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Abstract

We model retail price stickiness as the result of errors due to costly decision-making. Under our
assumed cost function for the precision of choice, the timing of price adjustments and the prices
firms set are both logit random variables. Errors in the prices firms set help explain micro “puzzles”
relating to the sizes of price changes, the behavior of adjustment hazards, and the variability of prices
and costs. Errors in adjustment timing increase the real effects of monetary shocks, by reducing the
“selection effect”. Allowing for both types of errors also helps explain how trend inflation affects
price adjustment.

Keywords: Nominal rigidity, logit equilibrium, state-dependent pricing, near rationality, information-
constrained pricing

JEL Codes: E31, D81, C73
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Non-Technical Summary

One of the big questions in macroeconomics is about the strength of the monetary transmission mech-

anism, that is, the extent to which nominal shocks can affect the real economy. A plausible channel

through which this transmission may operate is if prices are nominally rigid in the short run, meaning

that they do not immediately adjust fully to an expansion in aggregate demand. If this is the case then a

monetary stimulus would lead to a temporary increase in the quantity of goods produced and sold, that

is, to a temporary real expansion. The question is how big this real expansion is compared to the effect

of monetary policy on the aggregate price level. Clearly the answer to this question has implications for

the conduct of macro-stabilisation policy in general and for monetary policy in particular.

In order to address the problem in this paper the authors James Costain (Bank of Spain) and Anton

Nakov (ECB and CEPR) propose a simple theoretical model of “price stickiness” based on the idea

that decision-making about prices is costly. The authors estimate the two free parameters of the model

and show through simulation that the model is consistent with a wide variety of microeconomic and

macroeconomic evidence. Two key considerations motivate the model’s setup. First, if choice is costly,

then decisions will typically be imperfect, that is, prone to errors. Thus it is natural to think of the

decision outcomes as random variables, instead of treating actions as deterministic. Second, it is natural

to assume that more precise decisions are more costly than imprecise ones.

Motivated by these points, the authors adopt the “control cost” approach from game theory1. For-

mally, instead of modeling the choice of an optimal action directly, this approach describes the decision

problem as the choice of a probability distribution over possible actions. The problem is solved subject

to a cost function such that more precise decisions (more concentrated distributions) are more expensive.

Making any given decision in a perfectly precise way is feasible, but it is usually not worth the cost.

Therefore the action actually taken will be a random variable correlated with fundamentals, instead of

being a deterministic function of fundamentals.

In the context of dynamic price setting, a firm faces two key margins of decision: when to change

the price of a product it sells, and what new price to set. The authors allow for errors on both of these

margins. The exact probabilities of different actions depend on the form of the assumed cost function for

precision. Here, the authors use a cost function related to entropy, which implies that the probabilities

are given by logits. This has the desirable implication that the probability of taking any given action

increases smoothly with the value of that action, compared with the values of other feasible actions.

General equilibrium then takes the form of a logit equilibrium: each decision maker plays a logit in

which the values of actions are evaluated assuming that other decision makers play logits too.

The decision costs backed out from the benchmark calibration of the model do not seem excessive:

firms spend roughly 0.9% of revenue on decision-making, and in addition incur a loss of roughly 0.5%

of revenue due to suboptimal choices.

While it is reasonable to assume that the size and the timing of firms’ adjustments are both subject to
1See, for example, van Damme (1991)
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error, the authors run simulations that shut down one type of mistakes or the other in order to see what

each one contributes empirically. They find that errors in the size of price changes help explain a number

of “puzzling” observations from retail price microdata but by themselves do not imply strong real effects

of monetary policy. However, when the authors include mistakes in the timing of price adjustments,

the model implies substantial monetary nonneutrality (roughly halfway between the effects observed in

the fixed menu cost model, and those observed in the Calvo model). The cause of the nonneutrality is

the same as in the Calvo model: by decreasing the relation between the value of adjustment and the

probability of adjustment, the “selection effect” highlighted by Caplin and Spulber (1987) and Golosov

and Lucas (2007) is reduced. But in contrast with the Calvo setup, this model also does a good job in

reproducing the effects of trend inflation on price adjustment.
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1 Introduction2

Economists seeking to explain price stickiness have often appealed to small fixed costs of nominal price

changes, commonly called “menu costs” (Barro 1972). In theory, even small menu costs might make

price adjustments infrequent and make aggregate dynamics differ substantially from the flexible-price

optimum (Mankiw 1985). But quantitatively, Golosov and Lucas (2007) showed that fixed menu costs

do little to generate aggregate price stickiness in a macroeconomic model with realistically large firm-

specific shocks. The dynamics of their model are quite close to monetary neutrality, so fixed menu costs

seem unpromising to explain the nontrivial real effects of monetary shocks observed in macroeconomic

data (e.g. Christiano, Eichenbaum, and Evans, 1999). Moreover, detailed microeconomic evidence sug-

gests that menu costs, as usually interpreted, are only a small fraction of the overall costs of price setting

(Zbaracki et al. 2004). A much larger part of the costs of price adjustment consists of managerial costs

associated with information processing and decision making. This raises the question: can costs related

to decision making explain microeconomic and macroeconomic evidence of price stickiness better than

fixed menu costs do? And furthermore, how exactly should these costs be modeled?

This paper proposes a simple model of price stickiness based on costly decision-making, estimates its

two free parameters, and shows by simulation that it is consistent with a wide variety of microeconomic

and macroeconomic evidence. Two key considerations motivate our setup. First, if choice is costly, then

decisions will typically be imperfect, that is, prone to errors. Thus it is natural to think of the decision

outcomes as random variables, instead of treating actions as deterministic. Second, it is natural to assume

that more precise decisions are more costly than imprecise ones. Motivated by these points, we adopt

the “control cost” approach from game theory (see, for example, van Damme 1991). Formally, instead

of modeling the choice of an optimal action directly, this approach describes the decision problem as

the choice of a probability distribution over possible actions. The problem is solved subject to a cost

function such that more precise decisions (more concentrated distributions) are more expensive. Making

any given decision in a perfectly precise way is feasible, but this is usually not worth the cost. Therefore

the action actually taken will be a random variable correlated with fundamentals, instead of being a

deterministic function of fundamentals.

In the context of dynamic price setting, a firm faces two key margins of decision: when to change the

price of a product it sells, and what new price to set. We allow for errors on both of these margins. The

exact shape of the error distribution depends on the assumed cost function for precision. It happens to

be particularly convenient to measure precision in terms of entropy, defining costs as a linear function of
2For helpful coments, we thank Hervé Le Bihan, Jeff Campbell, Anton Cheremukhin, Robert Gary-Bobo, Peter Karadi,

Andrew Levin, Bartosz Mackowiak, Filip Matejka, Isabelle Méjean, Galo Nuño, Ricardo Reis, Luminita Stephens, Antonella
Tutino, Carl Walsh, Mirko Wiederholt, Michael Woodford, and seminar participants at UC Santa Cruz, the Bank of Spain,
CREST, FRB Richmond, the Bankof England, the ECB, BI Business School, Simposio AEE 2011, T2M 2012, ESSIM 2012,
CEF 2012, EEA-ESEM 2012, the 2013 Chicago NBER Monetary Economics meeting, the 2013 BGSE Summer Forum, and the
2014 NYU conference of the International Network on Expectations and Coordination, as well as several anonymous referees.
We are grateful to Virgiliu Midrigan for making his data available to us, and to the James M. Kilts Center at the Univ. of Chicago
GSB, which is the original source of those data. Views expressed here are those of the authors and do not necessarily coincide
with those of the Bank of Spain, the Eurosystem, the ECB, or the CEPR.
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the relative entropy of the distribution of actions, as compared with a uniform distribution. Under these

functional form assumptions, the distribution of actions is a multinomial logit. This has the desirable

implication that the probability of taking any given action increases smoothly with the value of that

action, compared with the values of other feasible actions. General equilibrium then takes the form

of a logit equilibrium:3 each decision maker plays a logit in which the values of actions are evaluated

assuming that other decision makers play logits too. The decision costs backed out from our benchmark

calibration do not seem excessive: firms spend roughly 0.9% of revenue on decision-making, and in

addition incur a loss of roughly 0.5% of revenue due to suboptimal choices.

The fact that an entropy-related cost function can “microfound” a logit distribution of actions has

been shown by many previous authors in game theory and economics (Stahl 1990; Marsili 1999; Matt-

son and Weibull 2002; Bono and Wolpert 2009; Matejka and McKay 2011).4 However, economics

applications have typically focused on decisions taken at known, exogenously given points in time; it is

not immediately obvious how to apply the logit framework to a context of intermittent adjustment where

a key question is when changes should occur. We study how the derivation of logit choice behavior can

be extended so that it is applicable to fully dynamic decisions of timing. We show that if the decision cost

associated with a time-varying adjustment hazard is a linear function of its relative entropy, compared

with a constant adjustment hazard, then the decision to adjust or not in a given time period is governed

by a weighted binary logit. While a standard static logit model has a single free parameter representing

the accuracy of decisions, the weighted logit in our dynamic setup has two free parameters, related to

the speed and the accuracy of decision making. The inclusion of the speed parameter ensures that our

model has a well-defined continuous-time limit, and thus clarifies how parameters must be adjusted if

the frequency of the data or the model simulation is changed.

While it is reasonable to assume that the size and the timing of firms’ adjustments are both subject

to error, we run simulations that shut down one type of mistakes or the other in order to see what each

one contributes empirically. We find that errors in the size of price changes help explain a number of

observations from retail price microdata that represent “puzzles” for many standard models. In particular,

unlike a fixed menu cost model, our setup implies that many large and small price changes coexist

(Klenow and Kryvstov 2008; Midrigan 2011; Klenow and Malin 2010, “Fact 7”). It implies that the

adjustment hazard is nearly flat, but slightly decreasing in the first few months, as found by empirical

studies that control for heterogeneity in adjustment frequency (Nakamura and Steinsson 2008, “Fact

5”; Klenow and Malin 2010, “Fact 10”). Furthermore, we find that the standard deviation of price

adjustments is mostly constant, independent of the time since last adjustment (Klenow and Malin 2010,

“Fact 10”). Many alternative models, including the Calvo model, instead imply that price adjustments

are increasing in size. Also, we find that exceptionally high or low prices are more likely to have been

set recently than prices near the center of the distribution (Campbell and Eden 2010). Finally, prices
3Logit equilibrium is a commonly-applied parametric special case of quantal response equilibrium (see McKelvey and

Palfrey, 1995, 1998).
4This reflects much older results in physics, where a related optimization problem gives rise to the Boltzmann distribution

of particles in a gas.
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are more volatile than costs, as documented by Eichenbaum, Jaimovich, and Rebelo (2011), whereas the

opposite is true in both the Calvo and fixed menu cost models.

While errors in the size of price adjustments help reproduce patterns in microdata, by themselves

they do not imply strong real effects of monetary policy. Indeed, since the model with errors only in

the size of price adjustments has only one free parameter, it is hard to get it to match multiple features

of the data simultaneously, and the degree of nonneutrality it implies is sensitive to the details of our

calibration procedure. But whenever we include mistakes in the timing of price adjustments, our model

implies substantial monetary nonneutrality (roughly halfway between the effects observed in the fixed

menu cost model, and those observed in the Calvo model). The cause of the nonneutrality is the same

as in the Calvo model: by decreasing the relation between the value of adjustment and the probability

of adjustment, the “selection effect” highlighted by Caplin and Spulber (1987) and Golosov and Lucas

(2007) is reduced. But in contrast with the Calvo setup, our model also does a good job in reproducing

the effects of trend inflation on price adjustment. In particular, it is consistent with the effect of trend

inflation on the typical size of price changes, and on the fraction of adjustments that are increases, which

are both margins where the fixed menu cost model performs poorly.

1.1 Related literature

This paper connects with several areas of economic literature. A wave of recent research has documented

the dynamics of price adjustment in new databases from the retail sector (key papers include Klenow

and Kryvtsov, 2008; Nakamura and Steinsson, 2008; and Klenow and Malin, 2010; and Eichenbaum

et al., 2011). In response, many macroeconomists have simulated numerical models of pricing under

fixed or stochastic menu costs in the presence of aggregate and firm-specific shocks, fitting them to

microdata and then studying their macroeconomic implications. Some influential papers in this tradition

include Golosov and Lucas (2007), Midrigan (2011), Dotsey, King, and Wolman (2013), Álvarez, Beraja,

González, and Neumeyer (2011), Kehoe and Midrigan (2010), and Matejka (2011).5 While some of these

recent generalized menu cost models can match many empirical price facts, they typically have far more

free parameters than our model does. A particularly promising recent branch of the literature instead

considers both a fixed cost of price adjustment and a fixed cost of acquiring information (Álvarez, Lippi,

and Paciello, 2011; Demery, 2012). Like our own framework, these “menu cost and observation cost”

models are highly empirically successful in spite of relying on only two free parameters to model the

adjustment process.

