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Abstract

This paper provides new insights into expectation-driven cycles by estimating a structural
VAR with time-varying coefficients and stochastic volatility, as in Cogley and Sargent (2005)
and Primiceri (2005). We use survey-based expectations of the unemployment rate to measure
expectations of future developments in economic activity. We find that the effect of expectation
shocks on the realized unemployment rate have been particularly large during the most recent
recession. Unanticipated changes in expectations contributed to the gradual increase in the
persistence of the unemployment rate and to the decline in the correlation between the inflation
and the unemployment rate over time. Our results are robust to the introduction of financial
variables in the model.

JEL classification: C32; E24; E32.
Keywords: Survey Expectations; Economic Fluctuations; Stochastic Volatility; Time Varying Vector Autore-
gression
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Non-technical Summary

A growing strand of the empirical macroeconomic literature suggests changes in expectations as

important sources of economic fluctuations. We evaluate the importance of time variation in the

effects of changes in expectations of future developments in economic activity as measured by

forward-looking survey data. In this paper, we focus on changes in unemployment expectations

compiled by the Survey of Professional Forecasters.

Our findings are based on a Time-Varying Coeffi cients VAR model with Stochastic Volatility

(TV-VAR) as in Primiceri (2005). This approach allows for temporal changes in the size and

correlation among forecast errors which can be due to changes in the size of exogenous shocks

or their impact on macroeconomic variables, i.e. stochastic volatility. Further, it also allows for

changes in the transmission of the shocks by means of time-varying coeffi cients.

This paper proceeds in three steps: (i) it investigates the role of time variation in expectations-

driven cycles ; (ii) it explores the impact of expectation shocks on selected key second moments

of the unemployment and inflation rate; and (iii) it assesses the robustness of the results to the

inclusion of financial variables into the model.

Our main results are as follows:

1) We detect significant changes in the evolution over time of the dynamic responses of the

endogenous variables to shocks to expected future economic activity. In particular, the responses of

the unemployment rate increase beginning in the early 2000s and are remarkably larger and more

persistent during the most recent recession;

2) Expectation shocks account for a sizable fraction of the forecast-error variance of the endoge-

nous variables. The increase in the volatility of the unemployment rate over the second part of the

sample can be largely explained by an increases in the variance share of unanticipated changes in

expectations;

3) The responses of the unemployment rate are increasingly large and persistent in the post-

1990 recessions. Thus, expectation shocks generate higher post-1990 persistence dynamics in the

unemployment rate;

4) The correlation between inflation and the unemployment conditional of expectation shocks

starts declining in the early 1990s and reaches a minimum during the most recent recession;

5) By estimating VAR models that include measured of asset prices and credit, we argue that

the real effects of expectation shocks are not sensitive to the addition of financial variables in our

model.

Our results provide further evidence on the importance of expectation-driven cycles and highlight

the time-varying nature of the effects of expectation shocks.
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1 Introduction

There has historically been a great deal of emphasis on changes in expectations as sources of

macroeconomic fluctuations, beginning with Pigou (1927) and Keynes (1936). Yet it is only recently

that the business cycle literature revived interest towards the importance of expectation-driven

cycles. In an influential paper, Beaudry and Portier (2006) show that changes in expectations

that are driven by news about future productivity growth are important sources of macroeconomic

fluctuations. Since their contribution, several authors explored the importance of news-driven cycles

in the context of VAR models.1 More recently, changes in expectations of future developments in

economic activity have been measured by directly introducing forward-looking survey data such

as consumers’ confidence (Barsky and Sims (2012)) and unemployment expectations (Leduc and

Sill (2013)) into otherwise standard VAR models.2 The advantage of using survey data is that the

econometrician does not need to impose any modelling assumptions to back out the expectations

of the economic agents. Further, the timing of the surveys’ construction, rather than sign and zero

restrictions, can be used to identify unexpected changes in expectations.3

The aim of this paper is to assess the role of time variation in the macroeconomics effects

of changes in expectations. The US economy experienced important changes over the last four

decades and most macroeconomic variables exhibited marked time-variation. Several authors have

stressed the importance of relaxing the constant parameters assumptions in macroeconomic models

by allowing for time variation.4 With this purpose, we estimate the effects of changes in expectations

on the unemployment rate and other macroeconomic variables using a Time-Varying Coefficients

VAR model with Stochastic Volatility (TV-VAR) as in Cogley and Sargent (2005) and Primiceri

(2005). This approach allows for temporal changes in the size and correlation among forecast errors

which can be due to changes in the size of exogenous shocks or their impact on macroeconomic

variables, i.e. stochastic volatility. Further, it also allows for changes in the transmission of the

shocks by means of time-varying coefficients.

