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Abstract

In this paper we propose a methodology to estimate a dynamic factor model on data sets with
an arbitrary pattern of missing data. We modify the Expectation Maximisation (EM) algorithm as
proposed for a dynamic factor model by Watson and Engle (1983) to the case with general pattern of
missing data. We also extend the model to the case with serially correlated idiosyncratic component.
The framework allows to handle efficiently and in an automatic manner sets of indicators characterized
by different publication delays, frequencies and sample lengths. This can be relevant e.g. for young
economies for which many indicators are compiled only since recently. We also show how to extract a
model based news from a statistical data release within our framework and we derive the relationship
between the news and the resulting forecast revision. This can be used for interpretation in e.g.
nowcasting applications as it allows to determine the sign and size of a news as well as its contribution
to the revision, in particular in case of simultaneous data releases. We evaluate the methodology in a
Monte Carlo experiment and we apply it to nowcasting and backdating of euro area GDP.

Keywords: Factor Models, Forecasting, Large Cross-Sections, Missing data, EM algorithm.

JEL classification: C53, E37.
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Non-technical summary

In this paper we propose a methodology to estimate a dynamic factor model on data sets with an arbitrary
pattern of missing data.

Dynamic factor models have found many applications in econometrics such as forecasting, structural anal-
ysis or construction of economic activity indicators. The underlying idea of such models is that the

In this paper we adopt a version of dynamic factor model which implements factors as unobserved states.
Hence Kalman filter and smoother apparatus can be used to estimate the unobserved factors and missing
observations. Such dynamic factor models have been recently implemented e.g. at various central banks
as short-term forecasting tools since they allow to exploit dynamic relationships when extracting informa-
tion from incomplete cross-sections at the end of the sample, which arise due to publication delays and
nonsynchronous data releases.

The estimation approach we propose here is based on Expectation-Maximisation (EM) algorithm. It is

likelihood intractable or difficult to deal with. The essential idea is to write the likelihood as if the data
were complete and to “fill in” the missing data in the expectation step. In case of the dynamic factor model
considered here, the estimation problem is reduced to a sequence of simple steps, each of which essentially
involves a pass of the Kalman smoother and two multivariate regressions. We show how to adapt the EM
algorithm for factor model to the case with a general pattern of missing data. We also propose how to
model the dynamics of idiosyncratic (series-specific) components.

Our approach allows to handle efficiently and in an automatic manner data sets with an arbitrary pattern
of data availability. It is well suited for data sets including e.g. series of different sample lengths. Therefore,
our framework can be particularly relevant for the euro area or other young economies for which many
series have been compiled only since recently (e.g. euro area Purchasing Managers’ Surveys). It could be
also used to incorporate financial indicators with shorter history (e.g. share prices of particular institutions
or series from euro area Bank Lending Survey). Moreover, as the series measured at a lower frequency can
be interpreted as “high frequency” indicators with missing data, mixed frequency data sets can be easily
handled. This can be important for two reasons: first, the information in the indicators sampled at a lower
frequency (e.g. consumption, employment) can be used to extract the factors; second, the forecasts or
interpolations of the former can be easily obtained.

We also discuss how to impose parameter restrictions in our framework, hence it can be used to estimate
such models as e.g. Factor Augmented Vector Auto Regressions (FAVARs) or factor models with block
structure. Flexibility with respect to data availability allows to apply the framework e.g. to estimate VARs

Additional contribution of the paper is that we show how to extract a model based news from a statistical
data release within our framework and we derive the relationship between the news and the resulting
forecast revision. This can be of interest for understanding and interpreting forecast revisions in e.g.
nowcasting applications in which there is a continuous inflow of new information and forecasts are frequently
updated. It allows us to determine the sign and size of a news as well as its contribution to the revision,
in particular in case of simultaneous data releases. For example, it enables us to produce statements like
“the forecast was revised up by ... because of higher than expected release of ...”.

We evaluate our methodology on both simulated and euro area data. In a Monte Carlo study we consider

co-movement of (possibly many) observed series can be summarised by means of few unobserved factors.

a general algorithm that offers a solution to problems for which incomplete or latent data yield the

or FAVARs on mixed frequency data or use these models in real-time forecasting applications.
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different model specifications, sample sizes and fractions of missing data. We evaluate the precision in
estimating the space spanned by the common factors as well as forecast accuracy. We compare these with

In the empirical application, we use the methodology for
nowcasting and backdating of the euro area GDP using monthly and quarterly indicators. We consider
specifications of different cross-sectional sizes, from small scale model with around 15 variables to large
scale specification with around 100 series. Our approach can deal with such features of the data set as
“ragged edge” caused by delayed and non-synchronous data releases, mixed frequency and varying series
length. We compare the forecast accuracy of these specifications with that of univariate benchmarks as
well as of another factor model implementation. We also illustrate how the news in the consecutive releases
of different groups of variables revise the GDP forecast for the fourth quarter of 2008. Overall the results
indicate that our methodology provides reliable results and is easy to implement and computationally
inexpensive. In particular, it is feasible for large cross-sections.

alternative approaches based on EM algorithm.
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1 Introduction

In this paper we propose a methodology to estimate a dynamic factor model on data sets with an arbitrary
pattern of missing data.

Starting with seminal papers of Geweke (1977) and Sargent and Sims (1977), dynamic factor models
have found many applications in econometrics such as forecasting, structural analysis or construction of
economic activity indicators.1 The underlying idea of a factor model is that (dynamic) co-movement of
(possibly many) observed series can be summarised be few unobserved factors. Due to latency of the
factors, maximum likelihood estimators cannot, in general, be obtained explicitly. Small scale dynamic
factor models have been traditionally estimated by optimisation algorithms both in frequency (Geweke,
1977; Sargent and Sims, 1977; Geweke and Singleton, 1980) and in time domain (Engle and Watson, 1981;
Stock and Watson, 1989; Quah and Sargent, 1992). For example, Engle and Watson (1981) write a dynamic
factor model in a state space representation, apply Kalman filter to compute the likelihood and use an
optimisation method to find maximum likelihood estimates of the parameters. An alternative approach
has been proposed by Watson and Engle (1983), who have adapted the Expectation-Maximisation (EM)
algorithm of Dempster, Laird, and Rubin (1977) to the case of dynamic factor model.2

We build on the dynamic factor model representation of Watson and Engle (1983) and, like this study,
adopt the EM approach for maximum likelihood estimation. One contribution of the paper is to derive the
steps of EM algorithm for a general pattern of missing data. While EM algorithm has been designed as a
general approach to deal with latent and missing data, in the context of dynamic factor model, it has been
usually applied to deal only with latency of the factors under the assumption that there are no missing
values in the observables. The only exception is the paper by Shumway and Stoffer (1982), who show how
to implement the EM algorithm for a state space representation with missing data, however only in the
case in which the matrix linking the states and the observables is known. Here we deal with a general case.
In addition, we propose how to model the serial correlation of the idiosyncratic component. Approaches
proposed elsewhere (e.g. Reis and Watson, 2007; Jungbacker and Koopman, 2008) are not feasible in case
of a general pattern of missing data.

With respect to a popular non-parametric method based on principal components,3 maximum likelihood
approach as adopted here has several advantages. First, it can deal with general pattern of missing data.
Second, it provides framework for imposing restrictions on the parameters. Finally, it is more efficient for
small samples.

Hence, the methodology proposed in this paper allows to handle efficiently and in an automatic manner
data sets with an arbitrary pattern of data availability. It is well suited for data sets including e.g. series of
different sample lengths. Therefore, our framework can be particularly relevant for the euro area or other
young economies for which many series have been compiled only since recently (e.g. euro area Purchasing
Managers’ Surveys). It could be also used to incorporate financial indicators with shorter history (e.g. share
prices of particular institutions or series from euro area Bank Lending Survey). Moreover, as the series
measured at a lower frequency can be interpreted as “high frequency” indicators with missing data, mixed

1see e.g. Engle and Watson (1981); Watson and Engle (1983); Stock and Watson (1989); Quah and Sargent (1992);
Bernanke and Boivin (2003); Forni, Hallin, Lippi, and Reichlin (2003, 2005); Giannone, Reichlin, and Sala (2004); Marcellino,
Stock, and Watson (2003); Stock and Watson (1999, 2002a,b); Altissimo, Cristadoro, Forni, Lippi, and Veronese (2006);

2EM algorithm was originally proposed by Dempster, Laird, and Rubin (1977) as a general iterative solution for maximum
likelihood estimation in problems with missing or latent data. It has been adapted to a variety of problems, such as e.g.
mixture models, regime switching models, linear models with missing or truncated data, see e.g. McLachlan and Krishnan
(1996) for an overview.

3see e.g. Connor and Korajczyk (1986, 1988, 1993); Forni and Reichlin (1996, 1998); Stock and Watson (2002a); Forni,
Hallin, Lippi, and Reichlin (2000); Bai (2003); Giannone, Reichlin, and Small (2008);
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frequency data sets can be easily handled. This can be important for two reasons: first, the information
in the indicators sampled at a lower frequency (e.g. consumption, employment) can be used to extract the
factors; second, the forecasts or interpolations of the former can be easily obtained.

Furthermore, since Factor Augmented VARs (FAVARs, see e.g. Bernanke, Boivin, and Eliasz, 2005) or
factor models with a block structure (e.g. Kose, Otrok, and Whiteman, 2003) are restricted versions of a
general model studied here, the methodology we propose can be used to estimate such models, in particular,
in the presence of missing data (e.g. on mixed frequency or real-time data sets). We discuss how to impose
such restrictions within our framework.4

Finally, the methodology is computationally feasible for large data sets. Maximum likelihood approach,
in general, has been long considered infeasible for data sets in which the size of cross-section is large.
Therefore, non-parametric methods based on principal components have been applied. Recently, Doz,
Giannone, and Reichlin (2006) have proved that, as the size of the cross-section goes to infinity, one can
obtain consistent estimates of the factors by maximum likelihood (also in case of weak cross and serial
correlation in the idiosyncratic component). In a Monte Carlo study they have used EM algorithm for
the estimation and shown that it is reliable and computationally inexpensive also in the case of large
cross-sections.5

Additional contribution of the paper is that we show how to extract a model based news from a statistical
data release within our framework and we derive the relationship between the news and the resulting
forecast revision.6 The derivations can be easily adopted to any model that can be cast in a state space
form. This can be of interest for understanding and interpreting forecast revisions in e.g. nowcasting
applications in which there is a continuous inflow of new information and forecasts are frequently updated.
It allows us to determine the sign and size of a news as well as its contribution to the revision, in particular
in case of simultaneous data releases. For example, it enables us to produce statements like “the forecast
was revised up by ... because of higher than expected release of ...”.

We evaluate the performance of the methodology both on simulated and on euro area data.

In a Monte Carlo simulation experiment we consider different model specifications, sample sizes and frac-
tions of missing data. We evaluate the precision in estimating the space spanned by the common factors
as well as forecast accuracy. We compare these with the results obtained when using the EM algorithms
proposed by Stock and Watson (2002b) and by Rubin and Thayer (1982) (the latter is a special case of
the algorithm derived in this paper).

In the empirical application, we use the methodology for real-time forecasting and backdating of the euro
area GDP using monthly and quarterly indicators. We consider specifications of different cross-sectional
sizes, from small scale model with around 15 variables to large scale specification with around 100 series.
Our approach can deal with such features of the data set as “ragged edge”,7 mixed frequency and varying
series length (e.g. Purchasing Managers’ Surveys are available only later in the sample). We compare

4EM algorithm has been recently applied to estimate models in the spirit of FAVAR by Bork, Dewachter, and Houssa
(2009) and Bork (2009). Applications to other types of restricted factor models include Reis and Watson (2007) and Modugno
and Nikolaou (2009); the former impose restrictions in order to identify the pure inflation, the latter in order to forecast the
yield curve using the Nelson-Siegel exponential components framework.

5Jungbacker and Koopman (2008) show that a simple transformation of the state space representation can yield substantial
computational gains for likelihood evaluation. They show that, on one hand, this can be used to speed up the EM iterations
and, on the other hand, direct maximisation of the likelihood by optimisation methods becomes feasible also for large cross-
sections.

6Note that the news concept considered here is defined with respect to the model and not market expectations. It is also
different from news vs. noise concept considered by Giannone, Reichlin, and Small (2008).

7“Ragged edge” arises in real-time applications and means that there is a varying number of missing observations at the
end of the sample as different series are subject to different publication delays and are released at different points in time.
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the forecast accuracy of these specifications with that of univariate benchmarks as well as of the model of
Bańbura and Rünstler (2010), who adopt the methodology of Giannone, Reichlin, and Small (2008) to the
case of euro area.

Giannone, Reichlin, and Small (2008) have proposed a factor model framework, which allows to deal with
“ragged edge” and exploit information from large data sets in a timely manner. They have applied it to
nowcasting of US GDP from a large number of monthly indicators. While Giannone, Reichlin, and Small
(2008) can handle the “ragged edge” problem, it is not straightforward to apply their methodology to
mixed frequency panels with series of different lengths or, in general, to any pattern of missing data.8 In
addition, as the estimation is based on principal components, it could be inefficient for small samples.

Other papers related to ours include Camacho and Perez-Quiros (2008) who obtain real-time estimates of
the euro area GDP from monthly indicators from a small scale model applying the mixed frequency factor
model approach of Mariano and Murasawa (2003). Schumacher and Breitung (2008) forecast German GDP
from large number of monthly indicators using the EM approach proposed by Stock and Watson (2002b).

and shows how to incorporate relevant accounting and temporary constraints. Angelini, Henry, and
Marcellino (2006) propose methodology for backdating and interpolation based on large cross-sections. In
contrast to theirs, our method exploits the dynamics of the data and is based on maximum likelihood
which allows for imposing restrictions and is more efficient for smaller cross-sections.

The paper is organized as follows. Section 2 presents the model, discusses the estimation and explains how
the news content can be extracted. Section 3 provides the results of the Monte Carlo experiment. Section
4 describes the empirical application. Section 5 concludes. The technical details and data description are
provided in the Appendix.

