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Abstract

We show how to use a simple perturbation method to solve non-linear ra-

tional expectation models. Drawing from the applied mathematics literature

we propose a method consisting of series expansions of the non-linear system

around a known solution. The variables are represented in terms of their orders

of approximation with respect to a perturbation parameter. The �nal solution,

therefore, is the sum of the di�erent orders.

This approach links to formal arguments the idea that each order of approx-

imation is solved recursively taking as given the lower order of approximation.

Therefore, this method is not subject to the ambiguity concerning the order

of the variables in the resulting state-space representation as, for example, has

been discussed by Kim et al. (2008).

Provided that the model is locally stable, the approximation technique dis-

cussed in this paper delivers stable solutions at any order of approximation.

JEL classi�cation: C63; E0

Keywords: Solving dynamic stochastic general equilibrium models; Pertur-

bation methods; Series expansions; Non-linear di�erence equations.
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Non Technical Summary

This paper addresses an important open issue in the economic literature: how

to solve non-linear dynamic models. Higher-order solutions (i.e. not simply linear)

have been found crucial in order to address a number of important questions, like for

example policy questions or �nancial issues, as only to higher-order of approximation

we can meaningfully evaluate the role of risk and uncertainly.

A number of recent contributions to this literature agree that perturbation meth-

ods, and in particular approximations by series expansions, can result in useful

characterizations of the solutions to dynamic stochastic general equilibrium mod-

els (DSGE), as for example discussed in Judd (1998). Nevertheless, not all these

contributions agree on the correct representation of these solutions and, hence, on

how to compute impulse response functions and other moments. Kim et al. (2008)

show that the typical representation of the state-space model consists of a non-linear

polynomial in the state variables. They show that this polynomial will generally have

multiple steady states and could yield unbounded solutions. These authors propose a

procedure to circumvent this problem (�pruning�). Schmitt-Grohé and Uribe (2004)

explain in detail how the perturbation method described by Judd (1998) should be

applied to DSGE models. In their paper the state-space representation of the so-

lution does not explicitly distinguish between �rst and second order variables: the

second order expression is represented as a quadratic polynomial in the state vari-

ables. Nevertheless, in the accompanying computer code for simulations they use

the �pruned� solution.1 Collard and Juillard (2001) propose a perturbation approxi-

mation that does not explicitly di�erentiate the order of the variables. Gomme and

Klein (2010) provide an alternative solution method for the coe�cient matrices of

1I thank Martin Uribe for pointing this out to me.
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second order approximation. In their paper the authors do not distinguish the order

of the variables in the second order expansion. Widely used computer softwares that

solve DSGE models to higher order, like Dynare (and Dynare++) (Juillard, 1996)

or PerturbationAIM (Swanson et al., 2006) produce state space representations that

are not �pruned�.2

Part of the literature therefore o�ers representations of the solution that are

intrinsically non-linear and that, therefore, can generate global dynamics that di�er

considerably from the local behavior of the model. These global dynamics do not

(necessarily) re�ect the global properties of the original model and, hence, are not

informative about the behavior of the economy under large shocks. Neverheless, their

presence constitutes a big problem in solving medium-to-large scale DSGE models,

leaving us with limited practical tools to address interesting questions (e.g. the size

of risk-premia in medium-scale DSGE models used at central banks).

Lombardo and Sutherland (2007), on the contrary, suggest a solution to DSGE

models that does not require any ad-hoc alteration of the state-space representation:

their solution is recursively linear and hence preserves the stationary properties of

the �rs-order approximation, despite being accurate to second order. Their work,

nevertheless, does not provide fully formal arguments to prove the mathematical

consistency of their solution with the proposed series expansion methods and so the

link to the rest of the literature remains only suggestive.