While much recent work on state-dependent pricing assumes prices are set optimally subject to menu

costs, we assume instead that price adjustment involves errors, and we do not assume any menu costs,

at least not as they are usually interpreted. The fact that we allow for errors may seem like a break with

standard practice in macroeconomics, but it is consistent with microeconometrics, where error terms
5This paper also builds on two related papers of our own: in Costain and Nakov (2011C) we study the microeconomic

and macroeconomic implications of logit errors in price decisions, while one specification considered in Costain and Nakov
(2011A) imposes logit errors on the timing of price adjustment.
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are indispensable (though they are not always interpreted as mistakes). In representative-agent macroe-

conomic modeling, ignoring errors is not necessarily inconsistent with microeconometrics, since to a

first approximation, errors might cancel out. But when calibrating a heterogeneous-agent macroeco-

nomic model to the full distribution of adjustments in microdata, such an argument does not apply: if

there are any errors at all, these are likely to increase the variance of observed adjustments, so that a

calibration without errors would (for example) mistakenly overestimate the variance of the underlying

exogenous shocks. In this sense, the microdata-based calibration strategies in most recent literature

on state-dependent pricing may represent a more radical departure from previous microeconomic and

macroeconomic methodology than our model does.

The logit equilibrium framework for modeling error-prone behavior has been widely applied in exper-

imental game theory, where it has helped explain play in a number of games in which Nash equilibrium

performs poorly, such as the centipede game and Bertrand competition games (McKelvey and Palfrey

1998; Anderson, Goeree, and Holt 2002). It has been much less frequently applied in other areas of

economics; we are unaware of any application of logit equilibrium inside a dynamic general equilibrium

macroeconomic model, other than our own work.6 Macroeconomists’ reluctance to allow for errors may

derive partly from discomfort with the many degrees of freedom opened up by abandoning the bench-

mark of full rationality. However, since logit equilibrium is just a one- or two-parameter generalization

of fully rational choice, it actually imposes much of the discipline of rationality on the model.7

While McKelvey and Palfrey defined logit equilibrium both for extensive form (1998) and normal

form (1995) games, we found it necessary to extend their framework in order to deal with the timing of

price adjustment.8 Our setup applies the same logic to decisions on the timing margin that it applies on

the pricing margin. In a static context, logit choice is derived by penalizing the entropy of the random

choice, relative to a uniform distribution. Likewise, we derive a weighted binary logit governing the

timing of adjustment by penalizing the entropy of the random time of adjustment, relative to a uniform

adjustment hazard. In other words, precision in the size of the adjustment is measured by comparing the

price distribution to a uniform distribution; likewise, precision in the timing of adjustment is measured

by comparing the state-dependent hazard rate to a Calvo model. The hazard we derive from this speci-

fication has the same functional form derived by Woodford (2008), though his microfoundations differ:

he assumes firms face a constraint on information flow, plus a fixed cost of purchasing full information.

Woodford’s (2008, 2009) papers form part of the ”rational inattention” literature that follows Sims
6The logit choice function is a standard econometric framework for discrete choice, and has been applied in many microe-

conometric contexts. But logit equilibrium, in which each player makes logit decisions, based on payoff values consistent with
other players’ logit decisions, has to the best of our knowledge rarely been applied outside of experimental game theory.

7Haile, Hortaçsu, and Kosenok (2008) have argued that quantal response equilibrium, which has an infinite number of free
parameters, is impossible to reject empirically. However, this criticism does not apply to logit equilibrium (the special case of
quantal response equilibrium which has been most widely applied in practice) since it is very tightly parameterized.

8Initially we thought that an extensive form game with a choice between adjustment and nonadjustment at each point in
time would suffice to model the timing decision. But such a framework turns out to be sensitive to the assumed time period:
for a given logit rationality parameter, decreasing the model period eventually drives errors in the timing of adjustment to zero.
Essentially, this approach fails because it does not allow for a free parameter measuring the speed of decision-making relative
to the time scale of the model.
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(2003), where economic agents face costs associated with information flow. Our approach is closely

related to rational inattention, but distinct: the rational inattention framework assumes information is

costly, whereas ours assumes precise decisions are costly, even if full information is available. Thus,

Sims treats decisions as imperfect information problems, which are conditioned on a prior, and are

taken subject to a cost function for information flow. In contrast, formally, we write decisions as full

information problems; they are conditioned on the true state rather than a prior, and are taken subject to

a cost function for precision. Since costs are related to information in Sims’ approach, the appropriate

cost measure is defined in terms of entropy. Since costs are related to precision in our approach, any

function measuring precision versus dispersion would, in principle, be valid. But we also choose to

define decision costs in terms of entropy, both because this turns out to be analytically convenient, and

because it facilitates comparison with the rational inattention literature. Our approach has an important

practical advantage: by treating decisions as full information problems, we reduce the dimensionality of

our model dramatically compared with an analogous rational inattention setup, such as the retail pricing

model of Matejka (2011). That is, a firm acting under rational inattention must condition on a prior

over its possible productivity levels (a very high-dimensional object) whereas in our setup, the firm just

conditions on its true productivity. These facts make our approach tractable in a DSGE context, as this

paper will show.

2 Model

This discrete-time model embeds near-rational price adjustment in an otherwise standard New Keynesian

general equilibrium framework based on Golosov and Lucas (2007). Prices are set by a continuum of

monopolistically competitive firms. In addition, there is a representative household, and a monetary

authority that sets an exogenous growth process for the nominal money supply.

2.1 Household

The household’s period utility function is 1
1−γC

1−γ
t − χNt + ν log(Mt/Pt), where Ct is consumption,

Nt is labor supply, and Mt/Pt is real money balances. Utility is discounted by factor β per period.

Consumption is a CES aggregate of differentiated products Cit, with elasticity of substitution ε:

Ct =

{∫ 1

0
C
ε−1
ε

it di

} ε
ε−1

. (1)

The household’s nominal period budget constraint is∫ 1

0
PitCitdi+Mt +R−1

t Bt = WtNt +Mt−1 +Bt−1 + TMt + TDt , (2)
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where
∫ 1

0 PitCitdi is total nominal consumption. Bt represents nominal bond holdings, with interest rate

Rt − 1; TMt is a lump sum transfer from the central bank, and TDt is a dividend payment from the firms.

Households choose {Cit, Nt, Bt,Mt}∞t=0 to maximize expected discounted utility, subject to the bud-

get constraint (2).9 Optimal consumption across the differentiated goods implies

Cit = (Pit/Pt)
−εCt, (3)

so nominal spending can be written as PtCt =
∫ 1

0 PitCitdi under the price index

Pt ≡
{∫ 1

0
Pit

1−εdi

} 1
1−ε

. (4)

The household’s first-order conditions for labor supply, consumption, and money use can be written

as follows:

χ = C−γt Wt/Pt, (5)

R−1
t = βEt

(
PtC

−γ
t+1

Pt+1C
−γ
t

)
, (6)

1− νPt

MtC
−γ
t

= βEt

(
PtC

−γ
t+1

Pt+1C
−γ
t

)
. (7)

2.2 Monopolistic firms

Each firm i produces output Yit under a constant returns technology Yit = AitNit. Here labor Nit is the

only input, and Ait ≡ exp(ait) is an idiosyncratic productivity process. Log productivity ait follows a

time-invariant Markov process on a bounded set, ait ∈ Γa ⊆ [a, a], and productivity innovations are iid

across firms. Thus, ait is correlated with ai,t−1, but it is uncorrelated with other firms’ shocks. Firm i

is a monopolistic competitor that sets a price Pit, facing the demand curve Yit = CtP
ε
t P
−ε
it . Note that

since firms are infinitesimal, each firm i assumes that its own price Pit has no effect on the aggregate

price level Pt. It hires in a competitive labor market at wage rate Wt, generating profits

Uit = PitYit −WtNit =

(
Pit −

Wt

Ait

)
CtP

ε
t P
−ε
it (8)

per period. Firms are owned by the household, so they discount nominal income between times t and

t+ 1 at the rate β
PtC

−γ
t+1

Pt+1C
−γ
t

, consistent with the household’s marginal rate of substitution.

We assume each firm must fulfill all demand at its chosen price. Therefore, its only decisions are

when to adjust its price, and what price to set upon adjustment. The firm may make errors in either of
9We are abusing notation here for the sake of brevity. The time subscript on the household’s decision variables should not

be interpreted as indicating deterministic dependence on time; instead, it indicates dependence on the stochastic aggregate state
of the economy.
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these choices. We discuss these two decisions in turn, beginning with the latter.

2.2.1 Choosing a new price

Our model develops the idea that nominal rigidities may derive primarily from the costs of decision-

making. One possible approach would be to assume that upon paying a fixed cost, a firm can make an

optimal choice. But this would seem to be an extreme assumption, and a sort of corner solution. We find

it more appealing and realistic to assume that firms can choose to spend more or less time and resources,

in order to make a better or worse decision. In equilibrium in our framework firms will typically prefer

to make choices with an interior degree of precision. Therefore their chosen action will not always be

the optimal one; instead, firms will sometimes (indeed, usually) make errors.

Consistent with this general description, we adopt the “control cost” approach from game theory (see

van Damme, 1991, Chapter 4). A key feature of this approach is that we model the price decision indi-

rectly: we write the decision problem “as if” firms choose a probability distribution over prices, instead

of choosing a price directly and deterministically.10 The decision problem incorporates a cost function

that increases with precision: concentrating greater probability on a small range of prices increases costs.

Thus, the control cost approach both takes account of the fact that choice is costly, and links this observa-

tion to the fact that decisions frequently involve error, while allowing the degree of errors to be controlled

by the efforts of the decision-maker.

There are many possible measures of precision. We choose a measure based on relative entropy,

also known as Kullback-Leibler divergence, which is a measure of distance between one probability

distribution and another. For two distributions π1(x) and π2(x), for some random variable xwith support

X , the Kullback-Leibler divergence D(π1||π2) of π1 relative to π2 is defined by

D(π1||π2) =

∫
x∈X

π1(x) ln

(
π1(x)

π2(x)

)
dx. (9)

Following Stahl (1990) and Mattsson and Weibull (2002), we will assume that the decision cost is pro-

portional to the Kullback-Leibler divergence of the chosen distribution, relative to a uniform distribution.

This normalizes the cost of a perfectly random decision (a uniform distribution) to zero, and implies that

any more precise decision has positive cost.

Consistent with typical US retail data, we assume that prices are set in nominal terms, remaining

constant in nominal terms until a new adjustment occurs. However, to simplify notation we will define

the support of the random price in real terms. Thus, let us define the log real price of firm i as

pit ≡ ln(Pit)− ln(Pt). (10)

We model the firm’s choice of a new nominal price as the allocation of probabilities π(p) to log real

10Luce (1959) and Machina (1985) are early advocates of analyzing decisions in terms of a probability distribution over
alternatives; this approach is also adopted by Sims (2003). See Chapter 2 of Anderson et al. (1992) for discussion.
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prices lying in a bounded set p ∈ Γp ⊆ [p, p].11 We assume the set is sufficiently wide so that the real

prices preferred at the minimal and maximal values of productivity, a and a, lie strictly inside [p, p]. It is

not necessary at this point to specify whether Γp is a discrete or continuous set; in the former case, π(p)

should be interpreted as a set of discrete probabilities summing to one over the elements of Γp; and in

the latter, it should be interpreted as a probability density function on Γp.12

Given these preliminaries, we can now define our decision cost function. We assume that costs are

denominated in units of time, since we regard managers’ time as the main input to decision-making.

Assumption 1. The time cost of choosing a distribution π(p), for p ∈ Γp, is κπD(π||u),

where κπ > 0 is a constant, and u represents a uniform distribution: u(p) = u for all

p ∈ Γp.

Here κπ represents the marginal cost of entropy reduction, in units of labor time. The cost function in

Assumption 1 can also be written in terms of the constant density u, as follows:

κπD(π||u) = κπ

(∫
p∈Γp

π(p) lnπ(p)dp − ln(u)

)
. (11)

This cost function is nonnegative and convex.13 The upper bound on (11) is associated with any distri-

bution that places all probability on a single price p ∈ Γp. The lower bound on (11) is zero, associated

with a uniform distribution. Thus, Assumption 1 implies that decision costs are maximized by perfect

precision and minimized by perfect randomness.

Now consider the pricing decision under this cost function. Suppose the firm, at time t, has already

decided to update its price, but has not yet chosen which new nominal price to set. We will write the

value of its price decision problem as Ṽt(a), where a is the firm’s current log productivity. The value of

its decision depends on the value of producing at each possible log real price p ∈ Γp, which we write

as Vt(p, a). The values Ṽt(a) and Vt(p, a) are both defined in nominal terms, and they are written with

time subscripts to indicate that they depend on the aggregate state of the economy at time t.14 They are

related by the following Bellman equation:

Ṽt(A) = max
π(p)

∫
p∈Γp

π(p)Vt(p, a)dp−κπWt

∫
p∈Γp

π(p) lnπ(p)dp+κπWt ln(u) s.t.
∫
p∈Γp

π(p)dp = 1

(12)

Thus, the firm chooses a price distribution that maximizes its value, net of computational costs (which
11Alternatively, we could define the set from which new prices are chosen in nominal terms. But then, in the presence of a

nonstationary aggregate price level, we would need to allow for a time-varying support, ΓPt . Later, to detrend the model and
define its steady state, we would have to define the corresponding real support Γp. Exposition is simplified, but the model is
unchanged, by starting directly from the real support Γp.

