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Abstract

We compare supermarket price setting in the US and the euro area and assess its impact
on food inflation. We introduce a novel scanner dataset of Germany, the Netherlands,
France, and Italy (EA4) and contrast it with an equivalent dataset from the US. We find
that both higher frequency and stronger state dependence of price changes contribute to
higher flexibility of supermarket inflation in the US relative to the euro area. We argue
that the driving force behind both factors is higher cross-sectional volatility in the US.
Larger product-level fluctuations both force retailers to adjust prices more frequently
and increase price misalignments, which increase the selection of large price changes.
Both facts are well represented by a mildly state-dependent price-setting model, and
they jointly explain over a third of the difference in food-inflation volatility between the
US and the euro area as well as around a third of the difference between the inflation
responses to the COVID-19 shock in Germany and Italy.

Keywords: food inflation, state-dependent price setting, generalized hazard, duration
hazard, US and euro-area comparison, COVID-19

JEL codes: E31, E32, E52, F44
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Non-technical Summary

The paper compares supermarket price setting in the US and the euro area and assesses its
impact on food inflation. Price setting in the food-retail sector has macroeconomic significance
because food consumption accounts for around one-fifth of total consumption in both regions,
and grocery prices have an outsized influence on inflation expectations due to their salience.

The paper introduces a novel store-level scanner dataset acquired from the marketing company
IRi by the European Central Bank in the context of the Price-setting Microdata Analysis
Network (PRISMA). The dataset covers Germany, the Netherlands, France, and Italy (EA4)
between 2013 and 2017. It records weekly prices of over 1.8 million products in over 37,000
stores in a spatially representative sample. It contrasts it to evidence obtained from the US
IRi Academic Dataset, an analogous weekly panel over the period 2001–12 of over 200,000
products in over 3,000 stores covering the 50 most important US markets.

The datasets show that sales-filtered prices change infrequently and the average absolute size
of price changes is large in both regions. Both the frequency and the size of price changes are
substantially higher in the US. This indicates that product-level volatility is larger in the US
relative to the euro area.

The paper also measures the extent of state dependence in price setting in the two regions.
State dependence determines the endogenous selection of large price changes and can raise
the volatility of inflation. We use the unparalleled cross-sectional granularity of the data to
generate data moments that are directly informative about state dependence. We find that
state dependence is present in both regions and it raises aggregate price flexibility by around
25%.

The paper argues that the driving force behind both higher frequency and stronger state
dependence is higher cross-sectional volatility in the US. Larger product-level fluctuations
both force retailers to adjust prices more frequently and raise price misalignments, which
increase the selection of large price changes. The conclusion is confirmed by a structural
analysis.

The paper provides evidence on the responses of supermarket prices to the COVID-19 shocks
in Germany and Italy. The shock raised supermarket demand by restricting access to food
away from home but had a limited impact on costs because supermarkets were an essential
sector and thus sheltered from lockdowns similarly in the two countries. The paper shows
that the inflation response was lower in Germany. The paper argues that lower frequency
of price changes in Germany, in line with lower product-level volatility there, can explain a
sizable share of the inflation difference.
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1 Introduction

Food inflation is more volatile in the US than in the euro area and responded more forcefully
in the US to the COVID-19 pandemic (see Figure 1). Price setting in the food-retail sector has
macroeconomic significance because food consumption accounts for around one-fifth of total
consumption in both regions and because the salience of grocery prices makes them influence
households’ aggregate inflation expectations (D‘Acunto et al., 2021). Previous research has
established that price flexibility depends both on the frequency of repricing (how many prices
change) and the extent of state dependence in price setting (which prices change) (Golosov
and Lucas, 2007; Caballero and Engel, 2007; Alvarez et al., 2022). We use new store-level
scanner data from the euro area and a corresponding dataset from the US to carefully measure
these two features of supermarket price setting, and we assess their impact on the difference
in food-inflation volatility.

