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Abstract

We investigate the impact of structural shocks on the joint distribution of future real

GDP growth and inflation in the euro area. We model the conditional mean of these vari-

ables, along with selected financial indicators, using a VAR and perform quantile regressions

on the VAR residuals to estimate their time-varying variance as a function of macroeconomic

and financial variables. Through impulse response analysis, we find that demand and finan-

cial shocks reduce expected GDP growth and increase its conditional variance, leading to

negatively skewed future growth distributions. By enabling this mean-volatility interaction,

demand and financial shocks drive significant time variation in downside risk to euro area

GDP growth, while supply shocks result in broadly symmetric movements. For inflation,

supply shocks drive instead a positive mean-volatility co-movement, where higher inflation

is associated with increased uncertainty, causing time variation in upside risk.

Keywords: Quantile Regressions, Tail Risk, Stochastic Volatility, Vector Autoregression

(VAR), Mean-Variance Correlation, Structural Shocks, Downside Risk, Euro Area

JEL Codes: C32, C58, E32, G17.
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Non-technical Summary

In recent decades, monitoring risks to the economic outlook has become a priority for policy-

makers around the world. In advanced economies, this growing emphasis has been driven by

a series of extraordinary events, namely the global financial crisis and the European sovereign

debt crisis, which brought significant macroeconomic disruptions and deflationary pressures, and

more recently the COVID-19 pandemic and a subsequent surge in inflation. In response to the

elevated uncertainty resulting from these events, researchers and policymakers have dedicated

significant efforts to better characterise the risks surrounding central forecasts when evaluating

economic prospects and formulating policy.

A growing body of research, known as the “growth-at-risk” literature, has focused on mod-

elling these risks by estimating how current economic and financial variables influence the full

distribution of future macroeconomic outcomes, particularly GDP growth. Since the seminal

work of Adrian et al. (2019), two key insights have emerged from this literature. First, dete-

riorating financial conditions tend to be associated with both a lower conditional mean and a

higher conditional volatility of GDP growth. Second, this mean-volatility interaction induces an

asymmetry in the GDP growth distribution, as changes in financial conditions predict significant

movements in the lower tail (downside risk), while the upper tail (upside risk) remains relatively

stable.

While much of the existing literature has investigated how specific indicators help to forecast

tail risks, this paper extends the analysis by identifying the underlying structural forces that

drive these risks. Specifically, we investigate two questions: First, do specific structural shocks

drive the mean-volatility interaction and, as a result, cause the asymmetric response of downside

versus upside risks? Second, how do these shocks affect the joint risks to inflation and growth?

To answer these questions, we model the conditional mean of macroeconomic variables using a

standard vector autoregression (VAR) and perform quantile regressions on the VAR residuals,

using lagged endogenous variables as predictors. This approach allows us to estimate the time-

varying co-movement as a function of the state of the economy. The main implication is that

current economic and financial conditions, and hence their underlying structural shocks, can

influence the future distributions of GDP growth and inflation by affecting their mean, variance,

or both.

Our findings reveal a significant time variation in the downside risk to GDP growth, whereby

the lower quantiles are more volatile than the upper ones, consistent with the findings of Adrian

et al. (2019). This asymmetry arises from the dominance of demand and financial shocks, which

are estimated to reduce expected GDP growth while simultaneously increasing its future vari-

ance. Through this mean-volatility interaction, these shocks can lead the distribution of future
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GDP growth to become negatively skewed. This effect is state-dependent, being particularly

pronounced at times of heightened market distress. In contrast, supply shocks do not generate

the same interaction. Instead, they affect the mean and variance less systematically, leading to

rather symmetric movements in the lower and upper quantiles of GDP growth. For inflation,

supply shocks drive instead a positive mean-volatility co-movement, where higher inflation is as-

sociated with increased uncertainty, causing a significant time variation in upside risk. Finally,

our framework makes a substantial contribution by formalizing the analysis of joint tail risks

for GDP growth and inflation. This approach enables the identification of (model-consistent)

structural shocks driving these risks and provides policymakers with critical insights to the aim

of managing them effectively.
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1 Introduction

In recent decades, monitoring risks to the economic outlook has become a key element in the

conduct of monetary policy for major central banks worldwide. This growing emphasis has been

driven by a series of extraordinary events, such as the global financial crisis and the European

sovereign debt crisis, with their profound macroeconomic disruptions and disinflationary pres-

sures, and more recently, the COVID-19 pandemic and the subsequent surge in inflation. The

heightened uncertainty brought forward by these events has prompted researchers and policy-

makers to devote substantial effort to characterise the risks surrounding central forecasts when

assessing the economic outlook and formulating policy responses.

A growing body of research, commonly referred to as the “growth-at-risk” literature, has

focused on evaluating these risks by estimating how financial and economic variables predict

the entire distribution of future macroeconomic outcomes, particularly GDP growth. Since the

seminal work of Adrian et al. (2019), two key insights have emerged. First, worsening financial

conditions portend a lower conditional mean and higher conditional volatility of GDP growth.

Second, this mean-volatility interaction induces an asymmetry in the GDP growth distribution,

as changes in financial conditions predict significant movements in the lower quantiles while the

upper quantiles remain relatively unaffected.

Our research is guided by two questions. First, do specific structural shocks drive the mean-

volatility interaction and, consequently, cause the asymmetric response of downside versus upside

risks? Second, how do these shocks shape the joint risks to the inflation and growth outlooks?

Although these questions have received mixed attention in the literature, they remain highly

relevant, as the appropriate policy response depends critically on the nature of the shocks driving

these risks.

In this paper, we address these questions by examining how structural shocks affect the joint

distribution of future real GDP growth and inflation. We model the conditional mean of these

variables using a standard vector autoregression (VAR) and perform quantile regressions on the

VAR residuals, using lagged endogenous variables as predictors. This approach allows for the

estimation of a time-varying covariance matrix as a function of the state of the economy while

conveniently retaining the assumption of conditional Gaussianity for the error terms. Addition-

ally, this multivariate approach enables us to exploit cross-variable movements for structural

identification. The implication is that current macroeconomic and financial conditions, along

with their underlying structural shocks, can influence the future distribution of GDP growth

and inflation by affecting their mean, variance, or both.

Our model reveals a significant time variation in the downside risk to GDP growth, with

the lower quantiles moving more strongly than the upper ones, consistent with Adrian et al.
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(2019). This asymmetry is not assumed, but rather stems from the prominence of demand

and financial shocks, which are estimated to reduce expected GDP growth while simultaneously

increasing its future variance. Through impulse response analysis, we document how the mean-

volatility interaction induced by demand and financial shocks causes the distribution of future

GDP growth to be negatively skewed. In contrast, supply shocks do not generate this type

of interaction, as their effects on the mean and variance of GDP growth are less systematic,

resulting in more symmetric tail movements. For inflation, supply shocks drive a positive mean-

volatility co-movement, where higher inflation is associated with increased uncertainty, causing

the upper tail of its distribution to become more volatile than the lower tail. Although more

modestly, demand shocks qualitatively resemble supply shocks in terms of inflation risk, as they

also generate a significant time variation in upside risk; in contrast, financial shocks drive a

negative mean-volatility co-movement, leading to greater downside risk to inflation.

Our paper relates to two distinct strands of the literature. The first involves quantile re-

gressions, which provide direct estimates of the quantiles of the distribution of a macroeco-

nomic variable at specific horizons (e.g., Giglio et al., 2016; Adrian et al., 2019).1 However,

this approach has limitations in delivering path forecasts for quantiles and poses challenges for

structural identification. Quantile vector autoregressions (Chavleishvili and Manganelli, 2024)

partially address these limitations by modelling the simultaneous interaction between quantiles

within and between different variables. However, the ordering of variables in this framework

is crucial, the estimation process rapidly becomes computationally expensive, and achieving

structural identification (beyond assuming a Cholesky decomposition of the covariance matrix)

remains challenging.2

Given these limitations of the quantile regression approach, a second strand of the literature

relies on VAR models with stochastic volatility, inspired by the initial contributions of Primiceri

(2005) and Cogley and Sargent (2005). In their simplest form, these models feature a variance

process that evolves due to exogenous uncertainty shocks.3 More recent work incorporates

observable variables into the variance law of motion, so to capture a direct mean-volatility

interaction (e.g., Carriero et al., 2018; Caldara et al., 2021; Carriero et al., 2024).4 However,

a drawback of models of this type is that estimation results can be sensitive to the ordering of

variables in the VAR, leading to different estimates for the conditional variances and for density

forecasts (e.g., Arias et al., 2023; Chan et al., 2024). Although there are methods that allow

1This work spurred substantial follow-up research applying the methodology to different regions (see, e.g.,
Figueres and Jarociński (2020) and Adrian et al. (2022)). A recent strand has begun to explore machine learning
approaches (see, e.g., Clark et al., 2023; Goulet Coulombe et al., 2023; Chronopoulos et al., 2024).