The present paper �lls the gap between the alternative approaches with the intent

to avoid ambiguities regarding the implementation of the proposed solution. In par-

ticular we borrow from the applied-mathematics literature on perturbation methods

2The user manuals for these computer programs describe the solution as a non-linear di�erence
equation. At present, Dynare version 4.2 o�ers the pruning option for second order approximations.
This option is not yet available to higher order.
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(e.g Holmes, 1995) to provide a formally consistent higher-order approximation to a

non-linear model that is recursively linear as in Lombardo and Sutherland (2007).

Using the standard neo-classical growth model we show that the solution proposed

here, like that of Lombardo and Sutherland (2007) generates stationary dynamics

independently of the size of the shocks, contrary to the alternative representations.
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1 Introduction

The literature on higher order approximations of dynamic stochastic general equi-

librium (DSGE) models is ambiguous about the interpretation of the implied state-

space solutions. Following the seminal work of Jin and Judd (2002), Judd (1998) and

Judd (2002) a number of papers has contributed to the literature on higher order

approximations by suggesting alternative techniques to solve and simulate DSGE

models. Lombardo and Sutherland (2007) develop a solution technique based on the

recursive linearity of the state-space representation. In that paper the authors resort

to an �order� argument to maintain that cross-products of variables in higher order

expressions must be computed using lower order terms. Schmitt-Grohé and Uribe

(2004) refer more closely to the work of Judd and present a state-space solution that

does not appear to exploit the recursive-linearity.3 Finally Kim et al. (2008) discuss a

solution technique similar to Schmitt-Grohé and Uribe (2004) and explicitly discuss

the problem of using the state-space representation for simulations. Their paper, in

particular, emphasizes that the state-space representation à la Schmitt-Grohé and

Uribe (2004), being a polynomial of higher order, could generate explosive solu-

tions: the true solution is not interpreted as recursively linear as in Lombardo and

Sutherland (2007). Kim et al. (2008) suggest to amend the second order state-space

representation by replacing cross-products of variables with cross-products of vari-

ables obtained from �rst order solutions: a procedure they name �pruning�.4 Collard

and Juillard (2001) propose a perturbation approximation that does not explicitly

di�erentiate the order of the variables. Gomme and Klein (2010) provide an alterna-

3The authors show the state-space in non-linear form but don't discuss the potential issues
related to its non-linear structure. Nevertheless, the accompanying computer code posted by the
authors on the web, �simu_2nd.m�, applies the �pruning� procedure. I thank Martin Uribe for
having pointed out this fact to me.

4The �pruned� solution is identical to that derived in Lombardo and Sutherland (2007).



9
ECB

Working Paper Series No 1264
November 2010

tive solution method for the coe�cient matrices of second order approximation. In

their paper the authors do not distinguish the order of the variables in the second

order expansion.

Den Haan and de Wind (2010) compare perturbation methods with projection

methods used for approximating and solving DSGE models. These authors empha-

size how perturbation methods can easily lead to explosive solutions, making the

approach problematic. They also discuss the �pruning� procedure proposed by Kim

et al. (2008) stressing the fact that this procedure is a work-around to an intrinsic

problem of perturbation methods. They document �... that this procedure is quite

distortive� (den Haan and de Wind, 2010, p. 22).

In this paper we borrow from the applied-mathematics literature to show that

approximating DSGE models using the method of series expansions naturally gen-

erates solutions that are recursively linear. Or, as explained by Berglund (2001, p.

3)�... at each order we only need to solve [a] linear equation, where the [non-linear]

term depends only on previously computed quantities.�

Compared with the existing literature the approach suggested here di�ers in the

way the conjectured solution is represented.We don't discuss the origins of these two

alternative representations. The approach followed here is thoroughly discussed in

e.g. Holmes (1995), Bush (1992) and Hinch (1991). The main focus of the paper is

to provide a solution method to DSGE models that can avoid the ambiguity that

surrounds the existing economics literature on higher order approximations.