We find that both higher frequency and stronger state dependence of price changes contribute
to higher flexibility of supermarket inflation in the US relative to the euro area. We argue
that the driving force behind both factors is higher cross-sectional volatility in the US. Larger
product-level fluctuations both force retailers to adjust prices more frequently and raise price
misalignments, which increase the selection of large price changes. Our conclusions have
implications for both model selection and policy.

The paper introduces a novel store-level scanner dataset acquired from the marketing company
IRi by the European Central Bank in the context of the Price-setting Microdata Analysis
Network. The dataset covers Germany, the Netherlands, France, and Italy (EA4) between
2013 and 2017.1 It records weekly prices of over 1.8 million products in over 37,000 stores in a
spatially representative sample. We contrast it to evidence obtained from the US IRi Academic
Dataset, an analogous weekly panel over the period 2001–12 of over 200,000 products in over
3,000 stores covering the 50 most important US markets.

We use the datasets to characterize key features of price setting in the US and the euro
area. First, we contrast the regions’ standard moments about the repricing frequency and
size distribution of price changes. We filter out temporary sales (Kehoe and Midrigan, 2015;
Eichenbaum et al., 2014), which account for the majority of price changes but contribute
only marginally to fluctuations in inflation at regular business cycle frequencies. In line with
previous evidence, we find that sales-filtered reference prices change infrequently and the
average absolute size of price changes is large in both regions (Klenow and Kryvtsov, 2008;

1For the analysis of the COVID shock, we use an auxiliary dataset, which covers the period between
mid-February to mid-May in 2019 and 2020 in Germany and Italy for a subset of the stores. For details, see
Section 6.
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Figure 1: Food and non-alcoholic-beverage inflation in the US and the euro area, COICOP
01, harmonized prices, year on year
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Notes: The figure shows the evolution of year-on-year food and non-alcoholic-beverage inflation in

the US and the euro area between 2003 and 2021. The series show clear comovement over most

of the period (correlation: 59%), and US inflation shows higher volatility than euro-area inflation

(standard deviations: US: 0.95%, EA4: 0.64%).

Nakamura and Steinsson, 2008; Gautier et al., forthcoming). This evidence is consistent with
volatile product-level shocks and price-adjustment frictions (Golosov and Lucas, 2007). We
show that both the frequency and the size of price changes are substantially higher in the US.
This indicates that product-level volatility is larger in the US relative to the euro area.

Second, we measure the extent of state dependence in price setting in the two regions. State
dependence determines the endogenous selection of large price changes and can raise the
volatility of inflation. We use the unparalleled cross-sectional granularity of the data to
generate data moments that are directly informative about state dependence. In particular,
we create a proxy for price misalignments as the distance of a (log) price of a product from the
average price of the same product in competitors’ stores that changed their prices in the same
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month. The price-adjusting stores’ average price reveals the optimal reset price in a wide class
of models (Calvo, 1983; Dotsey et al., 1999; Golosov and Lucas, 2007; Woodford, 2009). To
assess the extent of state dependence, we measure both the probability of price adjustment as a
function of the misalignment (adjustment hazard) and the density of misalignments following
the framework of Caballero and Engel (2007). We find that state dependence is higher in
the US than in the euro area. It raises aggregate price flexibility by around 25% in both
regions, leading to a larger absolute impact in the US, where price flexibility due to frequency
is already higher. This implies that popular price-setting models that ignore state dependence
(Calvo, 1983) underestimate price flexibility by roughly a third. Notably, the key difference in
the extent of state dependence is driven by the more dispersed density of price misalignments,
which is strongly influenced by the already established higher volatility of product-level shocks.
Our conclusions about the state dependence of price changes are supported by additional data
moments. Specifically, the kurtosis of standardized price changes, which decreases with higher
state dependence in a wide class of models (Alvarez et al., 2022), is moderate in both regions
and lower in the US than in the euro area. Furthermore, the duration hazard of reference-
price changes is increasing in both regions in line with state dependence in price setting, after
we control for unobserved heterogeneity.