2Other applications of quantile vector autoregression can be found in Iseringhausen et al. (2023) and Huang
et al. (2024). See also Korobilis and Schröder (2025) for an extension based on factors.

3See also Delle Monache et al. (2024), Wolf (2021), and Iseringhausen (2024) for univariate models with
stochastic volatility.

4See also Montes-Galdón and Ortega (2022) for VARs with time-varying higher moments.

ECB Working Paper Series No 3171 5



to overcome the ordering issue (Carriero et al., 2016; Chan et al., 2022), they have primarily

been proposed for models where observables do not affect the variance processes.5 Without a

mean-variance interaction, these models cannot generate asymmetric patterns in downside and

upside risks in out-of-sample forecasts. To our knowledge, no stochastic volatility model is both

order-invariant and accounts for endogenous variables in the volatility process.

Our work relates to several other studies investigating the effects of identified shocks on

predictive distributions.6 One approach, used by Loria et al. (2025), is to employ pre-identified

shocks within a local projections quantile regression framework. However, this method inherits

a key limitation of standard quantile regressions: it cannot produce path forecasts for quantiles

over time and across variables, making it unsuitable for the scenario and counterfactual analyses

that our framework is designed to handle.7

Similarly to our approach, Boire et al. (2021) and Forni et al. (2023) integrate quantile

regressions into a structural VAR framework to assess the impact of specific shocks on the

risk surrounding key macroeconomic variables.8 However, important differences remain. Boire

et al. (2021), for instance, limit their analysis to a single variable and one structural shock

with time-varying distribution, whereas our approach is more general, accommodating time-

varying volatility in all shocks and variables. Our assumption of conditionally Gaussian errors

also provides technical simplifications over non-parametric methods (as employed in Boire et al.

(2021)), enabling the use of techniques which are standard in the VAR literature.

Another crucial distinction lies in the application of the quantile regression itself. Forni et al.

(2023) consider a framework in which the dependent variable of quantile regressions is the level

of macroeconomic variables, with predictors governed by a standard linear VAR. Consequently,

although their framework may capture asymmetric patterns in-sample, the underlying data-

generating process is linear and does not produce asymmetries in out-of-sample forecasts or in

simulations. Our approach, instead, uses the VAR residuals as the dependent variables in the

quantile regressions. This choice is crucial because it allows the VAR error terms to have time-

varying volatility as a function of macroeconomic and financial variables, while their conditional

mean is governed by the VAR model. As a result, by enabling a mean-volatility interaction,

our framework can generate asymmetric patterns in downside versus upside risk that depend on

prevailing economic conditions and the underlying structural shocks.

The paper is organised as follows. Section 2 introduces our modelling approach, after drawing

5See also Caldara et al. (2024) and Guerrón-Quintana et al. (2023) for factor-based approaches. In the latter,
state dependence enters the mean equation rather than the shock variances.

6See Gertler (2020) on the relevance of structural analysis in assessing the importance of financial conditions
for risks to economic activity.

7Based on the identification scheme of Lewis (2021), Carriero et al. (2021) propose a structural stochastic
volatility VAR with mean shocks and endogenous components in the volatility process. However, their analysis
focuses on the uncertainty shock and their implemented approach relies on a Cholesky decomposition to identify
the other structural shocks economically.

8In a similar vein, see also Duprey and Ueberfeldt (2020) and Forni et al. (2025).

ECB Working Paper Series No 3171 6



motivation from key stylized growth-at-risk facts, which we replicate for the euro area. Section

3 describes our empirical application. In Section 4, we estimate the model and identify the

structural shocks driving the various quantiles of the distribution of future real GDP growth

and inflation. Section 5 illustrates some policy applications. Section 6 concludes.

2 A VAR-Quantile Regression Approach

2.1 Informing Our Modelling Approach: Key Growth-at-Risk Facts

Our contribution is motivated by two key insights from the growth-at-risk literature. First,

worsening financial conditions portend a lower conditional mean and higher conditional volatil-

ity of GDP growth. Second, this mean-volatility interaction generates an asymmetry in the

distribution of GDP growth, as changes in financial conditions predict significant movements

in the lower quantiles of GDP growth while the upper quantiles remain relatively unaffected.

Although these insights were initially derived from U.S. data, they also hold for a broader range

of advanced economies (Adrian et al., 2019; Figueres and Jarociński, 2020; Adrian et al., 2022).

In Figure (1), we replicate this evidence for the euro area by following the methodology

of Adrian et al. (2019) and conducting linear and quantile regressions (QR) to characterise

the conditional relationship between future GDP growth and current financial and economic

conditions. In these regressions, our dependent variable is one-quarter-ahead real GDP growth,

while the explanatory variables include current GDP growth, inflation, changes in the short-term

interest rate9, and the Composite Indicator of Systemic Stress (CISS) of Kremer et al. (2012).

We use the CISS as a broad proxy for financial conditions and financial stress and, for brevity,

will often refer to it simply as “financial conditions”.

Figure (1a) shows a scatterplot of the conditional mean of the GDP growth distribution (y-

axis) against its conditional dispersion (x-axis), which is proxied by the difference between the

upper and lower quantiles. Each dot represents a single quarter in our sample. Overall, the figure

illustrates a strong negative correlation between the conditional mean and volatility of GDP

growth, confirming a key stylised fact established by the literature. The regression results, not

shown here for brevity, indicate that as financial and economic conditions deteriorate, expected

growth declines, causing the entire growth distribution to shift downward. The accompanying

increase in conditional volatility implies that this downward effect is amplified for the lower

quantiles and dampened for the upper quantiles. Consistently, Figure (1b) shows the 0.1 and

0.9 quantiles of the conditional distribution of GDP growth, confirming that the lower quantile

exhibits greater variability than the upper quantile.

Building on these insights, the model we present formalises the interaction between mean

9Specifically, we use the shadow interest rate from Krippner (2013), which addresses the challenge of using
nominal rates during the effective lower bound period.
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Figure 1: Stylized Growth-at-Risk Facts for euro area real GDP growth (Quantile Regressions)

Note: The results are derived from quantile regressions (for the 0.1 and 0.9 quantiles) and an OLS regression
(for the mean) for quarter-on-quarter real GDP growth. The covariates include lagged GDP growth, inflation,
changes in the Shadow Short-Term Rate (SSR), and the CISS. The estimation sample spans from 1973:Q1 to
2019:Q3. Shaded areas denote recession dates.

and volatility by modelling them as functions of a common set of observable variables. It

then identifies the structural shocks that drive time-varying tail risks by exploiting standard

identification schemes. To do so, it incorporates quantile regression techniques within a VAR

framework, effectively addressing some limitations of standalone quantile regressions. These

limitations include difficulties in characterising path forecasts for quantiles over time and across

variables, as well as challenges in integrating structural identification.

2.2 Model Set-up

The empirical insights documented in the previous section inform our approach to modelling

both the conditional mean and variance as functions of financial and economic variables. First,

we model the conditional mean of yt using a linear VAR specification. Second, we model the

conditional quantiles of the VAR residuals as a function of lagged endogenous variables by

running quantile regressions on the reduced-form VAR residuals.

For the conditional mean, consider the following reduced-form linear VAR(p) specification:

yt = c+A1yt−1 + . . .+Apyt−p + ut (2.1)

where yt is an n×1 vector of endogenous variables, c is an n×1 vector of constants, A1, . . . , Ap

are n × n coefficient matrices, and ut is an n × 1 vector of serially uncorrelated, reduced-form

innovations (white noise) with Cov(ut) = E[utu
′
t] = Σu,t. We can derive consistent estimates of

the Ak parameters using ordinary least squares (OLS), whether Σu,t is constant (homoscedastic)

or time-varying (heteroscedastic).10

10In the latter case, the OLS estimator is less efficient but remains unbiased and consistent. At the same time,
the OLS approach may encounter scalability challenges, as model estimation becomes increasingly complex with
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For the conditional variance, we proceed as follows. Let Xt−1 = [1,y′
t−1, . . . ,y

′
t−q]

′ be a

(1 + nq) × 1 vector of regressors, where q ≤ p. The conditional τ -quantile of the i-th residual,

ui,t, is given by:

Qτ
ui,t

(Xt−1) = X′
t−1βi,τ (2.2)

where βi,τ is the corresponding (1+nq)× 1 vector of coefficients estimated for each residual

series (i = 1, . . . , n) using the quantile regression estimator from Koenker and Bassett Jr. (1978).