12If Γp is assumed to be a discrete set, then the integral in (9) should be interpreted as a sum.
13Cover and Thomas (2006), Theorem 2.7.2.
14As before, we are abusing notation for the sake of brevity. The time subscripts on the value function are a shorthand to

indicate dependence on the aggregate state. That is, Ṽt(a) ≡ Ṽ (a,Ωt) and Vt(p, a) ≡ V (p, a,Ωt), where Ωt is the aggregate
state of the economy, defined in nominal terms; see Sec. 2.5.
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we convert to nominal terms by multiplying by the wage). The first-order condition for π(p) is

Vt(p, a)− κπWt(1 + lnπ(p))− µ = 0,

where µ is the multiplier on the constraint. Some rearrangement yields:

π(p) = exp

(
Vt(p, a)

κπWt
− 1− µ

κπWt

)
. (13)

Since the probabilities sum to one, we have exp
(

1 + µ
κπWt

)
=
∫

exp
(
Vt(p,a)
κπWt

)
dp. Therefore the

optimal probabilities (13) reduce to the following logit formula:

πt(p|a) ≡
exp

(
Vt(p,a)
κπWt

)
∫
p′∈Γp exp

(
Vt(p′,a)
κπWt

)
dp′

(14)

The parameter κπ in the logit function can be interpreted as the degree of noise in the decision process;

in the limit as κπ → 0, (14) converges to the policy function under full rationality, so that the optimal

price is chosen with probability one.

By calculating the logarithm of πt(p|a) from (13), and plugging it into the objective, we obtain an

analytical formula for the value function:

Ṽt(a) = κπWt ln

(
u

∫
p∈Γp

exp

(
Vt(p, a)

κπWt

)
dp

)
. (15)

This solution gives the value of adjusting the current price, net of decision costs. It is optimal to adjust

the current price if Ṽt(a) exceeds the value of maintaining the price in place at the beginning of period t.

For clarity, we will write the beginning-of-period log real price of firm i as p̃it, to distinguish it from pit,

the price at which it sells its product at the end of period t. Thus, given any beginning-of-t log real price

p̃, optimal adjustment depends on the difference Dt(p̃, a) between the value of adjusting, and the value

of keeping the current price fixed:

Dt(p̃, a) ≡ Ṽt(a)− Vt(p̃, a). (16)

Some interpretive comments may be helpful at this point. First, while we write the decision problem

“as if” the firm chooses a probability distribution over prices, this should not be taken literally— actually

choosing a distribution would be a complex, costly diversion from the true task of choosing a price per se.

Rather, we describe the decision as a choice of a mixed strategy because this is a way to incorporate errors

into the model. And we describe the decision as an optimization problem because this disciplines the

errors; it amounts to assuming that the firm devotes sufficient effort to avoiding especially costly errors.

Aspects of the model that we do take seriously include (a) making decisions is costly in terms of time
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and other resources; (b) therefore decision-makers do not always take the action that would otherwise be

optimal; (c) ceteris paribus, more valuable actions are more probable than less valuable ones; (d) in a

retail pricing context, these considerations apply both to the timing of price adjustment, and to the actual

price chosen. We will argue, when we come to the quantitative results, that this framework, without any

additional type of friction, provides a very successful model of nominal rigidity, in spite of the fact that

we restrict the implementation to fairly strong functional form assumptions.

Second, the problem is written conditional on the true values Vt(p, a) of the possible prices p, instead

of conditioning on a prior, as in a “rational inattention” model. This reflects the fact that we are not

assuming imperfect information. But this is not equivalent to saying that the firm “knows” the true

values Vt(p, a). Instead, our assumption is that the firm has sufficient information to calculate Vt(p, a).

Nonetheless, drawing correct conclusions from that information, and acting accordingly, may be costly.15

2.2.2 Choosing the timing of adjustment

We next analyze, in an analogous manner, the decision whether or not to adjust at time t. Note that

in the previous subsection, by defining costs in terms of the Kullback-Leibler divergence of the price

distribution, relative to a uniform distribution, we penalized any variation in the probability of one price

relative to another. Here, we set up an analogous cost function that penalizes variation in the probability

of adjusting at any given time, relative to another. More precisely, we penalize variation in the hazard

rate of the adjustment time. The relevant benchmark for comparison is therefore a Poisson process.

Now, suppose the time period is sufficiently short so that we can approximately ignore multiple

adjustments within a single period. If the firm adjusts its price at time t, it obtains the value gainDt(p̃, a)

defined in (16). Suppose it adjusts its price with probability λt. We measure the cost of this adjustment

probability in terms of Kullback-Leibler divergence, relative to some arbitrary Poisson process with

arrival rate λ̄:

Assumption 2. The time cost incurred in period t by choosing to adjust in period t with

probability λt ∈ [0, 1] is κλD((λt, 1− λt)||(λ̄, 1− λ̄)), where κλ > 0 and λ̄ ∈ [0, 1] are

constants.

Here κλ is the marginal cost of entropy reduction in the timing decision, which might or might not equal

the corresponding parameter κπ from the pricing decision. Since the decision to adjust or not in any

given period t is binary, Assumption 2 states that the decision cost in t depends on the relative entropy

of a binary choice with probabilities (λt, 1− λt), relative to another with probabilities (λ̄, 1− λ̄).16

15Since economists are accustomed to models of perfect rationality, they often equate observing a given information set with
knowing all quantities that can be calculated from that information set. But when rationality is less than perfect, we cannot
equate these two assumptions. Here, we assume firms can observe all relevant shocks and state variables, but we do not equate
this with actually knowing Vt(p, a) or knowing the optimal action, and therefore we do not equate it with implementing the
optimal action with probability one.

16At first blush, it might seem more natural to treat the timing choice as a binary application of the decision model from
Sec. 2.2.1, benchmarking the probabilities (λ̄, 1 − λ̄) against the uniform distribution (0.5, 0.5). But this formulation is not
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In other words, our cost function benchmarks the state-dependent price adjustment process λt against

the state-independent Calvo framework. This is a natural way to penalize variability in the distribution

of a random time, just as comparing to a uniform distribution penalizes variability in the distribution

of possible prices. Since a Calvo model can be defined at any arbitrary adjustment rate λ̄, this setup

implies the existence of one free parameter that measures the speed of decision-making, in addition to

the parameter κ−1
λ that measures the accuracy of decision-making.

Given this cost function, which we rewrite using the definition (9) of Kullback-Leibler divergence,

the optimal adjustment probability for a given log real price p and log productivity a satisfies

Gt(p̃, a) = max
λt

Dt(p̃, a)λt − κλWt

[
λt ln

(
λt
λ̄

)
+ (1− λt) ln

(
1− λt
1− λ̄

)]
. (17)

Here, the value functionG represents the expected gains from adjustment, net of the costs of the decision

whether or not to adjust. The first order condition from (17) is

Dt(p̃, a) = κλWt

[
lnλt + 1− ln λ̄− ln(1− λt)− 1 + ln(1− λ̄)

]
. (18)

Rearranging, we can solve (18) to obtain17

λt = λ

(
Dt(p̃, a)

κλWt

)
≡ λ̄

λ̄+ (1− λ̄) exp
(
−Dt(p̃,a)
κλWt

) (19)

=
λ̄ exp

(
Ṽt(a)
κλWt

)
λ̄ exp

(
Ṽt(a)
κλWt

)
+ (1− λ̄) exp

(
Vt(p̃,a)
κλWt

) ∈ [0, 1]. (20)

This weighted binary logit hazard was also derived by Woodford (2008) from a model with a Shannon

constraint.18 The free parameter λ̄ measures the rate of decision making; concretely, the probability

of adjustment in one discrete time period is λ̄ when the firm is indifferent between adjusting and not

adjusting, that is, at (p̃, a) such that Dt(p̃, a) = 0.

Here again, we can explicitly solve for the value function. Rearranging the first-order conditions

well behaved, because it lacks a free parameter corresponding to the modeler’s choice of period length. It would imply an
adjustment probability of 0.5 per period when indifferent regardless of period length, and if taken to its continuous-time limit
would imply perfectly rational timing decisions regardless of κλ.

Another specification that might seem appealing would be to supplement the setup from Sec. 2.2.1 with one more option
representing “do nothing now”. But this turns out to be exactly equivalent to the alternative that we have just discussed and
rejected (because the grouping axiom of information theory implies that combining a two-step decision problem into a single
step leaves overall entropy unchanged).

17Note also that (19) has a well-defined continuous-time limit. If λ̄ is a continuous-time constant hazard against which we
benchmark the costs of a time-varying hazard λt, then the continuous-time analogue of (19) is λt = λ̄ exp

(
Dt(p̃,a)
κλWt

)
.

18Woodford’s (2009) paper only states a first-order condition like (18); his (2008) manuscript points out that the first-order
condition implies a logit hazard of the form (19).
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above, we have

1− λt
1− λ̄

=
λt
λ̄

exp

(
−Dt(p̃, a)

κλWt

)
=

(
1− λ̄+ λ̄ exp

(
Dt(p̃, a)

κλWt

))−1

. (21)

Plugging these formulas into the objective function, the value G of problem (17) is

Gt(p̃, a) = κλWt ln

(
1− λ̄+ λ̄ exp

(
Dt(p̃, a)

κλWt

))
. (22)

2.2.3 Value of production

We must still state the Bellman equation that defines the value Vt(p, a) of producing at any log real price

p, and any log productivity a. To do so, we write the firm’s current profits as

Ut(p, a) =

(
Pt exp(p)− Wt

exp(a)

)
Ct exp(−εp) (23)

The Bellman equation for V can be stated most simply in terms of the expected gains G. Using (17),

for any beginning-of-period log real price p̃, and any log productivity a, we have

Vt(p̃, a) +Gt(p̃, a) = max
λ

{
(1− λ)Vt(p̃, a) + λṼt(a)− κλWtD

(
(λ, 1− λ)||(λ̄, 1− λ̄)

)}
. (24)

Now, note that if a firm leaves its nominal price unchanged from one period to the next, its log real price

pit declines to p̃i,t+1 ≡ pit − ln(Pt+1/Pt) at the beginning of time t + 1. Thus, discounting by the

household’s stochastic discount factor and using (24), the Bellman equation for V is

Vt(p, a) = Ut(p, a) + βEt

{
PtC

−γ
t+1

Pt+1C
−γ
t

[
Vt+1

(
p− ln

Pt+1

Pt
, a′
)

+Gt+1

(
p− ln

Pt+1

Pt
, a′
)]∣∣∣∣ a} .

(25)

Here, the expectation is taken over the firm’s log productivity next period, a′, conditional on its current

log productivity, a, and also over the aggregate state next period, conditional on the aggregate state today.

The terms inside the expectation in the Bellman equation represent the value V of continuing without

adjustment, plus the flow of expected gains G due to adjustment. Note that the function G is known

analytically in terms of the function D = Ṽ − V , according to (22). Likewise, Ṽ is known analytically

in terms of the function V , as seen in (15). Thus, numerical backwards induction is especially simple in

this context, because all the maximization steps can be performed analytically.

2.2.4 Extreme special cases

The decision framework defined by (12), (17), and (25) nests two special cases which we will compare

with the general case in the simulations that follow. On one hand, we could allow for mistakes in the size

of price adjustments, but assume that the timing of price adjustment is perfectly optimal, setting κπ > 0
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but κλ = 0. That is, we could assume that price resetting behavior is governed by (14), while for any

L ≡ D
κλW

the timing of resets is given by

λ(L) = 1(L ≥ 0), (26)

so that adjustment occurs if and only if it increases value. Since the potential for errors in (14) makes

price adjustment risky, it means firms will avoid adjusting whenever they are sufficiently close to the

optimum, which is why we have called this specification “precautionary price stickiness” in an earlier

paper (Costain and Nakov 2011C).

At the opposite extreme, we could set κπ = 0 but κλ > 0. In this case, any adjusting firm always sets

the optimal price (πt(p∗|a) = 1 if p∗ = argmaxpVt(p, a), with probability zero for all other prices), but

there may be “mistakes” in the timing of price adjustment, which is governed by the weighted logit (19).

Such a framework exhibits near-rational price stickiness in the sense of Akerlof and Yellen (1985) and

Costain and Nakov (2011A, B): the probability of price adjustment increases smoothly with the value of

adjustment, so a firm is likely to leave its price unchanged when the value of adjustment is small. We

will call the functional form (19) for the adjustment probability “Woodford’s logit”, because Woodford

(2008) derived it as a consequence of a Shannon constraint on information flow together with a fixed cost

of purchasing full information.19

2.3 Distributional dynamics

As firms respond to productivity shocks, managing their prices according to (14) and (19), the distribution

of prices and productivities evolves over time. We now state the equations governing the dynamics of

the distribution.