Next, we conduct a structural analysis of the price-setting moments. The analysis confirms
that higher product-level volatility is one of the key underlying causes of differences in price
setting and food-inflation volatility across the two regions. We use the state-of-the-art state-
dependent price-setting model of Woodford (2009) to estimate three underlying structural
parameters affecting price setting: (i) the magnitude of price-adjustment (menu) costs, (ii) the
standard deviation of idiosyncratic shocks, and (iii) the magnitude of information-acquisition
costs, which determines the level of state dependence in the model between the time-dependent
(Calvo, 1983) and fixed-menu-cost (Golosov and Lucas, 2007) extremes. The most notable
difference between the US and the euro area is the higher volatility of idiosyncratic shocks in
the US; both the price-adjustment and information-acquisition costs are quite similar in the
two regions. The model can account for over a third of the observed difference in food-inflation
volatility between the US and the euro area.

Finally, we provide evidence on responses to aggregate shocks by assessing supermarket prices
in Germany and Italy during the first wave of the COVID-19 pandemic. The shock raised
supermarket demand (by restricting access to food away from home) but had a limited impact
on costs (because supermarkets were an essential sector and thus sheltered from lockdowns)
similarly in the two countries. The comparison is interesting because the frequency of price
changes is substantially lower in Germany than in Italy. The difference is mainly driven by
lower idiosyncratic volatility in Germany. We document that the inflation response and the
speed of pass-through are lower in Germany, and the model calibrated to the price-setting
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moments of the two countries can explain around a third of the difference.

Related literature: The paper is related to different strands of the literature. We contribute
to the strand that compares price setting in the euro area and the US by introducing a new
supermarket-scanner dataset and contrasting key price-setting moments, such as the frequency
and size of price changes. Gautier et al. (forthcoming) compare price setting in the two regions
using microdata underlying the Consumer Price Index. They confirm that the frequency and
size of (sales filtered) price changes are larger in the US not only in the processed-food sector,
as in our sample, but also in the whole economy, albeit to a somewhat-smaller degree.

We also contribute to the literature estimating the extent of state dependence in price setting.
We calculate moments that are directly informative about state dependence, such as the
generalized and duration hazard functions, using the high granularity of the scanner data. We
find that the generalized hazard function, which expresses the probability of price changes as
a function of price misalignment, is upward sloping both in the US and in the euro area in line
with state dependence in price setting. To proxy for price misalignments, we use distance from
competitors’ reset prices (Karadi et al., 2020), which is a valid proxy in a wide range of price-
setting models. Our results confirm previous results, which use distance from competitors’
prices on more restrictive samples (Gagnon et al., 2012; Campbell and Eden, 2014), and
are consistent with complementary estimates using distance from an estimated cost measure
(Eichenbaum et al., 2011; Gautier et al., 2022). We show, furthermore, that the duration
hazard, which measures the probability of a price change as a function of the age of the price,
is upward sloping in both regions when we use sales-filtered reference prices and control for
unobserved heterogeneity. Upward-sloping duration hazard is in line with state-dependent
pricing models (see, for example, Dotsey et al., 1999; Nakamura and Steinsson, 2008). Our
evidence is different from that of Nakamura and Steinsson (2008), Klenow and Malin (2010),
Campbell and Eden (2014), and Alvarez et al. (2021), who find the hazard decreasing, but
in line with Fougère et al. (2007), who find it nondecreasing for most disaggregated product
groups.

We assess the implications of our evidence by estimating key structural parameters of a state-
of-the-art price-setting model (Woodford, 2009) in both regions. The model features fixed
(menu) costs of price adjustment (Mankiw, 1985), product-level technology shocks (Golosov
and Lucas, 2007), and information frictions, which allow it to capture the infrequent and
large price adjustments and state dependence that we found earlier. Like Woodford (2009),
Costain and Nakov (2011), and Alvarez et al. (2022), we find that state dependence raises
the flexibility of the price level in both regions. We argue that higher volatility of product-
level shocks in the US is the key reason behind cross-country differences in price setting and
food-inflation volatility. This result is related to Vavra (2014), who, in a related framework,
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argues that variation of idiosyncratic volatility over time (as opposed to across countries,
which this paper emphasizes) implies time-varying price flexibility over the business cycle.
Higher cross-sectional volatility in the US versus the euro area has also been documented
using various alternative measures. Using stock returns, Guo and Savickas (2008) and Ang
et al. (2009) document higher idiosyncratic volatility in the US than in major euro-area
countries (see also Bekaert et al., 2012). Relatedly, Comin and Philippon (2005) find higher
firm-level employment-growth volatility in the US than in selected euro-area countries (see
also Thesmar and Thoenig, 2011).

