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Abstract

The purpose of this paper is to promote the use of Bayesian model averaging for the

design of satellite models that financial institutions employ for stress testing. Banks

employing ’handpicked’ equations – while meeting standard economic and econometric

soundness criteria – risk significantly underestimating the response of risk parameters

and therefore overestimating their capital absorption capacity. We present a set of

credit risk models for 18 EU countries based both on the model averaging scheme

as well as a series of handpicked equations and apply them to a sample of 108 SSM

banks. We thereby aim to illustrate that the handpicked equations may indeed im-

ply significantly lower default flow estimates and therefore overoptimistic estimates for

the banks’ capital absorption capacity. The model averaging scheme that we promote

should mitigate that risk and also help establish a level playing field with regard to a

common level of conservatism across banks.

Keywords: Stress testing, satellite modeling, model averaging, bank regulation and

supervision

JEL classification: C11, C22, C51, E58, G21
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Non-technical summary

Stress testing has become a very conventional and increasingly prominent tool for assessing

the resilience of financial institutions to hypothetical macro-financial stress scenarios. One

significant recent stress test assessment (including as well as an Asset Quality Review)

was conducted by the European Central Bank in the course of 2014 for 130 significant

European banking groups that are now under the direct supervision of the Single Supervisory

Mechanism (SSM).

Our paper aims to address one important element that all stress tests involve — whether

conducted by financial institutions themselves (in a bottom-up fashion) or by some central

authorities (in a top-down fashion) — which lays in the use of satellite equation systems for

translating macro-financial shock scenarios into risk parameters at bank level. The concern

that forms the basis for our paper is the fact that virtually all institutions tend to neglect

the presence of model uncertainty. While the bridge equations for a given risk parameter at

bank-level may be sound and look acceptable from an economic and econometric viewpoint,

and therefore pass an internal risk management or supervisory sign-off, there is a risk that

the chosen specification by the institution would underestimate the risk parameter response

and in the sequel overestimate the loss absorption capacity of the bank. The choice of

equations that result in overoptimistic scenario conditional forecasts might either be due to

explicit incentives for banks to underestimate the cost of risk or be coincidental.

The aim of our paper is to promote the use of a Bayesian model averaging (BMA)

methodology to mitigate that risk. The model averaging philosophy is not new and used in

other areas by researchers and econometric practitioners. With the BMA-based models and

the illustrative stress test simulation results for a sample of 108 SSM banks we are aiming

to make a simple point: that the deviation with regard to the banks’ projected capital

position can be very significant when either employing some overoptimistic handpicked

satellite equations or, as we argue, the more robust BMA-based satellite models. Handpicked

equations may pass a set of basic criteria for economic and econometric soundness, while

implying however unduly benign risk parameter responses to an assumed adverse scenario.

They therefore pose a risk for an institution to be significantly under-provisioned.

Supervisors, as well as the institutions that are being supervised, may consider using this

approach in order for a risk assessment across portfolios to be more robust, i.e. more likely

reflect the relative risks of exposures to different regions and segments. Moreover, it shall

help develop a more level playing field also across banks, with portfolios of similar (say equal,

hypothetically) risk characteristics more likely resulting in similar capital requirements, if

conditioned on the same centrally-defined macro scenario.
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1 Introduction

Stress testing has become an increasingly relevant and visible tool over the past decades

and is used regularly by financial institutions and those who supervise them, notably by

supervisory authorities and central banks to assess the resilience of financial institutions. In

the course of 2014, the Comprehensive Assessment (CA) was conducted by the European

Central Bank (ECB), in collaboration with the European Banking Authority (EBA) and

the European Systemic Risk Board (ESRB), to assess the quality of the balance sheets of

130 significant European banks.1 One important pillar of the CA was the stress test for

the banks and the goal of assessing the resilience of the institutions under a hypothetical

adverse scenario over a three-year horizon.

Useful entry points to the stress test-related literature from the viewpoint of supervisory

institutions and central banks are the following: the Risk Assessment Model for Systemic

Institutions (RAMSI) developed by the Bank of England (Alessandri et al. (2009)), the

Systemic Risk Monitor (SRM) by the Austrian Central Bank (Boss et al. (2006)), the IMF

(Cihak (2007) and Schmieder et al. (2011)) and the macro stress testing framework that

was developed by the ECB (Henry and Kok (2013)). These papers have in common that

they develop a ’framework’ for stress testing, i.e. cover different risk types such as credit

risk, interest rate risk, market risk, etc. Foglia (2009) is a useful reference as it provides a

comprehensive survey of all stress test-related methodologies that were developed by central

banks and supervisors. Borio and Tsatsaronis (2012) is another general discussion paper

about macro stress testing and what it can achieve; it emphasizes in particular that macro

stress tests are useful for crisis management and resolution (and less so as an early warning

device).

The focus of our paper is on one important element that all the existing stress testing

frameworks involve: the satellite models that are used to link risk parameters at the bank

level with the macro and financial factors to project the evolution of the bank balance sheet

conditional on an adverse scenario. There is a rich literature presenting empirical satellite

models for various risk types, including in particular credit and interest rate risk.2

1The Comprehensive Assessment consisted of two pillars, the Asset Quality Review (AQR) and the stress

test. The CA started in fall 2013, with the assessment being conducted over the course of 2014 until the re-

sults were published in October 2014. See https://www.ecb.europa.eu/ssm/assessment/html/index.en.html

for related material.
2Risk parameters at the bank level include, prominently, variables such as probabilities of default (PD),

loss given default (LGD), loss rates (the product of PD and LGD), and others. These risk parameters drive

the profit and loss (P&L) of an institution over time and therefore determine the evolution of its balance

sheet structure and size. Concerning credit risk, a useful entry point to the literature are survey papers

such as Altman and Saunders (1997), Crouhy et al. (2000) and Gordy (2000).Furthermore, see Schwartz

and Torous (1993), Jimenez and Saurina (2006), Demyanyk and Hemert (2011), Ghent and Kudlyak (2011),

Pesaran et al. (2006), Duellmann and Erdelmeier (2009), Castren et al. (2010), and Gray et al. (2013).
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The starting point of our paper is the observation that financial institutions use single

equation satellite models to establish a link between risk parameters at the bank level

and macro and financial variables at the country level. We refer to them as ’handpicked’

equations which is meant to reflect the fact that institutions pick one equation out of a

large pool of possible equation specifications that would fulfill individually a set of economic

and econometric criteria, i.e., they would all individually qualify for a bank-internal risk

management or supervisory sign-off. Financial institutions have an incentive to choose

equations that imply lower provisioning needs and therefore capital requirements conditional

on a scenario while conforming to the minimal requirements for economic and statistical

soundness. In particular in the course of the 2014 stress test and the quality assurance

process led by the ECB, the documentation provided by the participating banks very clearly

confirmed that virtually all institutions operate, indeed, with single equation approaches.3

Irrespective of whether due to an explicit incentive to choose equations that imply less

stress (to minimize the cost of risk) or the choice being coincidental, the risk of using

handpicked equations is at least twofold.