The first objective of this paper is to provide evidence on the quantitative importance of expec-

tation shocks in shaping the dynamics of the unemployment rate and other macroeconomic variables

over time. Following Leduc and Sill (2013) we use unemployment expectations, as compiled by the

Survey of Professional Forecasters, to measure expectations of future developments in economic ac-

1See Beaudry and Portier (2013) for a complete review of the theoretical and empirical literature on news-shocks-
driven cycles.

2A separate strand of the literature uses survey data to investigate the response of monetary policy to changes in
inflation expectations, see e.g. Sylvain, Keith, and Stark (2007) and Clark and Troy (2011).

3Arias, Rubio-Ramirez, and Waggoner (2013) highlight the drawbacks of the SVARs identified with sign and zero
restrictions commonly used to assess the importance of optimism shocks.

4The great moderation and its causes received a great deal of attention (Clarida, Gali, and Gertler (2000); Cogley
and Sargent (2005); Lubik and Schorfheide (2004)). A large literature explores the implications of changes in the
conduct of monetary policy for macroeconomic volatility (Stock and Watson (2003); Primiceri (2005); Boivin and
Giannoni (2006); Canova and Gambetti (2009)). Few papers also investigate the importance of time-variations in the
transmission of technology shocks (Gaĺı and Gambetti (2009)).
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tivity. In our baseline model, in addition to expectations, we use the unemployment rate, inflation

rate and the short-term interest rate in order to take into account how changes in expectations

interact with monetary policy. Our results focus on the analysis of the impulse-responses of the en-

dogenous variables to a positive shock to unemployment expectations over time and on the implied

variance decomposition, i.e. the percentage of variance explained by such shock. Unanticipated

downward revisions to expected unemployment generate a macroeconomic boom coupled with a

monetary policy tightening as in Leduc and Sill (2013). Our results improve upon the previous

findings in that:

• We detect significant changes in the evolution over time of the dynamic responses of the en-

dogenous variables to shocks to expected future economic activity. In particular, the responses

of the unemployment rate increase beginning in the early 2000s and are remarkably larger and

more persistent during the most recent recession;

• Expectation shocks account for an increasing fraction of the forecast-error variance of the

endogenous variables over time. The increase in the volatility of the unemployment rate over

the second part of the sample can be largely explained by an increase in the variance share of

unanticipated changes in expectations.

The second objective of the paper is to explore the impact of expectation shocks on selected

key second moments of the unemployment rate and the related implications. Recent empirical

evidence highlighted that the last two decades have been characterized by (i) a longer duration

of high unemployment rates after the recessions with a consequent slowdown in the labor market

recovery; (ii) a reduced sensitivity of inflation to changes in unemployment. We relate our findings

to these two main empirical facts.

We start by investigating how shifts in unemployment expectations affect the persistence of

the unemployment rate. Our results highlight differences in the effects of expectation shocks across

recessions. In particular, the responses of unemployment are increasingly large and persistent in the

post-1990 recessions. Accordingly, unanticipated changes in expectations imply a gradual increase

in the persistence of the unemployment rate. In terms of the correlation between the unemployment

and the inflation rate, our results point to a sizable decline in the correlation between inflation and

unemployment after a shock to changes in expectations, since early 2000s. This is explained by the

different impact that the expectation shock has on the two variables, i.e. larger and more persistent

on unemployment, but smaller on inflation.

In addition we present robustness to the inclusion of financial variables in our model. The last

two business cycles have also been characterized by coincident booms in economic activity and asset

prices, followed by sudden and remarkable falls in asset prices and economic recessions. In particular,

during the late 1990s the US economy experienced a dramatic rise in stock prices. Similarly during

the mid 2000s house prices displayed a sustained run-up. Both periods of expansion were followed
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by sudden falls in asset prices and economic downturns. Thus, we extend our analysis by including

financial variables. We alternatively include in the VAR model stock prices, house prices and credit

variables. The key findings of the paper are robust to using a specification which includes financial

variables.

