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Abstract

A large body of microeconomic evidence supports Friedman (1957)'s proposition that
household income can be reasonably well described as having both transitory and permanent
components. We show how to modify the widely-used macroeconomic model of Krusell and
Smith (1998) to accommodate such a microeconomic income process. Our incorporation of
substantial permanent income shocks helps our model to explain a substantial part of the large
degree of empirical wealth heterogeneity that is unexplained in the baseline Krusell and Smith
(1998) model, even without heterogeneity in preferences.
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Non-technical Summary

A large body of microeconomic evidence supports Friedman (1957)'s proposition
that household income can be reasonably well described as having both transitory
and permanent components. We show how to modify the widely-used macroeconomic
model of Krusell and Smith (1998) (KS) to accommodate such a microeconomic income
process. Our incorporation of substantial permanent income shocks helps our model to
explain a substantial part of the large degree of empirical wealth heterogeneity that is
unexplained in the baseline Krusell and Smith (1998) model, even without heterogeneity
in preferences.
Although the Krusell and Smith (1998) method for incorporating uninsurable idiosyn-

cratic risk into macroeconomic models has become a workhorse with a wide range of
applications, its plausible criticism is that their assumed stochastic process for household
income bears little relationship to microeconomic evidence about household income
dynamics. Since the purpose of KS modeling exercise was to derive quantitative impli-
cations of idiosyncratic uncertainty, it is hard to be con�dent about their (quantitative)
conclusions if the calibration of the idiosyncratic risk is (quantitatively) implausible.
We review a large body of microeconomic evidence which �nds that a simple in-

come process consisting of a permanent (random walk) and a transitory (white noise)
component�what we call the �Friedman/Bu�er Stock� (FBS) process�captures the key
features of the microeconomic data well. We then solve a modi�ed version of the Krusell
and Smith (1998) model in which the household income process has been calibrated to be
consistent with the FBS household income process. The main model modi�cation is that
it is necessary for households to have �nite, rather than in�nite, lifetimes. Along with a
plausible assumption about the permanent income of newborns, if the exogenous risk of
death a la Blanchard (1985) is large enough, we show that the cross-section distribution
of permanent income is stable. (This overcomes the perceived obstacle to incorporation
of permanent shocks that in in�nite-horizon contexts, a model with permanent shocks
does not have an ergodic distribution of the level of permanent income).
Our variant of the KS model with the FBS household income process is actually

substantially easier to solve than the original Krusell�Smith model. It also produces
results that are closer to the data in an additional dimension beyond microeconomic
income dynamics: The substantial permanent component in income translates into
considerable heterogeneity in wealth across households. Our simulations document that
top 1 percent of households in our model are three times richer than the top 1 percent in
the original baseline KS model (although both setups fall short of the degree of inequality
found in the empirical data).
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1 Introduction

The Krusell and Smith (1998) method for incorporating uninsurable idiosyncratic risk
into macroeconomic models has become such a workhorse that the Journal of Economic

Dynamics and Control devoted a special issue to competing algorithms for implementing
the method (Journal of Economic Dynamics and Control (2010)). But a plausible criti-
cism of the Krusell and Smith (1998) model is that their assumed stochastic process for
household income bears little relationship to microeconomic evidence about household
income dynamics. Since the purpose of their modeling exercise was to derive quanti-
tative implications of idiosyncratic uncertainty, it is hard to be con�dent about their
(quantitative) conclusions if the calibration of the idiosyncratic risk is (quantitatively)
implausible.
We review a large body of microeconomic evidence which �nds that a simple in-

come process consisting of a permanent (random walk) and a transitory (white noise)
component�what we call the �Friedman/Bu�er Stock� (FBS) process�captures the key
features of the microeconomic data well. We then solve a modi�ed version of the Krusell
and Smith (1998) model in which the household income process has been calibrated to be
consistent with the FBS household income process. The main model modi�cation is that
it is necessary for households to have �nite, rather than in�nite, lifetimes. Along with a
plausible assumption about the permanent income of newborns, if the exogenous risk of
death a la Blanchard (1985) is large enough, we show that the cross-section distribution
of permanent income is stable. (This overcomes the perceived obstacle to incorporation
of permanent shocks that in in�nite-horizon contexts, a model with permanent shocks
does not have an ergodic distribution of the level of permanent income).
Our variant of the KS model with the FBS household income process is actually

substantially easier to solve than the original Krusell�Smith model. It also produces
results that are closer to the data in an additional dimension beyond microeconomic
income dynamics: The substantial permanent component in income translates into
considerable heterogeneity in wealth across households. Our simulations document that
top 1 percent of households in our model are three times richer than the top 1 percent in
the original baseline KS model (although both setups fall short of the degree of inequality
found in the empirical data).1

The paper is structured as follows. Section 2.1 articulates the perfect foresight frame-
work from which the model can be viewed as a deviation. Section 2.2 describes the FBS
income process. Section 2.3 introduces the risk of death and shows how it ensures a stable
distribution of income. Section 2.4 describes results from the model with idiosyncratic
uncertainty driven by the FBS household income process. Section 3 calibrates the model.
Section 4 presents the simulated wealth distribution and compares it to that in the KS

1Carroll, Slacalek, and Tokuoka (2013) show that when a modest amount of heterogeneity in impatience is added
to the models, they are able to match the wealth distribution much better; one interpretation of our results is that the
degree of preference heterogeneity need not be so large as Krusell and Smith (1998) proposed in order for a model to
match the data.
Large literature has explored alternative strategies to match the empirical wealth distribution, such as accounting for
entrepreneurial choice (Quadrini (2000)), bequests (De Nardi (2004)), a combination of credit constraints and non-
convexities (Banerjee and Newman (1993)), or directly calibrating the income process (Castaneda, Diaz-Gimenez, and
Rios-Rull (2003)).
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model and in the data. Section 5 describes the full-blown model with the FBS household
income process and KS aggregate shocks, and section 6 concludes.

2 Model

2.1 The Perfect Foresight Representative Agent Model

To establish notation and a transparent benchmark, we begin by brie�y sketching a
standard perfect foresight representative agent model.
The aggregate production function is

ZtKKK
α
t (`LLLt)

1−α, (1)

where Zt is aggregate productivity in period t, KKKt is capital, ` is time worked per em-
ployee, and LLLt is employment. The representative agent's goal is to maximize discounted
utility from consumption

max
∞∑
n=0

βnu(CCCt+n)

for a CRRA utility function u(•) = •1−ρ/(1−ρ).2 The representative agent's state at the
time of the consumption decision is de�ned by two variables: MMM t is market resources,
and Zt is aggregate productivity.
The transition process for MMM t is broken up, for clarity of analysis and consistency

with later notation, into three steps. Assets at the end of the period are equal to market
resources minus consumption,

AAAt = MMM t −CCCt,

while next period's capital is determined from this period's assets via

KKKt+1 = AAAt.