As a result of the recursive linearity, similarly to Lombardo and Sutherland

(2007), our method implies that the solution of the DSGE model is stationary (non-

explosive) to any order of approximation as long as the model is locally stable. In this

sense, our solution is not subject to the criticism raised by den Haan and de Wind

(2010).
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The rest of the paper is organized as follows. Section 2 provides an overview of

the technique. Section 3 applies the technique to a simple non-linear DSGE model

and compares the alternative methods. Section 4 concludes.

2 The method of series expansions

In this paper we are interested in solving problems of the general form

EtF (zt+1, zt, zt−1, εt) = 0

where F is a system of non-linear stochastic di�erence equations deriving from �rst

order conditions of agents' problems, resource constraints and market clearing con-

ditions, Et is the mathematical expectation operator, εt is a vector of exogenous

stochastic forcing processes with given low of motion and zt is a vector of endoge-

nous variables. In this section, though, we will �rst describe the approximation

method by using a very simpli�ed version of the general case. This version would

indeed not need approximations as the value of the variable at each point in time

can be easily traced starting from given initial conditions. In the next section we will

return to the more general case, showing an application to the neo-classical growth

model.

From Holmes (1995) and Berglund (2001) we see that in order to approximate

the (scalar) model

yt = f (ε, yt−1) (1)

we can proceed as follows.5 First, �we assume� (Holmes, 1995, p. 27) a solution of

5Obviously, applying this method requires that the solution admits series expansion in the
perturbation parameter and that the function f is analytic. In particular the resulting Jacobian
of the system of equations must be non-singular. When this condition is not satis�ed singular-
perturbation methods can be applied. Singular perturbation methods have been applied to portfolio
problems by Judd and Guu (2001).
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the form (i.e. a series expansion in ε)6

yt = y
(0)
t + εαy

(1)
t + ε2αy

(2)
t (2)

where (x) denotes the order x of the variable, i.e. y
(0)
t = O (ε0) etc. Notice that y

(x)
t

is assumed not to depend on the perturbation parameter. It is important to notice

that this representation is identical to that discussed in Judd (1998, p. 456-457).

There it is clear that the terms in y
(x)
t are �derivatives of [yt (ε)] with respect to ε

when ε = 0.�

For simplicity we consider the case of α = 1 although this might not be the best

choice in general (see Holmes, 1995 and Judd, 1998, p. 516).

Then, we take an expansion of f (·) around ε = 0 (assume that y
(0)
t = y0)

f (ε, yt) ≈ f (0, y0) + fεε+ fy (yt − y0) +
1

2

(
fεεε

2 + fyy (yt − y0)
2)+O

(
ε3
)

(3)

where for simplicity we have assumed that fεy = 0.

Replace the conjectured solution and the approximation in the original problem

(1),7

y
(0)
t + εy

(1)
t + ε2y

(2)
t + . . . =

f (0, y0) + fεε+ fy

(
εy

(1)
t−1 + ε2y

(2)
t−1 + . . .

)
+
1

2

(
fεεε

2 + fyy

(
εy

(1)
t−1 + ε2y

(2)
t−1 + . . .

)2
)
+O

(
ε3
)
. (4)

�By equating like powers� (Holmes, 1995, p. 27) we obtain that the zero order is

y
(0)
t = f (0, y0) ,

6Quoting Holmes: �[This assumption] is nothing more than an educated guess. The motivation
for making this assumption comes from the observation that in expanding functions one usually
ends up using Taylor's theorem and [our guess] is simply a re�ection of that type of expansions.�

7Notice that we could have �rst substituted the guess into the function and then expanded with
respect to ε. The result would have been the same.
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that the �rst order is

y
(1)
t = fyy

(1)
t−1 + fε +O

(
ε2
)
,

and that the second order is

y
(2)
t = fyy

(2)
t−1 +

1

2

(
fεε + fyy

(
y
(1)
t−1

)2
)
+O

(
ε3
)
.

Therefore

yt − y0 ≈ ε
(
fyy

(1)
t−1 + fε

)
+ ε2

(
fyy

(2)
t−1 +

1

2

(
fεε + fyy

(
y
(1)
t−1

)2
))

.