2 Econometric framework

Let yt = [y1,t, y2,t, . . . , yn,t]
′
, t = 1, . . . , T denote a stationary n-dimensional vector process standardised

to mean 0 and unit variance. We assume that yt admits the following factor model representation:

yt = Λft + εt , (1)

where ft is a r× 19 vector of (unobserved) common factors and εt = [ε1,t, ε2,t, . . . , εn,t]
′ is the idiosyncratic

component, uncorrelated with ft at all leads and lags. The n×r matrix Λ contains factor loadings. χt = Λft

is referred to as the common component. It is assumed that εt is normally distributed and cross-sectionally
uncorrelated, i.e. yt follows an exact factor model. We also shortly discuss validity of the approach in
the case of an approximate factor model, see below. What concerns the dynamics of the idiosyncratic
component we consider two cases: εt is serially uncorrelated or it follows an AR(1) process.

Further, it is assumed that the common factors ft follow a stationary VAR process of order p:

ft = A1ft−1 + A2ft−2 + · · · + Apft−p + ut , ut ∼ i.i.d. N (0, Q) , (2)

where A1, . . . , Ap are r×r matrices of autoregressive coefficients. We collect the latter into A = [A1, . . . , Ap].

8Their estimation approach consists of two steps. First, the parameters of the state space representation of the factor
model are obtained using a principal components based procedure applied to a truncated data set (without missing data).
Second, Kalman filter is applied on the full data set in order to obtain factor estimates and forecasts using all available
information.

9For identification it is required that 2r + 1 ≤ n, see e.g. Geweke and Singleton (1980).

Proietti (2008) estimates a factor model for interpolation of GDP and its main components
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2.1 Estimation

As ft are unobserved, the maximum likelihood estimators of the parameters of model (1)-(2), which we
collect in θ, are in general not available in closed form. On the other hand, a direct numerical maximisation
of the likelihood is computationally demanding, in particular for large n due to the large number of
parameters.10

In this paper we adopt an approach based on the Expectation-Maximisation (EM) algorithm, which was
proposed by Dempster, Laird, and Rubin (1977) as a general solution to problems for which incomplete or
latent data yield the likelihood intractable or difficult to deal with. The essential idea of the algorithm is
to write the likelihood as if the data were complete and to iterate between two steps: in the Expectation
step we “fill in” the missing data in the likelihood, while in the Maximisation step we re-optimise this
expectation. Under some regularity conditions, the EM algorithm converges towards a local maximum of
the likelihood (or a point in its ridge, see also below).

To derive the EM steps for the model described above, let us denote the joint log-likelihood of yt and
ft, t = 1, . . . , T by l(Y, F ; θ), where Y = [y1, . . . , yT ] and F = [f1, . . . , fT ]. Given the available data
ΩT ⊆ Y ,11 EM algorithm proceeds in a sequence of two alternating steps:

1. E-step - the expectation of the log-likelihood conditional on the data is calculated using the estimates
from the previous iteration, θ(j):

L(θ, θ(j)) = Eθ(j)

[
l(Y, F ; θ)|ΩT

]
;

2. M-step - the parameters are re-estimated through the maximisation of the expected log-likelihood
with respect to θ:

θ(j + 1) = arg max
θ

L(θ, θ(j)) . (3)

Watson and Engle (1983) and Shumway and Stoffer (1982) show how to derive the maximisation step (3)
for models similar to the one given by (1)-(2). As a result the estimation problem is reduced to a sequence
of simple steps, each of which essentially involves a pass of the Kalman smoother and two multivariate
regressions. Doz, Giannone, and Reichlin (2006) show that the EM algorithm is a valid approach for the
maximum likelihood estimation of factor models for large cross-sections as it is robust, easy to implement
and computationally inexpensive. Watson and Engle (1983) assume that all the observations in yt are
available (ΩT = Y ). Shumway and Stoffer (1982) derive the modifications for the missing data case but
only with known Λ. We provide the EM steps for the general case with missing data.

In the main text, we set for simplicity p = 1 (A = A1), the case of p > 1 is discussed in the Appendix. We
first consider the case of serially uncorrelated εt:

εt ∼ i.i.d. N (0, R) , (4)

where R is a diagonal matrix. In that case θ = {Λ, A,R,Q} and the maximisation of (3) results in the

10Recently, Jungbacker and Koopman (2008) have shown how to reduce the computational complexity related to estimation
and smoothing if the number of observables is much larger than the number of factors.

11ΩT ⊆ Y because some observations in yt can be missing.
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following expressions for Λ(j + 1) and A(j + 1):12

Λ(j + 1) =

(
T∑

t=1

Eθ(j)

[
ytf

′
t |ΩT

])( T∑
t=1

Eθ(j)

[
ftf

′
t |ΩT

])−1

, (5)

A(j + 1) =

(
T∑

t=1

Eθ(j)

[
ftf

′
t−1|ΩT

])( T∑
t=1

Eθ(j)

[
ft−1f

′
t−1|ΩT

])−1

. (6)

Note that these expressions resemble the ordinary least squares solution to the maximum likelihood estima-
tion for (auto-) regressions with complete data with the difference that the sufficient statistics are replaced
by their expectations.

The (j + 1)-iteration covariance matrices are computed as the expectations of sums of squared residuals
conditional on the updated estimates of Λ and A:13

R(j + 1) = diag

(
1
T

T∑
t=1

Eθ(j)

[(
yt − Λ(j + 1)ft

)(
yt − Λ(j + 1)ft

)′|ΩT

])
(7)

= diag

(
1
T

(
T∑

t=1

Eθ(j)

[
yty

′
t|ΩT

]− Λ(j + 1)
T∑

t=1

Eθ(j)

[
fty

′
t|ΩT

]))

and

Q(j + 1) =
1
T

(
T∑

t=1

Eθ(j)

[
ftf

′
t |ΩT

]− A(j + 1)
T∑

t=1

Eθ(j)

[
ft−1f

′
t |ΩT

])
. (8)

When yt does not contain missing data, we have that

Eθ(j) [yty
′
t|ΩT ] = yty

′
t and Eθ(j) [ytf

′
t |ΩT ] = ytEθ(j) [f ′

t |ΩT ] . (9)

Finally, the conditional moments of the latent factors, Eθ(j) [ft|ΩT ], Eθ(j) [ftf
′
t |ΩT ], Eθ(j)

[
ft−1f

′
t−1|ΩT

]
and Eθ(j)

[
ftf

′
t−1|ΩT

]
, can be obtained through the Kalman smoother for the state space representation:

yt = Λ(j)ft + εt , εt ∼ i.i.d. N (0, R(j)) ,

ft = A(j)ft−1 + ut , ut ∼ i.i.d. N (0, Q(j)) , (10)

see Watson and Engle (1983).

However, when yt contains missing values we can no longer use (9) when developing the expressions (5)
and (7). Let Wt be a diagonal matrix of size n with ith diagonal element equal to 0 if yi,t is missing and
equal to 1 otherwise. As shown in the Appendix, Λ(j + 1) can be obtained as

vec
(
Λ(j + 1)

)
=

(
T∑

t=1

Eθ(j)

[
ftf

′
t |ΩT

]⊗ Wt

)−1

vec

(
T∑

t=1

WtytEθ(j)

[
f ′

t |ΩT

])
. (11)

Intuitively, Wt works as a selection matrix, so that only the available data are used in the calculations.
Analogously, the expression (7) becomes

R(j + 1) = diag

(
1
T

T∑
t=1

(
Wtyty

′
tW

′
t − WtytEθ(j)

[
f ′

t |ΩT

]
Λ(j + 1)′Wt − WtΛ(j + 1)Eθ(j)

[
ft|ΩT

]
y′

tWt

+ WtΛ(j + 1)Eθ(j)

[
ftf

′
t |ΩT

]
Λ(j + 1)′Wt + (I − Wt)R(j)(I − Wt)

))
. (12)

12A sketch of how these are derived is provided in the Appendix, see also e.g. Watson and Engle (1983) and Shumway and
Stoffer (1982).

13Note that L(θ, θ(j)) does not have to be maximised simultaneously with respect to all the parameters. The procedure
remains valid if M-step is performed sequentially, i.e. L(θ, θ(j)) is maximised over a subvector of θ with other parameters
held fixed at their current values, see e.g. McLachlan and Krishnan (1996), Ch. 5.
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Again, only the available data update the estimate. I − Wt in the last term “selects” the entries of R(j)
corresponding to the missing observations. For example, when for some t all the observations in yt are
missing, the period t contribution to R(j + 1) would be R(j)/T .

When applying the Kalman filter on the state space representation (10), in case some of the observations
in yt are missing, the corresponding rows in yt and Λ(j) (and the corresponding rows and columns in R(j))
are skipped (cf. Durbin and Koopman, 2001).

It is easy to see that with Wt ≡ I, (11) and (12) coincide with the “complete data” expressions obtained
by plugging (9) into (5) and (7).

Static factor model

Note that the static factor model is a special case of the representation considered above in which A = 0.
EM algorithm for a static factor model (without missing data) has been derived by Rubin and Thayer
(1982). In the Appendix we show that the EM steps of Rubin and Thayer (1982) can be derived from
the general expressions for Λ(j + 1) and R(j + 1) as given by formulas (5) and (7), where the conditional
expectations can be derived explicitly. We also discuss the modification of the expressions of Rubin and
Thayer (1982) to the missing data case.

Note that this approach is different from the EM based method proposed by Stock and Watson (2002b)
to compute the principal components from data sets with missing observations. In the latter case, the
objective function is proportional to the expected log-likelihood under the assumption of fixed factors and
homoscedastic idiosyncratic component.

The performance of these different approaches for different model specifications and different fractions of
missing data is compared in the Monte Carlo study in Section 3.

Approximate factor model

As argued in e.g. Stock and Watson (2002a) or Doz, Giannone, and Reichlin (2006) the assumption of no
cross-correlation in the idiosyncratic component could be too restrictive, in particular in the case of large
cross-sections. Following Chamberlain and Rothschild (1983), factor models with weakly cross-correlated
idiosyncratic component are often referred to as approximate.

Doz, Giannone, and Reichlin (2007) show that, under the approximate factor model (with possibly serially
correlated idiosyncratic errors), as n, T → ∞ the factors can be consistently estimated by quasi maximum
likelihood, where the miss-specified model is the exact factor model (with uncorrelated idiosyncratic error)
described above (see Doz, Giannone, and Reichlin, 2006, for the technical details). Consequently, the
estimators considered above are asymptotically valid also in the case of the approximate factor model.14

In the Monte Carlo simulations in Section 3 we study the performance of different methods also in the
presence of serial and cross-correlations of the idiosyncratic component.

Restrictions on the parameters

methods based on principal components, is that it allows imposing restrictions on the parameters in a
relatively straightforward manner.

14Stock and Watson (2002a) prove similar result for factor estimators based on principal components.

One of the advantages of the maximum likelihood approach proposed here, with respect to non-parametric
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Bork (2009) and Bork, Dewachter, and Houssa (2009) show how to modify the M-step of Watson and
Engle (1983) in order to impose restrictions of the form HΛvec(Λ) = κΛ for the model given by (1)-(2).
Straightforward adaptation of their expressions to the missing data case results in the restricted estimate
given by

vec
(
Λr(j + 1)

)
= vec

(
Λu(j + 1)

)
+

(
T∑

t=1

Eθ(j)

[
ftf

′
t |ΩT

]⊗ R(j)

)
H ′

Λ × (13)

×
(

HΛ

(
T∑

t=1

Eθ(j)

[
ftf

′
t |ΩT

]⊗ R(j)

)
H ′

Λ

)−1 (
κΛ − HΛvec

(
Λu(j + 1)

))
,

where Λu(j + 1) is the unrestricted estimate given by expression (11). Restrictions on the parameters
in the transition equation: HAvec(A) = κA, can be imposed in an analogous manner, see Bork (2009).15

This type of restrictions are relevant for a number of models, such as e.g.:

• Factor Augmented VAR (FAVAR) models as proposed by Bernanke, Boivin, and Eliasz (2005). Bork
(2009) has recently shown how to estimate this type of model by EM algorithm.

• Mixed frequency models - for example, the approach of Mariano and Murasawa (2003) to joint
modelling of monthly and quarterly variables requires imposing restrictions on the factor loadings of
the latter. We impose this type of restriction in the empirical application in Section 4. Giannone,
Reichlin, and Simonelli (2009) apply the EM approach to estimate a mixed frequency VAR.

• Factor models with a block structure - there are several applications, in which (some) factors are
specific to a subset of variables considered. For example, Kose, Otrok, and Whiteman (2003) consider
global and region-specific factors. Belviso and Milani (2006) extract factors from blocks of variables
representing a single concept (e.g. real activity, inflation, money). While these two papers adopt
Bayesian approach, Bańbura, Giannone, and Reichlin (2010b) apply the methodology proposed in
this paper to extract real and nominal factors. This type of models implies zero restriction on some
factor loadings and/or autoregressive parameters in the factor VAR, which can be imposed either by
using the formula (13) or by estimating each block of Λ or A separately (see Bańbura, Giannone, and
Reichlin, 2010b).

The methodology presented here can be applied to estimate these types of models in the presence of missing
data. It could be e.g. used to estimate mixed-frequency VARs or FAVARs or to apply these models to
forecasting in real-time.

Identification

The likelihood of the model given by (1)-(2) and (4) is invariant to any invertible linear transformation
of the factors. In other words, for any invertible matrix M , the parameters θ = {Λ, A, R, Q} and θM =
{ΛM−1,MAM−1, R, MQM ′} are observationally equivalent and hence θ is not identifiable from the data.
As argued in Dempster, Laird, and Rubin (1977), in this case EM algorithm will converge to a particular
θM in the ridge of the likelihood function (and not move indefinitely between different points in the ridge).
Therefore, for forecasting applications, this lack of identifiability is not an issue, as one is interested in the
space spanned by the factors and not in the factors themselves.