The �nal step can be conceived as the transition from the beginning of period t + 1
when capital has not yet been used to produce output, to the middle of that period,
when output has been produced and incorporated into resources but has not yet been
consumed:

MMM t+1 = (1− δ)KKKt+1 + Zt+1KKK
α
t+1(`LLLt+1)1−α︸ ︷︷ ︸

KKKt+1rt+1+(`LLLt+1)Wt+1

,

where rt+1 is the interest rate,3 Wt+1 is the wage rate,4 and (1 − δ) is the depreciation
factor for capital.

2Substitute u(•) = log • for the case where ρ = 1.
3Equal to the marginal product of capital, αZt+1KKK

α−1
t+1 (`LLLt+1)1−α.

4Equal to the marginal product of labor, (1− α)Zt+1KKKα
t+1(`LLLt+1)−α.
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After normalizing by e�ective labor supply, Pt = Z
1/(1−α)
t (`LLLt),

5 the representative
agent's problem is

V(Mt, Zt) = max
Ct

u(Ct) + β Et
[
Γ1−ρ
t+1 V(Mt+1, Zt+1)

]
(2)

s.t.

At = Mt − Ct, (3)

Kt+1 = At/Γt+1, (4)

Mt+1 = (1− δ)Kt+1 +Kα
t+1, (5)

where the non-bold variables are the corresponding bold variables divided by
Z

1/(1−α)
t (`LLLt) (e.g., At = AAAt/Pt), and the growth factor for labor's e�ective productive

power is Γt+1 = Pt+1/Pt. The expectations operator Et here signi�es the perfection
of the agent's foresight (but will have the usual interpretation when uncertainty is
introduced below).

2.2 The Household Income Process a la Friedman (1957)

Before proceeding to a description of the model with idiosyncratic uncertainty (in sec-
tion 2.4), we discuss its two ingredients: the household income process (in this section)
and �nite lifetimes (in the next section).
A large empirical literature summarized in Table 1 below has over the past several

decades analyzed household income dynamics. For our purposes, the principal conclusion
from this literature is that household income can be reasonably well described as follows.
The idiosyncratic permanent component of labor income p evolves according to

pt+1 = Γptψt+1 (6)

where Γ captures the predictable low-frequency (e.g., life-cycle and demographic) compo-
nents of income growth, and the Greek letter psi mnemonically indicates the permanent
shock to income. Actual income is the product of permanent income, a mean-one
transitory shock, and the wage rate:

yyyt+1 = pt+1ξt+1Wt+1.

After taking logarithms, this income process is strikingly similar to Friedman (1957)'s
characterization of income as having permanent and transitory components. Because
this process has been used widely in the literature on bu�er stock saving, and though
similar to Friedman's formulation is not identical to it, we henceforth refer to it as the
Friedman/Bu�er Stock (or `FBS') process.6,7

5Details of this normalization are discussed in Carroll (2000).
6Guvenen (2007) refers to a process like this one as a `restricted income process' (RIP) as distinguished from a process

that he proposes which is similar but which allows each individual to have a distinct idiosyncratic mean growth rate.
Guvenen's argument that each household has its own growth rate is intuitively plausible (indeed, it occurred to earlier
authors who tested and rejected it), but Hryshko (2012) argues that there is no evidence that the Guvenen income process
describes the data better (in a quantitatively meaningful way) than the restricted income process. Since incorporation of
Guvenen's income process introduces serious modeling di�culties, it seems prudent to avoid using it unless the evidence
for idiosyncratic growth factors becomes compelling.

7Friedman (1957)'s formulation was in levels rather than logs; we call ours a �bu�er stock� process to distinguish it
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2.3 Finite Lifetimes and the Finite Cross-Sectional Variance of Income

One might wish to use the FBS income process speci�ed above as a complete char-
acterization of household income dynamics, but that idea has a problem: Since each
household accumulates a permanent shock in every period, the cross-sectional distri-
bution of idiosyncratic permanent income becomes wider and wider inde�nitely as the
simulation progresses; that is, there is no ergodic distribution of permanent income in
the population.
This problem and several others can be addressed by assuming that the model's agents

have �nite lifetimes a la Blanchard (1985). Death follows a Poisson process, so that every
agent alive at date t has an equal probability D of dying before the beginning of period
t + 1. (The probability of not dying is the cancelation of the probability of dying:

��D = 1− D). Households engage in a Blanchardian mutual insurance scheme: Survivors
share the estates of those who die. Assuming a zero pro�t condition for the insurance
industry, the insurance scheme's ultimate e�ect is simply to boost the rate of return (for
survivors) by an amount exactly corresponding to the mortality rate.
In order to maintain a constant population (of mass one, uniformly distributed on

the unit interval), we assume that dying households are replaced by an equal number

of newborns; we write the population-mean operator as M[•t] =
∫ 1

0
•t,ιdι. Newborns,

we assume, begin life with a level of idiosyncratic permanent income equal to the mean
level of idiosyncratic permanent income in the population as a whole. Conveniently, our
de�nition of the permanent shock implies that in a large population, mean idiosyncratic
permanent income will remain �xed at M[p] = 1 forever, while the mean of p2 is given
by8

M[p2] =
D

1−��DE[ψ2]
(7)

and the variance of p by

σ2
p = M[p2]− 1.

Of course for all of this to be valid, it is necessary to impose the parametric restriction

��DE[ψ2] < 1 (a requirement that does not do violence to the data, as we shall see).
Intuitively, the requirement is that, among surviving consumers, income does not spread
out so quickly as to overwhelm the compression of the permanent income distribution
that arises because of the equalizing force of death and replacement.

from Friedman's formulation and because it has been widely used in the literature on bu�er-stock saving. Some papers,
instead of imposing a random walk, have allowed for an AR(1) persistent component; but our reading of the literature is
that whenever those papers have also allowed for an MA(1) transitory component�as would be implied by any framework
in which transitory shocks occur on dates other than January 1�the AR(1) coe�cient is always very close to 1.