The paper is structured as follows. Section 2 describes the data. Section 3 describes conven-
tional moments of price changes in the two regions, including frequency, size, and higher-order
dispersion measures. Section 4 presents more complex moments, including the generalized
(price gap) and duration (price age) hazard functions, and it quantifies the level of state de-
pendence in the two regions. Section 5 conducts a structural analysis, and Section 6 contrasts
the price-setting responses to the COVID shock in Germany and Italy. Section 7 concludes.

2 Data

This section introduces the novel euro-area dataset and shows its key features together with
its US counterpart. We also present the data-cleaning steps we take to improve the informa-
tiveness of the data for our analysis of price setting.

2.1 Data Coverage

The dataset covers four euro-area countries—Germany, the Netherlands, France, and Italy
(between 2013 and 2017)—and the US (between 2001 and 2012).2 The datasets are weekly
panels of total revenues (TRpsw) and units sold (Qpsw) for each product p in store s in week
w. We refer to a product in a store as an item. Unit-value prices of each item are calculated
as revenues over units sold (P uv

psw = TRpsw/Qpsw).

2Even though the US and EA4 datasets do not overlap, this does not hinder our comparison of the key
moments in our analysis, as they are fairly stable over our sample period (see, for example, Figure 15 in the
appendix on the frequency of reference-price changes).
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Table 1: Data coverage

US DE FR IT NL

Time series 2001–12 2013–17

# products (td) 205 370 423 698 392
# stores (td) 3.3 10.3 5.9 14.3 6.6
# observations (bn) 2.7 13.8 10.0 11.0 7.7

# 2-digit ZIPs 51 97 93 93 94
# chains 147 17 43 435 29
% in HICP/CPI 19.6 18.5 23.3 23.4 20.7
annual exp. (bn e/$) 6.2 32.8 56.2 42.2 30.0

Note: DE: Germany; FR: France; IT: Italy; NL: the Nether-
lands; HICP: Harmonized Index of Consumer Prices (EA4);
CPI: Consumer Price Index (US)

2.1.1 Product Coverage

The granularity of the datasets is unsurpassable: they include all products sold in each store
in the sample.3 The products are identified with their unique barcodes (EANs in the euro
area and UPCs in the US).4 The number of unique products ranges from around 370,000 to
700,000 in the euro area and is over 200,000 in the US (see Table 1).

Products sold in supermarkets include food, alcoholic and non-alcoholic beverages, personal-
care products, and goods for household maintenance. They cover around 20% of the consumer
basket. The expenditure distribution in the IRi samples closely approximates the true con-
sumption pattern of households across major product categories (see Appendix A).

We conduct the analysis below using a subsample for each country to ease the computational
burden. Specifically, we select a 5% random sample of EANs in each EA4 country and a

3The US sample only includes products within 30 selected broad product categories: beer, blades, carbon-
ated beverages, cigarettes, coffee, cereal, deodorant, diapers, facial tissue, frankfurters, frozen dinner, frozen
pizza, household cleaner, laundry detergent, butter, mayonnaise, milk, mustard and ketchup, peanut butter,
paper towels, photography supplies, razors, salty snacks, shampoo, spaghetti sauce, sugar substitutes, toilet
tissue, toothbrush, toothpaste, yogurt.

4The EANs of private-label products are masked to protect the identity of the supermarket chain. We
exclude private-label products from the analysis in France, where the revenues and quantities sold of all
private-label EANs are aggregated by store, confounding the evolution of item-level prices.
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25% random sample of UPCs from the US.5 The random choice of products ensures that
the sample is representative. We include all the stores and time periods in the subsample
wherever the selected products were sold in positive quantities.