Notice that there are terms of order higher than 2 in equation (4). These belong

to the higher order terms in the residual, i.e. they belong in O (ε3).

De�nition of solution of the system of stochastic di�erence equations

Consider the non-autonomous linear system in the vector yt and forcing process ft,

yt = Ayt−1 + ft,

where A is a matrix of coe�cients with all eigenvalues lying within the unit circle.

We de�ne the solution to this system as its moving average representation, e.g.

as a function of initial conditions (y0) and the forcing process, i.e.8

yt = Aty0 +
t−1∑
i=0

Aift−i.

In the rest of the paper, following most of the related literature, we will refer to the

�solution� of the model as the state-space representation of the problem. Obviously,

in order to obtain the solution, we need to perform a further step. This step sheds

8See Ljungqvist and Sargent (2000, p. 11). More in general the solution of a non-autonomous
di�erence equation would be a function of a constant and the in�nite history of the forcing process
(Kelley and Peterson, 2001). See also Judd (1998, p. 338).
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light on the di�erences between the perturbation method proposed here and some

representations of the higher order solutions discussed in the literature, as we will

make clear later in the paper.

3 An example: The Neo-Classical Growth Model

In this section we apply the method of series expansion to the Neo-Classical Growth

Model. This model has also been used by Judd (1998), Lombardo and Sutherland

(2007) and Schmitt-Grohé and Uribe (2004) to show how to apply their approxima-

tion techniques.

Consider the following rational expectation model, consisting of an Euler con-

sumption (c) equation, a capital (k) accumulation equation and an i.i.d. process for

the (log) of the productivity shock (ε) with zero mean and variance normalized to

one.9 That is

c−γ
t = αβEt

[
eσεt+1kα−1

t+1 c
−γ
t+1

]
(5)

kt+1 = eσεtkα
t − ct (6)

where σ > 0, α ∈ (0, 1), γ > 0 and β ∈ (0, 1).

Notice that if σ = 0, the model is deterministic and has a closed form solution

k0 = (αβ)

1

1− α and c0 = (αβ)

α

1− α − (αβ)

1

1− α .

The �rst step of the series expansion method consists of assuming that the solu-

9For the approximation to be valid, the distribution of the shock must be such that the system
remains within its radius of convergence. Here we leave this issue in the background referring the
reader to Jin and Judd (2002) and Kim et al. (2008) for a discussion of this issue. For simplicity
we assume zero persistence in the productivity shock and full depreciation in the capital stock.
These assumptions are also made in Lombardo and Sutherland (2007) and Schmitt-Grohé and
Uribe (2004).
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tion can be expressed in terms of a series expansion

ct ≈ c0 + σc
(1)
t + σ2c

(2)
t (7)

and

kt ≈ k0 + σk
(1)
t + σ2k

(2)
t (8)

Take a second order expansion of equations (5) and (6) around σ = 0, dropping

the expectation operator for notational convenience (implicitly associated to t + 1

variables) we have

O
(
ε3
)
= γc−γ−1

0 ĉt + αβkα−1
0 c−γ

0

[
σεt+1 + k−1

0 (α− 1) k̂t+1 − γc−1
0 ĉt+1

]
+

−1

2
γ (γ + 1) c−γ−2

0 ĉ2t +
1

2
αβkα−1

0 c−γ
0

[
σ2ε2t+1 + γ (γ + 1) c−2

0 ĉ2t+1 + (α− 1) (α− 2) k−2
0 k̂2

t+1

]
+

+αβkα−1
0 c−γ

0

[
k−1
0 (α− 1)σεt+1k̂t+1 − γc−1

0 σεt+1ĉt+1 − γ (α− 1) k−1
0 c−1

0 ĉt+1k̂t+1

]
and

O
(
ε3
)
= −k̂t+1 + kα

0 σεt + αkα−1
0 k̂t − ĉt +

σαkα−1
0 εtk̂t +

1

2
kα
0 σ

2ε2t +
1

2
α (α− 1) kα−2

0 k̂2
t

De�ne zt =
[
ĉt k̂t

]′
. Then can rewrite in matrix notation

O
(
ε3
)
= A2zt+1 + A1zt + σC0εt +

+B2wt+1 +B1wt + σD2zt+1εt+1 + σD1ztεt + σ2C1ε
2
t +σ2C2ε

2
t+1 (9)