8See Appendix A for the derivation.
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2.4 Putting the (Microeconomic) Parts Together

We now introduce the FBS household income process of section 2.2 and �nite lifetimes
of section 2.3 into the perfect foresight model of section 2.1. (Below we extend the model
to incorporate aggregate shocks a la Krusell and Smith (1998)).
Extending section 2.2, for convenience setting Γ = 1, the process of noncapital income

of each household follows

yyyt = ptξtWt, (8)

pt = pt−1ψt, (9)

Wt = (1− α)Zt(KKKt/`LLLt)
α, (10)

where yyyt is noncapital income for the household in period t, equal to the permanent
component of noncapital income pt multiplied by a transitory income shock factor ξt
and wage rate Wt; the permanent component of noncapital income in period t is equal
to its previous value, multiplied by a mean-one iid shock ψt, Et[ψt+n] = 1 for all n ≥ 1.
KKKt is capital and LLLt = 1− ut is the employment rate (because ut is the unemployment
rate). Since there is no aggregate shock, Zt, KKKt, LLLt, and Wt are constant (Zt = Z = 1,
KKKt = KKK, LLLt = LLL, and Wt = W = (1− α)(KKK/`LLL)α).
Following the assumptions in the the special issue of the Journal of Economic Dy-

namics and Control (Journal of Economic Dynamics and Control (2010)) devoted to
comparing solution methods for the KS model, the distribution of ξt is:

ξt = µ with probability ut, (11)

= (1− τt)`θt with probability 1− ut, (12)

where µ > 0 is the unemployment insurance payment when unemployed and τt = µut/`LLLt
is the rate of tax collected to pay unemployment bene�ts (see Table 3 for parameter
values).9 The probability of unemployment is constant (ut = u); later we allow u to vary
over time.
The decision problem for the household in period t can be written using normalized

variables; the consumer's objective is to choose a series of consumption functions c
between now and the end of the horizon that satisfy:

v(mt) = max
ct

u(ct) + β��DEt
[
ψ1−ρ
t+1 v(mt+1)

]
(13)

s.t.

at = mt − ct,
at ≥ 0,

kt+1 = at/(��Dψt+1), (14)

mt+1 = ((1− δ) + r)kt+1 + ξt+1, (15)

where the non-bold ratio variables are de�ned as the bold (level) variables divided by
the level of permanent income pppt = ptW (e.g., mt = mmmt/(ptW)). The only state variable
is (normalized) cash-on-hand mt. The household's employment status is not a state vari-

9The original KS model assumed no unemployment insurance (µ = 0).
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able, unlike in the KS model, where tomorrow's employment status depends on today's
status. This substantially simpli�es the analysis (which is useful for computational and
analytical purposes), arguably without too much sacri�ce of realism (except possibly for
detailed studies of the behavior of households during extended unemployment spells).
Since households die with a constant probability D between periods, the e�ective

discount factor is β��D (in (13)); the e�ective interest rate is
(
(1− δ) + r

)
/��D (combining

(14) and (15)).10

3 Calibration

This section discusses the calibration of the model with a special focus on two key
features: the income process and the time preference factor. The model is calibrated at
the quarterly frequency.

3.1 Parametrization of the Income Process

We �rst calibrate the income process using the existing empirical literature and house-
holds' subjective estimates of permanent income. Table 1 summarizes the annual vari-
ances of log permanent shocks (σ2

ψ) and log transitory shocks (σ2
ξ ) estimated by a

selection of papers from the extensive literature based both on the US and international
data; see also Meghir and Pistaferri (2011) for a fuller literature review and Review
of Economic Dynamics (2010) for international evidence.11 Some authors have used a
process of this kind to describe the labor income or wage process for an individual worker
(top panel), while others have used it to describe the process for overall household income
(bottom panel); it seems to work reasonably well in both cases (though, obviously, with
di�erent estimates of the variances).12

The last line of the table shows what labor economists would have found, when esti-
mating a process like the one above, if the empirical data were generated by households
who experienced an income process like the one assumed by the KS-JEDC model.13 This
row of the table makes our point forcefully: The empirical procedures that have actually
been applied to empirical micro data, if used to measure the income process households
experience in a KS economy, would have produced estimates of σ2

ψ and σ
2
ξ that are orders

of magnitude di�erent from what the actual empirical literature �nds in actual data.

10The term
(
(1 − δ) + r

)
is scaled by 1/�D due to the Blanchardian mutual insurance scheme as described in the

previous subsection.
11Most authors cited above used US data. Nielsen and Vissing-Jorgensen (2006) used Danish data and estimated

σ2
ψ = 0.005 and σ2

ξ = 0.015. It would be reasonable to interpret their estimates as the lower bounds for the US, given
that their administrative data is well-measured and but that Danish welfare is more generous than the US system.

12Recent work by Sabelhaus and Song (2010) using newly available data from Social Security earnings �les �nds that
the variances of both transitory and permanent shocks have declined during the �Great Moderation� period at all ages;
they also �nd distinct life cycle patterns of shocks by age, with young people experiencing higher levels of both kinds of
shocks than the middle-aged).

13First, we generated income draws according to the income process in the KS-JEDC model. Then, following the
method in Carroll and Samwick (1997), we estimated the variances under the assumption that these income draws were
produced by the process yyyt = ptξt where pt = pt−1ψt. In doing so, as in Carroll and Samwick (1997), the draws of yyyt are
excluded when yyyt is very low relative to its mean (see Carroll and Samwick (1997) for details about this restriction).
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Table 1 Estimates of Annual Variances of Log Income, Earnings and Wage Shocks

Permanent Transitory
Authors σ2

ψ σ2
ξ

Individual data
MaCurdy (1982)‡ 0.013 0.031
Topel (1991) 0.013 0.017
Topel and Ward (1992) 0.017 0.013
Meghir and Pistaferri (2004)� 0.031 0.032
Nielsen and Vissing-Jorgensen (2006)¶ 0.005 0.015
Krebs, Krishna, and Maloney (2007)? ∼ 0.01 ∼ 0.1
Jensen and Shore (2008)� 0.054 0.171
Guvenen (2009) 0.015 0.061
Heathcote, Perri, and Violante (2010)∗ 0.01�0.03 0.05�0.1
Hryshko (2012)� 0.038 0.118
Low, Meghir, and Pistaferri (2010) 0.011 �
Sabelhaus and Song (2010)4 0.03 0.08
Guvenen, Ozkan, and Song (2012)◦ ∼ 0.05 ∼ 0.125
Karahan and Ozkan (2012)• ∼ 0.013 ∼ 0.09
Blundell, Graber, and Mogstad (2013)♣ ∼ 0.015 ∼ 0.025

Household data
Carroll (1992) 0.016 0.027
Carroll and Samwick (1997) 0.022 0.044
Storesletten, Telmer, and Yaron (2004a) 0.017 0.063
Storesletten, Telmer, and Yaron (2004b) 0.008�0.026 0.316
Blundell, Pistaferri, and Preston (2008)� 0.010�0.030 0.029�0.055
Review of Economic Dynamics (2010)/ 0.02�0.05 0.02�0.1
Blundell, Low, and Preston (2013). ∼ 0.005
DeBacker, Heim, Panousi, Ramnath, and Vidangos (2013)§ 0.007�0.010 0.15�0.20