The rest of the paper is organized as follows: Section 2 describes the model and Section 3 de-

scribes the data used. Section 4 analyzes the time-varying effects of changes in expectations. Section

5 explores the implications of the model for the changing persistence of the unemployment rate and

its correlation with the inflation rate. Section 6 shows the results of alternative model specification

which include financial variables. Section 7 discusses the results and Section 8 concludes.

2 The Time-Varying Vector Autoregressive Model

We investigate the effects of innovations to expected changes in the unemployment rate by means

of a Time Varying coefficient Vector Autoregression (TV-VAR) with stochastic volatility. The

model allows both the autoregressive coefficients and the elements of the innovation covariance

matrix to drift over time. This statistical model allows us to investigate weather the link between

the expectation shocks and the macroeconomy has been changing over time. The model can be

summarized as:

Yt = A0,t +A(L)tYt−1 + εt (1)

where Yt is the vector of endogenous variables, A0,t is the vector of time-varying intercepts, A(L)

is a matrix polynomial in the lag operator L of time-varying coefficients, and εt is a vector of

innovations.
Let At = [A0,t, A1,t, ...Al,t] and θt = vec(A′

t), where vec(·) is the column stacking operator. The
law of motion for θt is assumed to be:

θt = θt−1 + ωt,

where ωt is a Gaussian white noise with zero mean and covariance Ω.

The innovations in equation (1) are assumed to Gaussian white noises with zero mean and

time-varying covariance Σt that is factorized as:

Σt = FtDtF
′
t ,

where Ft is lower triangular, with ones on the main diagonal and Dt a diagonal matrix. Let σt be the

vector of the diagonal elements of D
1/2
t and the off-diagonal element of the matrix F−1

t . We assume

that the standard deviations, σt, evolve as geometric random walks, belonging to the class of models

known as stochastic volatility. The contemporaneous relationships φit in each equation of the VAR

are assumed to evolve as an independent random walk, leading to the following specifications:

log σt = log σt−1 + ζt

φit = φit−1 + ϕit
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where ζt and ϕit are Gaussian white noise with zero mean and covariance Ξ and Ψi, respectively.

We assume that εt, ωt, ζt, and ϕit are mutually uncorrelated at all leads and lags and that ϕit is

independent of ϕjt for i 6= j.

2.1 Priors Specification

The model is estimated using Bayesian methods. In this section, we briefly discuss the specification

of our priors. While the details of the posterior simulation are accurately described in the Appendix.

Following Primiceri (2005), we make the following assumptions for the priors densities. First, the

coefficients of the covariances of the log volatilities and the hyperparameters are assumed to be

independent of each other. The priors for the initial states, θ0, φ0 and log σ0, are assumed to be

normally distributed. The priors for the hyperparameters, Ω, Ξ and Ψ are assumed to be distributed

as independent inverse-Wishart. More precisely, we have the following priors:

• Time varying coefficients: P (θ0) = N(θ̂, V̂θ) and P (Ω) = IW (Ω−1
0 , ρ1);

• Diagonal elements: P (log σ0) = N(log σ̂, In) and P (Ψi) = IW (Ψ−1
0i , ρ3i);

• Off-diagonal elements: P (φi0) = N(φ̂i, V̂φi
) and P (Ξ) = IW (Ξ−1

0 , ρ2);

where the scale matrices are parametrized as follows Ω−1
0 = λ1ρ1V̂θ, Ψ0i = λ3iρ3iV̂φi

and

Ξ0 = λ2ρ2In. The hyper-parameters are calibrated using a time invariant recursive VAR esti-

mated using a sub-sample consisting of the first T0 = 40 observations. For the initial states θ0

and the contemporaneous relations φi0, we set the means, θ̂ and φ̂i, and the variances, V̂θ and V̂φi
,

at the maximum likelihood point estimates and four times its variance. For the initial states of

the log volatilities, log σ0, the mean of the distribution is the logarithm of the residuals standard

deviation, estimated in a time invariant VAR. The degrees of freedom for the covariance matrix of

the drifting coefficient’s innovations are set to be equal to T0, the size of the initial-sample. The

degrees of freedom for the priors on the covariance of the stochastic volatilities’ innovations, are set

to be equal to the minimum necessary to insure that the prior is proper. In particular, ρ1 and ρ2

are equal to the number of rows of Ξ−1
0 and Ψ−1

0i plus one respectively.