15Shumway and Stoffer (1982) show how to impose restrictions on A of the form AF = G. This type of restrictions is,
however, less general and e.g. does not allow to restrict only selected equations.
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In order to achieve identifiability of θ, one needs to choose a particular normalisation or, in other words,
restrict the parameter space. For example, Proietti (2008) or Jungbacker and Koopman (2008) restrict Λ
as:16

Λ =
[

Ir

Λ∗

]
,

where Λ∗ is (n−r)×r unrestricted matrix. In order to impose such restriction one could either use formula
(13) or modify the updating formula (11) as:

Λ(j + 1) =
[

Ir

Λ∗(j + 1)

]
,

vec
(
Λ∗(j + 1)

)
=

(
T∑

t=1

Eθ(j)

[
ftf

′
t |ΩT

]⊗ W ∗
t

)−1

vec

(
T∑

t=1

W ∗
t y∗

t Eθ(j)

[
f ′

t |ΩT

])
,

where y∗
t = [yr+1,t, . . . , yn,t]

′ and W ∗
t is obtained from Wt by removing the first r rows and columns.17

Modelling the serial correlation in the idiosyncratic component

The EM steps discussed above were derived under the assumption of no serial correlation in the idiosyncratic
component. As mentioned, such estimates are asymptotically valid even when this assumption is violated.
However in certain applications, like e.g. forecasting, it could be advantageous to model the idiosyncratic
dynamics, cf. e.g. Stock and Watson (2002b). Such strategy might improve the forecasts for two reasons:
first, we could forecast the idiosyncratic component; second, we could improve the efficiency of the common
factor estimates in small samples or in real-time applications in which the cross-sections at the end of the
sample are incomplete.

There are different approaches to modelling of the idiosyncratic serial correlation. For example, Reis and
Watson (2007) include lags of the observables into the measurement equation and alternate between two
steps - they estimate the coefficients on the lags conditional on the remaining parameters and vice versa.
Jungbacker and Koopman (2008) propose to use the Kalman smoother to estimate the (auto-) regression
parameters as additional states in an augmented state space form. Those approaches are however not
appropriate in the case of arbitrary missing data pattern. Instead, we propose to represent the idiosyncratic
component by an AR(1) process and to add it to the state vector.

More precisely, we assume that εi,t, i = 1, . . . , n in (1) can be decomposed as:

εi,t = ε̃i,t + ξi,t , ξi,t ∼ i.i.d. N (0, κ) ,

ε̃i,t = αiε̃i,t−1 + ei,t , ei,t ∼ i.i.d. N (0, σ2
i ) , (14)

where both ξt = [ξ1,t, . . . , ξn,t]′ and ε̃t = [ε̃1,t, . . . , ε̃n,t]′ are cross-sectionally uncorrelated and κ is a very
small number.18 Combining (1), (2) and (14) results in the new state space representation:

yt = Λ̃f̃t + ξt , ξt ∼ N (0, R̃) ,

f̃t = Ãf̃t−1 + ũt , ũt ∼ N (0, Q̃) , (15)

where

f̃t =
[

ft

ε̃t

]
, ũt =

[
ut

et

]
, Λ̃ =

[
Λ I

]
, Ã =

[
A 0
0 diag(α1, · · · , αn)

]
, Q̃ =

[
Q 0
0 diag(σ2

1 , · · · , σ2
n)

]
,

16This restriction is based on the theoretical results in Geweke and Singleton (1980), who also propose an alternative
normalisation, see also Camba-Mendez, Kapetanios, Smith, and Weale (2001). As shown in Heaton and Solo (2004), under
certain assumptions these restrictions could be partly redundant, but this issue is beyond the scope of this paper.

17In order to avoid the problem of weak identification, in practise the first r series should be selected so as to have a
relatively large and sufficiently different common components.

18This allows us to write the likelihood analogously to the exact factor model case, see the Appendix.
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et = [e1,t, . . . , en,t]′ and R̃ is a fixed diagonal matrix with κ on the diagonal.

It follows, that the expressions for A(j + 1) and Q(j + 1) remain as above while the one for Λ(j + 1) needs
to be modified as follows:

vec
(
Λ(j + 1)

)
=

(
T∑

t=1

Eθ̃(j)

[
ftf

′
t |ΩT

]⊗ Wt

)−1

vec

(
T∑

t=1

WtytEθ̃(j)

[
f ′

t |ΩT

]
+ WtEθ̃(j)

[
ε̃tf

′
t |ΩT

])
,

with θ̃ = {Λ̃, Ã, Q̃}, see the Appendix for the derivations. Furthermore, the (j + 1)-iteration estimates of
the autoregressive parameters of the idiosyncratic component are given by:

αi(j + 1) =

(
T∑

t=1

Eθ̃(j)

[
ε̃i,tε̃i,t−1|ΩT

])( T∑
t=1

Eθ̃(j)

[
ε̃2i,t−1|ΩT

])−1

,

σ2
i (j + 1) =

1
T

(
T∑

t=1

Eθ̃(j)

[
ε̃2i,t|ΩT

]− αi(j + 1)
T∑

t=1

Eθ̃(j)

[
ε̃i,t−1ε̃i,t|ΩT

])
.

The conditional moments involving ε̃t can be obtained from the Kalman smoother on the augmented state
space given by (15).

Note that augmenting the state vector by the idiosyncratic component increases the dimension of the former.
This slows down the Kalman filter but has not caused any computational problems in our applications.
Jungbacker, Koopman, and van der Wel (2009) show how to speed up the Kalman filter recursions by
alternating between the representation of Reis and Watson (2007) and the one given by (15) depending on
the availability of the data in yt. Depending on the fraction of missing data, this can lead to substantial
computational gains, however comes at the cost of more complex, time-varying state space representation.

Initial parameter values and stopping rule

In order to obtain initial values for the parameters, θ(0), we replace the missing observations in yt by draws
from N (0, 1) distribution and we apply the methodology of Giannone, Reichlin, and Small (2008). First,
we estimate Λ and F by applying principal components analysis to the covariance matrix of Y . Second,
we obtain A and Q by estimating VAR on F̂ , obtained in the previous step. Depending on the version of
the model, we estimate R or αi and σ2

i from the residuals ε̂t = yt − Λ̂f̂t, (see also the discussion in Doz,
Giannone, and Reichlin, 2006, Section 4).

Concerning the stopping rule, we follow Doz, Giannone, and Reichlin (2006) and stop the iterations when
the increase in likelihood between two consecutive steps is small. More precisely, let l(ΩT ; θ) denote the
log-likelihood of the data conditional on parameter θ (which can be obtained from Kalman filter) and
cj = l(ΩT ;θ(j))−l(ΩT ;θ(j−1))

(|l(ΩT ;θ(j))|+|l(ΩT ;θ(j−1))|)/2 . We stop after iteration J when cJ is below the threshold of 10−4.

2.2 Forecasting, backdating and interpolation

Given the estimates of the parameters θ̂ and the data set ΩT we can obtain the conditional expectations
for the missing observations from:

Eθ̂ [yi,t|ΩT ] = Λ̂i·Eθ̂ [ft|ΩT ] + Eθ̂ [εi,t|ΩT ] , yi,t �∈ ΩT ,

where Λ̂i· denotes the ith row of Λ̂. Eθ̂ [ft|ΩT ] and Eθ̂ [εi,t|ΩT ] are obtained by applying Kalman filter and
smoother to the state representation (10) or (15). In the former case, Eθ̂ [εi,t|ΩT ] = 0.

Depending on the purpose of the application (and the pattern of missing data), these conditional expecta-
tion can be used to obtain e.g.:
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• Forecasts
They are readily available from the Kalman filter. One of the appeals of the framework in the real-
time context is that it allows to exploit the dynamic relationships when extracting the information
from incomplete cross-sections at the end of the sample. This is one of the advantages over static
methods, which sometimes have to discard data at the end of the sample, when the fraction of missing
data is too large to reliably extract the factors based only on static correlations (cf. Section 3 or
Doz, Giannone, and Reichlin, 2007). In addition, explicit modelling of dynamics within the model
and the fact that it can be cast in a state space representation allow to extract model based news
from statistical data releases and to link it to resulting forecast revision, see the next section.

• Back data
If, for example, series i is available only as of period ti > 1, Kalman smoother can be used to obtain
the back data for this series: Eθ̂(yi,t|ΩT ), t < ti, conditional on the information in other series and
estimated correlations, see an example in Section 4.5.

• Interpolations
A low-frequency series can be considered as a partially observed high-frequency variable. For example,
in the empirical application, we treat quarterly variables as monthly series observed only in the
third month of each quarter, i.e. with missing data in the first and second month of each quarter.
Kalman smoother can be applied to obtain expectations for the “missing” months conditional on
the information in the monthly series and taking into account the estimated dynamic relationships.
Therefore, the methodology can be a valid alternative to standard interpolation techniques such as
e.g. Chow and Lin (1971), (see also Angelini, Henry, and Marcellino, 2006; Proietti, 2008, for recent
methodologies based on large data sets).

2.3 News in data releases and forecast revisions

When forecasting in real-time, one faces a continues inflow of information as new figures for various pre-
dictors are released non-synchronously and with different degree of delay. Therefore, in such applications,
we seldom perform a single prediction for the reference period but rather a sequence of forecasts, which are
updated when new data arrive. Intuitively, only the news or the “unexpected” component from released
data should revise the forecast, hence, extracting the news and linking it to the resulting forecast revision is
key for understanding and interpreting the latter. This section introduces the concept of model based news
in data releases, shows how to extract it for the model described above and finally derives the relationship
between the news and the forecast revision.

We denote by Ωv a vintage of data corresponding to a particular statistical release date v.19 Let us consider
two consecutive data vintages, Ωv and Ωv+1. The information sets Ωv and Ωv+1 can differ for two reasons:
first, Ωv+1 contains some newly released figures, {yij ,tj

, j = 1, . . . , Jv+1}, which were not available in
Ωv; second, some of the data might have been revised. However, in what follows we abstract from data
revisions and therefore we have:

Ωv ⊂ Ωv+1 and Ωv+1\Ωv = {yij ,tj
, j = 1, . . . , Jv+1},

hence the information set is “expanding”. Note that since different types of data are characterised by
different publication delays, in general we will have tj �= tl for some j �= l.

19We do not index the data vintages by t since statistical data releases usually occur at a higher frequency due to their
non-synchronicity. For example, we will have several releases of monthly data within a month, corresponding to different
groups of indicators, such as e.g. industrial production (released around mid-month) or surveys (released shortly before the
end of month).
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Let us now look at the two consecutive forecast updates, E

[
yk,tk

|Ωv

]
and E

[
yk,tk

|Ωv+1

]
, for a variable of

interest, k, in period tk. In this section we abstract from the problem of parameter uncertainty and to
simplify the notation we drop the subscript θ. The new figures, {yij ,tj , j = 1, . . . , Jv+1}, will in general
contain some new information on yk,tk

and consequently lead to a revision of its forecast. From the
properties of conditional expectation as an orthogonal projection operator, it follows that:

E

[
yk,tk

|Ωv+1

]
︸ ︷︷ ︸

new forecast

= E

[
yk,tk

|Ωv

]
︸ ︷︷ ︸
old forecast

+ E

[
yk,tk

|Iv+1

]
︸ ︷︷ ︸

revision

, (16)

where
Iv+1 = [Iv+1,1 . . . Iv+1,Jv+1 ]

′, Iv+1,j = yij ,tj
− E

[
yij ,tj

|Ωv

]
, j = 1, . . . , Jv+1.

Iv+1 represents the part of the release {yij ,tj
, j = 1, . . . , Jv+1}, which is “orthogonal” to the information

already contained in Ωv. In other words, it is the “unexpected”, with respect to the model, part of the
release. Therefore, we label Iv+1 as the news. Note that it is the news and not the release itself that
leads to forecast revision. In particular, if the new numbers in Ωv+1 are exactly as predicted, given the
information in Ωv, or in other words “there is no news”, the forecast will not be revised.

We can further develop the expression for the revision as:

E [yk,tk
|Iv+1] = E

[
yk,tk

I ′v+1

]
E
[
Iv+1I

′
v+1

]−1
Iv+1 .

In order to find E
[
yk,tk

I ′v+1

]
and E

[
Iv+1I

′
v+1

]
under the assumption that the data generating process is

given by (1)-(2) and (4), let us first note that20

yk,tk
= Λk·ftk

+ εk,tk
and

Iv+1,j = yij ,tj
− E

[
yij ,tj

|Ωv

]
= Λij ·

(
ftj

− E
[
ftj

|Ωv

] )
+ εij ,tj

.

Consequently, jth element of E
(
yk,tk

I ′v+1

)
and the element in jth row and lth column of E

(
Iv+1I

′
v+1

)
are

given by

E (yk,tk
Iv+1,j) = Λk·E

[
(ftk

− E [ftk
|Ωv])

(
ftj

− E
[
ftj

|Ωv

])′ ]Λ′
ij · and

E (Iv+1,jIv+1,l) = Λij ·E
[ (

ftj
− E

[
ftj

|Ωv

])
(ftl

− E [ftl
|Ωv])′

]
Λ′

il· + 1{j=l}Rjj ,

where Rjj is the jth element of the diagonal of the residual covariance matrix R. The expectations
E

[ (
ftj

− E
[
ftj

|Ωv

])
(ftl

− E [ftl
|Ωv])′

]
can be obtained from the Kalman smoother, see the Appendix for

more details on the derivations.

As a result, we can find a vector Bv+1 = [bv+1,1, · · · , bv+1,Jv+1 ] such that the following holds:

E [yk,tk
|Ωv+1] − E [yk,tk

|Ωv]︸ ︷︷ ︸
revision

= Bv+1Iv+1 =
Jv+1∑
j=1

bv+1,j

(
yij ,tj

− E
[
yij ,tj

|Ωv

]︸ ︷︷ ︸
news

)
. (17)

In other words, the revision can be decomposed as a weighted average of the news in the latest release.
What matters for the revision is both the size of the news as well as its relevance for the variable of interest,
as represented by the associated weight bv+1,j .

Formula (17) can be considered as a generalisation of the usual Kalman filter update equation (see e.g.
Harvey, 1989, eq. 3.2.3a) to the case in which “new” data arrive in a non-synchronous manner.

20For the case with the idiosyncratic component following an AR(1) process, ft and Λ should be simply replaced by
respectively f̃t and Λ̃.
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Relationship (17) enables us to trace sources of forecast revisions.21 More precisely, in the case of a
simultaneous release of several (groups of) variables it is possible to decompose the resulting forecast
revision into contributions from the news in individual (groups of) series, see the illustration in Section
4.4.22 In addition, we can produce statements like e.g. “after the release of industrial production, the
forecast of GDP went up because the indicators turned out to be (on average) higher than expected”.23

3 Monte Carlo evidence

In this section, we perform a Monte Carlo experiment in order to assess how the estimation methodology
described above performs in finite sample for different fractions of missing data.