where10

10We are using the vech operator to eliminate repeated terms in kronecker products of identical
vectors. For approximations of order larger than 2, appropriate elimination matrices can be applied
to eliminate repeated terms in n-th tensor powers.
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wt = vech (ztz
′
t) =

[
ĉ2t

(
ĉtk̂t

)
k̂2
t

]′
A2 =

 −γαβkα−1
0 c−γ−1

0 αβ (α− 1) kα−2
0 c−γ

0

0 −1


A1 =

 γc−γ−1
0 0

−1 αkα−1
0


C0 =

 0

kα
0



C1 =
1

2

 0

kα
0


C2 =

1

2

 αβkα−1
0 c−γ

0

0



B2 =
1

2

 γ (γ + 1)αβkα−1
0 c−γ−2

0 −2αβkα−2
0 c−γ−1

0 γ (α− 1) (α− 1) (α− 2)αβkα−3
0 c−γ

0

0 0 0



B1 =
1

2

 −γ (γ + 1) c−γ−2
0 0 0

0 0 α (α− 1) kα−2
0


D2 =

 −γαβkα−1
0 c−γ−1

0 αβkα−2
0 c−γ

0 (α− 1)

0 0


D1 =

 0 0

0 αkα−1
0
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We can also rewrite our assumption concerning the solution in matrix notation11

zt = σz
(1)
t + σ2z

(2)
t (10)

Notice that

ztz
′
t = σ2z

(1)
t z

(1)′
t + σ4z

(2)
t z

(2)′
t + σ3z

(1)
t z

(2)′
t + σ3z

(2)
t z

(1)′
t (11)

Since we are interested in solution up to order 2, we must drop the higher terms in

σ.12 Therefore

σ2ŵt = σ2vech
(
z
(1)
t z

(1)′
t

)
.

Replacing equations (10) and (11) into (9) we obtain

A2

(
σz

(1)
t+1 + σ2z

(2)
t+1

)
+ A1

(
σz

(1)
t + σ2z

(2)
t

)
+ σC0εt +

+B2σ
2ŵt+1 +B1σ

2ŵt +

σD2

(
σz

(1)
t + σ2z

(2)
t

)
εt + σD1

(
σz

(1)
t+1 + σ2z

(2)
t+1

)
εt+1

+σ2C1ε
2
t + σ2C2ε

2
t+1 = 0.

By equating like powers we have

σ : A2z
(1)
t+1 + A1z

(1)
t + C0εt = 0 (12)

σ2 : A2z
(2)
t+1 + A1z

(2)
t +B2vech

(
z
(1)
t+1z

(1)′
t+1

)
+B1vech

(
z
(1)
t z

(1)′
t

)
+

+D2z
(1)
t+1εt+1 +D1z

(1)
t εt + C2ε

2
t+1 + C1ε

2
t = 0. (13)

11Notice that we have reformulated the assumption concerning the solution: now we are expanding
the deviations from the steady-state.

12As explained in the previous section, these higher order terms will match terms in the approx-
imation residual.
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Both these equations can be solved (recursively) using solution techniques for linear

RE as discussed in Lombardo and Sutherland (2007) or the method of undetermined

coe�cients.13

Notice that provided that system (12) has a stationary solution � i.e. that the

number of eigenvalues λ of the matrix pencil A1 − λA2 that lie inside the unit

circle is equal to the number of predetermined variables (Blanchard and Kahn, 1980

and Klein, 2000) � the system (13) will also be stationary. The Blanchard-Kahn

stationarity conditions for this second-order linear system are identical to those of

its companion �rst-order system: if the latter is stable the former is stable too. This

holds true for any order of approximation.

