaller the firm’s cash reserves), the smaller the optimal production rate is.

Recall that each incumbent firm j acts as the monopolist in the product line j. Given

the demand schedule (8), selecting the production rate X(c) is thus equivalent to setting

the following price

p(c) = X(c)−β ≥ X−β0 =
1

1− β
.

Interestingly, liquidity frictions lead the incumbent firm to deviate from the constant price

p∗ derived for the benchmark economy. In the constrained economy, the incumbent sets

a markup equal to p(c)− 1, which exceeds the markup set by an identical firm operating

in the benchmark economy. Following negative shocks that deplete the cash reserves, the

financially-constrained incumbent decreases the production rate and increases markups.
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Thus, liquidity constraints cause markups to be countercyclical to idiosyncratic shocks.

Proposition 6 summarizes these results.

Proposition 6 (Liquidity and Markups) Suppose that ε is sufficiently small. Then

the optimal production rate X(c) is monotone increasing in c whereas markups p(c) − 1

are decreasing. Now, suppose that ε is sufficiently small. For c in a left neighborhood of

C∗, the optimal scale of production can be approximated by

X(c) ≈ X0 + X1(c− C∗) +
X2

2
(c− C∗)2 ,

where X0 is defined as in Proposition 3, X1 = 2(r−δ)
β

and

X2 =
X1

X0

[
X1(β + 5) +

2β

σ2(1− β)
+

1

σ2X0

(
2δC∗ − ϕ2(λ− 1)2(κT + κI)

2
)]

.

This approximation implies that (1) A larger β leads to a lower sensitivity of markups to

liquidity shocks; (2) Firms that face a lower rate of creative destruction (smaller xd) or

that have more efficient innovation technology (larger ϕ or larger λ) decrease their scale

of production (lower X(c)) and set higher markups.

An important implication of Proposition 6 is that liquidity frictions create a link

between markups and firm characteristics that is absent in the unconstrained economy.

Ceteris paribus, if technological breakthroughs occur more often (larger ϕ) or are more

path-breaking (larger λ), a firm invests more in innovation. As a result, such a firm

depletes cash reserves faster, it has a higher effective risk-aversion, and it scales down

production by a larger amount when cash reserves decrease. While previous endogenous

growth models have stressed that monopoly rents generate firm’s incentives to invest in

innovation,20 Proposition 6 warns that liquidity constraints may reverse the causality of

this relation. Firms with more efficient innovation technologies are more R&D-intensive,

which makes them more financially constrained and leads them to charge higher markups.

Notably, the positive effect of innovation on markups is empirically supported by Cassi-

man and Vanormelingen (2013).

20See, e.g., Aghion and Howitt (1992) and Aghion, Akcigit, and Howitt (2014). Similarly, in Romer’s
(1990) variety model, lower rents for innovators lead to lower R&D incentives. Note, however, that
Arrow (1962) argues that the incentive to invest in innovations is lower under monopolistic than under
competitive conditions, due to ”organizational inertia.”
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Investment in innovation. In this subsection we investigate the behaviour of the

optimal innovation rate z(c). Using (27) and a Taylor expansion of z(c) around C∗, we

arrive at the following result.

Proposition 7 Suppose that ε is sufficiently small. The optimal innovation rate is

z(c) ≈ z̃(c) ≡ z0 +
1

2
(C∗ − c)2 z2 −

1

6
(C∗ − c)3z3 (34)

for c in a left neighborhood of C∗. In this expression, we have defined z0 = φ (1− α) L
ζ
(λ−

1)(κT + κI), z2 = −φ (1− α) L
ζ
v3 (λ− 1)(κT + κI), and z3 = −φ (1− α) L

ζ

(
v3 + v4(λ−

1)(κT + κI)
)
, whereas v3 and v4 are defined as in Proposition 3.

The next corollary relies on Proposition 7 and on the monotonicity properties of the

following auxiliary quantity:

Z ≡ 2 (λ− 1)(κT + κI)

1 − 1
X0

[
4 r−δ

β
+ 2 β

σ2(1−β)
+ 1

σ2X0
(2δC∗ − ϕ2(λ− 1)2(κT + κI)2)

]
(λ− 1)(κT + κI)

,

to characterize the optimal innovation rate z(c).