This specification allows the conditional quantiles of the residuals to be driven by the recent

history of all variables in the system. The goal is to use these quantile regressions to estimate

Σu,t as a function of lagged endogenous variables. To do this, we fit a parametric Gaussian

distribution to the estimated quantiles for each reduced-form residual, a method we describe in

more detail below.11

Intuitively, our approach jointly models the conditional mean and volatility of the variables

as functions of a common set of underlying drivers, yt−1, . . . ,yt−q, rather than treating these

two moments as independent processes. By explicitly modelling this mean-volatility interaction,

the model can generate non-Gaussian, asymmetric conditional distributions for yt+j for horizons

j > 1, while conveniently retaining the assumption of conditional Gaussianity for the one-period-

ahead residuals.12 Consequently, any estimated asymmetry in the distribution of the endogenous

variables arises from this interaction rather than from assumptions about the distribution of the

error terms. Shocks that induce a correlation between the conditional mean and volatility of

these variables will naturally lead to asymmetry in the distribution of yt+j .

Before describing how we derive the properties of Σu,t, it is important to highlight three

key aspects of our methodology. First, while the VAR residuals are uncorrelated with lagged

endogenous variables by construction, this lack of correlation does not extend to the quantiles of

the residuals. A systematic relationship between these quantiles and lagged variables can reflect

dependencies through higher-order moments. We focus specifically on the relationship between

the variance of the residuals and lagged endogenous variables.

Second, performing quantile regressions on the reduced-form VAR residuals is a key inno-

a growing number of variables, a limitation not easily overcome even by Bayesian methods when variances are
allowed to be time-varying. Nonetheless, our analysis adopts a deliberate approach to variable selection, aiming
to strike a balance between a parsimonious set of relevant structural drivers and the inclusion of key predictors
of tail risk.

11Our two-stage estimation procedure has similarities with Koenker and Zhao (1996), who also estimate a
univariate ARCH model using a combination of OLS and QR. However, our direct estimation of quantiles, as
opposed to scaling parameters, allows for a better assessment of the fit of subsequent parametric distributional
approximations.

12In our model, the assumption of a Gaussian distribution for one-period-ahead errors is convenient, enabling
direct specification of the parameters of the multivariate normal distribution, Σu,t, which facilitates model sim-
ulation. Crucially, this assumption does not limit the model’s ability to generate non-Gaussian conditional and
unconditional distributions for the endogenous variables. Indeed, as noted by Carriero et al. (2024) and Caldara
et al. (2021), Gaussian heteroscedastic models are capable of generating skewness in forecast distributions.
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vation. For example, Forni et al. (2023) run quantile regressions of yt+j on its lagged variables

while assuming that yt follows a linear VAR process. Consequently, although their model can

estimate in-sample asymmetries, it cannot generate them out-of-sample because the underlying

data-generating process is linear. By contrast, our framework generates such asymmetries by

allowing macroeconomic and financial conditions to influence the mean-volatility interaction.

Moreover, it provides predictive paths for the full distributions of the endogenous variables.

Third, our approach allows us to uncover the drivers of changes in tail risk, a task not

feasible in frameworks where stochastic volatility arises from exogenous processes. In our model,

uncertainty is explained by observed economic conditions, as represented by the variables in the

VAR. By linking uncertainty to the endogenous variables and, by extension, to the underlying

structural shocks, enables us to decompose movements in tail risks according to the contributions

of those shocks, as we discuss in Section 3.

2.3 Estimation Procedure

As outlined previously, the initial step of the estimation involves running a VAR on the selected

endogenous variables to derive OLS parameter estimates for A1, . . . , Ap and calculating the

resulting reduced-form residuals. The quantile regressions on these residuals form the foundation

for constructing their conditional distributions and, notably, the Σu,t matrices.

The Variance-Covariance Matrix of Reduced-Form Residuals, Σu,t

To derive the diagonal elements of Σu,t, we first estimate selected quantiles of the distribution

of the reduced-form residuals. We then fit a univariate Gaussian distribution to these quantiles

using a least squares method.13 Since we assume that the reduced-form errors are Gaussian with

zero mean, we would only require a single quantile to estimate the variance σ2
ui,t

. For robustness,

we base our estimate on two percentiles, the 10th and 90th, although more could be used. While

we are interested in tail risk, we avoid more extreme quantiles for which estimates may be less

precise. For similar reasons, we use fewer lags in the quantile regressions (q) than in the VAR

(p) to avoid over-fitting.

To complete the estimation, we must specify the off-diagonal terms in the covariance matrix

Σu,t. We derive these terms as a by-product of the structural identification. The relationship

between the reduced-form residuals ut and the structural shocks ϵt is given by:

13We use least squares to determine the variance parameter that minimises the squared distance between the
estimated and theoretical quantiles:

min
σui,t

∑
τ∈{τ1,...,τK}

[Qτ
ui,t

− σui,t · Φ
−1(τ)]2 (2.3)

where Φ−1 is the inverse CDF of the standard normal distribution. The solution is the OLS estimator, which is
a convenient linear function of the endogenous variables. This means we can decompose the stochastic variance
into contributions from the lagged values of all endogenous variables.
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ut = B0Λ
1/2
t ϵt (2.4)

where ϵt ∼ N (0, In) are the i.i.d. structural shocks, B0 is the n× n constant impact matrix

describing how shocks contemporaneously affect the endogenous variables, and Λ
1/2
t is a diagonal

matrix containing the time-varying standard deviations of the structural shocks. Any time

variation in the covariance of the reduced-form errors arises solely from changes in the volatility

of the structural shocks. This specification leads to the time-varying covariance matrix:

Σu,t = B0ΛtB
′
0 (2.5)

where Λt is the diagonal matrix containing the variances of the structural shocks.

Structural Identification

As a final step, we outline the identification strategy that delivers estimates ofB0 and Λt. Further

details are provided in appendix A. Broadly, we apply standard sign and narrative restrictions to

identify a set of valid impact matrices {B0(m)}Mm=1. The reduced-form and structural variances

are linked via:

diag(Λt) = (B0(m)⊙B0(m))−1diag(Σu,t) (2.6)

where the reduced-form variances, diag(Σu,t), are based on the quantile regression results.

We discard any candidate matrix that implies negative structural shock variances at any point

in time, ensuring that diag(Λt) remains positive. Finally, we exploit the model’s heteroscedas-

ticity to identify a unique impact matrix B0 from the set of suitable candidates. As eq. (2.6)

shows, alternative impact matrices lead to different in-sample structural variances. Unlike in

homoscedastic VARs, this time variation in variances makes the likelihood function sensitive to

the parameters in B0. This feature allows us to select a unique impact matrix using a maximum

likelihood approach, similar to methods used in the SVAR-GARCH literature (e.g., Luetkepohl

and Milunovich, 2016).

Summary of Estimation Steps

The model can be summarized by the following system of equations:

yt = c+A1yt−1 + . . .+Apyt−p + ut, ut ∼ N (0,Σu,t) (2.7)

ut = B0Λ
1/2
t ϵt, ϵt ∼ N (0, I) (2.8)

where Λt = diag(λ1t, . . . , λnt) is the diagonal matrix of time-varying structural shock variances.

The dynamics of the reduced-form variances are determined by quantile regressions. For each
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reduced-form residual uj,t, we first estimate a set of K conditional quantiles, {τk}Kk=1:

Qτk
uj,t

(Xt−1) = X′
t−1βj,τk (2.9)

From these estimated quantiles, we obtain the conditional standard deviation by fitting them

to the theoretical quantiles of a standard normal distribution:

σ̂u,j,t =

∑K
k=1Q

τk
uj,t

· Φ−1(τk)∑K
k=1[Φ

−1(τk)]2
(2.10)

The estimated variances form the diagonal of the reduced-form covariance matrix, diag(Σu,t) =

[σ̂2
u,1,t, . . . , σ̂

2
u,n,t]

′. Finally, the structural variances are recovered via:

diag(Λt) = (B0 ⊙B0)
−1diag(Σu,t) (2.11)

Algorithm 1 Estimation Procedure for the VAR-QR Model

1: Estimate the VAR parameters (c, A1, . . . , Ap) via OLS and compute the reduced-form resid-
uals, ut.