The parameters λ1 is important since it controls the degree of time variation in the unobserved

states. The smaller the parameter, the smoother and smaller are the changes in coefficients. The

empirical literature has set the prior rather conservatively in terms of the amount of time vari-

ations. D’Agostino, Gambetti, and Giannone (2013) show that, in a three variables VAR (with

unemployment rate, inflation and interest rate), small parameters deliver accurate forecasts.

In this paper, we fix these parameters differently and based on the in-sample accuracy of the fit.

Given that the distribution of the fitted values is available at each point in time, we can compute

percentiles at each date. Very loose values of λ1 would imply large variance of the coefficients’

distribution, hence large variance in the distribution of the fitted values. In this case, the model
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Figure 8: Variance Decomposition of UR in VAR models with financial variables: shock to UR expectations
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Appendix 1: Conditional Statistics

To derive the conditional statistics we rewrite equation(1) in companion form:

xt = µt +Atxt−1 + ǫt (2)

where xt ≡ [x′
t,x

′
t−1, ...,x

′
t−p+1]

′ ǫt ≡ [ǫ′t, 0, ..., 0]
′, µt ≡ [A′

0,t, 0, ..., 0]
′ and At is the companion

matrix. Equation(2) can be rewritten as:

(I −AtL)xt = µt + ǫt (3)

by inverting the term (I − AtL) on the left-hand side, we can derive the corresponding moving

average representation:

xt = ηt + Ft,0ǫt + Ft,1ǫt−1 + Ft,2ǫt−2 + ... (4)

where ηt = (I−AtL)
−1µt,

∞∑

i=0

Ft,iǫt−i = (I−AtL)
−1ǫt and Ft,0 = I. We assume that the innovations

ǫt are a linear combination of orthogonal structural disturbances ut, i.e.

ǫt = Kut (5)

Equation 4 can be written in terms of orthogonal structural shocks as:

xt = ηt +
∞∑

i=0

Ct,iut−i (6)

where Ft,iK ≡ Ct,i for i = 0, 1, 2, .... For a single variable j and in particular for the variables

baseline VAR it is:

xj,t = ηj,t +
∞∑

i=0

C
j,ex
t,i uext−i +

4∑

k=2

∞∑

i=0

C
j,k
t,i u

k
t−i (7)

Variable xj,t is then written as a time-varying distributed lag model in four orthogonal shocks.

The first one, uext , is the structural expectation shock, while the remaining three, ukt k = 2, 3, 4,

are orthogonal non-identified shocks. Given equation (7) it is straightforward to define second and

cross-moments:

Variance

var(xj,t) =
∞∑

i=0

(Cj,ex
t,i )2 +

4∑

k=2

∞∑

i=0

(Cj,k
t,i )

2 (8)

Covariance

cov(xj,t, xs,t) =
∞∑

i=0

C
j,ex
t,i C

s,ex
t,i +

4∑

k=2

∞∑

i=0

C
j,k
t,i C

s,k
t,i (9)
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Autocovariance

cov(xj,txj,t−1) =
∞∑

i=0

C
j,ex
t,i+1C

j,ex
t−1,i +

4∑

k=2

∞∑

i=0

C
j,k
t,i+1C

j,k
t,i (10)

Similarly, other moments conditional to the expectation shock can be defined as:

Conditional Variance

var(xj,t|u
ex
t ) =

∞∑

i=0

(Cj,ex
t,i )2 (11)

Conditional Covariance

cov(xj,t, xs,t|u
ex
t ) =

∞∑

i=0

C
j,ex
t,i C

s,ex
t,i (12)

Conditional Autocovariance

cov(xj,txj,t−1|u
ex
t ) =

∞∑

i=0

C
j,ex
t,i+1C

j,ex
t,i (13)

Autocorrelation and conditional autocorrelation are defined respectively as:

corr(xj,t) =
cov(xj,txj,t−1)

var(xj,t)
(14)

and

corr(xj,t|u
ex
t ) =

cov(xj,txj,t−1|u
ex
t )

var(xj,t|uext )
(15)

while correlation and conditional correlation as:

corr(xj,txs,t) =
cov(xj,txs,t)

var(xj,t)
( 1
2
)var(xs,t)

( 1
2
)