Corollary 8 (Liquidity and Innovation) Suppose that Z > 0. Then,

• if Z > C∗, z̃(c) is monotone increasing;

• if Z < C∗, z̃(c) is decreasing for c < C∗ − Z. This pattern is more likely to

arise for firms operating with: (1) larger cash flow volatility σ, (2) more severe

financing constraints ε, (3) more frequent technological breakthroughs, i.e. larger ϕ,

(4) smaller opportunity cost of cash r − δ,

Liquidity constraints may intuitively encourage firms to cut their investment in R&D

in order to save financial resources for the times of need. Nonetheless, Corollary 8 illus-

trates that the optimal innovation rate might increase when cash reserves decrease. This

pattern resembles a gamble for resurrection decision and is largely driven by financial con-

straints. Given two firms with the same fundamental characteristics but different cash

reserves, gamble for resurrection implies that the firm with smaller cash reserves invests

more in innovation. In so doing, the firm seeks to increase the probability of achieving

ECB Working Paper 19xx, May 2016 27



a technological breakthrough. When a breakthrough occurs, the firm gains access to the

monopoly rents related to the brand-new technology and can raise outside funds in light

of a “success” rather than a “failure” (i.e., running out of funds due to operating losses).

All else equal, less cash may lead to more success.

It is known (see, for example, Hugonnier, Malamud, and Morellec, 2015) that liquidity

frictions may potentially make the firm value locally convex, which then naturally leads

to risk-loving (gambling) behaviour. In contrast, in our model firm value is concave (see

Proposition 2) and its gambling behaviour is driven by a different mechanism. Namely, by

(27), the optimal innovation policy z(c) is a constant multiple of the quotient (λw∗−v(c)+c)
v′(c)

.

Both the numerator and the denominator are monotone decreasing in c : The numerator

is decreasing because v′(c) ≥ 1 and hence the gain v(c) − c from injecting cash into the

firm is decreasing over time; the denominator is decreasing in c because firm value is

concave in c. Thus, z(c) is decreasing if and only if the numerator decreases at a higher

rate than the denominator. By direct calculation, this is equivalent to the inequality

v′(c)− 1

λw∗ − v(c) + c
≥ σ−2γ(c)

where γ(c) = −σ2 v
′′(c)
v′(c)

is the effective risk aversion of the firm. Since v′(0) = 1 + ε,

z(c) is decreasing for small values of c if and only if ε
λw∗−v(0)

≥ σ−2γ(0). The effective

risk aversion of the firm scales with the variance of cash flows, γ ∼ σ2, and hence the

right-hand side is not very sensitive to volatility. At the same time, the gain λw∗ − v(0)

from replenishing cash reserves is lower when volatility is higher, which explains why z(c)

tend to be decreasing for high-σ firms. A similar logic applies to the opportunity cost

r− δ : Since v is increasing in δ, the gain λw∗− v(0) = λ(κT + κI)− v(0) is decreasing in

δ. Furthermore, since larger financing costs ε make the firm more constrained, they make

the firm more willing to engage in this behavior. Moreover, firms with more efficient R&D

technologies (larger ϕ, meaning that technological breakthroughs occur more often) and

more volatile profits are more likely to route resources from production to innovation, to

increase the likelihood of a breakthrough while limiting operating volatility.

Our analysis also highlights that financing frictions make the optimal innovation rate

z(c) dependent on firm’s characteristics that do not affect z∗ in the benchmark economy

(besides, obviously, the opportunity cost of cash). First, the optimal innovation rate
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does depend on β in the constrained economy whereas it does not in the unconstrained

economy. Specifically, firms are more willing to gamble for resurrection when β is lower.