Implied by KS-JEDC 0.00 0.038

Notes: ‡: MaCurdy (1982) did not explicitly separate ψt and ξt, but we have extracted σ2
ψ and σ2

ξ as implications of

statistics that his paper reports. First, we calculate var(logyyyt+d − logyyyt) and var(logyyyt+d−1 − logyyyt) using his estimate
(we set d = 5). Then, following Carroll and Samwick (1997) we obtain the values of σ2

ψ and σ2
ξ which can match these

statistics, assuming that the income process is yyyt = ptξt and pt = pt−1ψt (i.e., we solve var(logyyyt+d− logyyyt) = dσ2
ψ+2σ2

ξ

and var(logyyyt+d−1 − logyyyt) = (d − 1)σ2
ψ + 2σ2

ξ ).
�: Meghir and Pistaferri (2004), Jensen and Shore (2008), Hryshko

(2012), and Blundell, Pistaferri, and Preston (2008) assume that the transitory component is serially correlated (an MA
process), and report the variance of a subelement of the transitory component. For example, Meghir and Pistaferri
(2004) and Blundell, Pistaferri, and Preston (2008) assume an MA(1) process log ξt = vt + ϑvt−1 and obtain estimates
(σ2
v , ϑ)=(0.0300,−0.2566) and (0.0286�0.0544, 0.1132), respectively. σ2

ξ for these four articles reported in this table are

calculated by (1 + ϑ2)σ2
v using their estimates. The table does not include Mo�tt and Gottschalk (2011) because their

income process does not incorporate the MA(1) component; see Appendix B for our estimates of the Mo�tt and Gottschalk
process. ¶: Administrative data for Denmark. ?: Data for Mexico, Krebs, Krishna, and Maloney (2007), Table II. ∗:
Heathcote, Perri, and Violante (2010), Figure 18. 4: Sabelhaus and Song (2010), implied by Figure 4. ◦: Figure 5 of
Guvenen, Ozkan, and Song (2012) displays the evolution over time of the standard deviation of the 1-year and 5-year
ahead earnings growth, from which we back out the estimates of σ2

ψ and σ2
ξ using the above formulas of Carroll and

Samwick (1997). •: Karahan and Ozkan (2012), Figures 2 and 3, age-invariant model. ♣: Administrative data for
Norway, Blundell, Graber, and Mogstad (2013), Figures 7 and 8. /: Estimates based on data for the US, Canada, the
UK, Germany, Italy, Spain, Sweden, Russia and Mexico; see Table 7A�C, pages 11�13 for a summary. .: Data for the
UK, Blundell, Low, and Preston (2013), Figure 8. §: DeBacker, Heim, Panousi, Ramnath, and Vidangos (2013), Table
III, `Restricted Model'.
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Figure 1 Cross-Sectional Variance of Income Processes and Data,
var(logyyyt+r,i − logyyyt,i)

Notes: The data are based on DeBacker, Heim, Panousi, Ramnath, and Vidangos (2013), Figure IV(a) and were normalized
so that the variance for r = 1, var(logyyyt+1,i − logyyyt,i) lie in the middle between the values for the KS and the FBS
processes.

Figure 1 illustrates further the di�culties of the KS process to match the empirical
data on income from DeBacker, Heim, Panousi, Ramnath, and Vidangos (2013).14

A key feature of the data is that the cross-sectional variance of the income pro�les
var(logyyyt+r,i − logyyyt,i) tends to grow linearly with the horizon r, with slope σ2

ψ. This
mirrors closely the characteristics of the FBS process, where var(logyyyt+r,i − logyyyt,i) =
2σ2

ξ + σ2
ψ × r.15 In contrast, the statistic for the KS process does not exhibit any trend,

also re�ecting the fact that the �rst autocorrelation of the KS income process is only
roughly 0.2, contrasting sharply with income processes of Table 1, which are highly
persistent.
These discrepancies naturally make one wonder whether the KS-JEDC model's well-

known di�culty in matching the degree of wealth inequality is largely explained by its
highly unrealistic assumption about the income process.
As a second check of our calibration of the FBS process, we make sure that the

parameters of the income process are in line with households' subjective estimates of the
permanent income. In particular, since our goal here is to produce a realistic distribution
of permanent income across the members of the (simulated) population, we measure the
empirical distribution of permanent income in the cross section using data from the
Survey of Consumer Finances (SCF), which conveniently includes a question asking

14DeBacker, Heim, Panousi, Ramnath, and Vidangos (2013) use a new, rich panel dataset of the Internal Revenue
Service. For similar evidence based on the Social Security Administration earnings data see Sabelhaus and Song (2010),
Figure 4.

15Note that the data were normalized so that the variance for r = 1, var(logyyyt+1,i− logyyyt,i) lie in the middle between
the values for the KS and the FBS processes. The key focus of the �gure is on the linear trend in the cross-sectional
variance rather than on the intercept, for which the empirical estimates vary as given in Table 1, column σ2

ξ , partly also
likely re�ecting�beside transitory income shocks�measurement error and initial heterogeneity.
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Table 2 Variance of Permanent Income in the Survey of Consumer Finances

Dataset var(p) E[ψ2] σ2
ψ

SCF1992 2.5 1.015 0.015
SCF1995 7.5 1.018 0.018
SCF1998 3.1 1.015 0.015
SCF2001 3.6 1.016 0.016
SCF2004 5.2 1.017 0.017
SCF2007 7.3 1.018 0.018
SCF2010 6.4 1.018 0.018

KS-Orig or KS-JEDC 0 1 0

respondents whether their income in the survey year was about `normal' for them, and
if not, asks the level of `normal' income.16 This corresponds well with our (and Friedman
(1957)'s) de�nition of permanent income p (and Kennickell (1995) shows that the answers
people give to this question can be reasonably interpreted as re�ecting their perceptions
of their permanent income), so we calculate the variance of pi ≡ pi/M[pi] among such
households.17

The results from this exercise are reported in Table 2 (with a �nal row that makes
the point that both the KS model assumes that permanent shocks did not exist).
Substituting these estimates for σ2

p into (7) and (8), we obtain estimates of the vari-
ance of ψ. Reassuringly, we can interpret the variances of ψ thus obtained as being
easily in the range of the estimated variances of log(ψ) = σ2

ψ in Table 1.18 Such a
correspondence, across two quite di�erent methods of measurement, suggests there is
considerable robustness to the measurement of the size of permanent shocks.