We will use the notation P̃it to refer to firm i’s nominal price at the beginning of period t, prior to

adjustment; this may of course differ from the price Pit at which it produces, because the price may be

adjusted before production. Therefore we will distinguish the beginning-of-period distribution of prices

and productivity, Φ̃t(P̃it, ait), from distribution of prices and productivity at the time of production,

Φt(Pit, ait). Besides keeping track of nominal prices Pit, it will also be helpful to track log real prices

pit, defined by (10). In analogy to the nominal distributions, we define Ψ̃t(p̃it, ait) as the real beginning-

of-period distribution, and Ψt(pit, ait) as the real distribution at the time of production. Finally, we also

use lower-case letters to represent the joint densities associated with these distributions, which we write

as φ̃t(P̃it, ait), φt(Pit, ait), ψ̃t(p̃it, ait), and ψt(pit, ait), respectively.20

19Although we share Woodford’s functional form for the adjustment hazard, this special case of our model is not exactly
the same as Woodford (2009). Since he considered a rational inattention framework, the gains from adjustment in his model
are evaluated in terms of a prior over possible values of the current state, whereas in our model the gains from adjustment are
evaluated in terms of the firm’s true state.

20Our notation in this section assumes that all densities are well-defined on a continuous support, but we do not actually
impose this assumption on the model. With slightly more sophisticated notation we could allow explicitly for distributions with
mass points, or with discrete support.
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Two stochastic processes drive the dynamics of the distribution. First, there is the Markov process

for firm-specific productivity, which we can write in terms of the following c.d.f.:

S(a′|a) = prob(ai,t+1 ≤ a′|ai,t = a), (27)

or in terms of the corresponding density function:

s(a′|a) =
∂

∂a′
S(a′|a). (28)

Thus, suppose that the density of nominal prices and log productivities at the end of period t − 1 is

φt−1(P, a). This density is then affected by productivity shocks; the density at the beginning of t will

therefore be

φ̃t(P, a
′) =

∫
s(a′|a)φt−1(P, a)da. (29)

But this equation conditions on a given nominal price P . Holding fixed a firm’s nominal price, its real

log price is changed by inflation, from pi,t−1 to p̃i,t ≡ pi,t−1 − log(Pt/Pt−1). Therefore the density of

real log prices and log productivities at the beginning of t is given by

ψ̃t

(
p− log

Pt
Pt−1

, a′
)

=

∫
s(a′|a)ψt−1(p, a)da, (30)

and hence the cumulative distribution at the beginning of t, in real terms, is

Ψ̃t(p̃, a
′) =

∫ p̃ ∫ a′ (∫
s(b|a)ψt−1

(
q + log

Pt
Pt−1

, a

)
da

)
db dq. (31)

The second stochastic process that determines the dynamics is the process of real price updates,

which we have defined in terms of a conditional density of logit form in (14). A firm with real log price

p̃ and log productivity a at the beginning of period t adjusts its price with probability λ
(
Dt(p̃,a)
κλWt

)
, and its

new real log price is distributed according to πt(p|a). Therefore, if the density of firms at the beginning

of t is ψ̃t(p̃, a), the density at the end of t is given by

ψt(p, a) =

(
1− λ

(
Dt(p, a)

κλWt

))
ψ̃t(p, a) +

∫
λ

(
Dt(p̃, a)

κλWt

)
πt(p|a)ψ̃t(p̃, a)dp̃. (32)

The cumulative distribution at the end of t is simply given by integrating up this density:

Ψt(p, a) =

∫ p ∫ a

ψt(q, b)db dq. (33)
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2.4 Monetary policy and aggregate consistency

The nominal money supply is affected by an AR(1) shock process z,21

zt = φzzt−1 + εzt , (34)

where 0 ≤ φz < 1 and εzt ∼ i.i.d.N(0, σ2
z). Here zt represents the time t rate of money growth:

Mt/Mt−1 ≡ µt = µ∗ exp(zt). (35)

Seigniorage revenues are paid to the household as a lump sum transfer TMt , and the government budget

is balanced each period, so that Mt = Mt−1 + TMt .

Bond market clearing is simply Bt = 0. When supply equals demand for each good i, total labor

supply and demand satisfy

Nt −Kλ
t −Kπ

t =

∫ 1

0

Cit
Ait

di = Ct

∫ ∫
ψt(p, a) exp(−εp− a)da dp ≡ ∆tCt, (36)

where Kλ
t is total time devoted to deciding whether to adjust prices, and Kπ

t is total time devoted to

choosing which price to set by firms that adjust.22 Equation (36) also defines a measure of price disper-

sion, ∆t ≡ P εt
∫ 1

0 P
−ε
it A

−1
it di, weighted to allow for heterogeneous productivity. As in Yun (2005), an

increase in ∆t decreases the goods produced per unit of labor, effectively acting like a negative aggregate

productivity shock.

2.5 General equilibrium

At this point, all equilibrium conditions have been spelled out. We could now define general equilibrium

in nominal terms, involving shock processes zt and Mt governed by (34)-(35); a profit function, value

functions, and policy functions Ut, Vt, Ṽt, Dt, Gt, πt, and λt satisfying (23), (25), (15), (16), (22), (14),

and (19); prices and policies Pt, Ct, Wt, and Rt satisfying (4)-(7); and densities and distributions φ̃t, φt,

Φ̃t, and Φt consistent with the dynamics discussed in Sec. 2.3. Time subscripts on these equilibrium ob-

jects indicate that they are functions of the nominal state of the economy; for example, the value function

should take the form Vt(p, a) = V (p, a,Ωt), where Ωt is the nominal state. Since the beginning-of-

period distribution Φ̃t is predetermined at t, we could conjecture the existence of a nominal equilibrium

that depends on the nominal state Ωt ≡ (zt,Mt, Φ̃t).

However, an equilibrium defined in nominal terms will be nonstationary if the money supply is

nonstationary. Therefore, it is more convenient to define equilibrium in real terms, deflating all nominal
21In related work (Costain and Nakov 2011B) we have studied state-dependent pricing when the monetary authority follows

a Taylor rule. Our conclusions about the degree of state-dependence, microeconomic stylized facts, and the real effects of
monetary policy were not greatly affected by the type of monetary policy rule considered. Therefore we focus here on the
simple, transparent case of a money growth rule.

22We will not actually need Kλ
t and Kπ

t to define general equilibrium, so we omit the formulas here.
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variables by the nominal price level Pt. To do so, we must identify an appropriate real state variable Ξt,

which would allow us to define a real value function of the form

v(p, a,Ξt) ≡ Vt(p, a)/Pt. (37)

We will detrend the other nominal value functions analogously: ṽ(a,Ξt) ≡ Ṽt(a)/Pt, d(p, a,Ξt) ≡
Dt(p, a)/Pt, and g(p, a,Ξt) ≡ Gt(p, a)/Pt, and we will also define the real wage and real money

balances as wt ≡Wt/Pt and mt ≡Mt/Pt.

Note that a firm’s real beginning-of-period price p̃it ≡ Pit/Pt is not predetermined at t, since it

depends on the aggregate price level Pt, which is endogenous at t. Therefore the beginning-of-period

real distribution Ψ̃t is likewise not predetermined at t, and hence cannot enter into the definition of the

time-t real state Ξt. Instead, we will now show that the real state can be defined as Ξt ≡ (zt,Ψt−1),

since the time t− 1 distribution Ψt−1 is predetermined at t.

While the price level will drop out of the real equation system, the inflation rate will still be present.

Inflation at twill depend both on the time t−1 state, and on the time tmoney supply shock, so we expect

to find an inflation function of the form

i(Ξt−1,Ξt) ≡ ln

(
Pt
Pt−1

)
. (38)

Substituting inflation in place of the nominal price level Pt will allow us to eliminate all reference to

nominal variables in the model.

We can now restate the full equation system in detrended form. The real value of production is given

by the following Bellman equation:

v(p, a,Ξt) =

(
exp(p)− w(Ξt)

exp(a)

)
C(Ξt)

exp(εp)
(39)

+ βE

{
C(Ξt+1)−γ

C(Ξt)−γ
[
v
(
p− i(Ξt,Ξt+1), a′,Ξt+1

)
+ g

(
p− i(Ξt,Ξt+1), a′,Ξt+1

)]∣∣∣∣ a,Ξt} ,
where E represents an expectation over a′ and Ξt+1, conditional on a and Ξt. This equation includes the

real expected gains function g, which must satisfy the following relations for any beginning-of-period

log real price p̃:

g (p̃, a,Ξ) ≡ κλw(Ξ) ln

(
1− λ̄+ λ̄ exp

(
d(p̃, a,Ξt)

κλw(Ξt)

))
, (40)

d (p̃, a,Ξ) ≡ ṽ (a,Ξ)− v (p̃, a,Ξ) , (41)

ṽ (a,Ξ) ≡ κπw(Ξ) ln

(
ū

∫ p

p
exp

(
v(p′, a,Ξ)

κπw(Ξ)

)
dp′

)
. (42)
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The adjustment probability associated with these value functions is

λ

(
d(p̃, a,Ξt)

κλw(Ξt)

)
≡ λ̄

λ̄+ (1− λ̄) exp
(
−d(p̃,a,Ξt)
κλw(Ξt)

) , (43)

and the density of new real prices is

π(p|a,Ξ) ≡
exp

(
v(p,a,Ξ)
κπw(Ξ)

)
∫ p
p exp

(
v(p′,a,Ξ)
κπw(Ξ)

)
dp′

= ū
exp

(
v(p,a,Ξ)
κπw(Ξ)

)
exp

(
ṽ(a,Ξ)
κπw(Ξ)

) . (44)

The probability densities then evolve as follows:

ψ̃t(p̃, a
′) =

∫
s(a′|a)ψt−1(p̃+ i(Ξt,Ξt−1), a)da (45)

ψt(p, a) =

(
1− λ

(
d(p̃, a,Ξt)

κλw(Ξt)

))
ψ̃t(p, a) +

∫
λ

(
d(p̃, a,Ξt)

κλw(Ξt)

)
π(p|a,Ξt)ψ̃t(p̃, a)dp̃. (46)

These densities can be integrated up to give the following cumulative distributions:

Ψ̃t(p̃, a) =

∫ p̃ ∫ a

ψ̃t(q, b)db dq, (47)

Ψt(p, a) =

∫ p ∫ a

ψt(q, b)db dq. (48)

Also, aggregate variables must satisfy the representative household’s first-order conditions. The

condition for labor supply is23

w(Ξt)C(Ξt)
−γ = χ. (49)

The Euler equation for intertemporal consumption and the money demand equation can be combined (by

eliminating the nominal interest rate) to give:

1− v′(m(Ξt))

u′(C(Ξt))
= βE

(
i(Ξt,Ξt+1)

u′(C(Ξt+1))

u′(C(Ξt))

∣∣∣∣Ξt) . (50)

where m(Ξt) ≡Mt/P (Ωt) is the real money supply. Its growth rate must be consistent with the growth

rate of the nominal money supply, and inflation, which implies:

µ exp(zt)

exp(i(Ξt−1,Ξt))
=

m(Ξt)

m(Ξt−1)
. (51)

Finally, the distribution of real prices must be consistent at all times with the definition of the aggregate
23Our assumption of linear labor disutility χN is helpful, because it allows us to calculate equilibrium without actually

solving for N . But the general case of nonlinear labor disutility is also tractable. The equilibrium definition would require four
more scalar equations to determine labor N(Ξ), decision costs Kπ(Ξ) and Kλ(Ξ), and price dispersion ∆(Ξ).
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price level, (4), which implies the following identity:∫ ∫
exp((1− ε)p)ψt(p, a)da dp = 1. (52)

We now have enough equations to define an equilibrium in terms of the real state variable Ξ. Firms’

behavior is characterized by the value functions and policy functions v, g, d, ṽ, λ, and π, which must sat-

isfy the relationships (39)-(44). The densities and cumulative distributions ψ̃, ψ, Ψ̃, and Ψ, are governed

by the dynamics (45)-(48). Finally, the functions w, c, m, and imust satisfy the four equations (49)-(52).

A simultaneous solution of these relationships constitutes a real general equilibrium of this economy.

Computing equilibrium requires a high-dimensional calculation, because we must track the evolution

of the distribution Ψ of prices and productivities across firms. We compute the model following the

algorithm of Reiter (2009), as described in the appendix.

3 Results

We next describe the calibration of the model and report simulation results. We describe the model’s

steady state implications for microdata on price adjustments, both at a low inflation rate, and as the rate

of trend inflation is substantially increased. We also analyze the macroeconomic implications for the

effects of monetary policy shocks. The simulations are performed at monthly frequency, and all data and

model statistics are monthly unless stated otherwise.