First, the use of handpicked equations implies the risk that a specification is chosen

that underestimates the response of risk parameters to a prescribed hypothetical adverse

scenario. The loss absorption capacity of an institution might as a result be insufficient.

Second, their use may imply a skewed risk assessment across different portfolios (seg-

ments and regions) for a given institution, conditional not only on an adverse scenario

but also for developing a baseline outlook across portfolios to support business decisions.

Similarly, from a macro perspective, for banks with similar risk profiles that use different

handpicked equations, scenario-conditional forecasts may suggest very different sensitivities

to changing macro conditions although in reality they should not differ significantly (or vice

versa: banks with different risk dynamics could happen to choose models that suggest rather

similar sensitivities to macro-financial conditions).

These two aspects call for the promotion of satellite model methods that are not based on

only one equation but a pool of equations. Specifically, we promote the use of Bayesian Av-

eraging of Classical Estimates (BACE) (Sala-i Martin et al. (2004)) for stress test modeling

purposes. In addition to the aforementioned two reasons for the usefulness of model aver-

aging are the following two aspects: First, there is considerable uncertainty regarding the

drivers of credit risk dynamics. Being agnostic and employing a model averaging technique

Moreover, see Deng and Gabriel (2006), Deng et al. (2000), Sommar and Shahnazarian (2008), Ferry et al.

(2012), Alves and Ribeiro (2011), Salas and Saurina (2002), Jimenez and Saurina (2006), Hoeberichts et al.

(2006), Hoggarth et al. (2005), Laeven and Majnoni (2003), and Duffie and Lando (2000)
3The Quality Assurance process led by the ECB to challenge and possibly override the banks’ assumed

risk parameter paths in case that their models did not meet a list of pre-defined soundness criteria is

described in http://www.ecb.europa.eu/pub/pdf/other/castmanual201408en.pdf.
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is useful for that reason. Second, time series for credit risk measures such as default rates

are typically short; thus, one all-encompassing multivariate model including all potential

predictors cannot be set up. General-to-specific model structuring methods are therefore

likely to be inferior because the general model is bound in its dimension from the beginning

and therefore prone as well to suffer from omitted variable bias.

In our paper, we illustrate the use of Bayesian model averaging with an application to

credit risk based on a Merton model-type measure of PDs for non-financial corporations

for 18 EU countries.4 We develop scenario-conditional forecasts for the 18 countries from

the models that the Bayesian model averaging methodology implies along with a set of

handpicked equations. With the models and the illustrative stress test simulation results

for a sample of 108 SSM banks, we aim to emphasize how significant the deviation with

regard to projected capital measures of the banks can be when employing, in particular,

some overoptimistic handpicked satellite equations. The handpicked equations may pass a

set of basic criteria for economic and econometric soundness. They may, however, imply

unduly benign risk parameter responses to an assumed adverse macroeconomic scenario and

therefore the risk for an institution to be under-provisioned.

An additional reference that we shall make is to Hardy and Schmieder (2011). The

main message of the authors is that stress testing should involve rules of thumb, which in

the context of satellite modeling should mean that equations be simple and for that reason

robust. The authors also note that ”model uncertainty is an important consideration”

and that it is ”easy to overlook” (page 4, Hardy and Schmieder (2011)). With the model

averaging philosophy that we are aiming to promote we have that same objective, that is,

to develop simple and robust models.

It is worthwhile recalling that stress tests conducted by financial institutions are not

only ’useful’ but in fact required by regulators, as stipulated in the Basel accords.5 Pillar II,

the most relevant in terms of the topic of our paper, stipulates that banks shall use stress

testing techniques to assess their ability to withstand hypothetical, severe macroeconomic

stress scenarios. Specifically, see Basel Committee on Banking Supervision, BCBS (2006),

paragraph 775, for credit risk: ”A bank’s management should conduct periodic stress tests

of its major credit risk concentrations and review the results of those tests to identify and

respond to potential changes in market conditions that could adversely impact the bank’s

performance.” In addition, with regard to the results of these stress tests (paragraph 777):

4The model averaging approach that we promote should not be seen as being limited to the application to

Merton-model-type PDs specifically (observed default rates can be used instead), nor credit risk parameters

in general. Pricing parameters, i.e., interest rates for assets and liabilities (interest rates on loans, deposits,

wholesale funding, etc.) can be modeled in the same way. The ECB used the Bayesian model averaging

approach to develop benchmark models and scenario conditional forecasts for all risk parameters (credit risk

related and pricing parameter related) for the 2014 EBA/ECB/SSM stress test.
5See Basel Committee on Banking Supervision, BCBS (2006).
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”Supervisors should take appropriate actions where the risks arising from a banks credit

risk concentrations are not adequately addressed by the bank.”

The remainder of the paper is organized as follows. In Section 2 we recall the basic

rationale underlying the Bayesian model averaging approach. In Section 3 we present the

data and describe the assumptions that are entailed in the stress test simulation that we

conduct for the European banks’ corporate loan portfolios. In Section 4 we present the main

results while in Section 5 we further discuss how the model averaging approach could be

operationalized in a supervisory environment. Section 6 concludes.

2 Bayesian model averaging

The Bayesian Model Averaging (BMA) approach entails the assumption that no single model

is the only true and it therefore operates with a pool of models to which weights are assigned

that reflect the relative performance of each model. The individual models are combined to

a posterior model using these weights.

Bayesian model averaging is a general model philosophy, while we employ a more spe-

cific variant of it, called Bayesian Averaging of Classical Estimates (BACE) (Sala-i Martin

et al. (2004)). The BACE approach envisages the use of diffuse priors, which, in case the

parameter space is bounded, implies uniform weights for all models (we call them equations

in the following) that a model space comprises.6

When applying the Bayesian model averaging approach, we may face a constraint: Not

all 2K models that could be set up withK potential predictors can be considered because the

higher dimensional models cannot be estimated due to an insufficient number of remaining

degrees of freedom (as a result of operating with short time series). For the application at

hand, the approach is therefore to truncate the model space by defining a maximum model

dimension. All up to the self-defined maximum dimensional models will be considered.

For our empirical application the maximum dimension of the models is set to four. The

equations in the model space can well all individually be estimated and then be aggregated

to a posterior model. No stochastic search techniques will need to be employed.7

6The weights that are needed to obtain the posterior parameter densities will in our application be

computed based on the standard Bayesian information criterion, i.e. it does include a penalty term to

down-weigh larger models. The weight function is in this case based on the Bayesian Information Criterion

(BIC) (Schwarz (1978)). Other weight functions can be used, which can be based on either in- or out-of-

sample predictive performance measures.
7The choice of the maximum model dimension does in some cases change the posterior model structures

in terms of predictor variables that appear, yet for the stress test simulation results that involve the posterior

models’ projections of PDs we obtain similar results when choosing for instance a maximum of three instead
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As a basis for forming the model space we use an Autoregressive Distributed Lag (ADL)

model structure. The dependent variable Yt is allowed to be a function of its own lags as

well as contemporaneous and possibly further lags of a set of predictor variables.