3.2 Time Preference Factor

This section calibrates the time preference factor. As a preliminary theoretical consider-
ation, note that the following `Death-Modi�ed' extension of the Carroll (2011) `Growth
Impatience Condition' (which generalizes Deaton (1991) and Bewley (1977)) ensures
that models of this kind have a well-de�ned solution for in�nite-horizon consumers (see
Appendix C for details):

(Rβ)1/ρ E[ψ−1]��D

Γ
< 1. (16)

Carroll (2011) dubs this inequality the `Growth Impatience Condition' because it
guarantees that consumers are su�ciently impatient to prevent the inde�nite increase
in the ratio of net worth to (stochastically growing) permanent income (see also Szeidl

16SCF1992 only asked whether the income level was about `normal' or not.
17We restrict the sample to households between the ages of 25 and 60, because the interpretation of the question

becomes problematic for retired households.
18So long as the variance of the permanent shocks is small, these two measures should be approximately the same.
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Table 3 Parameter Values and Steady State

Description Parameter Value Source

Representative agent model
Time discount factor β 0.99 JEDC (2010)
Coe�cient of relative risk aversion ρ 1 JEDC (2010)
Capital share α 0.36 JEDC (2010)
Depreciation rate δ 0.025 JEDC (2010)
Time worked per employee ` 1/0.9 JEDC (2010)
Steady state
Capital�output ratio KKK/YYY 10.26 JEDC (2010)
E�ective interest rate r − δ 0.01 JEDC (2010)
Wage rate W 2.37 JEDC (2010)

Heterogenous agents models
Unemployment insurance payment µ 0.15 JEDC (2010)
Unemployment rate u 0.07 Mean in JEDC (2010)
Probability of death D 0.00625 Yields 40-year working life
Variance of log θt,i σ2

θ 0.010× 4 Carroll (1992)
Variance of log ψt,i σ2

ψ 0.010/4 Carroll (1992)
DeBacker et al. (2013)

KS aggregate shocks
Shock to productivity 4Z 0.01 Krusell and Smith (1998)
Unemployment (good state) ug 0.04 Krusell and Smith (1998)
Unemployment (bad state) ub 0.10 Krusell and Smith (1998)
Aggregate transition probability 0.125 Krusell and Smith (1998)

Notes: The models are calibrated at the quarterly frequency. The steady state values are calculated on a quarterly basis.

(2012)). This condition is an amalgam of the pure time preference factor, expected
growth, the relative risk aversion coe�cient, probability of surviving and the real interest
factor. Thus, a consumer can be `impatient' in the required sense even if β = 1, so long
as expected income growth is positive.19

We search for the time preference factor β̀ such that if all households had an identical
β = β̀ the steady-state value of the capital-to-output ratio (KKK/YYY ) would match the
value that characterized the steady-state of the perfect foresight model.20 β̀ turns out
to be 0.9888 (recall that this is at a quarterly, not an annual, rate).
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3.3 Other Parameters

Except where otherwise noted, our remaining parametric assumptions match those of the
papers in the special JEDC volume (cited above).21 Henceforth, we refer to the version
of the model solved by the papers in the special JEDC volume as the `KS-JEDC' model.
The parameters are reproduced for convenience in the top panel of Table 3.22

When aggregate shocks are shut down (Zt = 1 and LLLt = LLL), the model has a steady-
state solution with a constant ratio of capital to output and constant interest and wage
rates, which we write without time subscript as r and W and which are re�ected in
Table 3.23

Three parameters characterize our modi�cations to the KS-JEDC model: D, σ2
θ , and

σ2
ψ. The probability of dying D = 0.00625 implies the average length of working life is

1/0.00625 = 160 quarters = 40 years (dating from entry into the labor force at, say,
age 25). The variances of log transitory income shocks σ2

θ = 0.010 and log permanent
income shocks σ2

ψ = 0.010 are the values advocated in Carroll (1992) (based on the Panel
Study of Income Dynamics (PSID) data).24 The latter number also closely mirrors the
new estimates of DeBacker, Heim, Panousi, Ramnath, and Vidangos (2013) on the high-
quality tax data from the IRS.

4 Matching the Wealth Distribution

We now ask whether our model with realistically calibrated income and �nite lifetimes
can reproduce the degree of wealth inequality evident in the micro data.25 An improve-
ment in the model's ability to match the data (over the KS model) is to be expected,
since in bu�er stock models agents strive to achieve a target ratio of wealth to permanent
income. By assuming no dispersion in the level of permanent income across households,
KS's income process disables a potentially vital explanation for variation in the level of
target wealth (and, therefore, on average, actual wealth) across households.
Table 4 shows that the models with the FBS income process do indeed yield a

substantial improvement over the distribution of net worth implied by our solution of

19This near-equivalence explains why we do not bother to include a growth term in the process for noncapital income
in (8)�(10) despite the presence of such a term in (6); inclusion of the income growth term should mostly just result in
an o�setting e�ect on our estimated time preference rate, and would complicate our simulations unnecessarily.

20Output is the sum of noncapital and capital income.
21Examples of such authors include Young (2010) and Algan, Allais, and Den Haan (2008).
22The only e�ective di�erence between the `KS-JEDC' model and the original Krusell and Smith (1998) model is

the introduction (for realism) of unemployment insurance in the KS-JEDC version, which does not matter much for any
substantive results. To be very precise, another di�erence is the introduction of ` (time worked per employee) in the
KS-JEDC model, but this does not have a real impact.

23In the steady state, KKKt/(`LLLt) = k̄ = (αβ/(1 − β(1 − δ)))1/(1−α) = 38.0, r (gross interest rate) = αk̄α−1, and
W = (1− α)k̄α.

24This paper assumes that each period corresponds to a quarter, while σ2
θ = 0.010 from Carroll (1992) is the value

on an annual basis. Therefore, following Carroll, Slacalek, and Tokuoka (2008), 0.010 needs to be multiplied by 4 since
the variance of log transitory income shocks of quarterly data should be four times as large as that of annual data. (Note
further that Carroll (1992)'s calibration of σ2

θ = 0.010 was considerably lower than his raw empirical estimate of 0.027,
on the grounds that a substantial portion of the changes in measured income is likely to come from measurement error).
Since σ2

ψ (0.010) is also an annual variance, it needs to be divided by 4, following Carroll, Slacalek, and Tokuoka (2008).
25Throughout this paper, we will examine the distribution of net worth (not �nancial or gross assets).
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Table 4 Proportion of Net Worth by Percentile in Models and the Data (in Percent)

Income Process

Percentile of KS-JEDC Friedman/ Bu�er Stock‡

Net Worth Our Solution No Aggr Unc KS Aggr Unc Data∗

Top 1% 3.0 10.0 7.9 33.9
Top 10% 22.9 38.0 34.2 69.7
Top 20% 39.7 55.1 51.2 82.9
Top 40% 65.4 76.9 73.8 94.7
Top 60% 83.5 90.1 88.2 99.0
Top 80% 95.1 97.5 96.8 100.2