Our focus throughout is on understanding the implications of error-prone price setting. Therefore, to

see how each margin of error affects the results, and to see how a pure logit equilibrium compares with

a logit equilibrium derived from control costs, we report results for six specifications that turn on or shut

down different aspects of the model one by one.24 Two specifications allow for errors in the size of price

adjustments, but not in their timing, imposing κλ = 0 but allowing κπ > 0. These specifications are

labelled “PPS”, for “precautionary price stickiness”. Two specifications allow for errors in the timing

of price adjustments, but not in their size, imposing κπ = 0 but allowing κλ > 0; these are labelled

“Woodford”, since the adjustment hazard takes the functional form derived in Woodford (2008). The

specifications with both types of errors, which impose κπ = κλ > 0, are labelled “nested”.

For all these cases, we report the model based on control costs, as well as a model that imposes the

logit choices (14) and (20) exogenously, without deriving them from control costs. In other words, the

value functions are defined without a control cost term. The expected gains from adjustment are defined

by

Gt(p, a) = λt(p|a)(Ṽt(a)− Vt(p, a)) (53)

24Alternatively, we could compare our main model to more familiar price adjustment models. But in Costain and Nakov
(2011C) we already compared our “PPS” specification to the Calvo and menu cost models. We refer readers to that paper for
comparable tables and graphs documenting those specifications.
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instead of (17), and the value of the adjustment decision is simply

Ṽt(a) =

∫
p∈Γp

πt(p|a)Vt(p, a)dp (54)

instead of (12). By reporting these additional cases we can separate out how the model’s behavior is

affected by decision errors, versus how it is affected by decision costs.

Whenever we refer to the “main model” or the “benchmark model”, we mean the nested control

cost specification, in which both types of errors are present, are derived explicitly from control costs, as

described in equations (39)-(44).

3.1 Parameters

The key parameters related to the decision process are the rate and noise parameters λ̄ and κ. We

estimate these two parameters to match two steady-state properties of the price process: the average

rate of adjustment, and the histogram of nonzero log price adjustments. For the estimates we use the

Dominick’s supermarket dataset described in Midrigan (2011), after removal of price adjustments related

to “sales”, and aggregating weekly adjustment rates to monthly rates for comparability with some of the

other data sources considered in the paper. Our reason for ignoring sales is that recent literature has found

that the degree of monetary nonneutrality is driven primarily by “regular” or “non-sale” price changes

(see for example Kehoe and Midrigan, 2010; Eichenbaum et al. 2011; or Guimaraes and Sheedy 2011).

More precisely, let h be a vector of length #h representing the frequencies of nonzero log price

adjustments in a histogram with #h fixed bins.25 We choose the adjustment parameters λ̄ and κ (or κ

only in the PPS specification) to minimize the following distance criterion:

distance =
√

#h ||λmodel − λdata||+ ||hmodel − hdata|| (55)

where || • || represents the Euclidean norm, λmodel and λdata represent the average frequency of price

adjustment in the simulated model and in the Dominick’s dataset, and hmodel and hdata are the vectors

of bin frequencies for nonzero price adjustments in the model and the data.26 Clearly these features of

the data are informative about the two parameters, since λ̄ will shift the frequency of adjustment and κ

will spread the distribution of price adjustments.

The rest of the parameterization is less crucial for our purposes. Hence, for comparability, we take

our utility parameterization directly from Golosov and Lucas (2007). Thus, we set the discount factor to

β = 1.04−1/12. Consumption utility is CRRA, u(C) = 1
1−γC

1−γ , with γ = 2. Labor disutility is linear,

x(N) = χN , with χ = 6. The elasticity of substitution in the consumption aggregator is ε = 7. Finally,

the utility of real money holdings is logarithmic, v(m) = ν log(m), with ν = 1. We assume productivity

25See Figure 3, which compares these histograms in the data and in all specifications of our model.
26Since the Euclidean norm of a vector scales with the square root of the number of elements, we scale the first term by

√
#h

to place comparable weights on the two components of the distance measure.
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Table 1: Adjustment parameters.

Woodford Woodford PPS PPS Nested Nested
logit control logit control logit control

λ̄ 0.044 0.045 – – 0.083 0.22

κπ – – 0.049 0.0044 0.013 0.018

κλ 0.0051 0.0080 – – 0.013 0.018

is AR(1) in logs:

logAit = ρ logAit−1 + εat , (56)

where εat is a mean-zero, normal, iid shock. We take the autocorrelation parameter from Blundell and

Bond (2000), who estimate it from a panel of 509 US manufacturing companies over 8 years, 1982-1989.

Their preferred estimate is 0.565 on an annual basis, which implies ρ around 0.95 at monthly frequency.

The variance of log productivity is σ2
a = (1−ρ2)−1σ2

ε , where σ2
ε is the variance of the innovation εat . We

set the standard deviation of log productivity to σa = 0.06, which is the standard deviation of “reference

costs” estimated by Eichenbaum et al. (2011). The rate of money growth is set to match the roughly 2%

annual inflation rate observed in the Dominick’s dataset.

Parameter estimates for the six specifications we compare are reported in Table 1. Note that the PPS

specification has only one free parameter: the level of noise κπ in the pricing decision. The Woodford

model has two free parameters: the rate parameter λ̄, and the level of noise κλ in the timing decision.

The nested model features the same two free parameters, except that the noise parameter now applies

both to the timing and pricing decisions (κπ = κλ ≡ κ).27 The estimated parameters are similar across

the logit and control cost specifications, except for the “PPS” case, where the estimated noise is much

smaller under control costs than it is under an exogenous logit. We will see (Table 2) that this level of

noise in the decision process implies only modest revenue losses. The rate parameter λ̄ is estimated to be

lower than the observed adjustment frequency in the Woodford specification, but is twice as high as the

observed adjustment frequency in the main model, marked “nested control”. The combination of a high

underlying adjustment rate, together with a low noise parameter, indicates a high degree of rationality in

this estimate of the benchmark model.

3.2 Results: distribution of price adjustments

The steady state behavior of the main model is illustrated in Fig. 1. The first panel of the figure illus-

trates the distribution of prices chosen conditional on productivity, π(p|a); the axes show prices and

27It would also be interesting to allow the two noise parameters of the nested specification to differ, but we leave this for
future work, since the simple cross-sectional statistics we are using may not suffice to identify these parameters separately.
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Figure 1: Price change distributions and adjustment function: nested control cost model.
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Third panel: contour plot of density of firms at time of production.

Fourth panel: contour plot of density of adjusting firms.

costs (inverse productivity), expressed in log deviations from their unconditional means. As expected,

the mean price chosen increases roughly one-for-one with cost, but the smooth bell-shape of the distri-

bution conditional on a reflects the presence of errors. Similarly, the second panel shows the probability

λ(d(p, a)/(κw)) of price adjustment conditional on beginning-of-period price and productivity. Near

the 45o-line, the adjustment probability reaches a (strictly positive) minimum; moving away from the

45o-line, it increases smoothly towards one. The third panel is a contour plot of the end-of-period dis-

tribution of prices and productivities, Ψ(p, a). Dispersion in the horizontal direction represents variation

in idiosyncratic productivity over time; dispersion in the vertical direction represents deviation from the

conditionally-optimal price, caused either by failures to adjust in response to productivity shocks, or by

errors when adjustment occurs. This distribution spreads out horizontally at the beginning of the period
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Table 2: Model-Simulated Statistics and Evidence (2% annual inflation)
Woodford Woodford PPS PPS Nested Nested Data

logit control logit control logit control
Adjustment frequency
Freq. of price changes 10.2 10.2 10.2 10.2 10.2 10.2 10.2

Price change statistics
Mean absolute price change 4.88 4.68 14.0 6.72 8.11 7.51 9.90
Std of price changes 5.51 5.27 17.0 7.32 10.1 9.30 13.2
Kurtosis of price changes 2.24 2.22 2.58 2.37 3.48 3.40 4.81
Percent of price increases 62.7 63.3 55.2 62.3 58.3 58.8 65.1
Percent of changes ≤ 5% 47.9 49.7 16.5 27.9 31.5 33.6 35.4

Variability of prices and costs
100 × Std(p)/Std(a) 95.2 91.0 113 97.7 109 104 115∗∗

Costs of decisions and errors
Pricing costs∗ 0 0 0 0.174 0 0.509
Timing costs∗ 0 0.167 0 0 0 0.361
Loss relative to full rationality∗ 0.258 0.416 0.665 0.365 0.582 1.41
Note: All statistics refer to regular consumer price changes excluding sales, and are stated in percent.

Quantities with an asterisk are stated as a percentage of monthly average revenues.

Dataset: Dominick’s, except for double asterisk, which indicates Eichenbaum et al. (2011).

when new productivity shocks hit. The resulting distribution of adjusting firms is illustrated by the con-

tour plot in the last panel of the figure. The most frequently observed adjustments occur at firms whose

prices deviate from their conditionally-optimal values by 5%-10%; firms with smaller deviations have

little incentive to adjust, while firms with larger deviations are rare because adjustment usually occurs

before a larger deviation is reached. The asymmetry observed in the density of adjustments reflects the

fact that downward price errors (implying high sales at an unprofitably low price) are more costly than

upward price errors.

Table 2 also compares other specifications of the model. It reports statistics from the steady state of

each specification, and the corresponding statistics from the Dominick’s data. All specifications success-

fully match the 10.2% monthly adjustment frequency observed in the data. But the typical size of the

adjustments is too small in the Woodford model and in PPS-control, whereas it is too large in PPS-logit.

In contrast, the two free parameters of the nested specification help it match both the frequency and the

size of price changes simultaneously. Thus the main model is more consistent with the mean absolute

change, the standard deviation of the adjustments, the fraction of small adjustments, and even the kur-

tosis of the data than the other specifications are. The only reported statistic where the nested model

performs less well is the fraction of positive adjustments, which is matched very well by the Woodford

specification and by PPS-control.
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Figure 2: Distribution of price adjustents: comparing models.

−0.5 0 0.5
0

0.05

0.1

0.15

0.2

Size of price changes

Calvo

−0.5 0 0.5
0

0.05

0.1

0.15

0.2

Size of price changes

FMC

D
en

si
ty

−0.5 0 0.5
0

0.05

0.1

0.15

0.2

Size of price changes

Nested

 

 
Dominick’s data
Nested−logit
Nested−control

Notes:

Comparing histogram of price adjustments across models.

Shaded area: histogram of price adjustments in Dominick’s data.

Solid and dashed lines: histograms of price adjustments in various versions of the model.

These differences in adjustment behavior can be further understood by graphing the histogram of

nonzero log price adjustments. First of all, Figure 2 compares the distribution of price changes in the data

(shaded blue bars) with the distributions implied by models with fixed menu costs (FMC) or Calvo (1983)

adjustment behavior, and with that implied by our benchmark model. In the data, the distribution of

nonzero adjustments exhibits a small peak of negative adjustments, a high peak of positive adjustments,

and very fat tails. Under FMC, there are two sharp spikes in the histogram, representing small price

increases or decreases occurring near the (S,s) bands. Under the Calvo specification, the distribution of

adjustments is narrow and unimodal, with a sharp central peak around zero. In contrast, our benchmark

“nested control” model implies a distribution with a widely-spread central peak, and also relatively fat

tails. While the distribution in our model is unimodal, it follows the overall shape of the data fairly well

both in the center and in the tails.

Next, in Fig. 3, we compare the price adjustment histograms associated with all six versions of our

error-prone model. The vector of bin frequencies for the 81 bars in these histograms is the object that

enters the second term of the distance criterion (55). For the PPS model (first panel of the figure),

implications differ strongly between the exogenous logit and control cost specifications. As Table 1

showed, the estimated noise is much lower when control costs are included. Ceteris paribus, adjustment

is less likely if it requires a decision cost; hence to match the same empirical frequency of adjustment in

the logit and control cost specifications, price adjustment must be less risky (must have a lower κ) under

ECB Working Paper 1693, July 2014 26



Figure 3: Distribution of price adjustents: comparing models.

−0.5 0 0.5
0

0.05

0.1

0.15

0.2

Size of price changes

D
en

si
ty

PPS

−0.5 0 0.5
0

0.05

0.1

0.15

0.2

Size of price changes

Woodford

−0.5 0 0.5
0

0.05

0.1

0.15

0.2

Size of price changes

Nested

 

 
Dominick’s data
Logit versions
Control costs

Notes:

Comparing histogram of price adjustments across models.

Shaded area: histogram of price adjustments in Dominick’s data.

Solid lines: histograms of price adjustments in logit versions of the model.
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control costs. Thus, our estimate of the control cost version of the PPS model has extremely low noise,

resulting in behavior that is very close to full rationality. The implied distribution of price adjustments

resembles the FMC case from Fig. 2, with two sharp spikes representing increases or decreases occurring

near a pair of (S,s) bands. On average, this implies much smaller price adjustments than those in the data,

with little mass in the tails of the distribution.