In this case, the markup set by the firm is smaller and, hence, the firm has a greater

incentive to decrease production and favor innovation. Second, the volatility coefficient σ

has a major impact on a firm’s innovation rate in the constrained economy. Specifically,

gambling for resurrection arises in environments in which σ is sufficiently large. These

two observations confirm our intuition that the gambling for resurrection effect should

be particularly strong for small, contsrained firms with little market power and high

operational risk. This is a key implication of our model: in agreement withe the empirical

evidence, young and financially constrained firms can be very R&D intensive.

It is important to contrast the non-monotonic innovation pattern of Corollary 8 with

the existing empirical evidence. Recent papers (for example Falato, Kadyrzhanova, and

Sim (2013), Lyandres and Palazzo (2014), and Begenau and Palazzo (2015)) document

a strong empirical link between R&D and cash holdings: essentially, R&D and innova-

tive activities account for a major fraction of the cross-sectional variation in firms’ cash

holdings, and the cross-sectional relationship is very strong and positive. While this ob-

servation may seem to contradict the results of Corollary 8 at a first sight, this is actually

not the case. Namely, one should carefully distinguish between target cash holdings (that

is, C∗) and deviations from this target.

As follows from Corollary 5, more innovative firms indeed hold more cash. If the

refinancing frequency is sufficiently high (which is the case when ϕ is large), such firms

will most of the time stay close to the target level, and hence the positive link between

cash and innovations will be observable empirically. At the same time, after a sequence

large adverse liquidity shocks such innovative firms may become even more innovative.

Thus, empirically testing the prediction of Corollary 8 presents a non-trivial challenge

because one would have to be able to clearly distinguish between ex-ante heterogeneity

(because firms differ in the parameters φ, λ, ζ) and ex-post heterogeneity whereby ex-

ante identical firms differ in their cash holdings, which in turn influence their innovative

activities.

We complete this discussion by discussing the behavior of firms during the last finan-

cial crisis. Anecdotal evidence suggests that most firms significantly increased their cash

holdings during and after the last financial crisis. This is consistent with the result of
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Corollary 4: After a crisis, volatility σ and financing costs ε go up, which in turn leads to

an increase in C∗. Corollary 8 implies that such a global increase in cash holdings may

actually be associated with a simultaneous drop in the aggregate R&D. At the same time,

the behaviour on an individual firm level may be ambiguous. For example, Archibugi,

Filippetti, and Frenz (2013) report that some firms have actually increased their R&D

investment despite the toughening constraints. In a related study, Kanerva and Hollan-

ders (2009) find no relation between firm size and decline in investment in 2008. This

suggests that the actual link between R&D and innovations might be non-linear and

non-monotonic, in agreement with the results of Corollary 8.21

Idiosyncratic volatility of returns and cash flows. The optimal production rate

X(c) affects the volatility of cash flows, given by σX(c). The monotonicity of X(c) in c

implies that cash flow volatility is monotone increasing in the level of cash reserves. That

is, a firm scales down operating risk when liquidity constraints tighten. This result has

interesting implications for the relation between cash flow volatility and cash reserves (e.g.,

Bates, Khale, and Stulz, 2009). Our model suggests not only that volatility affects the

target level of cash reserves, but also that the level of cash reserves (i.e., a firm’s financial

stance) determines cash flow volatility via the optimal production rate. After positive

operating shocks, cash reserves increase, the curvature of the value function decreases,

and firms are willing to take on more risk. Conversely, negative operating shocks lead

firms to reduce production, and, as a result, cash flow volatility decreases.

We relate endogenous cash flow volatility to the idiosyncratic volatility of stock re-

turns. By (4), the realized volatility of stock returns dR(c) = dv(c)
v(c)

is given by

σR(c) = σX(c)
v′(c)

v(c)
.

Since all cash flow shocks are idiosyncratic in our model, σR(c) coincides with the id-

iosyncratic return volatility. A direct calculation implies that σR(c) is locally monotone

21Filippetti and Archiburgi (2011) link the resilience of R&D spending to structural factors such as
the quality of human resources, the specialization in the high-technology sector, or the development of
the financial system.
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increasing in c if and only if

X ′(c)

X(c)

v′(c)

v(c)
> − d

dc

v′(c)

v(c)
.