We follow Doz, Giannone, and Reichlin (2006) and generate the data from the following (approximate)
factor model:

yt = χt + εt = Λ0ft + · · · + Λsft−s + εt ,

ft = Aft−1 + ut , ut ∼ i.i.d. N (0, Ir) ,

εt = Dεt−1 + vt , vt ∼ i.i.d. N (0, Φ) ,

t = 1, . . . , T , where

Λij,k ∼ i.i.d. N (0, 1), i = 1, . . . , n, j = 1, . . . , r, k = 0, . . . , s ,

Aij =
{

ρ, i = j
0, i �= j

, Dij =
{

α, i = j
0, i �= j

,

Φi,j = τ |i−j|(1 − α2)
√

γiγj , γi =
βi

1 − βi

1
1 − ρ2

s∑
k=0

r∑
j=1

Λ2
ij,k , βi ∼ i.i.d. U

(
[u, 1 − u]

)
.

Parameters α and τ govern the degree of, respectively, serial- and cross-correlation of the idiosyncratic
component. τ > 0 violates the assumption of diagonal spectral density matrix of the idiosyncratic compo-
nent required for exact factor model, however the condition of weak cross-correlation (for an approximate
factor model) is satisfied, see e.g. Doz, Giannone, and Reichlin (2006). For s > 0 the relationship between
the factors and the observables is dynamic. It may arise in case of lead-lag relationships between the
observables. Such model has a representation given by (1)-(2) with Q of reduced rank, see e.g. Bai and Ng
(2007). Parameter βi governs the signal to noise ratio for variable i. More precisely βi = Var(εit)

Var(yit)
. Similar

process was used in the Monte Carlo experiment of Stock and Watson (2002a) (with a different pattern of

We generate the data for different cross-section size n, sample length T , number of factors r and different
values of ρ, α, τ and s. We also consider the case in which the number of factors r̂ as input into the
estimation procedure is larger than the true number of factors r (input into the data generating process).

21Note, that the contribution from the news is equivalent to the change in the overall contribution of the series to the forecast
(the measure proposed in Bańbura and Rünstler, 2010) when the correlations between the predictors are not exploited in the
model. Otherwise, those measures are different, see the Appendix for the details. In particular, there can be a change in the
overall contribution of a variable even if no new information on this variable was released. Therefore news is a better suited
tool for analysing the sources of forecasts revisions.

22If the release concerns only one group or one series, the contribution of its news is simply equal to the change in the
forecast.

23This holds of course for the indicators with positive entries in bv+1,j .

idiosyncratic cross-correlation).



19
ECB

Working Paper Series No 1189
May 2010

Estimating the space spanned by the factors

In this experiment we generate the data from the process described above and subsequently we set a certain
fraction of the data as missing (we choose the data points randomly). We consider the cases of 0, 10, 25
and 40% of missing data. Subsequently, we estimate the model using the EM algorithm described above
under the assumption of lack of serial correlation in the idiosyncratic component (assumption (4)) and
run the Kalman smoother to estimate the factors (we label this approach as BM ). We also compare the
results of the methodology described in this paper with the ones obtained using the algorithm of Rubin
and Thayer (1982) (labelled as RT ) and of Stock and Watson (2002b) (labelled as SW ). As mentioned
above, one of the key differences between these approaches and the one advocated in this paper is that the
former do not model the dynamics of the common factors.

To assess the precision of the estimates of the factors we follow Stock and Watson (2002a) and Doz,
Giannone, and Reichlin (2006) and use the trace R2 of the regression of the estimated factors on the true
ones:

Trace
(
F ′F̂

(
F̂ ′F̂

)−1

F̂ ′F
)

Trace
(
F ′F

) ,

where F̂ = Eθ̂[F |ΩT ]. This measure is smaller than 1 and tends to 1 with the increasing canonical
correlation between the estimated and the true factors.

Tables 1 and 2 present the average trace statistics over 500 Monte Carlo replications for the number of
factors r = 1 and r = 3, respectively. First section of the tables reports the trace statistics for the BM
approach. The remaining two sections report the trace statistics of BM relative to the trace statistics
of RT and SW approaches (BM/RT and BM/SW respectively). Ratio larger than 1 indicates that BM
estimates are on average more precise. For better readability, we highlight the ratios lower than 0.95 in

Let us first look at the trace statistics for the BM approach. We can see that the space spanned by the
estimated factors converges to the true one with increasing T and n. The finite sample precision, however,
depends on the fraction of missing data, the number of factors and other parameters of the data generating
process. The estimates are less precise for more persistent factors (ρ = 0.9 vs ρ = 0.5), for larger number of
factors (r = 3 vs r = 1) and for a miss-specified model (d, τ > 0) in small sample. The estimation accuracy
decreases with increasing fraction of missing data, however the losses are not that large, especially for
n ≥ 50. Finally, the procedure is rather robust to a miss-specified number of factors.

As for the comparison with RT and SW approaches, they are in most of the cases outperformed by BM
(the ratios are mostly larger than 1). The largest gains for BM occur, in general, for smaller samples,
larger fraction of missing data, more persistent factors and more dimensional factor space. In addition,
BM gains a lot in relative accuracy for a “truly” dynamic model, in which observables load the factors and
their lags (s = 1). Finally, among the “static” approaches, RT seems to perform better than SW.

As for the model given by (15), in which the idiosyncratic component is modelled as AR(1) process the
trace statistics are similar as reported above. This suggests that if we are only interested in estimating
the factors we do not win much by accounting for the serial correlation in the idiosyncratic component (as
long as it is not too strong). Table 3 below reports the average over i of mean absolute estimation error
of the idiosyncratic autoregressive parameter αi

r̂ = r = 3 and different values of T . We consider panels with no missing data and with 20% fraction of
missing values. We can see that the estimates converge towards the true values as the sample size increases.
In addition, the estimates based on the data with missing values are slightly less accurate.

green, higher than 1.05 but lower than 1.1 in orange and higher than 1.1 in red.

for n = 25, ρ = 0.7, α = 0.7, τ = 0, β ∼ U [0.1 0.9], s = 0,
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n T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

10 50 0.84 0.84 0.82 0.80 1.01 1.01 1.01 1.03 1.02 1.02 1.03 1.05

10 100 0.89 0.89 0.87 0.85 1.01 1.01 1.01 1.02 1.02 1.03 1.04 1.06

25 50 0.88 0.88 0.87 0.86 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01

25 100 0.92 0.92 0.92 0.91 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.02

50 50 0.89 0.89 0.89 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01

50 100 0.94 0.93 0.93 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01

100 50 0.90 0.90 0.89 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 100 0.94 0.94 0.94 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 50 0.81 0.81 0.79 0.77 1.00 1.00 1.00 1.01 0.99 1.00 1.01 1.05

10 100 0.86 0.86 0.84 0.82 1.00 1.00 1.01 1.01 0.99 1.00 1.01 1.03

25 50 0.88 0.88 0.88 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01

25 100 0.93 0.92 0.92 0.91 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01

50 50 0.90 0.90 0.89 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

50 100 0.94 0.94 0.94 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01

100 50 0.91 0.91 0.90 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 100 0.95 0.95 0.95 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 50 0.89 0.88 0.86 0.82 1.00 1.00 1.00 1.01 1.02 1.02 1.02 1.03

10 100 0.92 0.91 0.89 0.86 1.00 1.00 1.01 1.01 1.02 1.03 1.03 1.05

25 50 0.93 0.92 0.92 0.90 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01

25 100 0.95 0.95 0.94 0.93 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01

50 50 0.94 0.94 0.93 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01

50 100 0.96 0.96 0.96 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01

100 50 0.95 0.94 0.94 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 100 0.97 0.97 0.97 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 50 0.69 0.69 0.68 0.66 1.02 1.03 1.04 1.07 1.04 1.04 1.06 1.09

10 100 0.80 0.80 0.79 0.78 1.02 1.02 1.03 1.06 1.04 1.04 1.06 1.09

25 50 0.72 0.72 0.71 0.70 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.02

25 100 0.82 0.82 0.82 0.81 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.02

50 50 0.73 0.73 0.72 0.72 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01

50 100 0.83 0.83 0.83 0.83 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01

100 50 0.73 0.73 0.73 0.73 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 100 0.84 0.84 0.83 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 50 0.84 0.84 0.82 0.78 1.00 1.01 1.01 1.01 1.01 1.02 1.03 1.09

10 100 0.89 0.89 0.87 0.84 1.01 1.01 1.01 1.02 1.02 1.03 1.04 1.09

25 50 0.88 0.88 0.87 0.86 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01

25 100 0.92 0.92 0.92 0.91 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.02

50 50 0.89 0.89 0.88 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01

50 100 0.94 0.93 0.93 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01

100 50 0.89 0.89 0.89 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 100 0.94 0.94 0.94 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

25 50 0.88 0.87 0.87 0.85 1.03 1.03 1.04 1.06 1.04 1.05 1.06 1.09

25 100 0.93 0.92 0.92 0.91 1.03 1.03 1.04 1.05 1.04 1.04 1.06 1.08

50 50 0.89 0.89 0.88 0.88 1.01 1.01 1.02 1.03 1.02 1.02 1.03 1.04

50 100 0.94 0.94 0.93 0.93 1.01 1.01 1.02 1.02 1.02 1.02 1.03 1.03

100 50 0.89 0.89 0.89 0.89 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02

100 100 0.94 0.94 0.94 0.94 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02

Notes: Table reports average trace R -square for the factor estimates. BM refers to the estimation method studied in this paper, RT to the

algorithm proposed by Rubin and Thayer (1982) and SW

report the trace R -square for BM, as well as its ratio to the trace R -square of RT and SW . 0% , 10% , 25% and 40% refer to the fraction o

missing data. The number of factors is r = 1 . T and n refer to the sample and cross-section size, respectively. s is the number of lags o

the factors included in the measurement equation. The parameters , , and govern the persistence of the factors, the degree of serial-

and cross-correlation of the idiosyncratic component and its relative variance, respectively. r_hat is the number of factors with which the

models are estimated.

f

f

 = 0.7, =0,  = 0, ~U[0.1 0.9],   s=0,   r_hat = r+1

 = 0.7, =0,  = 0, ~U[0.1 0.9],   s=1,   r_hat = r

 = 0.9, =0,  = 0, ~U[0.1 0.9],   s=0,   r_hat = r

Table 1: Monte Carlo analysis, trace R -square for the factor estimates, r  = 1

 = 0.7, =0,  = 0, ~U[0.1 0.9],   s=0,   r_hat = r

 = 0.7, =0.5,  = 0.5, ~U[0.1 0.9],   s=0,   r_hat = r

 = 0.5, =0,  = 0, ~U[0.1 0.9],   s=0,   r_hat = r

BM BM/RT BM/SW

refers to the algorithm of Stock and Watson (2002). We
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n T 0% 10% 25% 40% 0% 10% 25% 40% 0% 10% 25% 40%

10 50 0.67 0.64 0.58 0.50 1.05 1.06 1.07 1.09 1.07 1.11 1.18 1.38

10 100 0.75 0.73 0.68 0.62 1.08 1.09 1.12 1.17 1.12 1.15 1.27 1.51

25 50 0.82 0.81 0.78 0.73 1.01 1.01 1.02 1.05 1.04 1.04 1.07 1.12

25 100 0.88 0.87 0.85 0.82 1.01 1.02 1.02 1.04 1.04 1.05 1.06 1.11

50 50 0.86 0.86 0.84 0.82 1.00 1.00 1.01 1.01 1.02 1.02 1.02 1.04

50 100 0.91 0.91 0.90 0.89 1.00 1.00 1.00 1.01 1.02 1.02 1.02 1.03

100 50 0.88 0.88 0.87 0.86 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01

100 100 0.93 0.93 0.92 0.92 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01

10 50 0.60 0.58 0.56 0.51 1.03 1.03 1.05 1.10 1.01 1.03 1.11 1.34

10 100 0.63 0.62 0.60 0.56 1.04 1.05 1.07 1.11 1.02 1.04 1.14 1.38

25 50 0.77 0.77 0.74 0.70 0.99 0.99 1.00 1.01 1.01 1.02 1.03 1.07

25 100 0.84 0.83 0.81 0.78 1.00 1.00 1.01 1.02 1.02 1.02 1.04 1.08

50 50 0.85 0.85 0.83 0.81 1.00 1.00 1.00 1.00 1.01 1.01 1.02 1.03

50 100 0.91 0.90 0.89 0.88 1.00 1.00 1.00 1.00 1.01 1.01 1.02 1.02

100 50 0.88 0.87 0.87 0.86 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01

100 100 0.93 0.93 0.92 0.91 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01

10 50 0.69 0.65 0.58 0.47 1.01 1.01 1.00 0.98 1.03 1.04 1.12 1.23

10 100 0.75 0.72 0.67 0.58 1.03 1.03 1.05 1.05 1.07 1.09 1.19 1.39

25 50 0.86 0.85 0.81 0.75 1.00 1.01 1.01 1.02 1.03 1.03 1.05 1.08

25 100 0.90 0.89 0.86 0.82 1.00 1.01 1.01 1.02 1.03 1.04 1.05 1.08

50 50 0.91 0.90 0.89 0.86 1.00 1.00 1.00 1.00 1.01 1.02 1.02 1.03

50 100 0.94 0.93 0.92 0.91 1.00 1.00 1.00 1.00 1.01 1.02 1.02 1.03

100 50 0.93 0.92 0.92 0.91 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01

100 100 0.96 0.95 0.95 0.94 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01

10 50 0.58 0.56 0.53 0.49 1.12 1.14 1.19 1.26 1.13 1.17 1.32 1.59

10 100 0.71 0.70 0.67 0.64 1.14 1.17 1.22 1.33 1.17 1.22 1.37 1.79

25 50 0.66 0.66 0.64 0.61 1.03 1.04 1.06 1.10 1.05 1.07 1.10 1.17

25 100 0.78 0.77 0.76 0.75 1.03 1.03 1.05 1.08 1.05 1.06 1.09 1.14

50 50 0.69 0.69 0.68 0.66 1.01 1.01 1.02 1.03 1.02 1.03 1.04 1.06

50 100 0.80 0.79 0.79 0.78 1.01 1.01 1.01 1.02 1.02 1.02 1.03 1.04

100 50 0.70 0.70 0.70 0.69 1.00 1.00 1.00 1.01 1.01 1.01 1.02 1.02

100 100 0.81 0.81 0.80 0.80 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.02