2: For each residual series uj,t and for each required quantile τk, estimate the coefficient vector
βj,τk using quantile regression.

3: Using the estimated quantiles, compute the conditional variances σ̂2
u,j,t for each residual

series, forming diag(Σu,t).
4: Identify the impact matrix B0 and the structural variances Λt using sign restrictions and

the maximum likelihood method described in Section 2.3.

3 Empirical Application

3.1 Data

We estimate our model using euro area data, focusing on the distributions of real GDP growth

and inflation. Our dataset covers the period from January 1980 to December 2019, ending before

the COVID-19 pandemic.14 The VAR includes four variables: the log of the real Gross Domestic

Product (GDP) index, the log of the headline consumer price index (HICP), the shadow short-

term interest rate (SSR) from Krippner (2013), and the Composite Indicator of Systemic Stress

(CISS) from Kremer et al. (2012). We choose the SSR over the nominal short-term interest

rate as the latter is a poor indicator of the monetary policy stance during the effective lower

bound period. The CISS captures financial conditions by incorporating volatility and spread

components from financial markets and has been shown to be useful for forecasting tail risk (e.g.,

Figueres and Jarociński, 2020).15 Since GDP data are only available quarterly, we disaggregate

14We stop the sample before the pandemic for practical reasons. Lenza and Primiceri (2022) provide a potential
avenue to integrate the large outliers in macroeconomic data generated by the pandemic in a standard VAR
framework.

15Following Kremer (2016), we take the square root of the CISS to account for potential non-linearities.
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the series to a monthly frequency with the method of Santos Silva and Cardoso (2001) using data

on Industrial Production excluding the construction sector. Additional details about the data

and their transformations can be found in appendix B. Based on the likelihood and information

criteria for different lag specifications, we estimate the model using five lags in the VAR part

(p = 5) and two lags for the endogenous variables in the quantile regressions based on the VAR

residuals (q = 2). This more parsimonious specification for the latter regressions is intended to

mitigate the risk of over-fitting the tails.

3.2 Identification Scheme

After estimating the VAR coefficients, the quantile regression parameters, and the conditional

standard deviations, we complete the final step of our procedure by estimating the impact matrix

B0 using standard structural identification methods. Specifically, we employ a combination

of sign (e.g., Uhlig, 2005), magnitude (e.g., Peersman, 2005), and narrative restrictions (e.g.,

Antoĺın-Dı́az and Rubio-Ramı́rez, 2018).16

As detailed in Table 1, our sign restrictions require that a positive monetary policy shock

increases both the shadow rate and the CISS, while causing a subsequent decline in GDP. In

addition, the price level is persistently lowered, consistent with the literature. Positive demand

shocks lead to increases in GDP, HICP, and the shadow rate. Supply shocks result in a negative

co-movement between GDP and inflation. Finally, financial shocks are assumed to cause a

decrease in output as well in the price level and the shadow rate, while being accompanied by

an increase in the CISS.17

Variable/Shock Monetary Demand Supply Financial

GDP −
(6)

+
(6)

+
(6)

−
(6)

HICP −
(6-12)

+
(6)

−
(12)

−
(6)

SSR +
(0-4)

+
(6)

−
(0-3)

CISS +
(0-3)

++
(0-3)

Table 1: Sign and Magnitude Identification Restrictions

Note: The +/- signs indicate the direction of the restriction, while the double signs (++) specify that the shock is
restricted to have the largest contemporaneous impact on the respective variable (magnitude restriction). Numbers
in parentheses denote the time horizons, measured in months following the shock, for which the restrictions are
imposed.

16We use code from Adrian et al. (2020) for the quantile regressions, the VAR Toolbox from Ambrogio Cesa-
Bianchi for estimation, the ‘ZeroSignVar’ package from Breitenlechner et al. (2019) for structural identification,
and routines from Kevin Sheppard’s MFE Toolbox for cross-correlation estimation. The algorithm used also
allows for exclusion restrictions.

17The literature discusses two types of financial shocks—financial uncertainty and financial conditions
shocks—which are highly correlated (e.g., Caldara et al., 2016; De Santis and Van der Veken, 2022). We adopt
a broad definition to encompass both types. Huang et al. (2024) conduct a structural analysis to identify how
these alternative shocks influence the quantiles of US GDP growth.
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Regarding magnitude and narrative restrictions, we require that financial shocks (i) have

the largest absolute contemporaneous impact on the CISS among all shocks, and (ii) played

a more significant role in the 2009 financial crisis than supply and monetary policy shocks

combined.18 While these restrictions typically result in set identification, we uniquely identify

the structural shocks by exploiting the time-varying volatility of our model, as described in

appendix A.19 Finally, to enhance identification, we impose restrictions at specific horizons, as

indicated in Table 1. Most of these restrictions apply for up to six months (two quarters). In

our identification scheme, only the restrictions on monetary and supply shocks extend beyond

six months.

4 Results

4.1 Asymmetric Patterns in Downside Versus Upside Risks

First, we document that our model replicates the stylized facts from the growth-at-risk literature

shown in Section 2.1, notably the asymmetry between downside and upside risks to future

macroeconomic variables.

Significant time variation in the downside risk to GDP growth The model generates

significant time variation in downside risks to GDP growth, whereas upside risks are more stable.

While this pattern is evident when examining the quantiles of future GDP growth, we introduce

more comprehensive measures of tail risk, i.e. Expected Shortfall (ES) and Expected Longrise

(EL), drawing on Adrian et al. (2019) and Caldara et al. (2021), among others. These measures

represent the expected value of a random variable conditional on it being below or above a given

percentile, respectively. Using the 5th and 95th percentiles as thresholds, ES and EL provide

a more detailed representation of higher-order moments than simple quantiles, as they capture

changes across the entire tail of the distribution.20

Figure (2) illustrates the behavior of the one-year-ahead ES and EL for GDP growth and

inflation. The downside tail of GDP growth is significantly more volatile than its upside tail.

Interestingly, the evidence for inflation is less clear; if anything, the EL for inflation appears

18Specifically, we require that the drag on year-on-year GDP growth in January 2009 from financial shocks was
greater than the drag from the combined effects of supply and monetary policy shocks.

19We perform the structural analysis on the subsample starting in January 1999. The mathematical restrictions
on the parameters discussed in appendix A make potential changes in the structural parameters more important
for our model than for linear models. Evidence in the literature suggests that reduced-form parameters change
little compared to the structural side (see, e.g., Primiceri, 2005; Carriero et al., 2018). Therefore, we leverage the
full dataset to maximise the information available for the reduced-form estimation while allowing for flexibility in
the structural identification by not constraining the full sample to a single impact matrix, with the beginning of
the euro area serving as a reasonable structural break.

20ES and EL are defined as: ESt+h = 1
π

∫ π

0
F̂−1
yt+h|xt

(τ)dτ and ELt+h = 1
π

∫ 1

1−π
F̂−1
yt+h|xt

(τ)dτ , where π = 0.05,

F̂−1
yt+h|xt

is the estimated inverse conditional CDF of the variable of interest y given information xt, and h is the

forecast horizon.
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more volatile than the ES.

(a) GDP Growth One Year Ahead (YoY) (b) Inflation One Year Ahead (YoY)

Figure 2: Expected Shortfall and Longrise for Real GDP Growth and Inflation

Note: The figures plot one-year-ahead in-sample conditional mean (black) for real GDP growth and inflation
derived from the VAR-QR model, along with the expected shortfall (yellow) and expected longrise (blue), using
the 5th and 95th percentiles are respective thresholds. Shaded areas denote recession dates.