The �nal solution is obtained by solving for z
(1)
t from (12) and for z

(2)
t from (13)

and replacing the solutions into (10).

It is crucial to notice that the matrix of coe�cients of the resulting state-space

solution are the same that would be found with the alternative methods discussed in

this paper. In particular, notice that these alternative approaches, with the exception

of Lombardo and Sutherland (2007), postulate, for the vector of control variables yt

and state variables xt, a solution of the form

yt = g (xt;σ) ,

and

xt+1 = h (xt;σ) + σηεt+1,

where η is the variance-covariance matrix of the innovations and σ remains the scalar

perturbation parameter. By taking an n-th order Taylor expansion of these equations,

replacing each variable with its expansion to n-th order and matching powers, we end

13Any solver for linear rational expectation models can be used, e.g. Christiano (2002), King and
Watson (2002), Klein (2000), Uhlig (1999) etc.
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up with a recursively linear system of di�erence equations with unknown coe�cients.

By applying the method of undetermined coe�cients we obtain the same state-space

solution obtained with the direct method used by Lombardo and Sutherland (2007).

It is important to notice that in general there is no formal need to postulate the

solution in terms of a policy function when we use the perturbation method proposed

in this paper. Only if we decide to use the method of undetermined coe�cients we

have to take a stand on the unknown policy function.

3.1 Pruning and higher order expansions

A word of caution is in order concerning the application of the �pruning� procedure

to orders of approximation higher than two.14 As �pruning� is an ad-hoc procedure

intended to eliminate cross-products of endogenous variables in the second order

expansion, it does not o�er guidance on how to amend higher order approximations.

For example, consider an approximation to third order. This would generally contain

terms of the form Axt + FEtη
2ε2t+1x

(1)
t + . . . .15 Without loss of generality, we can

continue to assume that Et(ε
2
t+1) = 1. Then, if the order of the variables is not taken

into account, one would write (A+ Fη2) xt. Thus the coe�cient matrix on the linear

term of the approximation would con�ate matrices applying to variables of di�erent

order.16 Our paper makes clear that amending higher order solutions obtained using

alternative approaches (i.e. �pruning�) might require the cumbersome procedure of

reconstructing the appropriate coe�cient matrices.

In the rest of this paper we focus on the second order expansion, for which Dynare

output can be safely used to generate pruned solutions.

14This section relies heavily on the excellent research assistance by Szabolcs Deak.
15The same argument applies with some modi�cations if terms like ε2tx

(1)
t−1 enter the expansion.

16This is the case with Dynare++.
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3.2 Comparing the solutions

In this section we compare the solution of the neo-classical growth model obtained

with the method suggested in this paper with the solution obtained with the method

suggested by Lombardo and Sutherland (2007) and with the perturbation without

pruning (NP henceforth).17

We use DYNARE to generate the solution of the �rst and second order approxi-

mation (Juillard, 1996).

The solution can be represented in the following compact form

ẑ
(1)
t = Aẑ

(1)
t−1 +Bεt (14)

ẑ
(2)
t =

1

2
∆ + Aẑ

(2)
t−1 +

1

2
C

(
z
(1)
t−1 ⊗ z

(1)
t−1

)
+

1

2
Dε2t + Eẑ

(1)
t−1εt (15)

and

ẑt = σẑ
(1)
t + σ2ẑ

(2)
t , (16)

where for the neo-classical growth model we have18

ẑt =
[
k̂t+1ĉt

]′
∆ =

0

0


A =

 0.1 0

0.953 0


B =

 0.0731

0.697


17Notice that we use a level-expansion as opposed to log-expansion.
18We assume that γ = 1, α = 0.1 and β = 0.95.
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C =

 −1.23 0 0 0

−11.7 0 0 0


D =

 0.0731

0.697


E =

 0.1

0.953


A comment is in order concerning the non-linearity captured by the solution given

in equations (14) to (16). To emphasize the recursive (or conditional) linearity we

have displayed these equations in an ordered way: for a given innovation εt and the

state of the economy at time t−1 we can generate values for zt by simply evaluating

each equation in the given order. At each subsequent step, the non-linearity is

captured by the interaction terms. This implies, for example, that if εt is Gaussian,

z
(2)
t and zt are non-Gaussian.