Yt = α+ ρ1Yt−1 + ...+ ρpYt−p +

ki∑

k=1

(βk
0X

k
t + ...+ βk

qkX
k
t−qk) + εt (1)

Yt will be the level Distance-to-Default (DD) measure. It will be translated into a PD

measure based on a power function.8 The model and simulation results that we present are

not sensitive to the choice of level or first differences of the DD measure.

The model space will be constructed by considering all conceivable combinations of

predictors from a pool of K variables, with the dimension of the models set to the self-

defined limit L.9 For each model equation i with its predetermined set of predictor variables,

the lag structures for autoregressive and distributed exogenous terms, p and qk, are chosen

optimally by estimating all possible combinations of lag structures up to a limit G (which

will be set to two). The specification for which the BIC is minimal will be chosen. In the

course of the additional search for the optimal lags, the lag structures for the autoregressive

part and for lags of exogenous predictors are forced to be ’closed’ (without gaps). Every

single equation in the model space is expected therefore to be well behaved with regard to

residual statistics.

An object of interest, besides the posterior model’s parameters, is the probability for a

particular predictor to be included in the model space, the posterior inclusion probability.

It is computed as the sum of the posterior model probabilities that contain the particular

predictor. It shall be noted that a predictor variable will be said to be significant in the pos-

terior model if the corresponding posterior inclusion probability exceeds the prior inclusion

probability.10

We compute the posterior inclusion probability for the combined inclusion of the con-

temporaneous and, if present, lagged term of a predictor variable. Moreover, we present

the model structure in terms of long-run multipliers (henceforth LRM) with respect to a

predictor variable Xk from a model i in the model space. The LRM is defined as follows.

of four predictors.
8Alternative PD transformations could have been used instead, for instance, a logit transform of a PD,

a probit, or an inverse Normal.
9When all combinations of variables in models with (1, 2, ..., L) predictors are considered, the number of

models I can be computed as I =
∑L

l=1
K!

l!(K−l)!
.

10For the formulas for the prior and posterior inclusion probabilities, see Sala-i Martin et al. (2004).
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∞∑

l=0

∂E(Yt+l)/∂X
k
t = (βk

0 + ...+ βk
q )/(1− ρ1 − ...− ρp) ≡ Θk (2)

The LRM will, moreover, be normalized. The normalization is accomplished by basing

the LRM on normalized posterior model coefficients. A coefficient is normalised by multiply-

ing the initial coefficient estimate by the ratio of the standard deviations of a predictor and

the dependent variable. Normalized multipliers can be compared across predictor variables

within a model as well as across models (countries).

The imposition of sign constraints, as proposed in this paper, is meant to exclude equa-

tions from the model space that do not meet some predefined criteria. We define the sign

constraints on the basis of the long-run multipliers. For instance, the long-run multiplier

on real activity variables such as real GDP or components of it (e.g., private consumption,

investment) should have a negative sign in a PD equation (a positive sign in a DD equation)

to be conform with theory that suggests that if economic activity slows down, the distance

to default for a company shall decrease.

Each equation in the model space will be subject to the set of sign constraints. Should an

equation not meet at least one constraint it will be assigned a zero posterior model weight,

i.e. not have any bearing on the posterior model’s structure and coefficient estimates. By

imposing sign constraints on the individual equations it is guaranteed that all signs on the

LRMs of predictors in the posterior model will be in line with the restrictions.

The rationale behind the imposition of sign constraints is to mimic the modeling pro-

cess that an econometrician would pursue if working with a single (handpicked) equation

approach. That is, the econometrician would search for a specification that has the ’right

signs’ and not accept a model with the wrong signs, as it would not result in stress in a

stress scenario.11

11The imposition of sign constraints is not a necessary component of the model averaging approach. An

empirical application of the BMA to, say, a PD measure, can result in a meaningful model also without

the prior imposition of sign constraints. However, some of the individual equations in the model space may

(quite likely) have the incorrect signs and therefore influence the posterior multipliers on a predictor in a

way that would be against theory. The sign of the posterior coefficient then depends on how strong the

posterior equation weight is on the equations that had the correct and the incorrect signs. The choice as to

whether sign constraints are to be imposed depends on how strong the modeler’s prior beliefs and confidence

in some underlying theory (implying the signs of the predictor variables) are. The number of equations that

are assigned a zero posterior weight due to a violation of some sign constraint can in itself be an interesting

measure. If a large portion, say 80% or more, of the equations in the model space get rejected on the basis of

the sign constraints, one can interpret this as being strong evidence against some underlying theory. When

operating with short time series, one should not draw too strong conclusions though in that respect, as the

underlying sample may rather by chance imply relationships that appear to speak against theory.
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3 A stress test simulation for European banks’ corpo-

rate loan portfolios

The objective is now to apply the Bayesian model method to develop a system of satellite

equations for a sample of EU countries. The satellite equation system will be used to conduct

a stress test for the corporate loan portfolios of 108 European banks to then make a simple

point: that it can make a material difference for the projected capital position of the banks

when using either some selected handpicked equations that meet some predefined economic

and econometric criteria or the posterior model structure resulting from the BMA approach.

3.1 Data

The data involved in the modelling exercise includes: i) the Merton-model-based DD mea-

sure for 18 EU countries, ii) bank-level data for 108 SSM banks and iii) macro and financial

data for the 18 EU countries.

The dependent variable is a Contingent Claims Analysis (CCA)-based measure of Distance-

to-Default (DD) for nonfinancial corporations in the 18 EU countries.12 The DD and cor-

responding PD data are sourced from Credit Edge/Moody’s KMV’13

Bank-level data is sourced from the EBA/SSM/ECB stress test templates that were

published in October 2014 by the EBA and the ECB.14 The bank sample contains 108

banks, i.e. the subset of the 130 banks from the ECB Comprehensive Assessment that are

located in the 18 EU countries for which we develop models.15 Bank-individual information,

both with regard to the raw input data and model outputs, will be presented at the aggregate

country-level.

The information that is employed includes exposures at default (EAD) for the corporate

12Three useful references for an exposition of the conceptual basis for the DD measure and how it relates

to the probability of default can be found in Crosbie and Bohn (2003), Sun et al. (2012) and Ferry et al.

(2012).
13The DD measure can be translated into a PD empirically by means of a power equation that we base

on Moody’s PD and DD data. The simple bivariate equations are meant to mimic the more advanced (and

proprietary) model that Moody’s KMV developed to map DDs into PDs (see Crosbie and Bohn (2003)).

We use the DD data for 18 EU countries at a quarterly frequency, spanning for the majority of countries

the period from 1999 to 2013 (for all countries the time series end in 2013Q4).
14See https://www.ecb.europa.eu/ssm/assessment/html/index.en.html.
15DD data at the country level were missing or of insufficient quality or time series length for Cyprus,

Estonia, Lithuania, Latvia, Malta, and Slovakia. The banks from these countries could have been included

in the stress test simulation but would have been shocked only with regard to their foreign exposures as we

would not have had a domestic DD model for them (the impact estimates for them would have been rather

limited by design in this case).
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exposure (because the DD models are developed for the nonfinancial corporate segment),

Common Equity Tier 1 (CET1) capital, and Risk Weighted Assets (RWA); all as of 2013.