(16)

and

corr(xj,txs,t|u
ex
t ) =

cov(xj,txs,t|u
ex
t )

var(xj,t|uext )(
1

2
)var(xs,t|uext )(

1

2
)

(17)
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Appendix 2: the bayesian algorithm

Estimation is done using Bayesian methods. To draw from the joint posterior distribution of model

parameters we use a Gibbs sampling algorithm along the lines described in Primiceri (2005). The

basic idea of the algorithm is to draw sets of coefficients from known conditional posterior distribu-

tions. The algorithm is initialized at some values and, under some regularity conditions, the draws

converge to a draw from the joint posterior after a burn in period. Let z be (q × 1) vector, we

denote zT the sequence [z′1, ..., z
′
T ]

′. Each repetition is composed of the following steps:

1. p(sT |yT , θT , σT , φT ,Ω,Ξ,Ψ)14

2. p(σT |yT , θT , φT ,Ω,Ξ,Ψ, sT )

3. p(φT |yT , θT , σT ,Ω,Ξ,Ψ, sT )

4. p(θT |yT , σT , φT ,Ω,Ξ,Ψ, sT )

5. p(Ω|yT , θT , σT , φT ,Ξ,Ψ, sT )

6. p(Ξ|yT , θT , σT , φT ,Ω,Ψ, sT )

7. p(Ψ|yT , θT , σT , φT ,Ω,Ξ, sT )

Gibbs sampling algorithm

• Step 1: sample from p(sT |yT , θT , σT , φT ,Ω,Ξ,Ψ)

Conditional on y∗∗i,t and rT , we independently sample each si,t from the discrete density defined

by Pr(si,t = j|y∗∗i,t , ri,t) ∝ fN (y∗∗i,t |2ri,t+mj−1.2704, v2j ), where fN (y|µ, σ2) denotes a normal density

with mean µ and variance σ2.

• Step 2: sample from p(σT |yT , θT , φT ,Ω,Ξ,Ψ, sT )
To draw σT we use the algorithm of Kim, Shephard and Chibb (KSC) (1998). Consider the

system of equations y∗t ≡ F−1
t (yt − X ′

tθt) = D
1/2
t ut, where ut ∼ N(0, I), Xt = (In ⊗ x′t), and

xt = [1n, yt−1...yt−p]. Conditional on yT , θT , and φT , y∗t is observable. Squaring and taking the
logarithm, we obtain

y∗∗t = 2rt + υt (18)

rt = rt−1 + ξt (19)

where y∗∗i,t = log((y∗i,t)
2 + 0.001) - the constant (0.001) is added to make estimation more robust -

υi,t = log(u2i,t) and rt = log σi,t. Since, the innovation in (18) is distributed as logχ2(1), we use,

following KSC, a mixture of 7 normal densities with component probabilities qj , means mj−1.2704,

and variances v2j (j=1,...,7) to transform the system in a Gaussian one, where {qj ,mj , v
2
j } are chosen

to match the moments of the logχ2(1) distribution. The values are:

14See below the definition of sT .
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Table A1: Parameters Specification

j qj mj v2j

1.0000 0.0073 -10.1300 5.7960
2.0000 0.1056 -3.9728 2.6137
3.0000 0.0000 -8.5669 5.1795
4.0000 0.0440 2.7779 0.1674
5.0000 0.3400 0.6194 0.6401
6.0000 0.2457 1.7952 0.3402
7.0000 0.2575 -1.0882 1.2626

Let sT = [s1, ..., sT ]
′ be a matrix of indicators selecting the member of the mixture to be used

for each element of υt at each point in time. Conditional on sT , (υi,t|si,t = j) ∼ N(mj −1.2704, v2j ).

Therefore we can use the algorithm of Carter and R.Kohn (1994) to draw rt (t=1,...,T) from

N(rt|t+1, Rt|t+1), where rt|t+1 = E(rt|rt+1, y
t, θT , φT ,Ω,Ξ,Ψ, sT , ) andRt|t+1 = V ar(rt|rt+1, y

t, θT , φT ,Ω,Ξ,Ψ, sT ).