Notes: KKKt/YYY t = 10.3. ‡ : β̀ = 0.9888. ∗ : The data is the SCF 2004.

the KS-JEDC model solved without an aggregate shock (or the results of the original
Krusell and Smith (1998) model);26 compare the models in columns 2 and 3, and the KS
model in column 1 to the data in the last column. For example, in our model with the
FBS income and no aggregate uncertainty, the fraction of total net worth held by the
top 1 percent is about 10 percent, while the corresponding statistic is only 3 percent in
our solution of the KS-JEDC model.
The KS-JEDC model's failure to match the wealth distribution is not con�ned to the

top. In fact, perhaps a bigger problem is that the model generates a distribution of
wealth in which most households' wealth levels are not very far from the wealth target
of a representative agent in the perfect foresight version of the model. For example, in
steady state about 50 percent of all households in the KS-JEDC model have net worth
between 0.5 times mean net worth and 1.5 times mean net worth; in the SCF data from
1992�2004, the corresponding fraction ranges from only 20 to 25 percent.
But while our model �ts the data better than the original KS model, it still falls short

of matching the empirical degree of wealth inequality. The proportion of net worth held
by households in the top 1 percent of the distribution is three times smaller in the model
than in the data (compare the second and last columns in the table). This failure re�ects
the fact that, empirically, the distribution of wealth is considerably more unequal than
the distribution of permanent income.
In this paper, we do not attempt to further improve how the model with the FBS

income matches the wealth distribution, but Carroll, Slacalek, and Tokuoka (2013)
show that doing so is straightforward by adding modest heterogeneity in impatience.
Speci�cally, Carroll, Slacalek, and Tokuoka (2013) estimate that a model with discount
factors distributed uniformly between roughly 0.98 and 0.99 �ts the empirical wealth dis-
tribution. (And the original Krusell and Smith (1998) paper showed that the `stochastic-

26Our solution of the KS-JEDC model is very similar to the results of the original KS model in terms of wealth
distribution; what small di�erences do exist re�ect the minor di�erence in the assumption about unemployment insurance
(discussed earlier) as well as the fact that the original KS model was solved with aggregate shocks turned on.
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β' in which the discount factor follows a three-state Markov process, does a much better
job of matching the wealth distribution; see Carroll, Slacalek, and Tokuoka (2013) for
further discussion.)

5 Model with KS Aggregate Shocks

This section examines a model with an FBS household income process that also incorpo-
rates aggregate shocks of the kind KS included, and investigate the model's performance
in matching the wealth distribution and in replicating aggregate statistics.
Krusell and Smith (1998) assumed that the level of aggregate productivity alternates

between Zt = 1+4Z if the aggregate state is good and Zt = 1−4Z if it is bad; similarly,
LLLt = 1 − ut, where ut = ug if the state is good and ut = ub if bad. (For reference, we
reproduce their assumed parameter values in the bottom panel of Table 3 above.)
The decision problem for an individual household in period t can be written using

normalized variables and the employment status ιt:

v(mt, ιt;KKKt, Zt) = max
ct

u(ct) + β��DEt
[
(Γt+1ψt+1)1−ρv(mt+1, ιt;KKKt+1, Zt+1)

]
s.t.

at = mt − ct,
at ≥ 0,

kt+1 = at/(��DΓt+1ψt+1),

mt+1 = ((1− δ) + rt+1)kt+1 + yt+1,

rt+1 = αZt+1(KKKt+1/`LLLt+1)α−1, (17)

where

• the non-bold individual variables (lower-case variables except for ιt and ψt) are the
bold (level) variables divided by Atpppt (e.g., at = aaat/Atpppt),

• Γt+1 = At+1/At,

• LLLt = 1− ut, and

• the income process is the same as in (8)�(12) but the employment transition process
follows KS-JEDC.

There are more state variables in this version of the model than in the model with no
aggregate shock: The aggregate variables Zt and KKKt, and the household's employment
status ιt whose transition process depends on the aggregate state. Solving the full version
of the model above with both aggregate and idiosyncratic shocks is not straightforward;
the basic idea for the solution method is the key insight of Krusell and Smith (1998).
See Appendix D for details about our solution method.
A comparison of columns 2 and 3 of Table 4 show that the model with KS aggregate

shocks and FBS idiosyncratic shocks does roughly the same job matching the wealth
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Table 5 Aggregate Statistics

Income Process

KS Agg Unc KS-JEDC Friedman/Bu�er Stock
Only Our Solution KS Agg Unc Data

%(∆ logCCCt,∆ logCCCt−1) 0.24 0.23 0.13 0.51
%(∆ logCCCt,∆ logYYY t) 0.84 0.86 0.92 0.50
%(∆ logCCCt,∆ logYYY t−1) 0.15 0.15 0.11 0.31
%(∆ logCCCt,∆ logYYY t−2) 0.11 0.13 0.09 0.17
%(∆ logCCCt, rt) 0.86 0.85 0.77 0.27
%(∆ logCCCt, rt−1) 0.28 0.26 0.12 0.20
%(∆4 logCCCt,∆4 logYYY t) 0.67 0.70 0.81 0.76
%(∆8 logCCCt,∆8 logYYY t) 0.61 0.63 0.75 0.87

Notes: ∆4 and ∆8 are one-year and two-year growth rates, respectively. The statistics for the US data in column 4 were
calculated for the range 1960Q1�2011Q4.

distribution as the FBS model without aggregate shocks. The fact that the speci�ca-
tion of aggregate shock a�ects little the performance of the model in this respect is
not surprising because it is well-known that aggregate shocks are much smaller than
idiosyncratic shocks. (Related to this, the literature tends to agree that in this class of
models the welfare cost of business cycles is low, see the large literature starting with
Lucas (1985).)27

Table 5 reports statistics on aggregate dynamics for the following models with ag-
gregate shocks: the representative agent model with KS aggregate shocks and no id-
iosyncratic uncertainty (column 1); our solution of the KS-JEDC model (column 2);
and the model with the FBS idiosyncratic shocks and the KS aggregate shocks (column
3), and compares these statistics to the US aggregate data (column 4). The results are
generally similar across all models implying positive autocorrelation of consumption
growth, and high contemporaneous correlation of consumption growth with income
growth and interest rates. The serial correlation of consumption growth in our solution
of the KS-JEDC model, 0.23, is similar to the value 0.28 reported for the KS-JEDC
model by Maliar, Maliar, and Valli (2008).28,29

For the autocorrelation of the consumption growth the KS-JEDC model exhibits a
relatively high value, which is closer to the US data (where for non-durables and services
consumption the statistic is about 0.5) than the value implied by consumption models
stemming from Hall (1978). At �rst blush, it seems surprising that the KS-JEDC model,
which includes neither habits nor sticky expectations, substantially violates the random

27Adding aggregate shocks slightly worsens the model's �t of the top tail of the wealth distribution because all
households increase somewhat their saving for precautionary reasons.