In addition, risk parameter starting points as of 2013 are involved, i.e., the PD and LGD

starting points for the corporate portfolios. PDs are either the bank regulatory model-based

point-in-time parameters or, in case the PDs are not available, the realized default rates for

2013 (default flow 2013 over EAD beginning of 2013).16 In Table 1 we summarize the list

of banks that is involved in the modeling exercise, including some basic information about

the CET1 and RWA starting point for all banks.

The macroeconomic and financial variables involved in the models are sourced from

the ECB statistical data warehouse which partly mirror the information provided by other

data vendors (e.g. Eurostat for macro data as well as Bloomberg and Datastream for

financial data). The eleven variables that are involved in the modelling exercise are: real

GDP YoY growth (GDP), real investment growth YoY (ITR), real export growth YoY

(XTR), the unemployment rate (URX), the year-on-year absolute change in URX (Δ4URX),

consumer price inflation YoY (INF), residential property prices (YoY, over-2-years, over-3-

years, denoted respectively as HP, HP2y and HP3y), 10-year benchmark government bond

yields as a spread to the German bond yield (LTN), and a 3-month money market rate

(Euribor or national equivalent for non-euro area countries, as a spread to ECB or national

central bank policy rates, denoted as STN).

3.2 Stress test setting and assumptions

The stress test simulation that we conduct focuses on credit risk in the nonfinancial corporate

portfolio of the banks. Our settings follow relatively closely the methodological assumptions

that were involved in the 2014 ECB/SSM/EBA stress test.17 The stress test horizon is set

to 3 years (2014 to 2016) and we focus on only the adverse scenario (neglecting the baseline

scenario).

The NPL formation at bank-level should be defined. It is a function of the expected

default rate, i.e. the PD, and write-off rates w.

NPLt = NPLt−1(1− wt) + PDt(Lt−1 −NPLt−1) (3)

where Lt are gross loans and Lt − NPLt is assumed to equal EADt. In conjunction

with an assumed path for LGDs, the expected loss will be the product of PD and LGD.

16PD and LGD starting points can be obtained for instance from the following source:

https://www.eba.europa.eu/documents/10180/679742/Risk+parameters+disclosure+of+EU+banks+%28pdf%29.
17See EBA (2014a).

ECB Working Paper 1845, September 2015 10



ELt = PDt × LGDt × EADt−1 (4)

where EADt−1 is the exposure at default at the end of period t − 1 (the beginning of

period t).

Concerning LGDs, the corporate loan stock of each bank (and country) is divided into

corporate exposures that are collateralized by real estate and other. For the real estate

(RE)-related exposures, the LGDcorpRE will be parameterized as a mechanical function of

Commercial Property Prices (CPP) in the scenario according to the following equation.

LGDcorpRE
2013+h = 1− (1− LGDcorpRE

2013 )CPP2013+h

CPP2013
(5)

For the part of the corporate portfolio backed by collateral other than real estate, the

LGD will be held constant by assumption. Moreover, for the sake of simplicity, the LGD

parameters for the already defaulted assets, i.e., the NPL stock, are assumed to not be

further affected along the scenario horizon.18

The provision stock of the institutions will be assumed to evolve in a way to reflect the

projected evolution of LGDs, i.e., the coverage ratio (provision stock over NPL stock) is

therefore assumed to be proxied by LGDs.

The balance sheets of all banks are assumed to be static, i.e., gross loan amounts (per-

forming plus nonperforming stocks) are constant over the 3-year simulation horizon (i.e.,

Lt−1 in equation (3) does not actually need a time subscript as it is constant by assumption).

Write-offs of nonperforming assets or sales of performing assets are therefore not allowed

(i.e., wt in equation (3) is assumed to equal zero). Loans that would mature during the

simulation horizon are assumed, implicitly, to be replaced by new business that has identical

risk and maturity characteristics. The only effect that is being simulated is therefore the

migration of loans from performing to nonperforming status. Cures (i.e., the migration of

NPLs back to performing status) will be ruled out by assumption.

Profit and loss components other than loan loss provisions are assumed to equal zero

along the scenario horizon. This assumption is not entirely realistic of course, nor would it

be stipulated in regular stress test exercises. However, it is in that sense that our simulation

exercise is indeed to be seen as purely illustrative with regard to the partial effect of only

loan loss provision buildup and the implied impact on the capital position of the banks as

18We shall note that the assumption for the evolution of LGDs is not very influential for what concerns

the results, as we will present them later on (namely, as CET1 ratio differentials between handpicked and

posterior models).
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implied by either handpicked equations or a posterior model following the model averag-

ing methodology. The focus lies on illustrating the impact of choosing handpicked versus

posterior model averages for the provisioning needs of the banks in the form of CET1 ratio

differences. As the focus lies on capital ratio differences, the assumption of zero P&L for

items other than loan losses is not very relevant.

While the simulation is simplistic with regard to all remaining P&L components, we do

account for two additional effects that the default flow implies.

First, the impact on risk weights is accounted for by employing the Basel formula

for the corporate segment, which translates PD, LGD and EAD parameters into RWA.19

We compute an RWA amount for the corporate segment as of end-year 2013 (denoted as

RWAaggr,corp
2013 ) and then for the scenario-conditional paths from the different handpicked and

posterior models (RWAaggr,corp
2013+h ). The absolute difference between these self-computed for-

ward paths of the corporate RWA and the self-computed 2013 starting point is then applied

to the 2013 RWA as observed at the bank-level (denoted as RWAbank,total
2013 ).20 Equation (6)

indicates how the RWA forward paths are computed.

RWAbank,total
2013+h = RWAbank,total

2013 +max(RWAaggr,corp
2013+h −RWAaggr,corp

2013 , 0) (6)

As can be seen in the formula, we introduce a floor for the RWA at the 2013 starting

value for each bank so that RWAs cannot fall below the 2013 starting point.

Second, we account for forgone interest income that the simulated default flows imply.

To that end, an effective interest rate is computed at bank level for the 2013 starting point,

which is then held constant by assumption throughout the simulation horizon.21 The loan

interest rate proxy is then multiplied by the default flows that are being simulated from the

various satellite models and the resulting forgone interest amounts subtracted from capital

for the respective years along the scenario horizon.

In line with the structure of the EBA/ECB disclosure, the ten largest country exposures

of each bank are used at the granular level. That is, the PD, LGD and EAD parameters are

steered by means of the satellite equations from the respective countries. If, for instance, an

Austrian bank has some corporate loan exposure in Germany, it will be the German satellite

19See CRR (2013), Article 153 point 1 (iii) (pg. 97).
20The reason for computing a 2013 starting point ourselves and then attaching the absolute changes to the

2013 bank starting point is that the RWA formula is not expected to exactly replicate the RWA reported

by a bank due to the nonlinear nature of the RWA formula. When being applied at different levels of

granularity, the formula gives slightly different estimates of RWA total for a portfolio (the formula is applied

at the exposure level in the institution as opposed to the portfolio level in this paper).
21The interest rate is computed as the ratio of interest income over interest bearing assets.