19

It should also be clear from the solution that it does not amount to the solution

discussed in the current literature on approximating DSGE models. In particular,

Lombardo and Sutherland (2007) and Kim et al. (2008) would have a linear term in

the innovation (Bεt) also in the second order equation. Furthermore, the (approxi-

mate) solution discussed here consists of the weighted average of �rst- and second-

order variables, while both the other methods would treat the solution for z
(2)
t as

the (approximate) solution for zt. This latter point implies that further reducing our

solution to a function of initial conditions and exogenous processes (i.e. solving the

system of di�erence equations) would yield the term Atẑ
(1)
0 , which would be absent

19Notice that these variables are not even conditionally Gaussian, due to the appearing of powers
of the innovations.
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in the alternative solutions discussed here.20 Using the non-pruned solution would

not give the same closed form solution, further stressing the deep di�erence between

the two approaches.

Despite these di�erences all these alternative approaches yield very similar results

for small shocks to second order of approximation.

Figures 1 and 2 show the result of random simulations of three alternative speci�-

cations of the solution: the solution described in this paper (�TP�) the Lombardo and

Sutherland (2007) solution (�LS�) � equivalent to Kim et al. (2008) with �pruning� �

and the solution without pruning (�NP�) � equivalent to Kim et al. (2008) without

�pruning�.

Each �gure shows four panels. The �rst row shows the di�erence between TP

and NP, while the second shows the di�erence between TP and LS. The columns

refer to capital and consumption respectively. Values are reported relative to the

non-stochastic steady state.21 Figure 1 shows the case of �small� standard deviations

(σ = 0.1). It is clear that the three speci�cations produce very similar results.

The TP and LS solutions are virtually identical while NP di�ers by small amounts.

Figure 2 shows the case of �large� standard deviations (σ = 1.5). Even in this case

the TP-LS discrepancies are virtually zero. In contrast, now the NP solution di�ers

markedly from our solution (TP). The di�erence is due to the fact that the NP

solution is non-linear (as opposed to recursively linear) so that for large shocks the

dynamics of the variables ceases to be governed by the local stability properties of

the process.22 This fact has motivated the �pruning� �x suggested by Kim et al.

20In most applications, though, this term would be zero � when starting from the steady-state
(mean of linear process) � or negligible � when considering stochastic simulations of su�cient length.

21We ran 5000 iterations dropping the �rst 500 to plot the graphs.
22Further increasing the standard deviation would show even larger discrepancies. Notice that

here we are not arguing that with large standard deviations the approximation would be reasonably
accurate. The point stressed here is that the divergence in the approximation does not necessarily
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(2008). This paper suggests, on the contrary, that the problem can be avoided if the

solution is constructed consistently with the series-expansion method suggested in

the perturbation literature we have referred to in this paper.

Accuracy The focus of this paper is not about accuracy of the approximations.

We discuss an approximation method that is consistent with the series expansion

method treated in the perturbation literature. To which extent the approximate

solution is accurate will depend on the particular problem. We notice nevertheless

that increasing the order of approximation makes the divergence of the non-linearly-

recursive representation more likely, potentially reducing the accuracy as we increase

the order of approximation.23 We can easily see this with the neo-classical growth

model described above. With the particular parametrization used here it is possible

to derive the exact solution in closed form. That is

ct = (1− αβ)eεtkα
t (17)

kt+1 = αβeεtkα
t . (18)

We simulated this model and compared the solution to the alternative approxi-

mation techniques discussed here.24 For example assuming a standard deviation of

the shock of 0.5 yields the mean of consumption and capital for the di�erent models

(in level deviations) reported in Table 1.

re�ect global properties of the original model. Importantly, experiments (not reported) with larger
models show that diverging paths can be produced with standard errors suggested by estimations
and deemed economically reasonable.