10 50 0.69 0.66 0.60 0.52 1.05 1.06 1.05 1.04 1.05 1.09 1.24 1.44

10 100 0.76 0.74 0.70 0.63 1.08 1.10 1.12 1.15 1.10 1.15 1.31 1.65

25 50 0.82 0.81 0.78 0.73 1.01 1.01 1.02 1.03 1.03 1.03 1.05 1.10

25 100 0.88 0.87 0.85 0.82 1.01 1.01 1.02 1.03 1.03 1.04 1.06 1.10

50 50 0.85 0.85 0.84 0.82 1.00 1.00 1.00 1.01 1.01 1.02 1.02 1.04

50 100 0.91 0.91 0.90 0.88 1.00 1.00 1.00 1.01 1.01 1.02 1.02 1.03

100 50 0.87 0.87 0.86 0.85 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01

100 100 0.93 0.93 0.92 0.91 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01

25 50 0.81 0.79 0.74 0.66 1.09 1.10 1.12 1.16 1.12 1.14 1.18 1.28

25 100 0.87 0.86 0.83 0.78 1.10 1.12 1.15 1.20 1.15 1.18 1.24 1.40

50 50 0.87 0.86 0.83 0.78 1.04 1.05 1.07 1.10 1.08 1.09 1.12 1.15

50 100 0.91 0.91 0.90 0.87 1.04 1.05 1.07 1.10 1.07 1.09 1.12 1.18

100 50 0.89 0.88 0.88 0.86 1.02 1.02 1.03 1.05 1.03 1.04 1.06 1.10

100 100 0.93 0.93 0.92 0.91 1.02 1.02 1.03 1.04 1.03 1.04 1.05 1.08

Table 2: Monte Carlo analysis, trace R -square for the factor estimates, r  = 3

 = 0.7, =0,  = 0, ~U[0.1 0.9],   s=0,   r_hat = r

 = 0.7, =0.5,  = 0.5, ~U[0.1 0.9],   s=0,   r_hat = r

 = 0.5, =0,  = 0, ~U[0.1 0.9],   s=0,   r_hat = r

BM BM/RT BM/SW

 = 0.7, =0,  = 0, ~U[0.1 0.9],   s=0,   r_hat = r+1

 = 0.7, =0,  = 0, ~U[0.1 0.9],   s=1,   r_hat = r

 = 0.9, =0,  = 0, ~U[0.1 0.9],   s=0,   r_hat = r

Notes:  Notes for Table 1 apply with the difference that the number of factors is  = 3.r
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Table 3: Mean absolute estimation error for the idiosyncratic autoregressive parameter

T 50 100 200 500 1000

No missing data 0.127 0.075 0.047 0.028 0.020
20% missing data 0.135 0.079 0.050 0.030 0.021

Notes: Table reports the average over i of mean absolute estimation error of αi for different ratios of missing
data for data simulated from a factor model. T refers to the sample size, the size of cross-section n is equal
to 25. Further, ρ = 0.7, α = 0.7, τ = 0, β ∼ U [0.1 0.9], s = 0 and r̂ = r = 3.

Forecasting

In this exercise we evaluate the three approaches in terms of forecast accuracy. In order to mimic data
availability patterns typically encountered in real-time forecasting, we assume a different pattern of missing
data than in the previous exercise.

Specifically, we are interested in forecasting y1,T and we consider following four data availability patterns:
- hor 1 : 20% of data points at time T are missing (including y1,T )
- hor 2 : 20% and 40% of data points at time T − 1 and T respectively, are missing (including y1,T−1 and
y1,T )
- hor 3 : 20%, 40% and 60% of data points at time T − 2, T − 1 and T respectively, are missing (including
y1,T−2, y1,T−1 and y1,T )
- hor 4 : 20%, 40%, 60% and 80% of data points at time T −3, T −2, T −1 and T respectively, are missing
(including y1,T−3, y1,T−2, y1,T−1 and y1,T ).
We label these availability patterns as hor 1, ..., hor 4 as they can be associated with an (increasing)
forecast horizon for y1,T . Note that with decreasing forecast horizon the data set is “expanding” in the
sense discussed in Section 2.3.

We measure the forecast accuracy relative to the accuracy of the unfeasible forecast based on true common
component χ1,t. Specifically, Table (4) reports

1 − (χ1,T − Eθ̂[y1,T |ΩT ])2

Var(χ1,t)
= 1 − (χ1,T − χ̂1,T )2

Var(χ1,t)
, (18)

where χ̂1,T = Eθ̂[χ1,T |ΩT ]. This measure is smaller than 1 and tends to 1 as the estimated forecast
approaches the unfeasible one. We also present the forecast accuracy statistics of BM relative to that of
RT and SW approaches (BM/RT and BM/SW respectively). Again, ratio larger than 1 indicates that the
BM forecasts are on average more accurate. We apply the same highlighting principle as in the previous
exercise. ‘−’ entries correspond to the cases in which (18) is negative (the variance of the forecast error
is larger than the variance of the common component). We consider the case of r = 3 and the same
parameterisations for the data generating process as in the previous exercise.

Starting with the results for the BM approach, again, forecast accuracy increases with increasing sample
length and cross-section size. For n = 10 and large fraction of missing data the forecasts are rather
inaccurate (especially for the miss-specified model with d, τ > 0). For n = 100, on the other hand, we
are relatively close to the unfeasible forecast. In this cases accuracy losses due to missing data are not
that large either. In contrast to the results of the previous exercise, more persistent factors result in more
accurate forecasts. Accuracy losses due to incorrect number of factors are larger but still limited.
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n T hor 1 hor 2 hor 3 hor 4 hor 1 hor 2 hor 3 hor 4 hor 1 hor 2 hor 3 hor 4

10 50 0.53 0.40 0.31 0.13 1.08 1.05 1.15 1.51 - - - -

10 100 0.66 0.58 0.50 0.31 1.09 1.11 1.18 1.34 4.65 - - -

25 50 0.76 0.70 0.63 0.45 1.02 1.03 1.08 1.25 1.07 1.12 1.80 -

25 100 0.81 0.77 0.71 0.54 1.01 1.03 1.06 1.18 1.05 1.08 1.27 -

50 50 0.82 0.79 0.74 0.60 1.00 1.01 1.02 1.08 1.01 1.02 1.04 1.72

50 100 0.88 0.85 0.81 0.70 1.00 1.01 1.02 1.07 1.01 1.02 1.04 1.33

100 50 0.86 0.83 0.80 0.72 1.00 1.00 1.01 1.03 1.00 1.00 1.01 1.09

100 100 0.91 0.89 0.87 0.80 1.00 1.00 1.01 1.01 1.00 1.00 1.01 1.04

10 50 0.21 0.15 0.00 - 0.91 0.75 - - - - - -

10 100 0.37 0.33 0.22 0.08 1.05 0.98 1.08 0.93 - - - -

25 50 0.47 0.40 0.31 0.10 0.95 0.93 1.00 0.70 0.95 1.04 3.65 -

25 100 0.65 0.59 0.51 0.38 1.00 1.00 1.04 1.11 1.00 1.04 1.43 -

50 50 0.65 0.58 0.50 0.38 0.98 0.97 0.98 1.04 0.97 0.96 0.99 1.79

50 100 0.78 0.75 0.69 0.57 0.99 0.99 1.01 1.05 0.99 0.99 1.02 1.36

100 50 0.71 0.68 0.61 0.54 0.99 0.99 0.99 0.99 0.97 0.97 0.98 1.03

100 100 0.84 0.83 0.79 0.73 1.00 1.00 1.00 1.01 0.99 0.99 1.00 1.02

10 50 0.50 0.40 0.31 0.18 1.01 1.01 0.93 1.01 - - - -

10 100 0.63 0.53 0.44 0.28 1.05 1.06 1.04 1.17 1.91 - - -

25 50 0.73 0.66 0.59 0.42 1.01 1.02 1.03 1.19 1.07 1.15 2.14 -

25 100 0.80 0.74 0.66 0.48 1.01 1.02 1.02 1.11 1.04 1.09 1.32 -

50 50 0.81 0.75 0.70 0.58 1.01 1.01 1.02 1.06 1.01 1.03 1.08 1.63

50 100 0.88 0.83 0.77 0.65 1.00 1.01 1.01 1.05 1.01 1.02 1.05 1.39

100 50 0.86 0.84 0.79 0.73 1.00 1.00 1.01 1.02 1.00 1.01 1.02 1.05

100 100 0.92 0.90 0.87 0.79 1.00 1.00 1.00 1.02 1.00 1.00 1.01 1.03

10 50 0.59 0.48 0.37 0.22 1.20 1.29 1.30 6.13 - - - -

10 100 0.72 0.63 0.56 0.43 1.28 1.37 1.57 4.95 2.78 - - -

25 50 0.75 0.69 0.64 0.52 1.07 1.10 1.25 2.03 1.19 1.29 - -

25 100 0.82 0.77 0.73 0.62 1.04 1.07 1.16 1.71 1.08 1.16 1.51 -

50 50 0.80 0.76 0.72 0.63 1.02 1.03 1.09 1.23 1.05 1.07 1.21 3.11

50 100 0.88 0.84 0.80 0.71 1.01 1.02 1.06 1.20 1.02 1.03 1.09 1.59

100 50 0.84 0.81 0.78 0.72 1.00 1.00 1.02 1.07 1.02 1.02 1.05 1.14

100 100 0.91 0.89 0.87 0.81 1.00 1.00 1.01 1.06 1.00 1.00 1.01 1.07

10 50 0.38 0.27 0.18 0.07 1.07 1.09 1.26 - - - - -

10 100 0.57 0.50 0.41 0.23 1.13 1.15 1.44 1.91 - - - -

25 50 0.62 0.57 0.49 0.34 1.01 1.00 1.08 1.25 1.50 - - -

25 100 0.75 0.70 0.65 0.52 1.03 1.03 1.09 1.21 1.40 3.14 - -

50 50 0.73 0.71 0.65 0.54 1.00 1.00 1.05 1.14 1.14 1.52 - -

50 100 0.84 0.82 0.77 0.67 1.01 1.01 1.03 1.06 1.07 1.19 1.57 -

100 50 0.80 0.79 0.74 0.69 1.00 1.00 0.99 1.03 1.07 1.18 2.81 -

100 100 0.88 0.87 0.85 0.79 1.00 0.99 1.00 1.03 1.02 1.10 1.43 14.21

25 50 0.46 0.40 0.39 0.34 1.17 1.30 1.74 4.45 - - - -

25 100 0.71 0.67 0.62 0.52 1.18 1.23 1.36 2.16 2.78 - - -

50 50 0.68 0.62 0.56 0.52 1.17 1.20 1.34 1.83 1.49 2.56 - -

50 100 0.81 0.77 0.72 0.67 1.09 1.13 1.22 1.58 1.19 1.39 6.46 -

100 50 0.73 0.70 0.67 0.62 1.07 1.10 1.13 1.25 1.13 1.23 1.51 -

100 100 0.85 0.84 0.81 0.76 1.04 1.06 1.08 1.18 1.06 1.10 1.17 2.59

Notes: Table reports average forecast accuracy relative to an unfeasible forecast over the Monte Carlo simulations. BM refers to the

of Stock and Watson (2002). We report the relative forecast accuracy for BM, as well as its ratio to the corresponding

statistics for RT and SW. hor 1, hor 2, ..., hor 4 refer to the (decreasing) pattern of end-of-sample data availability as described in the

main text. The number of factors r = 3 . T and n refer to the sample and cross-section size, respectively. s is the number of lags of the

factors included in the measurement equation. The parameters , , and govern the persistence of the factors, the degree of serial- and

cross-correlation of the idiosyncratic component and its relative variance, respectively. r_hat is the number of factors with which the

models are estimated. -  means that the variance of the forecast error was larger than the variance of the common component.

 = 0.7, =0,  = 0, =0.5,   s=0,   r_hat = r+1

 = 0.7, =0,  = 0, =0.5,   s=1,   r_hat = r

 = 0.9, =0,  = 0, =0.5,   s=0,   r_hat = r

Table 4: Monte Carlo analysis, forecast accuracy relative to unfeasible forecast, r = 3

 = 0.7, =0,  = 0, =0.5,   s=0,   r_hat = r

 = 0.7, =0.5,  = 0.5, =0.5,   s=0,   r_hat = r

 = 0.5, =0,  = 0, =0.5,   s=0,   r_hat = r

BM BM/RT BM/SW

estimation method studied in this paper, RT to the algorithm proposed by Rubin and Thayer (1982) and SW refers to the algorithm
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As for the comparison with RT and SW approaches, they are outperformed by BM, apart from the case
with d, τ > 0 in which RT performs best. Again, the largest improvements in forecast accuracy for BM
occur for smaller samples, more persistent factors, larger fraction of missing data and a “truly” dynamic
model. In particular, as the forecast horizon increases, so do the accuracy gains of the BM approach over
the “static” ones. This shows the importance of exploiting the dynamics in case of incomplete cross-section
at the end of the sample. In these cases SW yields rather poor forecasts, with the variance of the forecast
error larger than the variance of the common component.

4 Empirical application

In this section we employ the methodology developed in Section 2 for two applications: nowcasting and
backdating of euro area GDP.

4.1 Data set

We evaluate the methodology on panels with different size of the cross-section, corresponding to different
level of (sectoral) disaggregation of various macro-economic concepts. Sectoral information can provide
additional or more robust signal for the variable of interest. Moreover, it is sometimes required to provide
a more detailed interpretation of the results. On the other hand, it can lead to model mis-specification
in small samples by introducing idiosyncratic cross-correlation. We evaluate robustness of the results to
expanding the information set by sectoral information, by considering the following data set compositions:

• Small - contains the main indicators of real activity on the total economy, such as industrial pro-
duction, orders, retail sales, unemployment, European Commission Economic Sentiment Indicator,
Purchasing Manager Index, GDP or employment (14 series in total). It also contains financial series
such as stock prices index or prices of raw materials.