ECB Working Paper 1845, September 2015 12



model that is used to project the DD, and therefore the PD, for the Austrian bank’s exposure

in Germany. The NPL formation and corresponding provision flow will therefore be country

specific for each bank in the sample. The starting point PDs at bank level are translated

into DD starting points by means of the same power functions (their inverse) that are used

to map the Merton model PDs and DDs. Note that the aforementioned RWA formula for

the corporate segment is applied at country exposure level for every single bank (just as in

all default and impairment flow calculations).

The underlying macro-financial scenario that is translated by means of the DD equation

system is the one that was used as a basis for the 2014 EBA/SSM/ECB stress test.22

4 Results and application

4.1 Stress test model and simulation results

All predictor variables that relate to economic activity (GDP, investment, exports) were

assigned a positive sign constraint on their LRM, to reflect that an economic downturn

should induce DDs to decrease (PD increase). Consumer price and residential property

price inflation were assigned a positive constraint, too. The LRMs on short- and long-

term interest rates are expected to have a negative sign because the ability of debtors to

repay their debt should, ceteris paribus, worsen in case the cost of credit increases. For

jurisdictions in which loan contracts are predominantly ’variable rate’, the sensitivity of

DDs/PDs is expected to be more pronounced than in fixed rate regimes. Finally, a negative

sign constraint was imposed on the unemployment rate.23

Given the number of potential predictors (11) and the settings for the maximum model

dimension (maximum four lags of exogenous variables beyond their contemporaneous in-

clusion), the number of equations in the model space for each country equals 562. For

some countries such as Poland and Slovenia that number is smaller because for instance the

residential property price time series was too short or not available and therefore excluded.

The structure of the posterior models across the 18 countries is summarized in Figure 1.

For about two to three predictor variables per country, the posterior inclusion probability

22See EBA (2014b).
23Our results are subject to the caveat that the estimates may not be fully immune to some endogeneity

bias resulting for instance from simultaneity, i.e. reverse causality from PDs/DDs back to, for example,

real activity measures. The risk of simultaneity bias with regard to real activity measures in the model is

in our view relatively limited, however, because the PDs/DDs from the Merton-type model are forward-

looking, while for measures of contemporaneous realised default rates the simultaneity concern would be

more justified.
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exceeds the respective prior inclusion probabilities, indicating thereby the significance of

the predictor in a Bayesian sense. Variables that appear more prominently as relevant

predictors of DDs are long-and short-term interest rates and some measure of real activity,

in particular GDP growth or investment. Export growth plays a dominant role for DDs

in Germany and the Netherlands, which can be expected due to the significant export

orientation of the corporate sector in these countries. Interest rates appear to play a role in

many countries, in particular also in peripheral countries such as Italy, Portugal and Ireland

which are known to be characterized by ’variable-rate’ loan systems, i.e. their sensitivity to

interest rate changes can be expected to be higher than for other countries. Unemployment

has been found to co-move significantly with corporate DDs in a few countries, e.g., Spain.

We now ’handpick’ some selected equations from the model spaces for all countries which

in terms of implied scenario-conditional forecasts of DDs fall into the right and left part of

the distribution of the posterior models’ scenario-conditional forecast. These two alterna-

tive choices of handpicked equations will be referred to as an ’optimistic’ and ’pessimistic’

equation. In addition to the ’optimistic’ equation, a second variant of an optimistic model,

referred to as optimistic*, will be presented per country. The optimistic* equation is se-

lected from the subset of equations in the model space that imply falling DDs (i.e., rising

PDs) under the adverse scenario. The additional optimistic* equation is meant to reflect

the choice of an institution that would not employ a model that implies falling PDs under

an adverse scenario.

The estimates for the handpicked equations along with the posterior models are presented

in Table 2. The estimates and performance measures presented in the table suggest that all

models, both handpicked and posterior, perform well in terms of predictive measures such as

the R-square and residual statistics such as the DW. The signs on the macro and financial

predictor variables are in the very majority of handpicked models conform to economic

theory. The posterior models’ coefficient signs are in line with theory as the sign constraints

were imposed as outlined in the previous section.

We shall note that indeed all equations in the model space meet the basic requirements

for predictive performance and residual behavior. The distribution of R-squares and DW

statistics based on the individual equations in the model space for each country range very

closely around the posterior models’ statistics. This is due to the way we design the model

space, which as outlined in the previous section, envisages the optimization of lag structures

of distributed lags for every single equation in the model space.

The implied model projections at the country level for the three handpicked equations as

well the posterior model are visualized in Figure 2. The grey area in the charts depicts the

5th and 95th percentile of the adverse scenario-conditional distribution from the posterior
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models.24 The handpicked equations were chosen so that their projections fall approximately

into the center of the posterior models’ mean and the respective upper and lower bounds

from the posterior model (5th and 95th percentile).

The DD projections conditional on the adverse scenario from the three handpicked and

the one posterior model per country are now applied to the bank-specific starting points for

the 108 banks in the sample. Figure 3 shows the difference of CET1 ratios from a handpicked

equation system relative to the posterior model-implied CET1 ratio. The difference is the

average difference based on the 2014, 2015, and 2016 projected capital position of the banks.

Panel A and B in Figure 3 refer to the impact estimates when including and excluding the

stress on foreign exposures, respectively. In Panel B, for example, the Austrian banks’

German exposure would not be stressed, while only the Austrian exposure is stressed with

the Austrian model. Because the banks all tend to have the most significant exposure in

their home countries, the differences between Panel A and B are not very pronounced,

implying that the main stress for the banks arises from their domestic loan exposures. Note

that the impact estimates in Panel B, the ones excluding foreign stress, still mean that the

banks’ foreign exposures generate loan losses, as the PDs and LGDs are not zero; they are

just not stressed, i.e., held constant.

Figure 4 (Panel A and B) displays the corresponding Kernel density distributions based

on the underlying sample of 108 banks for the difference in projected capital ratios (again

on average over the three years).

With a view to the handpicked ’optimistic’ equations, the optimistic* should be the focus

for the majority of countries. For only a few countries the optimistic equation (without *)

and the implied capital ratio differential should be looked at, namely for the countries whose

adverse scenario does not imply a further deterioration in macro conditions but rather a

continuation of weak macro conditions. Countries that fall into that category include Greece,

Ireland and Slovenia. For these countries, the domestic DD projections from the posterior

model are rather flat, which is reflective of the fact that the underlying macro factors are

not further deteriorating in the adverse scenario. Institutions in these countries may argue

that some indicators improve under the adverse scenario and should therefore imply that

DDs rise (PDs fall) even under stress. This claim would be acceptable, and it is via the

choice of the optimistic model (without *) that this aspect is reflected.