2.1.2 Store Coverage

The datasets are representative of the brick-and-mortar-store sales of participating super-
market chains. The participating chains include regular and discounter supermarkets as well
as drug stores.6 The store IDs are masked to protect the identity of the supermarkets, but
they are unique over time, which allows us to track the prices of items over time.7 In the
euro-area countries, our dataset includes 75% of the IRi stores. In two countries (Germany
and Italy), some supermarket chains only share a representative sample of their stores with
IRi. We upweight sample stores using projection weights created using information about the
population of stores by geographic unit and store type, which is also part of the dataset (see
B for details).

The euro-area datasets are spatially representative in each country. They include the location
of the stores up to the first two digits of their ZIP code. The two-digit ZIP areas partition the
countries into around 100 regions. The US dataset covers 50 urban markets. These markets
approximately correspond to 50 metropolitan statistical areas (MSAs) out of the 384 MSAs
in the mainland US in 2010 and cover 73% of the US population.8

2.2 Data Cleaning

The focus of our analysis is reference prices (Kehoe and Midrigan, 2015; Eichenbaum et al.,
2011), and we conduct a series of filtering steps to obtain them.

First, we estimate posted prices from weekly unit-value prices. We conduct two filtering steps.
First, we filter out same-direction consecutive changes. We do this to minimize the impact

5The US sample includes fewer products and stores. Choosing a relatively larger subsample makes the
number of items in the US sample the same order of magnitude as in the euro-area countries.

6The datasets exclude hard discounters such as Lidl, Aldi, and Walmart.
7To guard the identity of the stores, store information is only included in our sample if there are enough

stores (for example, at least three in France) by geographical area and store type. In most cases (in France
and the US, for example), store information is withdrawn from the sample in these cases. In other cases
(in Italy, for example), the geographical granularity becomes coarser (one-digit as opposed to two-digit ZIP
areas).

8Therefore, even though the US sample is not spatially representative, it covers the most populous areas,
providing a relevant sample of supermarkets across urban areas.
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of midweek price changes. Intuitively, a midweek price increase raises the average price only
partially in the initial week and passes through fully only during the second week. Second,
we round prices upward to the nearest cent to mitigate the impact of buyer-specific discounts
(see Appendix C for details).

Next, we construct weekly reference prices (P f
psw) as 13-week running modal prices (Kehoe and

Midrigan, 2015). Reference prices capture persistent changes in prices and disregard changes
that are completely reversed within weeks (temporary sales). By focusing on reference prices,
we capture an overwhelming share of fluctuations in supermarket inflation at business cycle
frequencies, and we filter out a large share of high-frequency variation caused by temporary
sales (see Appendix D.1 for details). Temporary sales also account for a sizable fraction of
the frequency of posted-price changes—almost two-thirds in most countries (see Table 9).
Despite an ongoing debate about whether sales are an active margin for retailers to adjust
to aggregate fluctuations (Kehoe and Midrigan, 2015; Anderson et al., 2017; Kryvtsov and
Vincent, 2021), there is a wide consensus that most adjustment at business cycle frequencies is
achieved through reference prices. Previous research has also documented that sales inflation
does not respond significantly or responds only marginally to aggregate shocks (Anderson
et al., 2017; Karadi et al., 2020; Gautier et al., forthcoming). This justifies our focus on the
behavior of reference prices in the rest of the paper.

Last, we transform weekly data to the monthly frequency. This facilitates comparison with
monthly microlevel price data underlying the official price indices, helps us concentrate on
more persistent price adjustments that are more relevant at business cycle frequencies, and
overcomes some of the weaknesses of the data, including the sizable share of data missing
because of zero sales. We define the monthly item price as the (highest) mode of the item
price over the month.9

3 Key Moments of Price Changes

In this section, we characterize key features of reference-price changes in supermarkets across
the four euro-area countries and the US. We focus on conventional moments, including fre-
quency, size, and kurtosis of price changes, that the theoretical literature finds influence the
flexibility of the aggregate price level.