Since v(c) is concave and increasing in c, the ratio v′(c)/v(c) is decreasing. Thus, if the

rate of change in production is higher than the rate of change in the value function,

idiosyncratic volatility will be locally increasing.

The monotonicity of σR(c) is closely related to the leverage effect identified by Black

(1976), according to which the volatility of stock returns increases after a negative shock

to stock prices. In this context, Décamps et al. (2011) develop a cash management model

with constant cash flow volatility to show that liquidity frictions may generate the leverage

effect as σR(c) is monotone decreasing (and stock price increasing) in c. Nevertheless, the

empirical evidence on the co-movement between stock returns and idiosyncratic volatility

appears ambiguous. Early studies report a positive relation (e.g. Duffee, 1995, or Malkiel

and Xu, 2002), whereas more recent works (Ang, Hodrick, Xing, and Zhang, 2006, 2009)

report a negative relation—which has been labeled as the idiosyncratic volatility puzzle.

Our model is capable of capturing both the positive and the negative relation. In fact,

the instantaneous covariation of returns and idiosyncratic volatility is given by

〈v(c)−1dv(c), dσR(c)〉 = v(c)−1σC(c)2v′(c)σ′R(c)dt ,

so the hump-shaped pattern for σR(c) leads to a negative (positive) co-movement for firms

with high (low) cash reserves. This result calls for a thorough empirical investigation of

the role of corporate liquidity in the idiosyncratic volatility puzzle.

4.3 The stationary cross-sectional distribution of liquidity

Using the results in the previous sections, we now determine the cross-sectional stationary

distribution of liquidity in the economy, which we denote by η(c). For each individual

incumbent (omitting the subscript j), the dynamics of scaled cash reserves satisfy

dCt = µ(Ct)dt + σ(Ct)dZt + dFt + dF I
t − dDt + (λC∗ − Ct)dNt . (35)
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In this equation, Nt is a Cox process with stochastic intensity φz(Ct), representing the

occurrence of a technological breakthrough, while (as in Section 4.1), the quantities

µ(c) = δc + X1−β(c)−X(c)− z2(c)

2

ζ

L
, and σ(c) = σX(c) ,

denote, respectively, the operating profits and volatility. Since liquidity shocks are inde-

pendent and identically distributed (i.i.d.) across firms, the cross-sectional distribution

of liquidity satisfies the following Kolmogorov forward equation22

1

2

(
σ2(c)η(c))

)′′ − (µ(c)η(c))′ − xdη(c) − z(c)φη(c) = 0 .

To solve for the cross-sectional density, we impose the following boundary conditions

0.5(σ2η)′(0)− (µ(0)η(0)) = 0

0.5(σ2η)′(C∗)− (µ(C∗)η(C∗)) =

∫ C∗

0

φz(c)η(c)dc + xd.
(36)

For any level of cash reserves c, the quantity 0.5(σ2η)′(c) − (µ(c)η(c)) represents the

infinitesimal change in the mass of firms due to retained earnings and profitability (as

captured by the drift µ(c)) and due to idiosyncratic cash flow shocks (as captured by

the volatility σ(c)). The first equation in (36) is the mass conservation condition at

zero: it guarantees that there is no loss of mass for firms that run out of liquidity and

use external financing to remain solvent. The second equation is the mass conservation

at C∗: it ensures that the loss of mass on the left-hand side is offset by the inflow of

successful innovators whose cash reserves jump to C∗. In the next sections, we use this

stationary distribution to derive the equilibrium quantities of the model.

4.4 Equilibrium quantities

We embed the preceding analysis into a general equilibrium setting. Along a balanced

growth path, output and aggregate consumption grow at the constant (endogenous) rate

22See the Appendix for a formal argument.
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g, given by the following expression

g = (λ− 1)φ

∫ C∗

0

z(c)η(c)dc+ (Λ− 1)xd . (37)

Since innovation decisions are i.i.d. across firms, the law of large numbers implies that

the contribution of incumbents to economic growth is given by the size of their quality

improvements multiplied by the average innovation intensity in the population of incum-

bent firms (the first term in (37)). Similarly, the contribution of entrants is given by the

size of their quality improvements times the entry rate (the second term). In equilibrium,

the entry rate (i.e., the rate of creative destruction) is pinned down by the free-entry

condition

v (C∗(xd);xd)− C∗(xd) = κT + κI .