• Step 3: sample from p(φT |yT , θT , σT ,Ω,Ξ,Ψ, sT )

Consider again the system of equations F−1
t (yt −X ′

tθt) = F−1
t ŷt = D

1/2
t ut. Conditional on θT ,

ŷt is observable. Since F−1
t is lower triangular with ones in the main diagonal, each equation in the

above system can be written as

ŷ1,t = σ1,tu1,t (20)

ŷi,t = −ŷ[1,i−1],tφi,t + σi,tui,t i = 2, ..., n (21)

where σi,t and ui,t are the ith elements of σt and ut respectively, ŷ[1,i−1],t = [ŷ1,t, ..., ŷi−1,t]. Under the

block diagonality of Ψ, the algorithm of Carter and R.Kohn (1994) can be applied equation by equa-

tion, obtaining draws for φi,t from aN(φi,t|t+1,Φi,t|t+1), where φi,t|t+1 = E(φi,t|φi,t+1, y
t, θT , σT ,Ω,Ξ,Ψ)

and Φi,t|t+1 = V ar(φi,t|φi,t+1, y
t, θT , σT ,Ω,Ξ,Ψ).

• Step 4: sample from p(θT |yT , σT , φT ,Ω,Ξ,Ψ, sT )
Conditional on all other parameters and the observables we have

yt = X ′
tθt + εt (22)

θt = θt−1 + ωt (23)

Draws for θt can be obtained from a N(θt|t+1, Pt|t+1), where θt|t+1 = E(θt|θt+1, y
T , σT , φT ,Ω,Ξ,Ψ)

and Pt|t+1 = V ar(θt|θt+1, y
T , σT , φT ,Ω,Ξ,Ψ) are obtained with the algorithm of Carter and R.Kohn

(1994).

• Step 5: sample from p(Ω|yT , θT , σT , φT ,Ξ,Ψ, sT )

Conditional on the other coefficients and the data, Ω has an Inverse-Wishart posterior density

with scale matrix Ω−1
1 = (Ω0 +

∑T
t=1∆θt(∆θt)

′)−1 and degrees of freedom dfΩ1
= dfΩ0

+ T , where

Ω−1
0 is the prior scale matrix, dfΩ0

are the prior degrees of freedom and T is length of the sample
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use for estimation. To draw a realization for Ω make dfΩ1
independent draws zi (i=1,...,dfΩ1

) from

N(0,Ω−1
1 ) and compute Ω = (

∑dfΩ1

i=1 ziz
′
i)
−1 (see Gelman et. al., 1995).

• Step 6: sample from p(Ξi,i|y
T , θT , σT , φT ,Ω,Ψ, sT )

Conditional the other coefficients and the data, Ξ has an Inverse-Wishart posterior density with

scale matrix Ξ−1
1 = (Ξ0 +

∑T
t=1∆ log σt(∆ log σt)

′)−1 and degrees of freedom dfΞ1
= dfΞ0

+T where

Ξ−1
0 is the prior scale matrix and dfΞ0

the prior degrees of freedom. Draws are obtained as in step

5.

• Step 7: sample from p(Ψ|yT , θT , σT , φT ,Ω,Ξ, sT ).

Conditional on the other coefficients and the data, Ψi has an Inverse-Wishart posterior density

with scale matrix Ψ−1
i,1 = (Ψi,0 +

∑T
t=1∆φi,t(∆φi,t)

′)−1 and degrees of freedom dfΨi,1
= dfΨi,0

+ T

where Ψ−1
i,0 is the prior scale matrix and dfΨi,0

the prior degrees of freedom. Draws are obtained as

in step 5 for all i.

The estimations are performed with 12000 repetitions discarding the first 10000 and collecting

one out of five draws.
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Appendix 3: Additional results

Figure A.1: IRFs: shock to unemployment expectations - constant parameters VAR.
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Note - Impulse response function from a VAR model with constant coefficients. Shock to unemployment expectations.
Confidence bands 68 percent (dash-dotted line) and 90 percent (dotted line).
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Figure A.2: IRFs : shock to long-term unemployment expectations - baseline VAR
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Note - Negative shock to 12-month ahead unemployment expectations. Impulse response functions at different horizons (y-axis) and over time (x-axis). Results are from the
baseline four variables VAR model (UR expectations, UR, CPI inflation and IR).
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Figure A.3: Unemployment rate dynamics during and after recessions
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Note - The figure shows the evolution of unemployment rate from one year before the end of the recession (vertical line
crossin zero) to some quarters after the end of the recessions. Unemployment rate dynamics are reported for the five
recessions from 1980.
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