Compared with PPS-control, the exogenous logit version of the PPS model requires much more noise

to produce the same average adjustment frequency, implying a smoother, wider, more bell-shaped dis-

tribution than that observed in the data. In summary, the single free parameter of the PPS framework

provides insufficient flexibility to match both the average frequency and the average size of price ad-

justments. In Costain and Nakov (2011C), for a different dataset with a zero average inflation rate, we

reported an estimate of the PPS model that matched both the frequency and size of price adjustments

well. But this finding was essentially coincidental; in the current dataset matching the mean adjustment

frequency either implies price changes that are too small (assuming control costs) or too large (assuming

an exogenous logit).

Since the Woodford specification has two free parameters, it might seem to have more potential to fit

both the frequency and size of adjustments. However, with no errors in the chosen price, this specification

implies a much tighter distribution of adjustments than those observed in the Dominick’s data. While the
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data show some adjustments as large as ±50%, our estimate of the Woodford specification implies no

price changes larger than ±20%. While a sufficiently high volatility of underlying costs would spread

out the distribution of adjustments observed in this specification, by itself this would be unlikely to

reproduce the fat tails of the empirical distribution of price changes. Indeed, while the standard deviation

of adjustments in the Woodford specification is slightly larger than in the Calvo model from Fig. 2, the

tails of the distribution drop off even more sharply in the Woodford case than they do in the Calvo case.

The nested specifications (in both the control cost and pure logit versions) are better able to match the

price change distribution. Like the Woodford model, these models have only two free parameters (since

we are constraining the noise in the timing decision to be the same as the noise in the pricing decision).

But the pricing errors present in the nested model make it easier to generate a wide, fat-tailed distribution

than it is in the Woodford model. At the same time, the parameter λ̄ helps ensure that the nested model

gets the adjustment frequency right. Stated differently, the restriction κπ = 0 imposed by the Woodford

specification strongly constrains its ability to match the data, whereas the restriction κπ = κλ that we

have maintained when estimating the nested specification does not seem to be strongly rejected by the

data. While the main peak is smoother than that observed in the data, the nested model is quite successful

both in reproducing the average size of price adjustments and in generating relatively fat tails.

Another way to look at the adjustment process is to consider the losses generated by nonadjustment.

Fig. 4 shows the distribution of losses d(p, a) from nonadjustment, expressed as a percentage of average

monthly revenue, at the beginning and end of the period, under the benchmark specification. The dis-

tribution of losses is strongly skewed out to the right: losses of up to 7% of revenue are visible in the

histogram, but most of the mass is concentrated at the left, with a mode at negative 7%. The firms at the

left end of this distribution are strictly better off not adjusting, because adjustment would require a deci-

sion cost, and would also imply a risk of setting the wrong price (this latter phenomenon is what we call

“precautionary price stickiness”). Adjustment eliminates some, but not all, of the largest losses, so the

beginning-of-period distribution (shaded blue bars) shifts slightly leftward (black line) before production

and transactions occur. Adjustment fails to completely eliminate the right tail of the distribution for two

reasons: some firms that would be expected to benefit from adjustment fail to adjust, and some firms that

do adjust make costly errors.

Losses are also reported in the last few lines of Table 2. The last line of the table shows the av-

erage monthly gain from eliminating all decision costs and frictions, as a fraction of average monthly

revenues.28 The previous two lines decompose the losses, showing the costs Kπ of choosing prices and

the costs Kλ of deciding the timing of adjustment. The part of the loss reported in the last line that is

not attributable to decision costs results from errors. The largest total loss occurs in the nested control

costs model, where choosing prices cost firms half of one percent of revenues, choosing the timing of

adjustment costs one-third of one percent of revenues, and errors eat up another half of a percent of

revenues. In a case study of an industrial firm, Zbaracki et al. (2004) find that decision and negotiation
28The table shows the gain from adjustment that would accrue to one infinitesimal firm if it could make perfect decisions

costlessly, holding fixed the behavior of all other firms.
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Figure 4: Losses from failure to adjust: nested control cost model.

−8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25
Size distribution of losses

Loss as % of average revenue

D
en

si
ty

 

 
Potential
Realized

Notes:

Loss from not adjusting, expressed as a percentage of monthly average revenues. Potential losses before adjustments occur

(shaded blue) and realized losses after adjustments (black line).

costs associated with price adjustment eat up roughly 1.2% of revenues; this is larger than the decision

costs, 0.87%, that we find for the nested control model.29 They do not attempt to calculate the revenue

loss caused by the suboptimality of the price process at the firm they study.

3.3 Results: some puzzles from microdata

Our model of price adjustment also performs well in reproducing several puzzling observations from

microdata. First, note that our main (“nested”) model matches well the observation of Eichenbaum,

Jaimovich, and Rebelo (2011) that prices are more volatile than costs (see Table 2). In their data, the

ratio of the standard deviation of log reference prices to log reference costs is above unity (1.15), while

both the menu cost and the Calvo model predict that this ratio should be less than one.30 This is because

in the menu cost and the Calvo model optimal prices anticipate mean reversion of productivity shocks;

prices are set conservatively, taking into account future conditions. Likewise, prices are less volatile than

costs in the Woodford version of our model, since it does not allow for pricing errors. However, in the

nested and PPS-logit versions, price dispersion is augmented by the possibility of price errors, which

results in a higher volatility of prices than of costs, as in the data.

Figures 5-7 show how the six specifications compare with some statistics from microdata that con-
29Since consumers are price takers in our model, all management costs in price adjustment are related to decision-making

rather than negotiation.
30The “reference” prices and costs reported by Eichenbaum et al. eliminate “sales” and similar phenomena. For their alter-

native measure of “weekly” prices and costs; the ratio of standard deviations is 1.08.
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Figure 5: Price adjustment hazard: comparing models.
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Solid lines: price adjustment hazards in logit versions of the model.

Dashed lines: price adjustment hazards in control cost versions of the model.

dition on the time since last adjustment. First, one might intuitively expect price adjustment hazards to

increase with the time since last adjustment. But empirically, price adjustment hazards are decreasing

with the time since adjustment, even after controlling for heterogeneity, as in Figure 5, where the blue

shaded bars are the adjustment hazards reported by Nakamura and Steinsson (2008). Comparing the

various versions of our model we see that under Woodford’s logit the adjustment hazard increases over

time, since newly set prices are conditionally optimal, and subsequent inflation and productivity shocks

gradually drive prices out of line with costs. In contrast, under the PPS-logit specification the adjustment

hazard decreases very strongly with the time since last adjustment. This is a consequence of the relatively

noisy decisions implied by the estimated parameters for this specification– prices adjust again quickly

after a large error occurs. A similar effect exists in PPS-control and the nested models– the possibility of

errors in price setting makes the adjustment hazard downward sloping. But the downward slope is much

milder than it was for PPS-logit, both because there is less noise in the pricing decision, and because

errors in the timing of adjustment imply that firms do not always respond immediately when they err in

the size of their adjustments. Thus, PPS-control and the nested models are the specifications that best fit

the mildly negative slope of the empirical adjustment hazard.

The shaded blue bars in Figure 6 illustrate Klenow and Kryvstov’s (2008) data on the average abso-

lute price change as a function of the time since last adjustment. The size of the adjustment is largely

invariant with the age of the current price, with a very slightly positive slope. Under Woodford’s hazard
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Figure 6: Mean adjustment and price duration: comparing models.
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Mean absolute size of price adjustment as function of time since last price change.

Shaded area: Klenow-Kryvstov dataset.

Solid lines: logit versions of the model.

Dashed lines: control cost versions of the model.

function, the size of the adjustment is instead strongly increasing with the time since last adjustment,

since an older price is likely to be farther out of line with current costs. Under the PPS and nested speci-

fications, the size of the adjustment varies less with the age of the price, although it is initially decreasing

(due to the correction of recent large errors). It is unclear which of our specifications performs best

relative to this phenomenon in the microdata.

Finally, Figure 7 illustrates the observation of Campbell and Eden (2010) that extreme prices tend

to be young. The shaded blue bars represent their data, after controlling for sales; the figure shows the

fraction of prices that are less than two months old, as a function of the deviation of the price from the

mean price in the product group to which that price belongs. In the Campbell and Eden data, the fraction

of young prices is around 50% for prices that deviate by more than 20% from the mean, whereas the

fraction of young prices is only around 35% for a price equal to the mean. Extreme prices also tend to be

young in the PPS and nested models; in these models extreme prices are likely to result from an extreme

productivity draw compounded by an error, and are therefore unlikely to last long. However, the relation

is much too strong under the PPS specification (with prices that deviate by more than 20% from the mean

being around 90% young, and only 10% young prices at the mean). The nested specification shows a

U-shaped relationship that is more quantitatively consistent with the data. In the Woodford specification

the relationship is much flatter, though in that specification too a mild U-shape is observed.
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Figure 7: Extreme prices tend to be young: comparing models.
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Notes:

Fraction of prices set within the last two months, as a function of deviation from average price in product class.

Shaded area: Campbell-Eden dataset.

Solid lines: logit versions of the model.

Dashed lines: control cost versions of the model.

3.4 Results: trend inflation

Next, in Figure 8 and Table 3, we study how each of our specifications performs under large changes

in trend inflation. The first row of Fig. 8 shows how the frequency of price adjustment varies as trend

inflation rises from 4% to 63% annually, which is the range of inflation rates documented by Gagnon

(2009) for a Mexican dataset (price adjustment statistics for 63% annual inflation are also reported in

Table 3). Given this increase in the inflation rate, the frequency of price adjustment in the Mexican data

increased by a factor of 1.6.31 In the Woodford and PPS specifications, the increase in the adjustment

frequency is much too high, ranging from a factor of 2.6 for Woodford-logit to 3.1 for PPS-control.

The best performance comes from the nested specifications, although the change is still excessive: the

frequency rises by a factor of 2.2 in Nested-logit and by 2.3 for Nested-control.

The second row of Figure 8 shows that the standard deviation of price adjustments changes very little

with trend inflation. On this issue, the Woodford specification performs remarkably well, reproducing

the data almost perfectly. Most of the specifications with errors in the size of price adjustments instead

counterfactually show a small increase in this standard deviation as inflation increases. The exception

is PPS-control, where the standard deviation of price adjustments falls by a factor of 0.74 as inflation
31In the figure, the adjustment frequency at the low 4% inflation rate is scaled to 100 in all cases, to better compare the

changes in frequency across specifications.
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Figure 8: Effects of trend inflation (4.3%, 29%, and 63% annually): comparing models.
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First row: Adjustment frequency as a function of trend inflation rate (normalized to frequency=100 at 4.3% annual inflation).

Second row: Standard deviation of price adjustments as a function of trend inflation rate (normalized to standard deviation =

100 at 4.3% annual inflation).

Third row: Price increases as a percentage of price adjustments, as a function of trend inflation rate.

Line with red stars: Gagnon (2009) Mexican dataset.

Solid lines: logit versions of the model.

Dashed lines: control cost versions of the model.

increases.32 Overall, though, none of these model specifications seem strongly inconsistent with the

mildly non-monotonic change in the standard deviation of price adjustments seen in Gagnon’s data.

In the last row, Fig. 8 shows how the fraction of price increases varies with trend inflation. All

versions of the model except PPS-logit depart from similar fractions of price increases at 4% inflation.

But as inflation rises, the nested models track the proportions of price increases and decreases much more

accurately than the other model versions do. The nested models imply that even when annual inflation

hits 63%, around 7% of price adjustments are still negative. In contrast, the Woodford and PPS-control
32This is because the PPS-control specification acts very much like a fixed menu cost model. As we show in Costain and

Nakov (2011A), fixed menu costs imply a strongly bimodal distribution of price adjustments at a low inflation rate, which
collapses to a single-peaked distribution as inflation rises, implying a large decrease in the standard deviation of adjustments.
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Table 3: Model-Simulated Statistics and Evidence (63% annual inflation)
Woodford Woodford PPS PPS Nested Nested

logit control logit control logit control
Freq. of price changes 29.0 29.6 32.1 35.5 24.2 26.0

Mean absolute price change 14.0 13.7 19.7 11.5 17.9 16.6
Std of price changes 4.87 4.86 20.1 5.26 11.7 10.9
Kurtosis of price changes 3.14 3.12 3.32 6.38 4.64 4.43
Percent of price increases 99.9 99.9 78.5 98.9 93.3 93.1
Percent of changes ≤ 5% 4.4 4.5 11.2 7.71 7.83 8.71
Pricing costs∗ 0 0 0 0.557 0 1.06
Timing costs∗ 0 1.00 0 0 0 0.66
Loss relative to full rationality∗ 0.752 1.65 1.92 1.00 1.72 3.25
Note: All statistics refer to regular consumer price changes excluding sales, and are stated in percent.

Quantities with an asterisk are stated as a percentage of monthly average revenues.

Dataset: Gagnon (2008) Mexican data.

specifications tend quickly to a corner solution: the fraction of price decreases is negligible (0.1% or

1.1%, respectively) when inflation reaches 63%.33 Finally, since PPS-logit implies much noisier choice

than our other specifications, it still displays more than 20% price decreases at a 63% inflation rate.