28The di�erence between the results in Maliar, Maliar, and Valli (2008) and ours re�ects approximation error in
solving the consumption function.

29Although not reported here, our solution of the KS-JEDC model closely matches theirs in other aggregate statistics
as well (e.g., variance of aggregate consumption (level), correlation between income and consumption levels).
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walk proposition, a puzzle that has not been noticed in the previous literature on the
Krusell and Smith (1998) model (so far as we know). With additional simulations (see
Appendix E for details), we have found that appearance of sticky consumption growth
in the KS-JEDC model actually results from the high degree of serial correlation in
interest rates implied by the assumption about the process for aggregate productivity
shocks. The omission of the component of consumption growth that is predictable from
the interest rate accounts for the apparent violation of the random walk proposition.

6 Conclusion

We see the virtues of our approach as three. First, we have resolved the longstanding
question of how much di�erence (quantitatively) it would make to incorporate a quanti-
tatively realistic (but still simple) microeconomic income process in a Krusell and Smith
(1998)-type model. Second, we have shown that while the incorporation makes little
di�erence to macroeconomic statistics like covariances or serial correlation, the model
with permanent shocks goes some way toward making the baseline model (without time
preference heterogeneity) more consistent with the large degree of wealth heterogeneity
in the population. Finally, our model is substantially simpler and easier to solve and
simulate than the original Krusell and Smith (1998) model, which should make it easier
to adopt for future research.
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Appendix

A Cross-Sectional Variance of Permanent Income

The evolution of the square of p is given by

pt+1,i = pt,iψt+1,i(1− dt+1,i) + dt+1,i,

p2
t+1,i =

(
pt,iψt+1,i(1− dt+1,i)

)2
+ 2pt,iψt+1,i dt+1,i(1− dt+1,i)︸ ︷︷ ︸

=0

+ d2
t+1,i,

where dt+1,i = 1 if household i dies.
Because Et[(1− dt+1,i)

2] = 1− D and Et[d2
t+1,i] = D, we have

Et[p2
t+1,i] = Et[(pt,iψt+1,i(1− dt+1,i))

2] + D,

= p2
t,i�DE[ψ2] + D

and

M
[
p2
t+1

]
= M[p2

t ]�DE[ψ2] + D.

Finally, the steady state expected level ofM[p2] ≡ limt→∞M[p2
t ] can be found from the equation

M[p2] = D +�DE[ψ2]M[p2]:

M[p2] =
D

1−�DE[ψ2]
.

B Estimating the Mo�tt and Gottschalk (2011)

Income Process on Simulated FBS Data

This appendix estimates the annual income process speci�ed by à la Mo�tt and Gottschalk
(2011) using simulation results of a quarterly quarterly data generated by our FBS income
process (with parameter values from Table 3). Mo�tt and Gottschalk (2011) assume log
permanent income log(pt) follows a random walk and log transitory income log(ξt) follows an
ARMA process at the annual frequency:

yyyt = ptξt,

log(pt) = log(pt−1) + log(ψt),

log(ξt) = a1 log(ξt−1) + vt +m1vt−1.

Like Mo�tt and Gottschalk (2011), we match the covariance matrix of the annual income
draws, and obtain estimates with the same signs, and similar magnitudes, to those they obtain
using the PSID data; see Table 6, con�rming that our calibration is qualitatively consistent
with Mo�tt and Gottschalk's.
An interesting result is that even though our true quarterly transitory shock process is just

white noise, if we estimate the process on an annual basis we obtain positive AR (a1) and
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Table 6 Estimates of Mo�tt and Gottschalk Annual Income Process on Simulated
FBS Data

σ2
ψ σ2

v a1 m1

Our estimates 0.009 0.025 0.578 −0.613
Mo�tt and Gottschalk (2011) 0.00159 0.169 0.622 −0.344

negative MA (m1) coe�cients. This suggests that the positive a1 and negative m1 reported in
Mo�tt and Gottschalk (2011) may be (at least) partly due to time aggregation.

C Death-Modi�ed `Growth Impatience Condition'

In the model normalized by permanent income, the return factor for the consumers who live is

Et[Rt+1] = Et[ψ−1
t+1Rt+1/(�DΓ)],

= E[ψ−1]R/(�DΓ),

≡ �D
−1 E[ψ−1]R/Γ︸ ︷︷ ︸

R

,

where�D is the probability of surviving, Γ is the underlying growth rate of permanent income,
and we will be looking for the steady state, where Rt+1 = R is constant.
For the consumers who live,

Et[mt+1|Live] = Et[(mt − ct)Rt+1 + ξt+1],

= mt�D
−1R− ct�D−1R + 1,

while for those who die,

Et[mt+1|Die] = 1,

so for a population of households alive at date t the overall expectation weights those who live
by�D and those who die by (1−�D):

Et[mt+1] = �D(mt

=Et[Rt+1]︷ ︸︸ ︷
�D
−1R −ct�D−1R + 1) + (1−�D),

= (mt − ct)R + 1,

which is the same locus as in the model without death. From this we can derive

Et[∆mt+1] = mt(R− 1)− ctR + 1,

so that the Et[∆mt+1] = 0 locus is

ct =
1

R
+

R− 1

R
mt
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and has the slope R−1
R .

Now, as mt → ∞, the slope of the consumption function converges to that of the perfect
foresight case with the e�ective discount factor�Dβ and the e�ective interest rate�D−1R (Carroll
(2011)):

1−
(
(�Dβ)(�D−1R)

)1/ρ
�D−1R

= 1− (βR)1/ρ

�D−1R
.

Stationary distribution of wealth requires that the consumption function exceeds eventually
the Et[∆mt+1] = 0 locus. `The Death-Modi�ed Growth Impatience Condition,' which ensures
this happens, is that as mt → ∞, the slope of the consumption function exceeds that of the
Et[∆mt+1] = 0 locus (Carroll (2011)):

1− (βR)1/ρ

�D−1R
>

R− 1

R

⇔ (βR)1/ρ E[ψ−1]�D

Γ
< 1.