Mean-volatility interaction As anticipated in Subsection 2.1, the asymmetry in the be-

haviour of the upper and lower tails of GDP growth distribution can be attributed to an in-

teraction between its conditional mean and volatility. In particular, a negative co-movement

emerges: a lower conditional mean of GDP growth coincides with higher volatility. This pattern

amplifies the effects of negative GDP growth outturns on the lower tail while dampening its

effects on the upper tail. Figure (3) displays the relationship between the in-sample conditional

mean and the difference between the conditional 10th and 90th quantiles for monthly, quarterly,

and annual real GDP growth rates. It is important to note that we estimate a single monthly

VAR-QR model and derive results for all frequencies from it. Therefore, the dynamics of the

mean and uncertainty are driven by the economic patterns in the data, and do not result from

smoothing across frequencies. Overall, our model successfully reproduces the negative, and pos-

sibly non-linear, relationship between the conditional mean and volatility of GDP growth across

horizons.

To illustrate the underlying mechanism, we examine the response of the future real GDP

growth distribution to a reduced-form CISS shock, calibrated to match the magnitude observed

during the 2008-2009 financial crisis. Figure (4) compares the distribution of average GDP

growth over two quarters in scenarios with the shock (yellow densities) versus without (blue

densities) for both our VAR-QR model (left) and a standard linear homoscedastic VAR (right).

In both models, the CISS shock induces a leftward shift of the distribution, driven by a

change in the mean (red arrow). The linear model incorporates only this mean effect, causing

both tails to shift by the same amount. In our VAR-QR model, the distribution undergoes

an additional change: the deterioration in financial conditions not only lowers the mean but
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Figure 3: Correlation between Conditional Mean and Volatility of GDP Growth (VAR-QR)

Note: The figure shows in-sample conditional predictions from the VAR-QR, depicting the relationship between
the mean of real GDP growth and the Q90-Q10 quantile difference (a proxy for volatility). The panels show
forecasts for (a) one-month-ahead monthly growth, (b) one-quarter-ahead quarterly growth, and (c) one-year-
ahead annual growth. The yellow dashed line represents a cubic function fitted to the data points.

also simultaneously increases the variance (green arrows). This variance effect amplifies the

impact of the mean shift on the lower tail while dampening it for the upper tail. Consequently,

the ES declines substantially more than the EL. Through this mean-volatility interaction, our

model generates skewed forecast distributions for the endogenous variables while retaining the

assumption of Gaussian innovations.21 Importantly, our model allows for these interactions, but

does not impose them; they are a result of the estimation.
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Figure 4: Conditional Forecast Distributions: VAR-QR vs. Linear VAR

Note: The figures depicts the densities of the distribution of average quarter-on-quarter real GDP growth over
the two quarters ahead. The yellow densities are conditional on a 0.5 units shock to the CISS, while the blue
densities are the baseline with no shock. The left panel shows the VAR-QR model, and the right panel shows the
linear VAR.

4.2 Structural Drivers of Growth-at-Risk

Having established that our model replicates key stylized facts from the growth-at-risk literature,

we now turn to our main objective: identify the structural drivers of macroeconomic tail risk.

We first assess the effects of individual structural shocks on the conditional distribution of

macroeconomic variables before turning to their historical contributions over time.

21Even the unconditional distribution (blue density in the left panel of Figure (4)) is slightly skewed to the left,
reflecting the underlying mean-volatility interaction.
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Impulse responses We begin by extending the analysis from Figure (4) to the identified

structural shocks. To isolate the impact of each shock on the predicted distribution of GDP

growth, we derive a “baseline” predicted density (blue) from Monte Carlo simulations of our

model, conditional on the state of the economy, and allowing for all structural shocks to occur.

We then generate a “shocked” density (yellow) by incorporating a one-time realization of a

specific shock at the beginning of the simulation horizon. The difference between these densities

captures the impact of that shock. Figure (5) displays the resulting predicted densities of real

GDP growth for the four shocks we consider, i.e. monetary policy, demand, financial, and supply.

For each shock, we compare the densities from our VAR-QR model (left panels) with those from a

linear homoscedastic VAR (right panels). The main finding is that demand and financial shocks

generate pronounced asymmetries in the predicted distributions from the VAR-QR model, with

the lower tail responding much more strongly than the upper tail. This is evident from the

substantial decline in the ES compared to the EL. This asymmetric pattern contrasts sharply

with the linear model’s predictions, where these shocks induce a parallel shift of the conditional

distribution. Monetary policy shocks also induce a similar, though smaller, asymmetric response

in our VAR-QR framework. Supply shocks, on the other hand, have symmetric effects, with no

major differences emerging between the two models.
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(c) Supply Shock
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(d) Financial Conditions Shock

Figure 5: Conditional Distributions Following Structural Shocks

Note: The figures show the densities of the distributions of average quarter-on-quarter real GDP growth over
the two quarters ahead (and over the four quarters ahead for the monetary policy shock). The yellow densities
are conditional on a one-time realization of a specific shock at the beginning of the simulation horizon while the
blue densities correspond to the baseline scenario with no (one-time) shocks. In each sub-figure, the left panel
represents the VAR-QR model, while the right panel corresponds to the linear VAR. The system is initialized
during a calm period (June 2005).

Building on this exercise, we adopt a complementary perspective to illustrate the asymmetric

response of the predictive densities to various shocks. Figure (6a) illustrates the mean-volatility

ECB Working Paper Series No 3171 17



interaction associated with each shock type for GDP growth. Consistent with our findings, we

find that demand and financial shocks, and to a lesser extent monetary policy shocks, generate

a negative mean-volatility co-movement. In contrast, supply shocks do not appear to trigger a

significant mean-volatility interaction.

Figure (6b) shows the results of the same exercise for inflation. In this case, supply shocks

are the key driver of a positive mean-volatility co-movement, as higher inflation is associated

with wider uncertainty, resulting in a more volatile upper tail compared to the lower tail. A key

difference from the GDP growth results lies in the behaviour of demand shocks, which, in the

context of inflation, act differently from financial and monetary policy shocks. In fact, demand

shocks behave more similarly to supply shocks, as they also generate a positive mean-volatility

interaction. A possible explanation is that the systematic monetary policy response effectively

curtails the risk of very low inflation outcomes following an adverse demand shock. However, this

policy response appears to be less effective against financial shocks, which tend to generate more

downside than upside risk to inflation. It is also worth noting that, aside from supply shocks, the

magnitude of these mean-volatility interactions is generally more modest for inflation compared

to GDP.

(a) GDP growth (b) Inflation

Figure 6: Historical Decomposition of the Mean-Volatility Correlation for GDP Growth and
Inflation

Note: The figures generalize the analysis in Figure (5) by replicating the simulation across all points in the
sample. At each point, an additional structural shock is simulated, and the resulting changes in the conditional
mean are plotted against the corresponding changes in the inter-quantile range. The frequencies and forecast
horizons are identical to those in Figure (5).

While these density plots document the effect of shocks at a specific horizon, they do not

capture the dynamic evolution of tail risk. To address this, we use Generalized Impulse Response
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Functions (GIRFs) for the ES and EL.22

To illustrate how these mechanisms vary under different economic conditions, we simulate

the impact of shocks originating at two dates: June 2005, a period of calm (upper panels), and

January 2009, the peak of the global financial crisis (lower panels).
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Figure 7: Cumulative GIRFs of ES and EL of GDP Growth to Structural Shocks

Note: The figures plot the cumulative GIRFs for the Expected Shortfall (ES) and Expected Longrise (EL) of
GDP growth at a horizon of h months ahead. For instance, at h = 12, the lines represent the cumulative GDP
growth between t = 0 and t = 12. The analysis incorporates one-standard-deviation shocks in June 2005 and
January 2009.

In our model, the responses of ES and EL diverge significantly following demand-type shocks

(monetary policy, demand, and financial). These differences become evident as early as three

months after the shock. For instance, after a financial shock, the ES declines much more than

the EL and remains depressed for an extended period. In contrast, after supply shocks, the EL

initially experiences a more pronounced negative impact than the ES.

The results from our model contrast with the GIRFs produced by the homoscedastic model,

the latter typically remaining between the ES and EL values that our model generates. This

suggests that while the mean dynamics of the two specifications are broadly comparable, the dy-

namics in the tails of the distribution differ due to variations in the amount of uncertainty, which

can occur either in tandem with or independently of the changes in the mean. As illustrated

in Figure (C3), we find that the divergence between the ES and EL responses is statistically

significant for monetary, demand, and financial shocks, but not for supply shocks.