The estimates presented in Figures 3 and 4 (focus on Panel A in the following) suggest

that the aggregate average difference between the optimistic and optimistic* models relative

24Note that the adverse scenario-conditional forward distribution is reflective of three sources of uncer-

tainty: model uncertainty, coefficient uncertainty and residual uncertainty. A nonparametric bootstrap has

been employed to draw from the posterior models’ residuals. A parametric bootstrap has been employed to

draw from the posterior coefficient space.
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to the posterior model equal +2.8 and +1.7 percentage points (pp) for the CET1 ratio,

respectively. For the French banking system, for instance, the optimistic* model choice

would imply for its average capital ratios (average along the scenario horizon) to stand

+2.3pp above the posterior model result. On the downside, on average across countries, the

handpicked pessimistic model specifications result in a -3.2pp average differential for the

capital ratios relative to the posterior model projections.

As an example for the over-optimistic models, the more pronounced CET1 ratio differen-

tials can be observed for the Netherlands, where the optimistic* equation implies a +5.2pp

CET1 ratio gap to the posterior model. On the opposite side, for the German banking

system, the optimistic* equation would result in a rather limited gap of about +0.8pp. For

Spain, Luxembourg, Portugal and Slovenia the estimates are close to that of Germany.

Figure 5 indicates how the different components – loan losses, forgone interest income,

and changes in RWA – contribute to the CET1 ratio change over the three-year scenario

horizon until 2016.25 Initially, the contributions are all negative percentage point contri-

butions to the system-wide CET1 ratio, which we sum and normalize so that the relative

contributions as depicted in the chart sum to 100%.

It can be seen that loan losses have as expected the highest contribution, ranging between

69% and 87% depending on the model scheme. In addition, as expected, the contribution

of loan losses is higher for the pessimistic handpicked equations and the posterior model

compared to the optimistic models, as the default flows are stronger due to higher PDs.

Second and third in the contribution rank forgone interest and RWA changes, amounting

to about 11%-12% and up to 20%, respectively. The fact that the forgone interest income

contribution increases slightly for the pessimistic and posterior models reflects that the

default flow is stronger (due to higher PDs) under these models and therefore the foregone

interest income is higher. The RWA contribution is small, around 1%, for the pessimistic

and posterior model which is primarily because we floor the RWAs at 2013 starting values

under all model schemes; this constraint becomes binding for these two model schemes. If

the RWA floor was to be deactivated, the RWA contribution would become negative.

4.2 Supervisory applications

The supervisory review process, as outlined in (BCBS (2006)), envisages that supervisors

review and evaluate bank internal capital adequacy assessments and strategies as well as

their ability to monitor and ensure their compliance with regulatory capital ratios. Supervi-

25It should be noted that the relative contributions should be interpreted really as ’relative’ contributions,

meaning that loan losses, for instance, can be higher (lower) in absolute terms while being lower (higher) in

relative terms.
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sors should expect banks to operate above the minimum regulatory capital ratios and should

have the ability to require banks to hold capital in excess of the minimum.

Consequently, in view of the regulation, the supervisor may consider operationalizing the

idea of model averaging by developing a model space based on a predefined set of potential

predictor variables (inspired by a set of predictor variables that the supervised institution

uses or suggested additional covariates) to then position a model from a bank in that model

space. The bank model-implied scenario conditional forecast, for instance, for PDs for a

certain portfolio of the bank, can be ranked in the model space according to, for example,

the average PD along the scenario horizon to then consider a rule that would imply the

rejection of the bank model in case its projection is less severe than the median from the

model space (the posterior model projection, say). The rationale of the rejection would

be that a significant number of alternative models in the model space, which are equally

well performing with regard to economic and econometric criteria, imply a more adverse

parameter response than the bank’s model.

Following that rationale would, however, imply that the choice (the acceptance or re-

jection of a bank model) depending on a posterior model projection would depend on the

underlying scenario. This is not necessarily bad. Based on one scenario, the supervisor may

reject a satellite model from a bank, whereas based on another scenario of a different type

(risk factor constellation), the supervisor would accept it.

Alternatively, the supervisor can recommend that the banks themselves employ the

Bayesian model averaging approach and therefore a posterior model to produce scenario-

conditional forecasts of its risk parameters. An institution may wish to simulate the bounds

around the scenario conditional forecasts and employ them for estimating the scenario-

conditional loan loss provisioning needs, to thereby account even more explicitly for model

uncertainty.

We shall note that alternative model schemes, based, for instance, on transition matri-

ces, which banks might employ, can be combined with the model averaging approach. A

compressed measure of the evolution of the transition matrix as a whole or compartments of

the matrix (or in the limit case, a time series of every single cell of a transition matrix) can

be well modeled as a function of the macro and financial variables by means of the Bayesian

model averaging technique.

Moreover, model averaging in itself does not need to be based on the particular sort of

underlying model structure (ADL model structure) as presented in this paper. It can also

be based on a set of concrete structural or semi-structural or other reduced-form model

structures, linear or nonlinear. Hence, any model that a bank presents can as such be

embedded in the model space.
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5 Conclusions

The purpose of the paper is to promote the use of Bayesian model averaging techniques

for supervisors and institutions that are being supervised in a stress test context for the

development of satellite equations that link risk measures at bank-level with macroeconomic

and financial indicators. The aim of the model averaging methodology is to help develop

robust specifications that institutions can employ for stress testing, in particular in the

context of the Basel framework (Pillar II). The methodology shall help develop a level playing

field across banks for a risk assessment across institutions to be adequate and comparable.

With the models and the illustrative stress test simulation results for a sample of 108

SSM banks we were aiming to make a simple point: that the deviation with regard to the

projected capital position of a bank can be very significant when either employing some

overoptimistic handpicked satellite equations or, as we argue, a more robust satellite model

based on the BMA approach. Handpicked equations may pass a set of basic criteria for

economic and econometric soundness, while implying however unduly benign risk parameter

responses to an assumed adverse macroeconomic scenario. They therefore pose a risk for

the institution to be significantly under-provisioned.

Supervisors may consider operationalizing the idea of model averaging by developing

a model space based on a predefined set of potential predictor variables to then position

a model from a bank in that model space. The bank model-implied scenario conditional

forecast can be ranked in the model space to then consider a rule that would imply the

rejection of the bank model in case its projection is less severe than the median (or another

quantile, depending on the supervisor’s risk aversion). The rationale of the rejection would

be that a significant number of alternative models in the model space, which are equally

well performing with regard to economic and econometric criteria, imply a more adverse

parameter response than the bank’s model.
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Figure 1: Posterior DD model structures

Note: The figure displays the posterior model structures for the 18 countries. The predictor variables are sorted by
descending posterior inclusion probability. The long run multipliers combine the contemporaneous and lagged coefficient
estimates for a given predictor in one multiplier. Moreover, the multipliers are normalized so that they can be compared
across predictor variables both within models and across countries.

1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.2
0.4

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Austria
Posterior inclusion prob. (left axis) Posterior norm. long run multiplier (right axis) Prior inclusion prob.

1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.2
0.4

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Belgium
Posterior inclusion prob. (left axis) Posterior norm. long run multiplier (right axis) Prior inclusion prob.

0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Germany
Posterior inclusion prob. (left axis) Posterior norm. long run multiplier (right axis) Prior inclusion prob.