• Medium - in addition to the series contained in Small specification, it includes more disaggregated
information on industrial production, more disaggregated survey information and national accounts
data. This composition contains most of the real key economic indicators reported in monthly reports
of the European Commission (46 series in total).

• Large - apart from the indicators contained in Medium, this specification includes series from the
large euro area factor model described in Bańbura and Rünstler (2010) and ECB (2008) (101 series).

The data set contains monthly and quarterly variables. The series observed on a daily basis are converted
to monthly frequency by taking monthly averages. The detailed description including the list of the series
in each specification, their availability and applied transformations is provided in the Appendix. The data
set contains the figures as available on the 15th of October 2009.

4.2 Modelling monthly and quarterly series

Before moving to the applications let us explain how we combine the information from monthly and
quarterly variables. In this we follow Mariano and Murasawa (2003) and assume that the frequency of the
model is monthly and for each quarterly variable we construct a partially observed monthly counterpart.
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Let us illustrate this on the example of GDP. We construct a partially observed monthly GDP (3-month
on 3-month) growth rate as:

ȳQ
1,t =

{
log(GDPt) − log(GDPt−3), t = 3, 6, 9, ...
missing, otherwise ,

where GDPt denotes the level of GDP observed in month t. In this, we follow the convention that quarterly
observations are “assigned” to the third month of each quarter. Further, we use the approximation of
Mariano and Murasawa (2003)

ȳQ
1,t = (1 + L + L2)2yQ

1,t = yQ
1,t + 2yQ

1,t−1 + 3yQ
1,t−2 + 2yQ

1,t−3 + yQ
1,t−4, (19)

where yQ
1,t denotes the unobserved month-on-month GDP growth rate. Finally, we assume that yQ

1,t admits
the same factor model representation (1) as the monthly variables, with loadings Λ1,Q. Combining (1) and
(19) results in the following representation for ȳQ

1,t:

ȳQ
1,t = (1 + L + L2)2(Λ1,Qft + εQ

1,t) = Λ̄1,Q

[
f ′

t f ′
t−1 . . . f ′

t−4

]′ + ε̄Q
1,t ,

where Λ̄1,Q = [Λ1,Q 2Λ1,Q 3Λ1,Q 2Λ1,Q Λ1,Q] is a (restricted) matrix of loadings on factors and their
lags. In an analogous manner we construct ȳQ

2,t, ..., ȳQ
nQ,t for the remaining nQ −1 quarterly variables. The

details of the resulting joint state space representations are provided in the Appendix.

4.3 Forecast evaluation

We start by evaluating our methodology in nowcasting, which is understood as forecasting the present,
the very near future and the very recent past, see e.g. Bańbura, Giannone, and Reichlin (2010b). For a
variable such as GDP this is a relevant exercise since, while it is the main indicator of the state of the
economy, it is released with a substantial delay (around six weeks in the euro area). In the mean-time it
can be forecast using more timely, typically monthly variables.

An important feature of nowcasting models is that they should be able to incorporate the most up-to-date
information, which due to non-synchronous releases and publication delays results in an irregular pattern
of missing observations at the end of the sample (“ragged edge”). Another source of missing observations
is the mixed frequency nature of the data set, as explained above. Finally, several series in the data
set, namely Purchasing Managers’ Surveys, exhibit missing data at the beginning of the sample. Our
methodology can deal with such different patterns of data availability in an automatic manner.

Details of the exercise

We evaluate the average precision of the nowcasts for the three data set compositions in a recursive out-of-
sample exercise, replicating at each point of the forecast evaluation sample the real-time data availability
pattern specific to that point in time.24 More precisely, in each month we follow the availability pattern
specific to the middle of the month (after the data on industrial production are released). For example,
in mid-February the last available figure on industrial production would refer to December of the previous
year, while for survey data, which are much more timely, there would be already numbers for January.
Accordingly, in the middle of each month the publication lag for industrial production and surveys is
two and one month, respectively. Consequently when we evaluate the model in e.g. March, the data for
industrial production “end” in January, while for surveys they are available up to February. The same

24The real-time vintages are not available for all the variables of interest and whole evaluation period, therefore the exercise
is “pseudo real-time”. That is, we use the final figures as of October 2009, but we observe the real-time data availability.
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mechanism is applied to all the variables, taking into account their respective (stylised) publication delays,
as reported in the data table in the Appendix. The procedure for quarterly variables follows a similar logic
modified to take into account the quarterly frequency of the releases, see e.g. Bańbura and Rünstler (2010)
for more formal explanation.

For each reference quarter we produce a sequence of projections, starting with the forecast based on the
information available in the first month of the preceding quarter, seven months ahead of the GDP flash
release. The second forecast is produced with the information that would be available one month later
and the last forecast is based on the information available in the first month of the following quarter, 1
month before the flash release. We denote projections based on the information in preceding, current and
following quarter (with respect to the forecast reference quarter) as Q(−1), Q(0) and Q(+1) respectively.25

Forecasts made in the first, second and third month of a quarter are referred to as M1, M2 and M3
respectively. For example, a forecast made in the first month of preceding quarter (Q(−1)M1) means that
we project e.g. the second quarter relying on the information available in January (i.e. first month of the
first quarter); the third quarter using the information available in April, etc.26

For the measure of prediction accuracy we choose the Root Mean Squared Forecast Error (RMSFE). The
evaluation sample is 2000 Q1 to 2007 Q4. The recent period including recession has been excluded from
the evaluation sample because of the extreme values of the GDP in this period, which could bias the results
towards the models that were accurate in this particular quarters. The estimation sample starts in January
1993. We choose a recursive estimation which means that the sample length increases each time that more
information becomes available.

We run the out-of-sample forecast evaluation for specifications including 1 to 5 factors (r = 1, 2, . . . , 5) and
1 or 2 lags in the VAR (p = 1, 2).27

We evaluate the forecasts for the Small, Medium and Large data set compositions, both under assumption
of serially uncorrelated or AR(1) idiosyncratic component, see the Appendix for the respective state space
representations. For reference, we also consider univariate benchmarks: autoregressive model with number
of lags chosen by AIC and a sample mean of the GDP growth rate. Finally, we reproduce the forecasts
from the factor model proposed by Bańbura and Rünstler (2010) who apply the methodology of Giannone,
Reichlin, and Small (2008) to the euro area.

Results of the forecast evaluation

Table 5 presents the results for the different forecast horizons, from the first month of preceding quarter,
Q(−1)M1, till the first month of the following quarter, Q(+1)M1. Average gives the average forecast error
for all considered horizons. What regards the number of factors, the best parameterisations ex-post and
equally weighted forecast combinations over all parameterisations are presented. AR and Mean refer to
results from the univariate benchmarks and BR refers to the model of Bańbura and Rünstler (2010).

We can see that all the factor models perform much better than the univariate benchmarks, with largest
improvements for shortest forecast horizons. This confirms the importance of relying on timely information
contained in monthly indicators (cf. e.g. Giannone, Reichlin, and Small, 2008; Bańbura and Rünstler, 2010).

25The number in the parenthesis reflects the “shift” with respect to the reference quarter. For example, Q(−1) means that
we forecast the reference quarter using the information available in the preceding (−1) quarter.

26As GDP is assumed to be “observed” in the third month of the corresponding quarter, a forecast made in the first month
of preceding quarter will correspond to a 5-month forecast horizon; a forecast made in the second month of preceding quarter
to a 4-month horizon, etc.; with the forecast made in the first month of following quarter corresponding to a -1-month forecast
horizon, cf. Angelini, Camba-Méndez, Giannone, Rünstler, and Reichlin (2008);

27Increasing p to 3 has resulted in a deterioration of the forecast accuracy;
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Table 5: Root Mean Squared Forecast Errors for GDP, 2000-2007

Small Medium Large
Benchmarks

Idio Uncorr AR(1) Uncorr AR(1) Uncorr AR(1)

Best ex-post parameterisation
AR Mean BR

r,p 2,2 4,2 3,2 5,2 5,2 5,2

Q(−1)M1 0.27 0.25 0.27 0.27 0.27 0.28 0.33 0.32 0.26
Q(−1)M2 0.25 0.24 0.23 0.24 0.25 0.25 0.32 0.32 0.24
Q(−1)M3 0.24 0.24 0.24 0.24 0.24 0.25 0.32 0.32 0.21
Q(0)M1 0.22 0.22 0.22 0.23 0.21 0.23 0.32 0.32 0.21
Q(0)M2 0.21 0.22 0.21 0.22 0.22 0.23 0.27 0.31 0.22
Q(0)M3 0.20 0.19 0.20 0.18 0.25 0.23 0.27 0.31 0.21

Q(−1)M1 0.19 0.17 0.18 0.18 0.21 0.20 0.27 0.31 0.18
Average 0.23 0.22 0.22 0.22 0.24 0.24 0.30 0.31 0.22

Forecast combination over parameterisations

Q(−1)M1 0.27 0.27 0.27 0.27 0.28 0.29
Q(−1)M2 0.24 0.24 0.24 0.24 0.27 0.26
Q(−1)M3 0.24 0.24 0.25 0.24 0.26 0.26
Q(0)M1 0.23 0.22 0.23 0.23 0.24 0.24
Q(0)M2 0.21 0.22 0.22 0.22 0.24 0.23
Q(0)M3 0.19 0.19 0.19 0.19 0.25 0.24

Q(−1)M1 0.18 0.18 0.18 0.18 0.21 0.20
Average 0.22 0.22 0.23 0.23 0.25 0.25

Notes: Table reports Root Mean Squared Forecast Errors (RMSFEs) for different data set compositions. Small,
Medium and Large refer to data sets with 14, 46 and 101 variables. The models are estimated by EM algorithm under
the assumption of serially uncorrelated (Uncorr) or AR(1) idiosyncratic component. The upper panel presents the
results for the best ex-post parameterisation (in terms of number of factors r and number of their lags in the VAR
p). The lower panel gives the RMSFEs for forecast combinations with equal weights across parameterisations with
r = 1, . . . , 5 and p = 1, 2. Q(−1), Q(0) and Q(+1) refer to forecasts based on the information in preceding, current
and following quarter, respectively, and M1, M2 and M3 to the months within a quarter, Average refers to an average
RMSFE over the 7 forecast horizons. Benchmarks are the univariate autoregressive model with the number of lags
chosen by AIC (AR) and the sample Mean. In addition, RMSFE for the factor model of Bańbura and Rünstler (2010)
are reported (BR).

As for different data compositions, the results for specifications Small and Medium are comparable. In
other words, in order to obtain accurate forecasts of GDP, the information on the total economy seems
sufficient. This is in line with the results in e.g. Bańbura, Giannone, and Reichlin (2010a) who use US
data set and a different methodology. The forecasts from Large specification are a bit less accurate. This
may point out to difficulties in extracting relevant signal in the presence of indicators of different “quality”,
as pointed out by e.g. Boivin and Ng (2006).

Concerning the comparison with the model of Bańbura and Rünstler (2010), it performs on average equally
well as the Small and Medium specifications. Bańbura and Rünstler (2010) use a data set that contains,
apart from GDP, 76 monthly indicators that are available over the whole estimation period and apply
estimation technique based on principal components and Kalman filter. Similar performance of their model
suggests, on one hand, that our methodology can reliably extract relevant signal from data sets containing
short history and low frequency series, such as Purchasing Managers’ Surveys or national accounts and
labour market data. On the other hand, it seems that there is no additional information in these series
with respect to the data set used by Bańbura and Rünstler (2010). However, including the series in the
data set might still be of interest, e.g. for the sake of interpretation of the news that their releases carry
(see also the next section) or to obtain forecasts or interpolations of various quarterly variables from a
single model.
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As for the comparison between implementations with serially uncorrelated or AR(1) idiosyncratic compo-
nent, the results are not clear-cut. For most of the considered parameterisations, modelling serial correlation
seems to help for shorter forecast horizons (results for parameterisation not shown in Table 5 are avail-
able upon request). For longer horizons, there is no clear ranking between the two implementations. In
addition, there is no difference in performance of the corresponding forecast combinations. Therefore, we
conclude that what regards GDP, the advantage of modelling the idiosyncratic serial correlation is not
obvious. Accounting for serially correlated idiosyncratic component could be more important for monthly
variables. This issue is left for future research. Another issue worth exploring is that the optimal param-
eterisations with serially correlated idiosyncratic component seem to include more common factors than
their “uncorrelated” counterparts.

As a final observation, let us point out that forecast combinations over all parameterisations perform
equally well or only slightly worse than the best ex-post specification. Hence, averaging over specifications
could be a valid strategy in case no single parameterisation performs best for all the horizons or when the
best specification is very sensitive to the choice of the evaluation sample. In particular, there have been
large differences between the forecasts from various parameterisations in the period of recent recession
with different parameterisations performing best at different points in time. In such periods, averaging
over parameterisations could be a good strategy.

4.4 News in data releases and forecast revisions

In the following exercise, we produce a sequence of GDP forecasts for the fourth quarter of 2008, at
each update we extract the news components from various data groups and illustrate how they revise the
forecast.

As in the previous section, the sequence of forecasts for the reference quarter is based on “expanding”
information sets. The first forecast is performed on the basis of information set available in mid-July 2008
(in the terminology of the previous section this would correspond to the forecast from the first month of
preceding quarter). Subsequently, we revise this forecast once a month incorporating new figures, which
would have become available in real-time. In this, we follow the stylised release calendar used in the out-
of-sample forecast evaluation in the previous section. The last update is based on the data of mid-January
2009 (forecast from the first month of the following quarter) and the actual GDP for the fourth quarter
was released in February (flash estimate).

At each update we break down the forecast revision into the contributions of the news from the respective
predictors using formula (17). In other words, the difference between two consecutive forecasts is the
sum of the contributions of the news from all the variables plus the effects of model re-estimation. As
decomposition (17) holds provided that the expectations are conditional on the same parameter values, the
fact that the parameters are re-estimated with each forecast update has to be taken into account separately.

Figure 1 shows the evolution of the forecast as new information arrives, the actual value of the GDP for the
fourth quarter and the decomposition of the revisions, obtained with the Small and Medium specifications
(for the best parameterisations ex-post). For the sake of readability the series are grouped into following
groups: real variables (Real News), European Commission and Purchasing Managers’ Surveys (Surv News),
financial series (Fin News) and US data.28 Category Re-est reflects the effects of parameter re-estimation.