Finally, the importance of this state-dependent mechanism is underscored when we evaluate

the impulse responses during a period of financial distress (Figure (7), panel b). While the

22The non-linearities in our model require the use of GIRFs, which can be understood as an average IRF
conditional on a given starting point. There is a distribution of possible IRFs around this average, which we refer
to as “economic uncertainty” (implied by the model’s nature), distinct from “statistical uncertainty” (rooted in
estimation precision).
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responses are qualitatively similar to those prevailing in the calm period, their magnitudes are

quantitatively much larger. For instance, the responses to demand and financial shocks are

more than twice as large as those observed during the calm period. This amplification implies

that the differences between our model and its homoscedastic counterpart become even more

pronounced during crisis episodes, as the latter produces IRFs that are not state-dependent.

5 Historical Structural Decomposition and Counterfactuals

5.1 Historical Structural Decomposition

We now conduct a historical decomposition to evaluate how different structural shocks have

shaped the evolution of macroeconomic variables over time. Our analysis departs from the

conventional focus on the mean of the distribution to rather emphasize the behaviour of the

tails. Historical decompositions in non-linear models pose greater technical challenges than in

their linear counterparts. The primary difficulty is that a shock at time t not only has a direct

linear effect on the variables but also alters the variance of future shocks. This raises the question

of whether observed changes should be attributed solely to current shocks or also to previous

shocks creating the volatile conditions that amplify or dampen the effects of current shocks.23

Here, we adopt the change in forecast function (CFF) approach from Balke (2000) to examine

how a structural shock at time t alters the forecast for future variables.24 The CFF isolates the

linear and non-linear effects of a single shock type, while interactions between different shock

types are absorbed into a residual term.

Using this approach, Figure (8) shows the historical decomposition of the ES for one-quarter-

ahead euro area GDP growth. Our structural framework offers a more insightful decomposition

of growth-at-risk than reduced-form quantile regressions because it directly attributes downside

risk to specific economic shocks. Our decomposition identifies financial and demand shocks as

significant drivers of the ES for GDP growth in the euro area. In the lead-up to the 2008 financial

crisis, adverse financial shocks, compounded by negative demand shocks, pushed the left tail of

GDP growth to historical lows. Financial shocks also played a pivotal role during the onset of

the sovereign debt crisis in 2012.

Table (2) systematically quantifies the contribution of each shock to the ES of GDP growth

on average over our sample period. The results confirm that financial and demand shocks were

23Attempts at historical decomposition in this context include Carriero et al. (2018) and Chan et al. (2022).
However, in the first, only the impact of uncertainty and mean shocks as a composite are disentangled, while the
latter focuses only on the decomposition of the mean variables. Since the model lacks the GaR channel, it is also
not useful for decomposing downside risk, which is independent of the state of the economy in this model.

24More formally, the CFF is computed as CFF(Ωt−1, k, i) = E[Yt+k|Ωt−1, ϵ
i
t, . . . , ϵ

i
t+k] − E[Yt+k|Ωt−1], where

Ωt−1 is the information set at t−1, k is the forecast horizon, and ϵi is a structural shock of type i. The final term
captures the contribution of initial conditions. Notably, in linear models, the CFF aligns with the exact historical
decomposition.
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Figure 8: Structural Decomposition of the ES of GDP Growth (QoQ, one quarter ahead)

Note: The figure shows the structural decomposition of the Expected Shortfall (ES) for one-quarter-ahead
quarter-on-quarter GDP growth, derived from the estimated VAR-QR. Both the contributions and the series are
displayed as deviations from trend. The decomposition is carried out using the Change in Forecast Function
(CFF) method. Shaded areas denote recession dates.

the primary drivers of downside tail risk in the euro area, jointly explaining approximately 60%

of the variation in the ES of GDP growth, while supply shocks accounted for around 11%.

Contribution of structural shocks to the mean

Monetary Demand Supply Financial Residual

GDP Growth, QoQ 14 38 9 27 11
Inflation, QoQ 9 14 46 21 9
SSR 23 24 17 24 9
CISS 15 19 13 43 8

Contribution of structural shocks to Expected Shortfall of GDP growth

One Quarter ahead, QoQ 15 30 11 29 13

Table 2: Shock Contributions (in Percent) to Historical Decompositions (CFF Method)

Note: Each shock’s contribution is computed as Contributioni
j =

∑T
t=1 |Γj

i,t|∑J
j=1

∑T
t=1 |Γj

i,t|
, where Γj

i,t is the contribution

of shock j to the deviation of variable i from its trend at time t. We use 1,000 paths for the forward simulation
of the ES at each point in time. Contributions may not sum to 100% due to rounding.

Mean vs. Uncertainty Channel As previously discussed, tail dynamics are shaped by

the interplay of mean and uncertainty effects. To disentangle their historical importance, we

decompose the variance of the ES as follows:
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Var(ESt+h) = Var(Meant+h + Uncertaintyt+h)

=

mean component︷ ︸︸ ︷
Var(Meant+h)+Var(Uncertaintyt+h) + 2Cov(Meant+h, Uncertaintyt+h)︸ ︷︷ ︸

uncertainty component

Figure (9) illustrates this decomposition for the ES of GDP growth at one-, three-, and

twelve-month-ahead horizons. Within each panel, we break down the contributions of each

shock into variations driven by the mean (solid bars) and those driven by uncertainty (patterned

bars). The uncertainty component, indicated by the percentages above the bars, captures all

variation not explained by the mean component and is thus derived as a residual. The findings

indicate that while the mean channel dominates, the uncertainty channel plays a significant

role, accounting for 14% to 52% of the variance in the ES, depending on the type of shock

and length of the horizon. Moreover, the absolute and relative contributions of the uncertainty

channel increase with the forecast horizon, as the mean-volatility interaction has more time to

materialise. Financial and demand shocks are the dominant drivers of the overall effects, though

the impact of different shocks tends to converge over longer horizons.

Figure 9: Mean and Uncertainty Channel Contributions to ES of GDP Growth

Note: The figure illustrates the variance decomposition of the Expected Shortfall (ES) by shock and fore-
cast horizon, and specifically, for one month ahead (MoM), one quarter ahead (QoQ), and one year ahead
(YoY). The mean component is defined as Meant+h = (Et[∆GDPt+h] − ∆GDPTrend

t+h ), while the uncer-
tainty component is given by Uncertaintyt+h = ESGDP

t+h − Meant+h, capturing the residual variation in the
tail. Solid bars represent Var(Meant+h), whereas the more transparent bars with a dashed outline represent
Var(Uncertaintyt+h) + 2Cov(Meant+h, Uncertaintyt+h). The percentages indicate the share of the uncertainty
component to the total variance of the ES. The decomposition is conducted using the CFF method.

The decomposition for inflation, shown in Figure (C4), reveals several key findings. First,

inflation tail risk is primarily driven by the conditional mean, though the uncertainty channel

remains significant. Second, the contribution of the uncertainty channel varies substantially

across shocks and horizons (from 5% to 58%). Third, supply shocks are the main drivers of

variation in inflation risk, with a strong contribution from the mean channel.

Structural Drivers of Joint Tail Risk We now analyse how structural shocks affect the

joint distribution of inflation and GDP growth. While the notion of a “tail” is intuitive for
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a single variable, its interpretation becomes more complex for a joint distribution. To shed

light on this aspect, we adopt the following approach. First, we construct a baseline joint

distribution for GDP growth and inflation by simulating the system under the combined impact

of all shocks. Next, we incorporate a specific additional shock to the system and evaluate its

effects. The resulting outcomes are categorized into four distinct regions, based on whether

GDP growth and inflation values lie above or below the mean of the baseline distribution. Using

this approach to highlight joint macroeconomic risks, Table 3 summarises the effects of each

structural shock on the probability of falling into one of these four regions, starting from a

baseline distribution evaluated as of January 2009.

The results indicate how contractionary demand and financial shocks move GDP and inflation

in the same direction, thereby increasing the likelihood of simultaneous downward adjustments

in both variables while conversely reducing the probability of combined upward movements.

Monetary policy shocks, on the other hand, exhibit a relatively limited impact, reflecting their

smaller magnitude during a period characterized by systematic and predictable monetary policy.

In contrast, adverse supply shocks significantly increase the likelihood of a stagflationary trade-

off, where recessionary forces are accompanied by inflationary pressures.