We solve for xd by using (33) and the approximation for C∗ in Proposition 4.

Proposition 9 The equilibrium rate of creative destruction satisfies

xd =
µ∗ − (r − δ)C∗

κT + κI
+ ϕ2(λ− 1)2κT + κI

2
− r .

In particular, when ε is sufficiently small, we get

xd ≈
µ∗ − (r − δ)1/2σX0ε

1/2

κT + κI
+ ϕ2(λ− 1)2κT + κI

2
− r.

To single out the various effects at play, we begin by studying the predictions of Propo-

sition 9 while holding r fixed (in equilibrium, the interest rate r is obviously endogenous

and depends on all of the model parameters). This is akin a semi-partial equilibrium

setting, for instance within a single industry whose impact on the interest rate is suffi-

ciently small. Proposition 9 shows that the financial constraints of incumbents discourage

fresh entry, and this effect is stronger when cash flow volatility σ, the opportunity cost

of cash r− δ, and the refinancing cost ε are larger. Moreover, the entry rate is monotone

increasing in the elasticity β since X0 is monotone decreasing in β.

Along the balanced growth path, consumption grows at the rate g. The equilibrium

interest rate is pinned down by the Euler equation of the representative household and

ECB Working Paper 19xx, May 2016 33



given by

r = ρ+ θ

[
(λ− 1)φ

∫ C∗

0

z(c; r)η(c; r)dc+ (Λ− 1)xd(r)

]
. (38)

This equation represents the fixed point equation for r > δ, which we solve numerically.23

We now turn to the analysis of aggregate consumption and welfare. Similar to the

unconstrained economy, consumption is the sum of labor income and aggregate dividends

net of cash injections into the firms. In particular, the wage paid by the competitive

final-good producer is given by

Wt =
1

1− β

∫ 1

0

Lβ X̄t(j)
1−β qt(j)

βdj −
∫ 1

0

pt(j)X̄t(j)dj .

In equilibrium, the wage grows at the rate g along the balanced growth path and satisfies

Wt = W0

∫
qt(j)dj with ∫

qt(j)dj = egt.

By a direct calculation, it follows that

W0 =
βL

1− β

∫
η(c)X(c)1−βdc .

In our continuous time model, calculating the dividend rate is not a trivial exercise. Even

though the dividend process of every firm is singular,24 aggregate dividends are smooth

and grow at the rate g. At every instant, firms with cash reserves close to C∗ may move

to C∗ according to the endogenous dynamics in (35), and eventually pay out dividends.

Thus, computing the dividend rate requires to keep track of the whole cross-sectional

distribution of liquidity in the economy. To address this issue, we proceed as follows.

We denote by dt the aggregate dividend rate and by ft the total rate of cash injections

to the incumbent and entrant firms of the economy. In order to compute the rate dt− ft,
we define Y (qt(j), c) to be the present value of a virtual “production unit” that we name

dynasty. Namely, a dynasty represents the expected present value of dividends net of cash

injections of all firms that will ever operate in the future in the product line j. As for

23Extensive numerical tests suggest that the solution is always unique.
24As in most other cash management models (see, for example, Décamps, Mariotti, Rochet, and

Villeneuve, 2011; Bolton, Chen, and Wang, 2011, 2013; and Hugonnier, Malamud, and Morellec, 2015),
dividends are non-smooth, and dividend payouts only happen when cash hits the threshold C∗.
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the other quantities in a balanced growth path equilibrium, Y (qt(j), c) is homogeneous

in the quality of the intermediate good j. Hence, the relation

Y (qt(j), c) = Lqt(j)y(c)

holds for some function y(c). As shown in the Appendix, y(c) solves the following equation:

1

2
σ2(c)y′′(c) + µ(c)y′(c) + φz(c) [λ(y(C∗)− C∗)− y(c) + c]

+ xd [Λy(C∗)− y(c) + c− Λ (C∗ + κT )] = ry(c) .