D Solution Algorithm

In solving the problem in section 5 we closely follow the stochastic simulation method of Krusell
and Smith (1998). Krusell and Smith �nd that per capita capital today (KKKt) is su�cient to
predict per capita capital tomorrow (KKKt+1). Our procedure is as follows:

1. Solve for the optimal individual decision rules given some `beliefs' π that determine the
(expected) law of motion of per capita capital. The law of motion is takes the log-linear
form given by π = (π0, π1, π

′
0, π
′
1):

logKKKt+1 = π0 + π1 logKKKt

if the aggregate state in period t is good (Zt = 1 +4Z), and

logKKKt+1 = π′0 + π′1 logKKKt

if the aggregate state is bad (Zt = 1−4Z).

2. Simulate the economy populated by 8, 000 households30 (which experiments determined
is enough to suppress idiosyncratic noise) for 1, 100 periods (following Maliar, Maliar,
and Valli (2010)). When starting a simulation, pt,i = 1 for all i, the distribution of
mt,i is generated assuming kt,i is equal to its steady state level (38.0) for all i, and
Zt = 1 + 4Z (the aggregate state is good). (The steady state level of kt,i is k̄ =
(αβ/(1 − β(1 − δ)))1/(1−α). With kt,i = 38.0 for all i, kkkt,i = KKKt = 41.2.) The newborn
households start life with pt,i = 1 and kt,i = 0.

3. Estimate π̃, which determines the law of motion of per capita capital, using the last 1, 000
periods of data generated by the simulation (we discard the �rst 100 periods).

4. Compute an improved vector for the next iteration by π̂ = (1− η)π̃ + ηπ with η = 3/4.

30In the model with the FBS income process.
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We repeat this process until π̂ = π with a given degree of precision.31

From the second iteration and thereafter, we use the terminal distribution of wealth (and
permanent component of income (p)) in the previous iteration as the initial one.
While we can eventually obtain some solution whatever the initial π is, we use π obtained

using the representative agent model as the starting point. This can signi�cantly reduce the
time needed to obtain the solution.
Parameter values to solve the model are from Table 3. The time preference factors are

imposed to be those estimated in section 3.2.

D.1 Tricks to Reduce Simulation Errors

In obtaining the aggregate law, we introduce the following tricks to reduce simulation errors
(or to speed up the solution given a degree of estimate precision):

• Death: When death is concentrated among households at the very top of the wealth
distribution, per capita capital would be at a lower than normal level. To alleviate
simulation errors from this source, each period we: i) sort households by wealth level,
ii) construct groups, the size of which is the inverse of the death probability (under our
parameter choice, the size of each group is 160 and the �rst group contains households
from the wealthiest to the 160th), and iii) pick one household that dies within each group.

• Permanent income shocks: In our methodology, permanent shocks to income are
approximated by n discrete points. Similarly to the death element, after sorting we set
up groups each of size n. We randomize shocks within each group subject to the constraint
that each shock point is experienced by one of the group members every period, making
the group mean of the shocks equal to the theoretical mean.32

D.2 Estimated Laws of Motion

The estimated laws of motions are given in Table 7. The �t measured with R2 in all speci�ca-
tions exceeds 0.9999.33

E Understanding Sticky Consumption Growth in the

KS-JEDC Model

Although %(∆ logCCCt,∆ logCCCt−1) reported in section 5 may not be high enough relative to that
observed in the US data, it is still not clear why simulations produce such a high value. Previous
studies on KS type models have not investigated this issue. Using the KS-JEDC model, we
performed an experiment to understand the phenomenon better. In this experiment we assume
that the aggregate state switches from good to bad (or from bad to good) every eight quarters.34

31In our analysis below, the process is iterated until the di�erence between each estimate (π0, π1, π′0, or π
′
1) and its

previous value is smaller than 1 percent.
32This idea is motivated by Braun, Li, and Stachurski (2009), who proposed the estimation of densities with smaller

simulation errors by calculating conditional densities given simulated data.
33Note that, as pointed out by Den Haan (2010), R2 only measures in-sample �t and should be interpreted with

caution.
34Because one state switches to another with a probability of 0.125, the average length of each state is eight quarters

in typical simulation.
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Table 7 Estimated Laws of Motion

logKKKt+1 = π0 + π1 logKKKt + εt+1

Model FBS Income Process KS-JEDC
State Good Bad Good Bad

π0 0.140 0.126 0.138 0.122
π1 0.963 0.965 0.963 0.966

Notes: The coe�cients for the KS-JEDC model are very close to those estimated in Maliar, Maliar, and Valli (2010).
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Figure 2 Dynamics of ∆ logCCCt in KS-JEDC Model
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Figure 3 Dynamics of rt in KS-JEDC Model
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Figure 2 plots ∆ logCCCt 24 quarters of simulated observations (the state is bad for the �rst
eight quarters, good for the next eight quarters, and bad for the �nal eight quarters). The
�gure shows that ∆ logCCCt is very persistent (it is negative in the bad state and positive in the
good state), resulting in a relatively high %(∆ logCCCt,∆ logCCCt−1).
It is easy to understand that ∆ logCCCt is higher when the state is good (and vice versa) given

the following facts:

• A �rst order approximation of the Euler equation yields:

∆ logCCCt ≈ b0 + b1rt, (18)

where b0 ≡ −ρ−1(1 − β + δ), b1 ≡ ρ−1, ρ is the coe�cient of relative risk aversion, rt is
the interest rate, β is the time preference factor, and δ is the depreciation rate. Indeed,
when we conduct an IV regression of equation (18) using rt−1 as the instrument,35 which
e�ectively means estimating ∆ logCCCt = b0 + b1 Et−1[rt] + εt, the estimate of b1 ≡ ρ−1 is
0.95 (with a standard deviation of 0.08) and relatively close to the actual value of ρ−1

(= 1). This suggests that using the predictable component of interest rates (Et−1[rt]),
we can obtain a reasonable estimate of intertemporal elasticity of substitution.

• When the state is good, rt = αZt(KKKt/`LLLt)
α−1 (from (17)) is higher because Zt (aggregate

productivity) is higher, as can be seen in Figure 3, which plots the dynamics of rt for the
24 quarters.

While in typical simulation one state does not generally last for exactly eight quarters, we
observe sticky aggregate consumption growth (and a relatively high %(∆ logCCCt,∆ logCCCt−1))
because the same mechanisms are at work as in the experiment above.
In sum, a relatively high %(∆ logCCCt,∆ logCCCt−1) in the KS-JEDC model can be interpreted

as a consequence of the persistent behavior of the interest rate rt. Indeed, denoting εt =
∆ logCCCt − b0 − b1 Et−1[rt] the residual after controlling for the predictable component of
consumption growth related to interest rates, we �nd that %(εt, εt−1) = 0.01 is much lower
than %(∆ logCCCt,∆ logCCCt−1).36

35The data that produced Table 5 are used.
36Estimating an AR(1) process on εt produces a small and statistically insigni�cant coe�cient on lagged εt−1.
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