0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Denmark
Posterior inclusion prob. (left axis) Posterior norm. long run multiplier (right axis) Prior inclusion prob.

6.0
5.0
4.0
3.0
2.0
1.0
0.0
1.0

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Spain
Posterior inclusion prob. (left axis) Posterior norm. long run multiplier (right axis) Prior inclusion prob.

3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.5

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Finland
Posterior inclusion prob. (left axis) Posterior norm. long run multiplier (right axis) Prior inclusion prob.

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.2
0.4

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

France
Posterior inclusion prob. (left axis) Posterior norm. long run multiplier (right axis) Prior inclusion prob.

0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Greece
Posterior inclusion prob. (left axis) Posterior norm. long run multiplier (right axis) Prior inclusion prob.

0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Hungary
Posterior inclusion prob. (left axis) Posterior norm. long run multiplier (right axis) Prior inclusion prob.

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ireland
Posterior inclusion prob. (left axis) Posterior norm. long run multiplier (right axis) Prior inclusion prob.

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Italy
Posterior inclusion prob. (left axis) Posterior norm. long run multiplier (right axis) Prior inclusion prob.

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Luxembourg
Posterior inclusion prob. (left axis) Posterior norm. long run multiplier (right axis) Prior inclusion prob.

1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.2
0.4

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Netherlands
Posterior inclusion prob. (left axis) Posterior norm. long run multiplier (right axis) Prior inclusion prob.

0.2
0.2
0.1
0.1
0.0
0.1
0.1
0.2
0.2
0.3

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Poland
Posterior inclusion prob. (left axis) Posterior norm. long run multiplier (right axis) Prior inclusion prob.

0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.1

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Sweden
Posterior inclusion prob. (left axis) Posterior norm. long run multiplier (right axis) Prior inclusion prob.

0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.1

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Portugal
Posterior inclusion prob. (left axis) Posterior norm. long run multiplier (right axis) Prior inclusion prob.

0.10
0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Slovenia
Posterior inclusion prob. (left axis) Posterior norm. long run multiplier (right axis) Prior inclusion prob.

0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

United Kingdom
Posterior inclusion prob. (left axis) Posterior norm. long run multiplier (right axis) Prior inclusion prob.

ECB Working Paper 1845, September 2015 22



Figure 2: Posterior and handpicked model equation implied scenario conditional forecasts

Note: The DD measure is to be understood as multiples of standard deviations (vertical axes). The underlying data, models
and projections are at quarterly frequency. The forward horizon covers the 12 quarters from 2014Q1 to 2016Q4. The
brown line indicates the posterior model implied baseline path; the orange line indicates the posterior model’s adverse
path; the blue line indicates the pessimistic handpicked model implied adverse path. The solid and dashed green lines
indicate the optimistic and optimistic* models’ adverse projection. The grey area indicates the 5th 95th percentile bounds
corresponding to the adverse scenario conditional DD forecast from the posterior models.
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Figure 3: Difference in CET1 capital ratios from handpicked versus posterior models – Banking
system aggregate results

Note: Panel A shows the difference in CET1 ratios (at the end of the scenario horizon in 2016) implied by the hand picked
equations relative to the posterior model’s implied CET1 ratio. Panel B shows the difference while not stressing the banks’
foreign exposures (i.e. keeping PDs and LGDs for foreign exposures constant at 2013 starting points).

Figure 4: Difference in CET1 capital ratios from handpicked versus posterior models – Kernel
density distributions based on underlying bank sample

Note: Panel A shows the distribution of differences in CET1 ratios (end 2016) implied by the hand picked equations relative
to the posterior model’s implied CET1 ratio. Panel B shows the distribution of differences while not stressing the banks’
foreign exposures (i.e. keeping PDs and LGDs for foreign exposures constant at 2013 starting points).

Figure 5: Relative contribution of loan losses, forgone interest income and changes in RWA to the
total CET1 ratio change from 2013 to 2016 (adverse scenario, total banking system)

Note: The chart indicates the relative contributions from loan losses, forgone interest income and changes in RWA over the
3 year horizon (2014 16) under the adverse scenario. The contributions for each model sum to 100%. The underlying
absolute contributions to the CET1 ratios are initially all negative percentage point contributions.
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Table 1: List of banks included in the illustrative stress test simulation

Country # SSM ID Bank name
CET1 2013
[EURmn]

RWA 2013
[EURmn]

CET1R 2013 [%]