28See the Appendix for the list of series in each group. Fin contains also commodity prices. The contribution of a group
of series is the sum of the contributions of the series within this group.



29
ECB

Working Paper Series No 1189
May 2010

Figure 1: Contribution of news to forecast revisions for 2008 Q4: Small and Medium model
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We can observe that forecasts and news follow qualitatively similar patterns for both data set compositions.
The first forecast is relatively close to the historical average and remains at a relatively high level throughout
the third quarter, compared to the actual outcome. This is in line with the results in Giannone, Reichlin,
and Small (2008), who compare the accuracy of judgmental and factor model based forecasts and show that
they have hard time beating näıve models, such as unconditional mean, for horizons beyond the current
quarter. When looking at the contributions from different groups of data, we see that for longer forecast
horizons the biggest news impact comes from the surveys. The news from real data becomes important
only later in the forecast cycle, when the released numbers refer to the target quarter. This confirms the
results of Giannone, Reichlin, and Small (2008) and Bańbura and Rünstler (2010) on the important role
of soft data for the GDP projections when the hard data for the relevant periods are not yet available.
The impact of news from US and financial data is rather limited. Finally, the effects of the re-estimation
are rather large and are most likely due to extreme values that were observed in this period (many of the
series, including GDP growth, attained their historical lows, several standard deviations away from their
historical averages).

When looking at quantitative results, we can see that there are some differences between the specifications
in how the information from new releases is incorporated. Both forecasts start from a similar level but Small
specification seems to “head” faster towards the true outcome, in particular due to different contribution
from the news in the financial group (the composition of this group in both specifications is different).

4.5

As discussed in Section 2.2, a useful feature of our framework is that Kalman smoother can be applied
to obtain the estimates of any missing observations in the data set which can be used e.g. in order to
backdate a short history series or to interpolate a low frequency variable.

In this section we illustrate this by applying the methodology to backdating of GDP. For this purpose,
we modify the data sets described above by discarding all the observations on GDP prior to March 2001.
Further, we estimate the parameters of the models and obtain the estimates of the missing values of GDP
from the Kalman smoother.

Figure 2 plots the back estimates of the GDP based on the three considered data set compositions and the
actual quarterly growth rate of GDP. We use the best ex-post parameterisations under the assumption of
serially correlated idiosyncratic component.

As we can see from Figure 2, independently of the data set used, the back estimates seem to capture well
the movements of the GDP, giving reasonable estimates of the past values of the series and the different
specifications yield comparable results.

Backdating
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Figure 2: Back estimates of GDP



32
ECB
Working Paper Series No 1189
May 2010

5 Conclusions

arbitrary pattern of missing data. We show how the steps of the EM algorithm of Watson and Engle
(1983) should be modified in the case of missing data. We also propose how to model the dynamics of the
idiosyncratic component.

We evaluate the methodology on both simulated and euro area data. Monte Carlo evidence indicates that
it performs well, also in case of relatively large fractions of missing observations. We compare our approach
to alternative EM algorithms proposed by Rubin and Thayer (1982) and Stock and Watson (2002b). The
latter two approaches do not model the dynamics of the latent factors and as a consequence perform worse
when such dynamics is strong. The advantage of our methodology is particularly evident in cases of large
fraction of missing data and in small samples. The simulations also suggest that accounting for dynamics
is important in real-time forecasting/nowcasting applications in which there is a large fraction of missing
data at the end of the sample (see also Doz, Giannone, and Reichlin, 2007).

In the empirical part, we apply the methodology to nowcasting and backdating of the euro area GDP on
the basis of data sets containing monthly and quarterly series. Thanks to the flexibility of the framework in
dealing with missing data, short history and lower frequency (quarterly) variables can be easily incorporated
(e.g. Purchasing Managers’ Surveys, GDP components or labour statistics). We consider different sizes
of cross-section corresponding to different levels of sectoral disaggregation (Small, Medium and Large,
including 14, 46 and 101 variables respectively). Large specification performs a bit worse than the other
two, which could be due to difficulties in extracting relevant signal in the presence of indicators of different
“quality”, as pointed out by e.g. Boivin and Ng (2006). As for Small and Medium specifications, they
perform comparably, suggesting that, while potentially useful for interpretation, sectoral information is not
necessarily needed for an accurate GDP forecast (Small specification contains series measuring only total
economy concepts). Both specifications perform similarly to the factor model of Bańbura and Rünstler
(2010) who adopt the methodology of Giannone, Reichlin, and Small (2008). This shows that, on one hand
our approach works well for data sets containing short history and low frequency data such as mentioned
above; on the other hand, however, incorporating such data does not lead to improvements in forecast
accuracy in case of euro area GDP. The latter observation might, however, not hold for other economies,
for which the pool of high frequency and long history information could be more modest. In addition,
including the series in the data set might still be of interest, e.g. for the sake of interpretation of the news
that their releases carry or to obtain forecasts of various quarterly variables from a single model.

Concerning the role of idiosyncratic dynamics, we do not find consistent improvements in the accuracy
of GDP forecasts, when taking it explicitly into account. There might be more sizable improvements in
the case of monthly variables, which we do not forecast here, see e.g. Stock and Watson (2002b). It is a
possible extension of the current application left for future research.

arises as a consequence of a release of new data is a weighted sum of model based news from this release.
We show how to derive the news and the associated weights within our framework. We illustrate how
this can be used in nowcasting applications to understand and interpret the contributions of various data
releases to forecast updates.

This paper proposes a methodology for the estimation of dynamic factor model in the presence of

Finally, another methodological contribution of our paper is that we show that a forecast revision which
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Bańbura, M., D. Giannone, and L. Reichlin (2010a): “Large Bayesian VARs,” Journal of Applied
Econometrics, 25(1), 71–92.

(2010b): “Nowcasting,” Manuscript.
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B Derivation of the EM iterations

Let us first sketch the derivation of formulas (5)-(8). They are obtained under the assumption of no serial
correlation in the idiosyncratic component and p = 1 (θ = {Λ, A = A1, R,Q}). Under these assumptions
the joint log-likelihood (for the observations and the latent factors) is given by:

l(Y, F ; θ) = −1
2

log |Σ| − 1
2
f ′
0Σ

−1f0 − T

2
log |Q| − 1

2

T∑
t=1

(ft − Aft−1)′Q−1(ft − Aft−1)

− T

2
log |R| − 1

2

T∑
t=1

(yt − Λft)′R−1(yt − Λft)

= −1
2

log |Σ| − 1
2
f ′
0Σ

−1f0 − T

2
log |Q| − 1

2
tr

[
Q−1

T∑
t=1

(ft − Aft−1)(ft − Aft−1)′
]

− T

2
log |R| − 1

2
tr

[
R−1

T∑
t=1

(yt − Λft)(yt − Λft)′
]

.

In order to obtain the expressions for Λ(j + 1) and A(j + 1), we need to differentiate L(θ, θ(j)) =
Eθ(j)

[
l(Y, F ; θ)|ΩT

]
with respect to Λ and A respectively. For example, for the latter we get

∂Eθ(j)

[
l(Y, F ; θ)|ΩT

]
∂A

= −1
2

∂tr
{

Q−1
∑T

t=1 Eθ(j)

[
(ft − Aft−1)(ft − Aft−1)′|ΩT )

]}
∂A

= −Q−1
T∑

t=1

Eθ(j)

[
ftf

′
t−1|ΩT

]
+ Q−1A

T∑
t=1

Eθ(j)

[
ft−1f

′
t−1|ΩT

]
,

and consequently

A(j + 1) =

(
T∑

t=1

Eθ(j)

[
ftf

′
t−1|ΩT

])( T∑
t=1

Eθ(j)

[
ft−1f

′
t−1|ΩT

])−1

,

as provided in the main text. In an analogous manner formula (5) for Λ(j + 1) can be derived. The
expressions (7) and (8) for R(j + 1) and Q(j + 1) are obtained by differentiating L(θ̆, θ(j)) with respect to
R and Q respectively, where θ̆ = {Λ(j + 1), A(j + 1), R, Q}, see also the comment in footnote 13.

Let us now develop the formulas for Λ(j + 1) and R(j + 1) in the case that yt contains missing values and
(9) no longer holds. Let us differentiate Eθ(j)

[
l(Y, F ; θ)|ΩT

]
with respect to Λ:

∂Eθ(j)

[
l(Y, F ; θ)|ΩT

]
∂Λ

= −1
2

∂tr
{

R−1
∑T

t=1 Eθ(j)

[
(yt − Λft)(yt − Λft)′|ΩT

]}
∂Λ

(20)

and let us have a closer look at E
[
(yt −Λft)(yt −Λft)′|ΩT

]
(to simplify the notation we skip the subscript

θ(j)).

Let
yt = Wtyt + (I − Wt)yt = y

(1)
t + y

(2)
t ,

where Wt is a diagonal matrix with ones corresponding to the non-missing entries in yt and 0 otherwise.
(y(1)

t contains the non-missing observations at time t with 0 in place of the missing ones.)

We have:

(yt − Λft)(yt − Λft)′ =
(
Wt(yt − Λft) + (I − Wt)(yt − Λft)

)(
Wt(yt − Λft) + (I − Wt)(yt − Λft)

)′
= Wt(yt − Λft)(yt − Λft)′Wt + (I − Wt)(yt − Λft)(yt − Λft)′(I − Wt)

+ Wt(yt − Λft)(yt − Λft)′(I − Wt) + (I − Wt)(yt − Λft)(yt − Λft)′Wt .
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By the law of iterated expectations:

E
[
(yt − Λft)(yt − Λft)′|ΩT

]
= E

[
E
[
(yt − Λft)(yt − Λft)′|F, ΩT

]|ΩT

]
.

As

E
[
Wt(yt − Λft)(yt − Λft)′(I − Wt)|F, ΩT

]
= 0 ,

E
[
(I − Wt)(yt − Λft)(yt − Λft)′(I − Wt)|F, ΩT

]
= (I − Wt)R(j)(I − Wt)

and

E
[
Wt(yt − Λft)(yt − Λft)′Wt|ΩT

]
= Wtyty

′
tWt − WtytE

[
f ′

t |ΩT

]
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ft|ΩT
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[
ftf

′
t |ΩT

]
Λ′Wt
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t y
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t E

[
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[
ft|ΩT
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ftf

′
t |ΩT

]
Λ′Wt , (21)

we get:

E
[
(yt − Λft)(yt − Λft)′|ΩT

]
=

y
(1)
t y

(1)′
t − y

(1)
t E

[
f ′

t |ΩT

]
Λ′Wt − WtΛE

[
ft|ΩT

]
y
(1)′
t + WtΛE

[
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′
t |ΩT

]
Λ′Wt + (I − Wt)R(j)(I − Wt) . (22)

Inserting (22) into (20) yields:

∂tr
{

R−1
Eθ(j)

[
(yt − Λft)(yt − Λft)′|ΩT

]}
∂Λ

= −2WtR
−1y

(1)
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[
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t |ΩT

]
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[
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. (23)

From

T∑
t=1

∂tr
{

R−1
Eθ(j)

[
(yt − Λft)(yt − Λft)′|ΩT

]}
∂Λ

∣∣∣∣∣∣
Λ=Λ(j+1)

= 0

follows
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t |ΩT

]
=

T∑
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WtΛ(j + 1)Eθ(j)
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′
t |ΩT

]
.

Equivalently (as vec(ABC) = (C ′ ⊗ A)vec(B)) we have

vec

(
T∑
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(1)
t Eθ(j)

[
f ′
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])
=
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)
vec
(
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)
,

hence

vec
(
Λ(j + 1)
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=
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Eθ(j)
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′
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]⊗ Wt

)−1

vec
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(1)
t Eθ(j)

[
f ′

t |ΩT

])
,

as given by formula (11). In the similar fashion we obtain

R(j + 1) = diag

(
1
T

T∑
t=1

(
y
(1)
t y

(1)′
t − y

(1)
t Eθ(j)

[
f ′

t |ΩT

]
Λ(j + 1)′Wt − WtΛ(j + 1)Eθ(j)

[
ft|ΩT

]
y
(1)′
t
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′
t |ΩT

]
Λ(j + 1)′Wt + (I − Wt)R(j)(I − Wt)

))
.
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Let us now consider the case of p > 1. We can write the log-likelihood:

l(Y, F ; θ) = −1
2

log |Σ| − 1
2
f̄ ′
0Σ

−1f̄0 − T

2
log |Q| − 1

2
tr

[
Q−1

T∑
t=1

(ft − Af̄t−1)(ft − Af̄t−1)′
]

− T

2
log |R| − 1

2
tr

[
R−1

T∑
t=1

(yt − Λft)(yt − Λft)′
]

,

where f̄t−1 = [f ′
t−1, . . . , f

′
t−p]′.

Consequently (6) and (8) should be modified as:

A(j + 1) =

(
T∑

t=1

Eθ(j)

[
ftf̄

′
t−1|ΩT

])( T∑
t=1

Eθ(j)

[
f̄t−1f̄

′
t−1|ΩT

])−1

and

Q(j + 1) =
1
T
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Eθ(j)

[
ftf

′
t |ΩT

]− A(j + 1)
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[
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′
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])
.

The conditional moments of the factors Eθ(j)

[
ftf̄

′
t−1|ΩT

]
, Eθ(j)

[
f̄t−1f̄

′
t−1|ΩT

]
, Eθ(j)

[
ftf

′
t |ΩT

]
can be ob-

tained by running the Kalman filter on the following state space form:

Yt =
[

Λ 0 . . . 0
]
⎡
⎢⎢⎢⎣

ft

ft−1

...
ft−p+1

⎤
⎥⎥⎥⎦+ εt εt ∼ N (0, R) ,

⎡
⎢⎢⎢⎣

ft

ft−1

...
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⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

A1 A2 · · · Ap

I 0 · · · 0
...

. . . . . .
...

0 · · · I 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
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ft−2

...
ft−p

⎤
⎥⎥⎥⎦+ ut ut ∼ N

⎛
⎜⎜⎜⎝0,

⎡
⎢⎢⎢⎣

Q 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ .

Finally let us consider the case given by (15) with the idiosyncratic component following an AR(1) process.
In that case θ̃ = {Λ̃, Ã, Q̃}, R ≡ diag(κ) and the likelihood is given by:

l(Y, F ; θ̃) = −1
2

log |Σ̃| − 1
2
f̃ ′
0Σ̃

−1f̃0 − T

2
log |Q̃| − 1

2
tr

[
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]

− T

2
log |R̃| − 1

2
tr
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]

.

Consequently, (21) needs to be replaced by

E
[
Wt(yt − Λ̃f̃t)(yt − Λ̃f̃t)′Wt|ΩT

]
= E
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t y
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t E

[
f ′
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[
ft|ΩT
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]
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+ WtΛE
[
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[
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]
y
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[
ε̃tf

′
t |ΩT
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[
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′
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and (23) by

∂tr
{
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t E
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f ′
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.
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Hence

vec
(
Λ(j + 1)

)
=

(
T∑

t=1

Eθ̃(j)

[
ftf

′
t |ΩT

]⊗ Wt

)−1

vec

(
T∑

t=1

WtytEθ̃(j)

[
f ′

t |ΩT

]
+ WtEθ̃(j)

[
ε̃tf

′
t |ΩT

])
.

The expressions for the estimates of αi and σ2
i follow in an analogous manner to those for A and Q.

C Case of a static factor model

In the special case that A1 = · · · = Ap = 0 in (2) the model reduces to a static factor model (ft are i.i.d.).
Under the identifying assumption that Q = I the joint log-likelihood can be written as:

l(Y, F ; θ) = −1
2
tr

[
T∑

t=1

ftf
′
t

]
− T

2
log |R| − 1

2
tr

[
R−1

T∑
t=1

(yt − Λft)(yt − Λft)′
]

, (24)

where θ = {Λ, R}. In a similar fashion as above, maximisation of the expected joint log-likelihood gives
for the (j + 1)-iteration

Λ(j + 1) =

(
T∑

t=1

Eθ(j)

[
ytf

′
t |ΩT

])( T∑
t=1

Eθ(j)

[
ftf

′
t |ΩT

])−1

,

R(j + 1) = diag

(
1
T

(
T∑

t=1

Eθ(j)

[
yty

′
t|ΩT

]− Λ(j + 1)
T∑

t=1

Eθ(j)

[
fty

′
t|ΩT

]))
.

For the case of non-missing data the EM steps for the static model have been derived in Rubin and Thayer
(1982). In this case we have Eθ(j)

[
yty

′
t|ΩT

]
= yty

′
t, Eθ(j)

[
ytf

′
t |ΩT

]
= ytEθ(j)

[
f ′

t |ΩT

]
and the conditional

moments of the factors are given by:

Eθ(j)

[
ft|ΩT

]
= Λ(j)′(R(j) + Λ(j)Λ(j)′)−1yt = δ(j)yt ,

Eθ(j)

[
ftf

′
t |ΩT

]
= I − Λ(j)′(R(j) + Λ(j)Λ(j)′)−1Λ(j) + δ(j)yty

′
tδ(j)

′ . (25)

In the case of missing data the reasoning from the previous section applies and the same formulas (11) and
(12) for Λ(j +1) and R(j +1), respectively, can be used. Eθ(j)

[
ft|ΩT

]
and Eθ(j)

[
ftf

′
t |ΩT

]
can be calculated

using (25) after the rows in Λ(j) corresponding to the missing data in yt (and the corresponding rows and
columns in R(j)) have been removed.

Note that this approach is different from the method proposed by Stock and Watson (2002b). The latter
is a popular method based on EM to calculate principal components from a panel with missing data, see
e.g. Schumacher and Breitung (2008). In fact, Stock and Watson (2002b) estimate iteratively F and Λ by
minimising in step j + 1:

{
F (j + 1), Λ(j + 1)

}
= arg min

F,Λ

{
tr
[ T∑

t=1

EF (j),Λ(j)

[
(yt − Λft)(yt − Λft)′|ΩT

]]}
.

This objective function is proportional to the expected log-likelihood in the case of fixed factors and
homoscedastic idiosyncratic component, cf. formula (24).

D Computation of the news

As in Section 2.3, let Ωv and Ωv+1 be two consecutive vintages of data and let Iv+1 be the news content
of Ωv+1 orthogonal to Ωv. We have

E [yk,tk
|Iv+1] = E

[
yk,tk

I ′v+1

]
E
[
Iv+1I

′
v+1

]−1
Iv+1 , (26)
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where

E
[
yk,tk

I ′v+1

]
=

⎡
⎢⎢⎢⎢⎣

E [yk,tk
(yi1,t1 − E [yi1,t1 |Ωv])]

E [yk,tk
(yi2,t2 − E [yi2,t2 |Ωv])]

...
E

[
yk,tk

(
yiJ ,tJv+1

− E

[
yiJ ,tJv+1

|Ωv

])]

⎤
⎥⎥⎥⎥⎦
′

and

E
[
Iv+1I

′
v+1

]
=

[
E

[(
yij ,tj

− E
[
yij ,tj

|Ωv

] )(
yil,tl

− E [yil,tl
|Ωv]

)] ]
{j=1,...,Jv+1;l=1,...,Jv+1}

.

Expressions (16) and (26) can be derived using the properties of conditional expectation as a projection
operator under the assumption of Gaussian data (see e.g. Brockwell and Davis, 1991, Chapter 2).

In order to obtain (26) we need to calculate E

[
yk,tk

(
yij ,tj

− E
[
yij ,tj

|Ωv

]) ]
and E

[(
yij ,tj

−E
[
yij ,tj

|Ωv

] )(
yil,tl

−
E [yil,tl

|Ωv]
)]

.

Given the model (1)-(2) and (4) we can write

yk,tk
= Λk·ftk

+ εk,tk
and

Ij,v+1 = yij ,tj
− E

[
yij ,tj

|Ωv

]
= Λij ·

(
ftj

− E
[
ftj

|Ωv

] )
+ εij ,tj

.

Let us denote E [xt|Ωv] as xt|Ωv
, we have:

E

[
yk,tk

(
yij ,tj

− yij ,tj |Ωv

) ]
= Λk·E

[
ftk

(
ftj

− ftj |Ωv

)′]Λ′
ij · + E

[
εk,tk

(
ftj

− ftj |Ωv

)′]Λ′
ij ·

= Λk·E
[ (

ftk
− ftk|Ωv

) (
ftj

− ftj |Ωv

)′]Λ′
ij ·

+ Λk·E
[
ftk|Ωv

(
ftj

− ftj |Ωv

)′]Λ′
ij ·

= Λk·E
[ (

ftk
− ftk|Ωv

) (
ftj − ftj |Ωv

)′]Λ′
ij ·

and

E

[(
yij ,tj

− yij ,tj |Ωv

) (
yij ,tl

− yil,tl|Ωv

)′ ]
= Λij ·E

[(
ftj

− ftj |Ωv

) (
ftl

− ftl|Ωv

)′ ]Λ′
il· + E

[
εij ,tj

εil,tl

]
.

The last term is equal to the jth element of the diagonal of R in case j = l and 0 otherwise. In the case
that tj = ti the expectation E

[(
ftj

− ftj |Ωv

) (
fti

− fti|Ωv

)′ ] is readily available from the Kalman smoother
output. To obtain the expectations for tj �= tl one can augment the vector of states by appropriate number
of their lags.

E News vs. contributions

We will show on an example why the news rather than the contribution analysis as proposed in Bańbura
and Rünstler (2010) (see also ECB, 2008, Chart 3) is a suitable tool for interpreting the sources of forecast
revisions.

As shown in Bańbura and Rünstler (2010), the forecast of variable k at time t can be written as the sum
of contributions from all the variables in the data set:

yk,t|Ωv
=

n∑
i=1

Ck,t
i,v ,
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where
Ck,t

i,v =
∑

s:yi,s∈Ωv

ωk,t
i,v (s)yi,s

v

Let us now assume that we forecast yk,t using two blocks of variables: y1 and y2. The forecast of yk,t given
the data vintage Ωv can then be written (with a slight abuse of notation) as the sum of contributions from
the two blocks:

yk,t|Ωv
= Ck,t

1,v + Ck,t
2,v .

The forecast revision, i.e. the difference between the forecasts based on two consecutive vintages Ωv and
Ωv+1, can be expressed in terms of changes in the contributions from the two blocks:

yk,t|Ωv+1 = yk,t|Ωv
+ ∆Ck,t

1,v+1,v + ∆Ck,t
2,v+1,v ,

where ∆Ck,t
i,v+1,v denotes a change in the contributions from variable/block i between the vintages v and

v + 1.

To see why this representation is not so convenient for understanding the sources of forecast revisions let
us assume, for simplicity, that the first block contains only one variable y1 = {y1,s, s = 1, 2, . . .} and that
the difference between vintages Ωv and Ωv+1 is the release of y1,t. Expressing the forecast revision in terms
of the news, from (17) we get:

yk,t|Ωv+1 = yk,t|Ωv
+ bv+1,1 (y1,t − y1,t|Ωv

)︸ ︷︷ ︸
news

.

Further, given that the forecast y1,t|Ωv
can be as well expressed as the sum of the contributions from the

two blocks, C1,t
1,v and C1,t

2,v, we have:

yk,t|Ωv+1 = yk,t|Ωv
+ bv+1,1 (y1,t − C1,t

1,v − C1,t
2,v)︸ ︷︷ ︸

news

= yk,t|Ωv
+ bv+1,1(y1,t − C1,t

1,v)︸ ︷︷ ︸
∆Ck,t

1,v+1,v

−bv+1,1 · C1,t
2,v︸ ︷︷ ︸

∆Ck,t
2,v+1,v

.

Therefore, while the release expanded only the information in block one, it led to a change in the con-
tributions of both blocks. Moreover, if C1,t

1,v > y1,t it could happen that even if bv+1,1 > 0, “positive
news” in y1 (i.e. y1,t > y1,t|Ωv

, which is possible if C1,t
2,v < 0) leads to a drop in the contributions for this

variable. Therefore not much can be inferred from the sign of the change in contributions what regards
“the message” from a new data release.

Let us note however that if for the forecast y1,t|Ωv
only the information from block one were used, we

would have bv+1,1(y1,t − y1,t|Ωv
) = bv+1,1(y1,t − C1,t

1,v) = ∆Ck,t
1,v+1,v and we would have that the changes in

contributions are equivalent to the contributions from the news. This is the case for e.g. bridge equation
models (see e.g Rünstler and Sédillot, 2003, for the implementation of bridge equations to forecast euro
area GDP).

F State space representations in the empirical applications

We provide the details of the state space representations in the “mixed frequency” empirical applications
in Section 4. Let yM

t and ȳQ
t denote the nM × 1 and nQ × 1 vectors of monthly and quarterly data,

respectively. The latter have been constructed as described in Section 4.2. Further, let ΛM and ΛQ denote
the corresponding factor loading for the monthly data, yM

t , and the unobserved monthly growth rates of

denotes the contribution of variable i to the forecast of variable k at time t given the data set Ω .
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the quarterly data, yQ
t , respectively. We first consider the case with no serial correlation in the idiosyncratic

component. Combining (1), (2), (4) and (19) with p = 1 results in the following state space representation:

[
yM

t

ȳQ
t

]
=

[
ΛM 0 0 0 0 0 0 0 0 0
ΛQ 2ΛQ 3ΛQ 2ΛQ ΛQ InQ

2InQ
3InQ

2InQ
InQ

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ft

ft−1

ft−2

ft−3

ft−4

εQ
t

εQ
t−1

εQ
t−2

εQ
t−3

εQ
t−4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
[

εM
t

ξQ
t

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ft

ft−1

ft−2

ft−3

ft−4

εQ
t

εQ
t−1

εQ
t−2

εQ
t−3

εQ
t−4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 0 0 0 0 0 0 0 0 0
Ir 0 0 0 0 0 0 0 0 0
0 Ir 0 0 0 0 0 0 0 0
0 0 Ir 0 0 0 0 0 0 0
0 0 0 Ir 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 InQ 0 0 0 0
0 0 0 0 0 0 InQ

0 0 0
0 0 0 0 0 0 0 InQ

0 0
0 0 0 0 0 0 0 0 InQ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ft−1

ft−2

ft−3

ft−4

ft−5

εQ
t−1

εQ
t−2

εQ
t−3

εQ
t−4

εQ
t−5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ut

0
0
0
0
εQ

t

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let us now consider the case with the idiosyncratic component modelled as AR(1). Let αM = diag(αM,1, . . . , α

and αQ = diag(αQ,1, . . . , αQ,nQ
) collect the AR(1) coefficients of the idiosyncratic component of monthly

and quarterly data. We have:

[
yM

t

ȳQ
t

]
=

[
ΛM 0 0 0 0 In 0 0 0 0 0
ΛQ 2ΛQ 3ΛQ 2ΛQ ΛQ 0 InQ

2InQ
3InQ

2InQ
InQ

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ft

ft−1

ft−2

ft−3

ft−4

εM
t

εQ
t

εQ
t−1

εQ
t−2

εQ
t−3

εQ
t−4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
[

ξM
t

ξQ
t

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ft

ft−1

ft−2

ft−3

ft−4

εM
t

εQ
t

εQ
t−1

εQ
t−2

εQ
t−3

εQ
t−4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 0 0 0 0 0 0 0 0 0 0
Ir 0 0 0 0 0 0 0 0 0 0
0 Ir 0 0 0 0 0 0 0 0 0
0 0 Ir 0 0 0 0 0 0 0 0
0 0 0 Ir 0 0 0 0 0 0 0
0 0 0 0 0 αM 0 0 0 0 0
0 0 0 0 0 0 αQ 0 0 0 0
0 0 0 0 0 0 InQ

0 0 0 0
0 0 0 0 0 0 0 InQ

0 0 0
0 0 0 0 0 0 0 0 InQ

0 0
0 0 0 0 0 0 0 0 0 InQ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ft−1

ft−2

ft−3

ft−4

ft−5

εM
t−1

εQ
t−1

εQ
t−2

εQ
t−3

εQ
t−4

εQ
t−5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ut

0
0
0
0

eM
t

eQ
t

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

ξM
t and ξQ

t have fixed and small variance κ as discussed in Section 2.1.
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