3.5 Results: money supply shocks

Finally, we turn to the issue of monetary shocks. To begin with, Figure 9 contrasts our benchmark nested

model with the Calvo and fixed menu cost models. As Golosov and Lucas (2007) and other recent papers

have made clear, different models of price stickiness have remarkably different implications for monetary

non-neutrality. After an increase in money supply, the Calvo model implies a small but very persistent

rise in inflation; in the FMC model, there is instead a large inflation spike that is even less persistent

than the money growth process itself. The almost immediate equilibration of prices in the FMC model

means that there is only a small rise in output after the money supply shock, in contrast with the large

and persistent output increase implied by the Calvo model.

Figure 10 instead compares the different versions of our model. Like Fig. 9, it shows the impulse

responses of inflation and consumption to a 1% money growth rate shock with monthly autocorrelation

of 0.8. Somewhat surprisingly, the responses are quite similar across five of our six specifications, the

exception being PPS-control. In the nested and Woodford specifications, the money supply shock leads

to a fairly strong real expansion. Consumption rises by 1.8% on impact in response to a one percent

money growth shock, and converges back to steady state with a half-life of roughly four months. This

is a less persistent response than we reported for the “smoothly state-dependent pricing” specification
33Similarly, the fixed menu cost model (not shown here; see Costain and Nakov 2011C) implies that price decreases are

almost completely eliminated at annual inflation rates of 29% or 63%.
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Figure 9: Impulse responses to money growth shock: comparing models.
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Notes:

Impulse responses of inflation and consumption to money growth shock with autocorrelation 0.8 (monthly).

Top row: logit specifications. Bottom row: control cost specifications.

Green lines with squares: Calvo model. Blue lines with circles: FMC model. Red lines: Nested control costs.

of Costain and Nakov (2011B), but is still a much stronger effect on consumption than Fig. 9 showed

for the fixed menu cost model. If we take the area under the consumption impulse response function

as a measure of total nonneutrality, then the figure shows that our nested model has roughly twice the

nonneutrality of the FMC case, while in turn the Calvo framework doubles the nonneutrality again.

Returning to Figure 10, we see that the Woodford specifications and nested specifications imply

almost identical impulse response functions, both for consumption and inflation. This suggests that the

timing errors in Woodford’s logit are the main factor responsible for the nonneutrality of the nested model

too. Timing errors obviously help cause monetary nonneutrality since they imply that not all prices adjust

immediately in response to a monetary shock. What is more surprising is that PPS-logit also exhibits a

very similar nonneutrality. In this case, the real effects can be understood in terms of the large pricing

errors implied by our estimate of the model. Given these noisy decisions, firms’ adjustments may be far

from optimal responses to the money supply shock. They may therefore need to readjust; note that Fig. 5

shows an adjustment hazard of almost 50% immediately after a price change for this specification. Thus

firms may require several attempts before setting a satisfactory price, which slows down adjustment of

the aggregate price level and leads to substantial monetary nonneutrality.

With much lower noise, the PPS-control framework behaves very differently. Errors in price setting

are small, and timing is perfectly rational, so the small decision cost and risk associated with price

adjustment in this specification basically act like a small menu cost. Thus, as we already saw in Figs.

2-3, the PPS-control model behaves very much like the fixed menu cost model. This is true of its impulse
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Figure 10: Impulse responses to money growth shock: comparing models.
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Impulse responses of inflation and consumption to money growth shock with autocorrelation 0.8 (monthly).

Top row: logit specifications. Bottom row: control cost specifications.

Blue lines with circles: PPS versions. Green lines with squares: Woodford versions. Red lines: Nested versions.

responses too: a money supply shock causes a strong initial inflation spike, due to the immediate price

changes made by the firms that cross the lower (S,s) band when the money supply increases. Thus, prices

adjust quickly and the response of consumption is correspondingly reduced, almost to that of the FMC

case.

To see that the initial inflation spike is indeed a “selection effect” in the sense of Golosov and Lucas

(2007), we decompose the inflation response in Fig. 11. To construct the decomposition, define the

conditionally optimal price level p∗kt ≡ argmaxpvt(p, a
k), and also x∗jkt ≡ log(p∗kt /p

j), the desired log

price adjustment of a firm at time twith productivity ak and real price pj . The actual log price adjustment

of such a firm (call it i) can thus be decomposed as xit = x∗jkt + εit, where εit is an error, in logs. We

can then write the average desired adjustment as x∗t =
∑

j,k x
∗jk
t Ψ̃jk

t , and write the fraction of firms

adjusting as λt =
∑

j,k λ
jk
t Ψ̃jk

t , and write the average log error as εt =
∑

j,k,l π
lk
t log(pl/p∗kt )λjkt Ψ̃jk

t .
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Figure 11: Decomposition of inflation impulse responses: comparing models.
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Decomposition of inflation impulse response to money growth shock with autocorrelation 0.8 (monthly).

Top row: logit specifications. Bottom row: control cost specifications.

Blue lines with circles: PPS versions. Green lines with squares: Woodford versions. Red lines: Nested versions.

Then inflation can be written as

Πt =
∑
j,k

x∗jkt λjkt Ψ̃jk
t + εt. (57)

To a first-order approximation, we can decompose the deviation in inflation at time t as

∆Πt = λ∆x∗t + x∗∆λt + ∆
∑
j,k

xjkt (λjkt − λt)Ψ̃
jk
t + ∆εt, (58)

where terms without time subscripts represent steady states, and ∆ represents a change relative to steady

state.34

The “intensive margin”, It ≡ λ∆x∗t , is the part of inflation due to changes in the average desired

adjustment, holding fixed the fraction of firms adjusting. The “extensive margin”, Et ≡ x∗∆λt, is the part

due to changes in the fraction adjusting, assuming the average desired change among those who adjust

equals the steady-state average in the whole population. The “selection effect”, St ≡ ∆
∑

j,k x
jk
t (λjkt −

λt)Ψ̃
jk
t , is the inflation caused by redistributing adjustment opportunities from firms desiring small (or

negative) price adjustments to firms desiring large (positive) adjustments, while fixing the total number

adjusting. The last term, ∆εt, is the change in the average log error. Figure 11 reports the inflation

decomposition for our six specifications. We see that, indeed, the spike of inflation on impact in PPS-
34See Costain and Nakov (2011B) for further discussion of this decomposition.
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Table 4: Variance decomposition and Phillips curves
Correlated money growth shock Woodford Woodford PPS PPS Nested Nested Data∗

(φz = 0.8) logit control logit control logit control
Freq. of price changes (%) 10.2 10.2 10.2 10.2 10.2 10.2 10.2
Std of money shock (%) 0.16 0.15 0.16 0.12 0.17 0.17

Std of qtrly inflation (%) 0.25 0.25 0.25 0.25 0.25 0.25 0.25
% explained by µ shock alone 100 100 100 100 100 100

Std of qtrly output growth (%) 0.41 0.37 0.34 0.20 0.45 0.43 0.51
% explained by µ shock alone 80 73 67 38 89 84

Slope coeff. of Phillips curve* 0.32 0.29 0.31 0.15 0.38 0.35
R2 of regression 0.96 0.94 0.999 0.85 0.99 0.98

*The “slope coefficients” are 2SLS estimates of the effect of inflation on consumption

First stage: πqt = α1 + α2µ
q
t + εt; second stage: cqt = β1 + β2π̂

q
t + εt, where the instrument

µqt is the exogenous growth rate of the money supply and the superscript q indicates quarterly averages.

Dataset: Dominick’s.

control is a selection effect. Interestingly, the majority of the inflation response is also attributed to the

selection component in the nested specifications, but this selection effect is more spread out over time.

The intensive margin is smaller, and the extensive margin and error margins are negligible, in all the

specifications considered.35

In Table 4, we provide an additional assessment of the degree of nonneutrality in our model by

running two calculations from Golosov and Lucas (2007). Assuming for concreteness that money shocks

are the only cause of macroeconomic fluctuations, we calibrate the standard deviation of the money

shock for each specification to perfectly match the standard deviation of quarterly inflation (one quarter

of one percent) in US data. We then check what fraction of the time variation in US output growth can

be explained by those shocks. In the Woodford and nested specifications, these money shocks would

explain around 80% or 90% of the observed variation in US output growth. In PPS-logit, they would

explain 67% of output growth variation, while in PPS-control they would explain only 38%, consistent

with the strong inflation spike and small output response observed in Fig. 10 for this specification. In the

last line of the table, we also report “Phillips curve” coefficients, that is, estimates from an instrumental

variables regression of the effect of inflation on output, instrumenting inflation by the exogenous money

supply process. The coefficient is more than twice as large for the nested, Woodford, and PPS-logit cases

as it is for PPS-control. In summary, allowing for errors in timing in the model suffices for generating

nontrivial real effects of money shocks.
35Because of the asymmetry of the adjustment process (last panel of Fig. 1), the steady state average log error ε̄ is nontrivial.

But time variation in the average pricing error is negligible.
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4 Conclusions

This paper has modeled nominal price rigidity as a near-rational phenomenon. Price adjustment is costly,

but the interpretation of the costs is not the usual one: they represent the cost of decision-making by

management.

We operationalize this idea by adopting a common assumption from game theory: a “control cost”

function that depends on the precision of the decision. Following Mattsson and Weibull (2002), we as-

sume that precision is measured by relative entropy, and then show that decisions are random variables

with logit form. This well-known game-theoretic result is directly applicable to the question of which

price to set, once the firm has decided to make an adjustment. We show how to extend the logit result

to the decision of when to adjust the price. Just as the cost of the price choice is assumed proportional

to relative entropy compared with a uniform price distribution, the cost of the timing choice is assumed

proportional to the relative entropy of the adjustment hazard, compared with a uniform adjustment haz-

ard. The resulting model of near rational choice has just two parameters: a noise parameter measuring

the accuracy of decisions, and a rate parameter measuring the speed of decisions.

We shut down the errors on each choice margin– the timing margin and the pricing margin– to see

the role played by each type of error. The model with pricing errors, but perfect adjustment timing,

implies that prices are sticky when they are near the optimum, because of the risk of choosing a worse

price; therefore we call this specification “precautionary price stickiness” (PPS). This special case has

only one free parameter– the degree of noise in the pricing decision. Our simulations show that noise in

the pricing decision helps match a variety of features of the price adjustment microdata, but with only

one free parameter the model cannot in general match both the typical size of adjustment and its typical

frequency. We refer to the model with errors in timing but perfect pricing decisions as “Woodford’s

logit”, because the functional form for the adjustment hazard is the same weighted logit derived by

Woodford (2008) for a rational inattention model. Both the Woodford specification, and our general

nested specification, have two free parameters: the decision accuracy and the decision rate. But with a

few exceptions the nested specification fits the data far better than the Woodford specification does.

With just two parameters, the nested specification fits well both the timing and size of price adjust-

ments. As microdata show, both large and small price adjustments coexist in the distribution. Both the

adjustment hazard, and the average size of the adjustment, are largely independent of the time since last

adjustment. Extreme prices are more likely to have been recently set. Prices are more volatile than costs.

The nested model is well-behaved as inflation rises from 4% to 63% annually, and it performs better than

the PPS or Woodford specifications in describing how the distribution of price adjustments changes with

inflation (in light of the Mexican data of Gagnon, 2009). Both the nested model and the Woodford model

imply a realistic degree of monetary nonneutrality in response to money growth shocks (though substan-

tially less than a Calvo model with the same average rate). While this paper has focused on showing what

errors on each adjustment margin contribute to the overall performance of the main nested specification,

we have also briefly compared the nested framework to the Calvo and fixed menu cost models to show
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that it outperforms both of those specifications on a variety of metrics.

Standard practice in microeconometrics includes error terms in all behavioral equations. Most recent

work on state-dependent pricing has instead modeled the full distribution of price adjustments as if firms’

behavior were entirely error-free. Here, instead, we allow for mistakes, and interpret them structurally

as the result of costly managerial decision-making. The payoff to this approach is that once we allow

for errors, we can eliminate all other forms of frictions (including “menu costs” and exogenous proba-

bilistic barriers to adjustment) but nonetheless match micro and macrodata at least as well as competing

frameworks (most of which are less sparsely parameterized). While the present paper has focused on

price adjustment, our framework also seems appropriate for other contexts in which a decision maker

intermittently flips a switch or updates a number or a vector. Interesting potential applications include

wage bargaining, hiring and firing decisions, inventory control, portfolio adjustment problems, lumpy

investment problems, and adjustment of macroeconomic policy instruments.
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[2] Álvarez, Fernando; Francesco Lippi, and Luigi Paciello (2011), “Optimal price setting with obser-

vation and menu costs.” Quarterly Journal of Economics 126 (4): 1909-60.
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Computational appendix

Outline of algorithm

Computing this model is challenging due to heterogeneity: at any time t, firms will face different pro-

ductivity shocks Ait and will be stuck at different prices Pit. The Calvo model is popular because, up

to a first-order approximation, only the average price matters for equilibrium. But this property does

not hold in most models; here we must treat all equilibrium quantities as functions of the time-varying

distribution of prices and productivity across firms.