23For a given point within the radius of convergence, the approximation residual of an analytic
function will converge to zero as the order of approximation goes to in�nity. Nevertheless, this will
not happen monotonically (e.g. the sine function). The inaccuracy generated by non recursively-
linear solutions is, once more, related to the recursive non-linearity of the solution.

24We used Dynare++ in order to simulate the NP representation to orders higher than 2.
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While the approximation error for the three methods is comparable and relatively

small up to second order, increasing the order of approximation leads eventually to

the divergence of the solution using the NP representation. As we discussed earlier,

this cannot occur with the method proposed in this paper, with the LS method or

with the NP method if �pruning� is applied, by construction.25

4 Conclusion

We have shown that the series-expansion method to solve non-linear equations dis-

cussed in the perturbation literature can be used to derive higher-order solutions for

DSGE models that are recursively linear. This recursive linearity has the advantage

of avoiding spurious diverging dynamics.

Our paper shows that perturbation methods need not be �problematic� as some

recent literature has claimed. Obviously, there are limitation to the accuracy of the

approximation that low-order perturbations can achieve for particular models. And,

in some cases, the radius of convergence of the series expansion could be so small

to make such an approach futile. Nevertheless, perturbation methods remain a very

e�cient way of analyzing a wide range of economic models, in some simple cases even

analytically. Furthermore, very often perturbation methods remain the only viable

solution when a large number of state variables is involved.

This paper sheds some light on the ambiguity existing in the current literature

about the use of higher order state-space solutions. We show in particular that when

25We simulated the exact solution to the simple backward-looking equation ct = γct−1 +
exp (αct−1) + σft where ft is an i.i.d Gaussian process. We compared the simulation from the
exact solution with that obtained with the approach proposed in this paper and with the non-
pruned solution discussed in the literature. We considered up to six order of accuracy. The results
con�rmed that our solution can be arbitrarily close to the exact solution for parameter values that
imply explosive solutions for the non-pruned approximation. The results are available from the
author on request.
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searching for a solution that is accurate to second order, the cross product terms

must be computed using lower order terms. We show that this order criterion has

formal foundations in the perturbation literature and the method of series expansions

in particular.

By applying our solution method to the neo-classical growth model, we show that

the solution method generates identical results to the method proposed by Lombardo

and Sutherland (2007). Solutions that are not recursively linear, on the contrary, can

generate diverging dynamics for large shocks and/or higher orders of approximation

and, hence, depart dramatically from the solution proposed here. Stationarity is

a very important property of our solution, as it allows to solve and simulate large

DSGE models to higher order (e.g. for welfare analysis or in order to compute risk

premia).

Our argument and exposition can be easily extended to any order of approxima-

tion.
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Table 1: Mean (x100) of simulation under three methods

Method1 Order Capital Consumption
Exact � 0.9898 9.4294
TP (LS) 2 0.9231 8.7940
Dynare++(NP)2 2 0.9024 8.5966
Dynare++(NP) 3 1.0122 9.6425
Dynare++(NP) 4 -Inf -Inf
1
All simulations are run with the same seed (10001) amending
Dynare function �dynare_simul.m�. We simulated 5000 periods
with a standard deviation of 0.5 (shocks are standardized). To com-
pute the mean the �rst 500 draws have been dropped.

2 Using Dynare for the second order NP solution yields respec-
tively 0.9015 and 8.5880. The small discrepancy with respect to
Dynare++ is due to the di�erent simulation algorithm used.
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