Figure (10) provides a graphical illustration on how financial shocks primarily drive positively

correlated outcomes for GDP growth and inflation. The main panel of the figure contrasts the

baseline joint probability distribution from January 2009 (blue contour lines) with the post-

shock predicted distribution (solid yellow lines and filled density). The financial shock induces

a significant shift of the probability mass toward a severe recession and a deflation, as indicated

by the increased density in the bottom-left corner of the joint distribution. Conversely, the

likelihood of an expansionary, inflationary outcome diminishes significantly. Meanwhile, the

probability of a negatively correlated outcome, a stagflation (a combination of recession with

inflationary pressures) declines slightly, reflecting the demand-like nature of the financial shock.

The marginal distributions for each variable are displayed on the sides, with dashed lines marking

the 5th and 95th percentiles.

5.2 Historical Counterfactual

The Global Financial Crisis without the Uncertainty Channel In our framework, a

shock not only directly impacts the economy but also influences the variance of future shocks,

amplifying their effects down the road. This mechanism is conceptually linked to a vast literature

on the interaction between financial conditions and uncertainty, which highlights the amplifying

role of risk-taking and binding constraints.25 In our model, changes in uncertainty are proxied

25Recent contributions in this direction include Brunnermeier and Sannikov (2014), Guerrieri and Iacoviello
(2017), and Aikman et al. (2024).
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Probability of Joint Scenarios

Growth/Inflation
↓ & ↓ ↑ & ↓ ↓ & ↑ ↑ & ↑

Before Shock: January 2009

30% 21% 18% 32 %

Effects of shocks on changes in probabilities (p.p.)

Monetary 1 1 -1 -1
Demand 21 -14 12 -20
Supply -13 -13 16 10
Financial 25 -2 -5 -18

Table 3: Structural Shock Effects on the Joint Distribution of Inflation and GDP Growth

Note: The table displays, in the first row, the probabilities associated with the baseline joint distribution for GDP
growth and inflation, obtained by simulating the system under the combined impact of all shocks as of January
2009. Subsequent rows show the percentage point changes in these probabilities resulting from incorporating a
specific additional two-standard-deviation shock. The outcomes for GDP growth and inflation are partitioned
into four regions depending on whether they fall below(↓) or above (↑) the mean of the baseline distribution.
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Figure 10: Financial Conditions Shock: Joint Distribution of Inflation and Real GDP Growth

Note: The figure displays the simulated joint and marginal distributions of average quarter-on-quarter real
GDP growth and inflation two quarters ahead, starting from January 2009. The blue lines refer to the baseline
distribution, obtained by simulating the system under the combined impact of all shocks. The yellow distribution
is derived by incorporating an additional two-standard-deviation financial shock. Dashed coloured lines indicate
the 5th and 95th percentiles of the marginal distributions shown along the axes. The dashed grey lines indicate
the conditional mean of the baseline distribution.
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by shifts in shock variances.

The structural nature of our framework allows us to construct a historical counterfactual

to explore how the economy would have evolved without this uncertainty channel. Specifically,

we simulate a counterfactual trajectory for the euro area economy during the 2008-2009 global

financial crisis, keeping the variances of all shocks fixed at their unconditional mean.

Figure 11: Counterfactual Global Financial Crisis

Note: The figure plots the actual trajectory of year-on-year real GDP growth (blue line) against a counterfactual
path (yellow line) where the uncertainty channel is turned off from June 2007 to December 2010 by holding shock
variances constant at their unconditional mean. The bars quantify the contribution of this channel, representing
the difference between the two scenarios. Shaded areas denote recession dates.

Figure (11) depicts both the actual path of year-on-year GDP growth (blue line) and the

counterfactual path without the uncertainty channel (yellow line). A substantial portion of the

sharp decline in GDP growth during the financial crisis can be attributed to the amplification

effect arising from this channel. Specifically, the uncertainty channel amplifies the decline in

GDP growth by approximately 4 percentage points at the trough of the recession, accounting

for roughly two-thirds of the overall contraction.

6 Conclusion

This paper presents a framework for identifying the structural drivers of risks to GDP and infla-

tion. By shifting the focus from traditional macroeconomic indicators to structurally identified

shocks, our analysis provides a deeper understanding of the dynamics of both downside and

upside risks. The proposed approach integrates a VAR model, aimed at estimating the condi-

tional mean of the distributions, with quantile regressions, capturing the time-varying volatility

of the VAR residuals. Structural identification techniques are then employed to disentangle the

contributions of fundamental shocks to movements in both the mean and various quantiles of

the distributions. Our findings highlight the highly time-varying nature of downside risk to
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GDP growth, primarily driven by demand and financial shocks. These shocks generate a strong

interaction between the mean and volatility, resulting in a negatively skewed GDP growth dis-

tribution. This effect is particularly pronounced at times of heightened market distress. In

contrast, supply shocks exhibit a more symmetric effect, influencing both the lower and the

upper quantiles of GDP growth in a similar manner. For inflation, supply shocks drive instead

a positive mean-volatility co-movement, where higher inflation is associated with increased un-

certainty, causing a significant time variation in upside risk.
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Forni, Mario, Luca Gambetti, Nicolò Maffei-Faccioli, and Luca Sala (2023). The impact of fi-

nancial shocks on the forecast distribution of output and inflation. Working Paper. Norges

Bank.

Forni, Mario, Luca Gambetti, and Luca Sala (2025). “Downside and upside uncertainty shocks”.

In: Journal of the European Economic Association 23.1, pp. 159–189.

Gertler, Mark (2020). “Comments and discussion on “When is growth at risk?” by Plagborg-

Møller, M., Ricco, G., Reichlin, L., and Hasenzagl, T.” In: Brookings Papers on Economic

Activity.

Giglio, Stefano, Bryan Kelly, and Seth Pruitt (2016). “Systemic risk and the macroeconomy:

An empirical evaluation”. In: Journal of Financial Economics 119.3, pp. 457–471.

Goulet Coulombe, Philippe, Mikael Frenette, and Karin Klieber (2023). “From reactive to proac-

tive volatility modeling with hemisphere neural networks”. In: Available at SSRN 4627773.

Guerrieri, Luca and Matteo Iacoviello (2017). “Collateral constraints and macroeconomic asym-

metries”. In: Journal of Monetary Economics 90, pp. 28–49.

ECB Working Paper Series No 3171 28



Guerrón-Quintana, Pablo, Alexey Khazanov, and Molin Zhong (2023). Financial and Macroeco-

nomic Data Through the Lens of a Nonlinear Dynamic Factor Model. Finance and Economics

Discussion Series 2023-027. Board of Governors of the Federal Reserve System (U.S.)

Huang, Yu-Fan, Wenting Liao, Sui Luo, and Jun Ma (2024). “Financial conditions, macroeco-

nomic uncertainty, and macroeconomic tail risks”. In: Journal of Economic Dynamics and

Control 163, p. 104871.

Iseringhausen, Martin (2024). “A time-varying skewness model for Growth-at-Risk”. In: Inter-

national Journal of Forecasting 40.1, pp. 229–246.

Iseringhausen, Martin, Ivan Petrella, and Konstantinos Theodoridis (2023). “Aggregate skewness

and the business cycle”. In: Review of Economics and Statistics, pp. 1–37.

Koenker, Roger and Quanshui Zhao (1996). “Conditional Quantile Estimation and Inference for

Arch Models”. In: Econometric Theory 12.5, pp. 793–813.

Koenker, Roger W and Gilbert Bassett Jr. (1978). “Regression Quantiles”. In: Econometrica

46.1, pp. 33–50.
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A Additional Details on Structural Identification

This section complements section 2.3 by providing a more detailed explanation of the structural

identification. The primary objective is to determine the impact matrix B0, a procedure that

consists of the following four steps.

I. Estimate the unconditional covariance matrix Similar to a homoscedastic VAR, struc-

turally identifying the model requires connecting the covariance matrix of reduced-form errors

to the structural parameters: the impact matrix B0 and the time-varying variances of structural

shocks Λt. To do so, we assume that the impact matrix B0 is constant over the sample and,

without loss of generality, that the structural error variances are normalized to one on average

(E[Λt] = I).26 These assumptions allow us to relate the unconditional covariance matrix of

reduced-form errors, ΣM
u = E [utu

′
t], directly to the impact matrix B0 as follows:

ΣM
u = E[B0ΛtB

′
0] = B0E[Λt]B

′
0 = B0IB

′
0 = B0B

′
0 (A.1)

This approach is similar to methods used in the SVAR-GARCH literature, where using the

unconditional covariance simplifies the estimation (see, e.g., Van der Weide, 2002; Lanne and

Saikkonen, 2007; Luetkepohl and Milunovich, 2016).