We address this problem by implementing Reiter’s (2009) solution method for dynamic general equi-

librium models with heterogeneous agents and aggregate shocks. As a first step, the algorithm calculates

the steady-state general equilibrium in the absence of aggregate shocks. Idiosyncratic shocks are still

active, but are assumed to have converged to their ergodic distribution, so the real aggregate state of the

economy is a constant, Ξ. The algorithm solves for a discretized approximation to this steady state;

here we restrict real log prices pit and log productivities ait to a fixed grid Γ ≡ Γp × Γa, where

Γp ≡ {p1, p2, ...p#p} and Γa ≡ {a1, a2, ...a#a} are both logarithmically spaced. We can then view

the steady state value function as a matrix V of size #p ×#a, comprising the values vjk ≡ v(pj , ak,Ξ)

associated with prices and productivities
(
pj , ak

)
∈ Γ.36 Likewise, the price distribution can be viewed

as a #p×#a matrix Ψ in which the row j, column k element Ψjk represents the fraction of firms in state

(pj , ak) at the end of any given period. Under this discrete representation, we can calculate steady state

general equilibrium by guessing the wage w, then solving the firm’s problem by backwards induction on

the grid Γ, then updating the conjectured wage, and iterating to convergence.

In a second step, Reiter’s method constructs a linear approximation to the dynamics of the discretized

model, by perturbing it around the steady state general equilibrium on a point-by-point basis. That is, the

value function is represented by a #p×#a matrix Vt with row j, column k element vj,kt ≡ v(pj , ak,Ξt),

thus summarizing the time t values at all grid points (pj , ak) ∈ Γ. Then, instead of viewing the Bellman

equation as a functional equation that defines v(p, a,Ξ) for all possible idiosyncratic and aggregate states

p, a, and Ξ, we think of it as an expectational relation between the matrices Vt and Vt+1. This amounts

to a (large!) system of #p#a first-order expectational difference equations that determine the dynamics

of the #p#a variables vjkt . We linearize these equations numerically (together with the #p#a equations

that describe the evolution of the mass of firms at each grid point, and a few other scalar equations).

We then solve for the saddle-path stable solution of the linearized model using the QZ decomposition,

following Klein (2000).

This method combines linearity and nonlinearity in a way appropriate for models of price setting,

where idiosyncratic shocks tend to be more relevant for firms’ decisions than aggregate shocks are (e.g.

Klenow and Kryvtsov, 2008; Golosov and Lucas, 2007; Midrigan, 2011). When we linearize the model’s

aggregate dynamics, we recognize that changes in the aggregate shock zt or in the distribution Ψt are
36In this appendix, bold face indicates matrices, and superscripts represent indices of matrices or grids.
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unlikely to have a strongly nonlinear effect on the value function. Note that this smoothness does not

require any “approximate aggregation” property, in contrast with the Krusell and Smith (1998) method;

nor do we need to impose any particular functional form on the distribution Ψ. However, to allow for

the importance of firm-specific shocks, Reiter’s method treats variation along idiosyncratic dimensions

in a fully nonlinear way: the value at each grid point is determined by a distinct equation, which could

in principle be entirely different from the equations governing the value at neighboring points.

The discretized model

In the discretized model, the value function Vt is a matrix of size #p × #a with elements vjkt ≡
v(pj , ak,Ξt) where

(
pj , ak

)
∈ Γ. The expected value of setting a new price is a column vector ṽt of

length #a, with kth element

ṽkt ≡ κw(Ξt) ln

 1

#p

#p∑
j=1

exp

(
vjkt

κw(Ξt)

) . (59)

Other relevant #p×#a matrices include the adjustment values Dt, the probabilities Λt, and the expected

gains Gt, with (j, k) elements given by37

djkt ≡ ṽkt − v
jk
t , (60)

λjkt ≡ λ
(
djkt /(κwt)

)
(61)

gjkt ≡ κwt

(
1− λ̄+ λ̄ exp

(
djkt
κwt

))
(62)

Finally, we also define a matrix of logit probabilities Πt, which has its (j, k) element given by

πjkt = πt(p
j |ak) ≡

exp
(
vjkt /(κwt)

)
∑#p

n=1 exp
(
vnkt /(κwt)

)
which is the probability of choosing real log price pj conditional on log productivity ak if the firm decides

to adjust its price at time t.

In this discrete representation, the productivity process (56) can be written in terms of a #a × #a

37Actually, (61) is a simplified description of λjkt . While (61) implies that λjkt represents the function λ(L) evaluated at the
log price grid point pj and log productivity grid point ak, in our computations λjkt actually represents the average of λ(L) over

all log prices in the interval
(
pj−1+pj

2
, p
j+pj+1

2

)
, given log productivity ak. Calculating this average requires interpolating

the function dt(p, ak) between price grid points. Defining λjkt this way ensures differentiability with respect to changes in the
aggregate state Ωt.
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matrix S, where the (m, k) element represents the following transition probability:

Smk = prob(ait = am|ai,t−1 = ak).

It is helpful to introduce analogous Markovian notation for the price process. Let Rt be a #p × #p

Markov matrix in which the row m, column l element represents the probability that firm i’s beginning-

of-period log real price p̃i,t equals pm ∈ Γp if its log real price at the end of the previous period was

pl ∈ Γp:

Rmlt ≡ prob(p̃it = pm|pi,t−1 = pl).

Generically, the deflated log price pi,t−1 − i(Ξt−1,Ξt) will fall between two grid points; then the matrix

Rt must round up or down stochastically. Also, if pi,t−1 − i(Ξt−1,Ξt) lies below the smallest or above

the largest element of the grid, then Rt must round up or down to keep prices on the grid.38 Therefore

we construct Rt according to

Rmlt = prob(p̃it = pm|pi,t−1 = pl, it) =



1 if pl − it ≤ p1 = pm

pl−it−pm−1

pm−pm−1 if p1 < pm = min{p ∈ Γp : p ≥ pl − it}
pm+1−pl+it
pm+1−pm if p1 ≤ pm = max{p ∈ Γp : p < pl − it}

1 if pl − it > p#p
= pm

0 otherwise
(63)

Given this notation, we can now write the distributional dynamics in a more compact form. Equations

(45) and (47) become

Ψ̃t = Rt ∗Ψt−1 ∗ S′, (64)

where ∗ represents ordinary matrix multiplication. Note that exogenous shocks are represented from left

to right in the matrix Ψt, so that their transitions can be treated by right multiplication, while policies are

represented vertically, so that transitions related to policies can be treated by left multiplication. Next, to

calculate the effects of price adjustment on the distribution, let Epp and Epa be matrices of ones of size

#p ×#p and #p ×#a, respectively. Equations (46) and (48) can then be rewritten as

Ψt = (Epa−Λ) . ∗ Ψ̃t + Πt . ∗ (Epp ∗ (Λ . ∗ Ψ̃t)), (65)

where (as in MATLAB) the operator .∗ represents element-by-element multiplication.

The same transition matrices R and S show up when we write the Bellman equation in matrix form.
38In other words, we assume that any nominal price that would have a real log value less than p1 after inflation is automatically

adjusted upwards to the real log value p1 (and when computing examples with deflation we must adjust down any real log price
exceeding p#

p

). This assumption is made for numerical purposes only, and has a negligible impact on the equilibrium as long
as we choose a sufficiently wide grid Γp.
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Let Ut be the #p ×#a matrix of current payoffs, with elements

ujkt ≡
(

exp(pj)− w(Ξt)

exp(ak)

)
C(Ξt)

exp(εpj)
(66)

for
(
pj , ak

)
∈ Γ. Then the Bellman equation can be written as

Vt = Ut + βEt

{
C−γt+1

C−γt

[
R′t+1 ∗ (Vt+1 + Gt+1) ∗ S

]}
. (67)

The expectation Et in (67) refers only to the effects of the time t+ 1 aggregate shock zt+1, because the

dynamics of the idiosyncratic state (pj , ak) ∈ Γ are completely described by the matrices R′t+1 and S.

Note that since (67) iterates backwards in time, its transitions are represented by R′ and S, whereas (65)

iterates forward in time and therefore involves R and S′.

Next, we discuss how we apply the two steps of Reiter’s (2009) method to this discrete model.

Step 1: steady state

In the aggregate steady state, the shocks are zero, and the distribution takes some unchanging value Ψ,

so the state of the economy is constant: Ξt ≡ (zt,Ψt−1) = (0,Ψ) ≡ Ξ. We indicate the steady state of

all equilibrium objects by dropping the time subscripts and the function argument Ξ, so the steady state

value function V has elements vjk ≡ v(pj , ak,Ξ).

Long run monetary neutrality in steady state implies that the rate of nominal money growth equals

the rate of inflation:

µ = exp(i).

Thus, the steady-state transition matrix R is known, since it depends only on steady state inflation i.

Morever, the Euler equation reduces to

exp(i) = βR.

We can then calculate general equilibrium as a one-dimensional root-finding problem: guessing the

wage w, we have enough information to solve the Bellman equation and the distributional dynamics.

Knowing the steady state aggregate distribution, we can construct the real price level, which must be

one. Thus finding a value of w at which the real price level is one amounts to finding a steady state

general equilibrium.

More precisely, for any w, we calculate C = (w/χ)1/γ . We can then construct the matrix U, with

elements

ujk ≡
(

exp(pj)− w

exp(ak)

)
C

εpj
. (68)

We then find the fixed point of the value V (simultaneously with ṽ, D, λ, and G):

V = U + βR′ ∗ (V + G) ∗ S. (69)
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This allows us to calculate the matrix of logit probabilities Π, with elements

πjk ≡
exp

(
vjk/(κw)

)∑#p
n=1 exp (vnk/(κw))

. (70)

We can then find the steady state distribution as the fixed point of these two equations:

Ψ = (Epa−Λ) . ∗ Ψ̃ + Π . ∗ (Epp ∗ (Λ . ∗ Ψ̃)) (71)

Ψ̃ = R ∗Ψ ∗ S′ (72)

Finally, we check whether

1 =

#p∑
j=1

#a∑
k=1

Ψjk
(
pj
)1−ε ≡ p(w) (73)

If p(w) = 1, then an equilibrium value of w has been found.

Step 2: linearized dynamics

Given the steady state, the general equilibrium dynamics can be calculated by linearization. To do so,

we eliminate as many variables from the equation system as we can. We can then summarize the

general equilibrium equation system in terms of the exogenous shock process zt, the lagged distribution

of idiosyncratic states Ψt−1, which is the endogenous component of the time t aggregate state; and

finally the endogenous ’jump’ variables including Vt, Πt, Ct, Rt, and it. The equation system reduces

to

zt = φzzt−1 + εzt (74)

µ exp(zt)

exp it
=

mt

mt−1
(75)

Ψt = (Epa −Λt) . ∗ Ψ̃t + Πt . ∗ (Epp ∗ (Λt . ∗ Ψ̃t)) (76)

Vt = Ut + βEt

{
C−γt+1

C−γt

[
R′t+1 ∗ (Vt+1 + Gt+1) ∗ S

]}
(77)

1 =

#p∑
j=1

#a∑
k=1

Ψjk
t exp((1− ε)pj) (78)

If we now collapse all the endogenous variables into a single vector

−→
X t ≡

(
vec (Ψt−1)′ , vec (Vt)

′ , Ct, mt−1, it
)′

then the whole set of expectational difference equations (74)-(78) governing the dynamic equilibrium

becomes a first-order system of the following form:
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EtF
(−→
X t+1,

−→
X t, zt+1, zt

)
= 0 (79)

where Et is an expectation conditional on zt and all previous shocks.

To see that the variables in vector
−→
X t are in fact the only variables we need, note that given it and

it+1we can construct Rt and Rt+1. Given Rt, we can construct Ψ̃t = Rt ∗Ψt−1 ∗S′ from Ψt−1. Given

wt = χCγt , we can construct Ut, with (j, k) element equal to ujkt ≡
(

exp(pj)− wt
exp(ak)

)
Ct

exp(εpj)
.

Finally, given Vt and Vt+1 we can construct Πt, Dt, and Dt+1, and thus Λt and Gt+1. Therefore the

variables in
−→
X t and zt are indeed sufficient to evaluate the system (74)-(78).

Finally, if we linearize system F numerically with respect to all its arguments to construct the Jaco-

bian matrices A ≡ D−→
X t+1
F , B ≡ D−→

X t
F , C ≡ Dzt+1F , and D ≡ DztF , then we obtain the following

first-order expectational difference equation system:

EtA∆
−→
X t+1 + B∆

−→
X t + EtCzt+1 +Dzt = 0 (80)

where ∆ represents a deviation from steady state. This system has the form considered by Klein (2000),

so we solve our model using his QZ decomposition method.39

39Alternatively, the equation system can be rewritten in the form of Sims (2001). We chose to implement the Klein method
because it is especially simple and transparent to program.
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