The first two terms on the left-hand side represent the effect of cash flow volatility and

profitability. The third term represents the probability-weighted change in value after a

technological breakthrough by the current incumbent of the product line j. In this case,

investors provide an amount λC∗ − c to the dynasty. The fourth term represents the

probability-weighted change in value after a technological breakthrough by an entrant.

Upon fresh entry, investors provide the amount Λ (C∗ + κT ) to the entrant and collect the

cash holdings of the outgoing incumbent. Notably, the financing fees ε, κI , and α have

no direct impact on the cash flows to the representative household: by assumption, these

costs are paid in equity shares and not in cash.25 As a result, the marginal value of cash

for the dynasty, y′(c), is equal to one at c = 0 and c = C∗ :

y′(C∗) = 1 = y′(0) .

Solving for y(c) allows to determine the net dividend rate of the economy. Since net

dividends grow at g on a balanced growth path, it follows that

d0 − f0 = (r − g)L

∫ C∗

0

η(c)y(c)dc .

Because aggregate consumption grows at g, we have Ct = C0e
gt with C0 = W0 +d0−f0.

The analysis highlights that financial constraints unambiguously decrease the equilib-

rium wage. Since X(c) < X0 for any c < C∗, it follows that W0 ≤ W ∗
0 . Moreover, W ∗

0

25When a firm runs out of cash and raises an amount f , the cost to incumbent shareholders is εf. This
cost is paid in shares of the company and has no impact on the wealth of the representative household.
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only depends on β in the unconstrained economy, whereas liquidity frictions imply that

W0 depends on the other model parameters through their impact on production decisions

X(c) and the distribution of liquidity in the economy η(c). The analytical comparison of

the net dividend rate in the constrained and unconstrained economies is less trivial. On

the one hand, the entry rate is lower in the constrained economy (as from Proposition 9),

meaning that investors provide financing to new firms less often. On the other hand, the

amount provided is larger in this economy, because investors finance not only the entry

cost but also provide entrants with cash reserves. We provide a numerical analysis of

consumption and welfare in the constrained/unconstrained economies in Section 5.2.

5 Model analysis

In this section, we provide a quantitative assessment of the model implications. Table

1 reports the baseline parametrization. Refinancing current operations entails a cost of

ε = 8% for any dollar raised, consistent with the estimation of Hennessy and Whited

(2007). Financiers extract a share α = 6% of the surplus when incumbents market a

higher quality product. The financing component of the entry cost κI is 10% of the

technological component, which means that financiers extract more rents from entrants

than from incumbents. By setting λ = 1.04 and Λ = 1.10, we capture in a simple fashion

that innovation by entrants tends to be path-breaking while innovation by incumbents

tends to be incremental; see, e.g., Akcigit and Kerr (2015), and Acemoglu et al. (2013).

We set σ = 0.4, which implies that cash flow volatility σX(c) varies between 9.9% and

12.7% under the baseline parametrization. The return on cash δ is equal to 4.9%, which

implies an opportunity cost of cash r − δ around 0.5%.26

5.1 Corporate outcomes

We start our analysis by comparing the value-maximizing corporate policies in the con-

strained and unconstrained economies. Confirming the analytical results, Figure 1 shows

that firms downsize production when cash reserves are low. As a result, the production

26We endogenize δ in Appendix A.5.

ECB Working Paper 19xx, May 2016 36



rate X(c) in the constrained economy is always below that of the unconstrained econ-

omy. While intuition may suggest that financial constraints lead firms to reduce their

investment in innovation, our analysis reveals that this may not be the case. Under the

baseline parametrization, z(c) is always higher than z∗, being roughly 7.14% higher for

c close to zero. The innovation rate is decreasing when cash reserves are small and is

almost flat when cash holdings are large, in line with a gambling behavior.