Estimating ΣM
u is therefore the first key step in the structural identification. Building on the

assumption that the reduced-form errors are normally distributed with a time-varying standard

deviation, we can define each element of ΣM
u as:

ΣM
u,i,j = E [ui,tuj,t] = E

[
σi,tσj,tu

∗
i,tu

∗
j,t

]
= E [σi,tσj,t]E

[
u∗i,tu

∗
j,t

]︸ ︷︷ ︸
ρ∗i,j

+Cov[u∗i,tu∗j,t, σi,tσj,t], (A.2)

where u∗i,t is defined as the reduced-form error normalized (i.e., divided) by its time-varying

standard deviation σi,t, and ρ∗i,j is the time-invariant cross-correlation between the normalized

reduced-form residuals.27 Moreover, for the diagonal elements, this simplifies further:28

ΣM
u,i,i = E

[
u2i,t

]
= E

[
σ2
i,t

]
(A.3)

Together, eq. (A.2) and eq. (A.3) allow us to estimate the unconditional covariance matrix

ΣM
u . In our application, these parameters are informed by the variance estimates from the

26This normalization is standard in the heteroscedastic VAR literature, as the variances and impact matrix
are only identified up to scale. Note that this still allows for time-varying cross-correlations of the reduced-form
errors, as these depend on the variances of the structural shocks.

27Since normalized errors have unit variance by construction, E
[
u∗
i,tu

∗
j,t

]
= Cov[u∗

i,t, u
∗
j,t] = ρ∗i,j .

28Since ρ∗i,i = 1 and Cov[u∗
i,tu

∗
i,t, σi,tσi,t] = Cov[(u∗

i,t)
2, σ2

i,t] = E
[

(ui,t)
2

σ2
i,t

σ2
i,t

]
− E

[
(u∗

i,t)
2
]
E
[
σ2
i,t

]
= E

[
u2
i,t

]
−

E
[
σ2
i,t

]
= 0.

ECB Working Paper Series No 3171 31



quantile regressions (for the σ terms as described in section 2.3, and by the residuals u of the

VAR for the covariance and ρ terms.

II. Identify a set of valid impact matrices While other standard VAR identification

methods are also feasible in our setting, in our empirical application we use sign and narrative

restrictions, leading us to identify a set of impact matrices {B0(m)}Mm=1 that are consistent with

the decomposition of the unconditional variance-covariance matrix expressed in eq. (A.1). We

describe in more detail our identification approach in sections 2.3 and 3.2.

III. Compute the implied scaling factors in sample As is standard in the structural

VAR literature, reduced-form errors are linear combinations of the structural shocks. This

fact, combined with the assumption that structural shocks are independent, implies that the

variances of the reduced-form shocks are also linear combinations of the structural variances.

This relationship forms a linear system that can be solved for the unknown structural variances,

diag(Λt):

diag(Λt) = (B0 ⊙B0)
−1diag(Σu,t) (A.4)

where ⊙ is the Hadamard (element-wise) product.29

This step also acts as an identification restriction. The time-varying nature of the model

requires that a selected B0 yields admissible (i.e., non-negative) structural variances for the

entire sample. Therefore, we restrict the set of valid impact matrices to ensure that diag(Λt) is

positive at all times t.30

IV. Select a unique impact matrix Since our identification approach relied on sign and

narrative restrictions, we arrive at this step with a set of valid impact matrices, {B0(n)}n∈N ,

rather than a unique B0 matrix. We select a unique matrix from this set via maximum likelihood,

inspired by Lanne and Luetkepohl (2008):

max
B0∈{B0(n)}n∈N

logL =− nT

2
log 2π − 1

2

T∑
t=1

log
(
det

(
B0ΛtB

′
0

))
− 1

2

T∑
t=1

(yt −Ayt−1)
′(B0ΛtB

′
0)

−1(yt −Ayt−1)

where T is the number of periods and n is the number of endogenous variables. As mentioned

in section 2.3, we exploit the model’s heteroscedasticity to identify a unique impact matrix B0

from the set of suitable candidates. As eq. (A.4) shows, alternative impact matrices B0 lead to

29From eq. (2.5) in the main text, Σu,t = B0ΛtB
′
0 = B0diag(Λt)B

′
0. This implies diag(Σu,t) =

diag(B0diag(Λt)B
′
0) = (B0 ⊙B0)diag(Λt).

30For simplicity in the simulation exercises, any implied ‘negative variance’ was constrained to zero.
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different in-sample structural variances Λt. Unlike in homoscedastic VARs, this time variation

in variances makes the likelihood function sensitive to the parameters in B0, allowing us to use

maximum likelihood to pin down B0 uniquely.

B Data

Variable Transformations Source

GDP log of interpolated monthly

real GDP, multiplied by 100

Quarterly Real GDP Euro

Area (ECB), interpolated to

monthly frequency with the

method of Santos Silva and

Cardoso (2001) using data on

Industrial Production exclud-

ing the construction sector

(ECB).

HICP log of HICP multiplied by 100 Headline HICP (ECB)

STR Short Term Rate, percent per

annum, demeaned

We use the monthly aver-

age Euro Area Shadow Short

Term rate Jan-1995:Sep-2022

from Krippner (2013) and lin-

early extrapolate with the 3-

month Euribor.

CISS square root as suggested by

Kremer (2016), demeaned

Composite Indicator of Sys-

temic Stress Jan-1987:Oct-

2023 (ECB), extrapolated

with VIX (ECB)

Table B1: Database
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Figure B1: Database for the Euro Area VAR-QR Model

Note: Shaded areas depict euro area recessions dated by CEPR-EABCN. Series: log of euro area real GDP, log
of euro area HICP, Shadow Short Term Rate, and the square root of CISS (demeaned).

C Additional Figures

(a) Standard Deviations of Structural Shocks (b) Identified Structural Shocks

Figure C2: Standard deviations the structural shocks (panel a) and realisations of (unscaled)
structural shocks (panel b).
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Figure C3: GIRFs to Uncertainty of GDP Growth

Note: The figure plot the response over time of the difference between expected shortfall and longrise in cumu-
lative GDP growth following various structural shocks. The expected shortfall and longrise are calculated using
the 5th and 95th percentiles, respectively, and the analysis considers one standard deviation structural shocks
simulated as of June 2005. The blue-shaded area indicates the 90% confidence interval, constructed using the
bootstrap method by Bruder (2018).

Figure C4: Mean and Uncertainty Channel: Expected Longrise of Inflation

Note: The figure illustrates the variance decomposition of the Expected Shortfall (ES) for inflation by
shock and forecast horizon, highlighting the contribution from both the mean and uncertainty channels. The
mean component is defined as Meant+h = (Et[∆HICPt+h] − ∆HICPTrend

t+h ), while the Uncertaintyt+h =

(Et[ELHICP
t+h ] − ELHICP,Trend

t+h −Meant+h), capturing the residual variation in the tail net of the mean compo-
nent. Solid bars represent = Var(Meant+h), whereas the more transparent bars with a dashed outline represent
= Var(Uncertaintyt+h)+2Cov(Meant+h, Uncertaintyt+h)) The percentages indicate the share of the uncertainty
component to the total variance of the ES. The decomposition is conducted using the CFF method.
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(a) Monetary Policy (b) Demand (c) Supply (d) Financial Conditions

Figure C5: Impulse Response Functions (Mean): GIRF in June 2005 (Calm Period).

Note: The dark blue solid lines are the GIRFs of the mean responses to a one standard deviation tightening
structural shock as of June 2005. The blue-shaded areas are the 80% and 90% confidence intervals, capturing
statistical uncertainty (based on the bootstrap method proposed by Bruder (2018)).
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(a) Monetary Policy
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(c) Supply

Figure C6: Response of Joint Distribution of GDP Growth and Inflation

Note: The figure displays the simulated joint and marginal distributions of average quarter-on-quarter real
GDP growth and inflation two quarters ahead, starting from January 2009. The blue lines refer to the baseline
distribution, obtained by simulating the system under the combined impact of all shocks. The yellow distribution
is derived by incorporating an additional two-standard-deviation structural shock. Dashed coloured lines indicate
the 5th and 95th percentiles of the marginal distributions shown along the axes. The dashed grey lines indicate
the conditional mean of the baseline distribution.
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