1 ATBAWA BAWAG P.S.K. Bank für Arbeit undWirtschaft und Österreichische Postsparkasse AG 2,445 16,853 14.5
2 ATERST Erste Group Bank AG 11,275 100,953 11.2
3 ATRANI Raiffeisenlandesbank Niederösterreich Wien AG 2,279 13,010 17.5
4 ATRAOB Raiffeisenlandesbank Oberösterreich AG 3,015 26,407 11.4
5 ATRAZE Raiffeisen Zentralbank Österreich AG 9,487 91,504 10.4
6 ATVBH Österreichische Volksbanken AGwith credit institutions affiliated according to Article 10 of the CRR 3,151 27,451 11.5
7 BEABIG Argenta Bank en Verzekeringsgroep 1,388 5,716 24.3
8 BEAXA AXA Bank Europe SA 794 5,225 15.2
9 BEBELF Belfius Banque SA 7,248 52,338 13.8
10 BEBNY The Bank of New York Mellon SA 1,612 10,853 14.9
11 BEDXIA Dexia NV 8,808 53,839 16.4
12 BEKBC KBC Group NV 12,277 92,543 13.3
13 DEAAB Aareal Bank AG 2,187 13,344 16.4
14 DEAPAE Deutsche Apotheker und Ärztebank eG 1,752 10,593 16.5
15 DEBLB Bayerische Landesbank 13,128 93,669 14.0
16 DEBSW Wüstenrot Bausparkasse AG 778 7,346 10.6
17 DECOMM Commerzbank AG 24,587 215,925 11.4
18 DEDEBK Deutsche Bank AG 48,976 353,103 13.9
19 DEDEKA DekaBank Deutsche Girozentrale 3,644 25,708 14.2
20 DEDZB DZ Bank AGDeutsche Zentral Genossenschaftsbank 9,721 99,453 9.8
21 DEHASP HASPA Finanzholding 3,935 31,546 12.5
22 DEHSH HSHNordbank AG 3,790 37,878 10.0
23 DEHYMU Münchener Hypothekenbank eG 532 7,730 6.9
24 DEHYRE Hypo Real Estate Holding AG 4,086 24,484 16.7
25 DEIKB IKB Deutsche Industriebank AG 1,340 14,069 9.5
26 DEKFW KfW IPEX Bank GmbH 2,458 18,698 13.1
27 DELBB Landesbank Berlin Holding AG 3,112 31,192 10.0
28 DELBW Landesbank Baden Württemberg 12,359 88,416 14.0
29 DELHTG Landesbank Hessen Thüringen Girozentrale 7,065 56,531 12.5
30 DELKBW Landeskreditbank Baden Württemberg Förderbank 2,933 21,740 13.5
31 DELWREB Landwirtschaftliche Rentenbank 2,906 17,179 16.9
32 DENLG Norddeutsche Landesbank Girozentrale 7,761 73,090 10.6
33 DENRW NRW.Bank 17,973 48,098 37.4
34 DESEB SEB AG 2,009 11,726 17.1
35 DEVWFS Volkswagen Financial Services AG 7,926 82,488 9.6
36 DEWBP Wüstenrot Bank AG Pfandbriefbank 393 4,576 8.6
37 DEWGZ WGZ Bank AGWestdeutsche Genossenschafts Zentralbank 2,354 22,137 10.6
38 ESBANK Banco Financiero y de Ahorros, S.A. 11,278 105,345 10.7
39 ESBBVA Banco Bilbao Vizcaya Argentaria, S.A. 37,058 344,741 10.7
40 ESBKT Bankinter, S.A. 2,864 23,799 12.0
41 ESBMN Banco Mare Nostrum, S.A. 2,018 21,382 9.4
42 ESBSAB Banco de Sabadell, S.A. 8,227 80,189 10.3
43 ESCAJAM Cajas Rurales Unidas, Sociedad Cooperativa de Crédito 2,422 22,023 11.0
44 ESCX Catalunya Banc, S.A. 2,619 21,266 12.3
45 ESIBER Caja de Ahorros y M.P. de Zaragoza, Aragón y Rioja 2,655 26,475 10.0
46 ESKTXB Kutxabank, S.A. 4,375 36,027 12.1
47 ESKXA Caja de Ahorros y Pensiones de Barcelona 17,544 170,679 10.3
48 ESLIBER Liberbank, S.A. 1,565 18,080 8.7
49 ESPOPU Banco Popular Español, S.A. 8,942 84,109 10.6
50 ESSAN Banco Santander, S.A. 56,086 540,248 10.4
51 ESUNIC Unicaja Banco, S.A. 3,693 33,321 11.1
52 FIDBK Danske Bank Oyj 2,323 15,210 15.3
53 FINBF Nordea Bank Finland Abp 8,286 58,617 14.1
54 FIPOPO OP Pohjola Group 6,897 40,157 17.2
55 FRBNPP BNP Paribas 66,347 621,307 10.7
56 FRBPCE Groupe BPCE 42,261 409,383 10.3
57 FRBPI BPI France (Banque Publique d’Investissement) 13,193 43,226 30.5
58 FRCAGR Groupe Crédit Agricole 59,692 544,049 11.0
59 FRCMUT Groupe Crédit Mutuel 32,859 236,969 13.9
60 FRHSBC HSBC France 4,116 32,013 12.9
61 FRLBP La Banque Postale 5,748 57,239 10.0
62 FRPSA Banque PSA Finance 2,679 19,054 14.1
63 FRRCIB RCI Banque 2,562 21,890 11.7
64 FRSFL Société de Financement Local 1,494 6,153 24.3
65 FRSOCG Société Générale 37,362 343,115 10.9
66 GRALPH Alpha Bank, S.A. 8,211 51,754 15.9
67 GREURO Eurobank Ergasias, S.A. 4,049 38,114 10.6
68 GRNBG National Bank of Greece, S.A. 6,058 56,686 10.7
69 GRPIRE Piraeus Bank, S.A. 8,171 59,715 13.7
70 IEAIB Allied Irish Banks plc 9,123 60,883 15.0
71 IEBAML Merrill Lynch International Bank Limited 5,989 39,488 15.2
72 IEBIRE The Governor and Company of the Bank of Ireland 6,851 55,264 12.4
73 IEPTSB Permanent tsb plc. 2,203 16,775 13.1
74 IEUBIL Ulster Bank Ireland Limited 4,490 38,879 11.5
75 ITBAPO Banco Popolare Società Cooperativa 5,314 52,806 10.1
76 ITBPER Banca Popolare Dell'Emilia Romagna Società Cooperativa 3,968 43,351 9.2
77 ITBPM Banca Popolare Di Milano Società Cooperativa A Responsabilità Limitata 3,166 43,447 7.3
78 ITBPS Banca Popolare di Sondrio, Società Cooperativa per Azioni 1,923 23,603 8.1
79 ITBPV Banca Popolare di Vicenza Società Cooperativa per Azioni 2,669 28,476 9.4
80 ITCARI Banca Carige S.P.A. Cassa di Risparmio di Genova e Imperia 1,187 22,989 5.2
81 ITCRED Credito Emiliano S.p.A. 1,769 16,152 11.0
82 ITCRVA Banca Piccolo Credito Valtellinese, Società Cooperativa 1,590 18,096 8.8
83 ITICCH Iccrea Holding S.p.A 1,494 13,480 11.1
84 ITISP Intesa Sanpaolo S.p.A. 33,995 284,456 12.0
85 ITMDB Mediobanca Banca di Credito Finanziario S.p.A. 4,682 50,640 9.2
86 ITMPS BancaMonte dei Paschi di Siena S.p.A. 8,504 83,490 10.2
87 ITUBI Unione Di Banche Italiane Società Cooperativa Per Azioni 7,787 63,540 12.3
88 ITUCG UniCredit S.p.A. 39,900 408,587 9.8
89 ITVENE Veneto Banca S.C.P.A. 1,844 25,167 7.3
90 LUBCEE Banque et Caisse d'Epargne de l'Etat, Luxembourg 2,374 13,886 17.1
91 LUCLST Clearstream Banking S.A. 652 3,363 19.4
92 LUPCAP Precision Capital S.A. (Holding of Banque Internationale à Luxembourg and KBL European Private Bankers S.A.) 1,273 8,622 14.8
93 LURBC RBC Investor Services Bank S.A. 742 2,860 25.9
94 LUSTST State Street Bank Luxembourg S.A. 1,474 6,162 23.9
95 LUUBS UBS (Luxembourg) S.A. 459 3,288 14.0
96 NLABN ABN Amro Bank N.V. 14,120 115,442 12.2
97 NLGEM Bank Nederlandse Gemeenten N.V. 2,767 11,665 23.7
98 NLING INGBank N.V. 30,918 297,958 10.4
99 NLNWNV Nederlandse Waterschapsbank N.V. 1,261 1,669 75.5
100 NLRABO Coöperatieve Centrale Raiffeisen Boerenleenbank B.A. 26,832 209,537 12.8
101 NLRBS The Royal Bank of Scotland N.V. 3,227 22,203 14.5
102 NLSNS SNS Bank N.V. 2,300 14,842 15.5
103 PTBCP Banco Comercial Português, SA 5,563 45,502 12.2
104 PTBPI Banco BPI, SA 3,317 21,710 15.3
105 PTCGD Caixa Geral de Depósitos, SA 6,933 63,869 10.9
106 SINKBM Nova Kreditna BankaMaribor d.d. 543 2,777 19.5
107 SINLB Nova Ljubljanska banka d. d., Ljubljana 1,171 7,283 16.1
108 SISID SID Slovenska izvozna in razvojna banka, d.d., Ljubljana 354 1,463 24.2

979,862 8,333,417 11.8
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