Figure 2 investigates further the patterns of the optimal innovation rate. An increase

in the refinancing cost ε up to 14% makes the optimal innovation rate steeper around

zero. That is, tighter financial constraints make firms more prone to gamble. Conversely,

an increase in the cost of financing a technological breakthrough α up to 12% decreases

the innovation rate very sharply. An increase in α erodes the incumbents’ surplus from

innovation; as a result, z(c) lies below z∗ when c is large enough. Note, however, that

firms again find it optimal to increase their innovation rate when cash reserves are small.

An increase in κI up to 0.1 (implying that the financing component of the entry cost is

about 14.3% of the technological component) spurs innovation: e.g., z(0) is 10.7% larger

than in the unconstrained benchmark z∗. A larger κI deters entry and renders incumbents

less threatened by creative destruction. This leads to an increase in their innovation rate.

We also explore the impact of cash flow volatility and profitability on the optimal

innovation rate. Notably, the parameters σ and β do not affect the optimal innovation

rate in the unconstrained economy, but they do in the constrained economy. Figure

2 shows that a decrease in β leads to a decrease in markups and prompts gamble for

resurrection. When liquidity constraints are tight and profitability is low, it is relatively

more convenient to cut core production and invest more in innovation. Moreover, a

decrease in σ leads to a sharp drop in the optimal innovation rate and dampens gambling.

Our analysis reveals that z(c) can be higher or lower than z∗, and it can be non-

monotonic in c. These results suggest that financing frictions and liquidity constraints

may boost investment in innovation and may help explain the innovation patterns of

young entrepreneurial firms in comparison to mature firms. Young firms are more finan-

cially constrained (larger ε), they operate with lower margins (lower β), and their cash

flows are volatile (larger σ). Despite these constraints, small firms can be very R&D

intensive, as discussed in the Introduction. Our model can rationalize these patterns.

Moreover, Figure 1 shows that firms can be more valuable in the constrained economy
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than in the unconstrained economy. In the latter, entry is less costly as it does not involve

any financing cost. The entry rate is then larger, which implies that incumbent firms are

more likely to exit the industry. We investigate the general equilibrium effects of this

result in the next section.

5.2 Aggregate quantities

The cross-sectional distribution of liquidity. Figure 3 displays the cross-sectional

distribution of liquidity η(c) on c ∈ [0, C∗] under several parametrizations. The distribu-

tion is monotone increasing as in the model of Bolton, Chen, and Wang (2011). That is,

incumbents’ cash reserves are relatively large most of the time. Variations in the param-

eter values affect not only the shape of the distribution, but also its interval of definition.

For instance, a decrease in the return on cash from 4.9% to 1% or in the coefficient of

cash flow volatility from 0.4 to 0.2 leads to a decrease in the target level of cash reserves.

In both cases, the distribution is defined over a tighter interval, and it becomes steeper.

Conversely, a decrease in the elasticity β reinforces firms’ precautionary policies. Firms

enlarge their target level of cash holdings, and the distribution of liquidity becomes flatter

around zero. That is, firms with smaller monopolistic rents hold more cash.

The shape of the cross-sectional distribution has important implications for the impact

of firm-specific policies on aggregate outcomes. As an illustration, consider the effect of

the potentially decreasing shape of z(c) on the aggregate innovation
∫
η(c)z(c)dc. Since

the stationary distribution is concentrated close to the target level C∗, the impact of the

behaviour of highly constrained firms (i.e., those with c close to zero) is very small and

largely negligible: Even if firms with c close to zero drastically increase their innovation

rate, their mass in the economy and the impact of their policies on the aggregate inno-

vation rate is small. This has interesting implications for government policies designed

to subsidize innovations. As Acemoglu, Akcigit, Bloom, and Kerr (2013) notice, govern-

ment interventions tend to benefit large incumbent firms that are usually more effective

at obtaining subsidies. In our model, subsidizing large firms may also be efficient for

two reasons. First of all, they tend to stay close their target cash holdings and hence,

due to the nature of the distribution η(c) the impact of their policies on the aggregate

economy is the largest. Second, subsidizing small, constrained firms may actually reduce
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