9Using the mode guarantees choosing one of the weekly reference prices, so the time aggregation does
not introduce artificial prices. This would happen if one instead used the mean or calculated monthly unit
prices. Picking the highest mode in case of multimodality tilts the monthly prices toward the (more persistent)
reference prices, which tend to be above the sales prices.
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Table 2: Key moments of reference-price changes, weighted by expenditure

Moments US EA4 DE FR IT NL

Frequency (%) 13.8 9.5 5.3 15.6 9.6 10.3
Size (%) 15.2 9.3 10.5 4.5 11.4 9.2
Kurtosis 2.7 3.2 2.9 3.8 3.3 2.7

Note: The table presents the frequency and average absolute size of
reference-price changes as well as the kurtosis of the standardized
reference-price changes, all weighted by expenditure. EA4: average
of the 4 euro area countries; DE: Germany; FR: France; IT: Italy;
NL: the Netherlands.

3.1 Frequency

The frequency of reference-price changes is a key indicator of price flexibility. As the first
row of Table 2 shows, the average frequency10 in EA4 supermarket prices is fairly low—only
9.5% monthly. This suggests that reference prices change infrequently, only once every 10.5
months, on average. The low frequency indicates that supermarkets face price-adjustment
frictions that hinder them from adjusting prices flexibly in response to changes in costs. The
price flexibility is higher in the US, where the frequency of reference-price changes is 13.8%,
implying an average duration of 7 months.11

There is notable heterogeneity in frequency across euro-area countries. In Italy and the
Netherlands, the frequency is close to the EA4 average, but it is particularly low in Germany
at 5.3% (19-month average duration) and particularly high in France at 15.6% (6.5-month
duration)—even higher than in the US.

10 All moments are weighted by annual expenditure. Formally, monthly frequency is calculated as ξt =∑
i ωitIit∑
i ωit

, where Iit is an indicator that takes the value 1 if the reference price of item i (a product in a particular

store) changed from month t−1 to month t and 0 otherwise. The weights ωit are annual expenditure weights.
Table 2 reports average monthly moments over the sample. Average absolute size and percentiles are calculated
analogously. Kurtosis is calculated using the subsample of items with at least five reference-price changes,
standardized by the mean and standard deviation at the item level and weighted by expenditure.

11The frequency is stable over time, so the issue of non-overlapping US-EA4 samples should not hinder the
international comparison (see Figure 15 in the appendix).
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3.2 Size

The average absolute size of reference-price changes is large: 9.3% in the EA4 countries, on
average. Its magnitude far exceeds what could be explained by trend inflation or aggregate
fluctuations, which are both small during our sample period. Instead, they indicate an impor-
tant role for idiosyncratic, product-level shocks. The size of price changes is higher in the US,
where it reaches 15.2%. The higher size accompanied by a higher frequency indicates a more
volatile product-level environment in the US, a factor that we analyze further in a structural
framework in Section 5. The size of price changes also varies across euro-area countries. The
average size is particularly low in France, which, together with the high frequency, indicates
lower-than-average price-setting frictions there.

The first panel of Figure 2 shows the histograms of the absolute-price-change distributions
in both areas. The size of price changes in both regions is dispersed, with many small and
large price changes. Smaller price changes are more frequent, and larger price changes are
less frequent in the EA4 relative to the US. The dispersion of the price changes is smaller in
the EA4 with an interquartile range of 9%, while it is 16% in the US.

Figure 2: Absolute and standardized reference-price-change distributions

Figure 4:
Absolute reference-price-change distributions
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Note: The figure shows the absolute (left panel) and standardized (right panel) reference-price-

change distributions in both regions. The size is large and dispersed in both regions, and it is larger

and more dispersed in the US than in the euro area. The shape of the standardized price-change

distribution is bimodal in the US, while it is unimodal in the euro area; kurtosis is lower in the US.
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3.3 Higher-Order Moments

The shape of the price-change distribution can inform us about the extent of state dependence
in price setting in a wide class of models (Alvarez et al., 2016). The second panel in Figure 2
shows the shape of the reference-price-change distribution in both regions. The reference-price
changes are standardized at the product-store level to minimize the potential bias caused by
cross-product heterogeneity in the mean or standard deviation of price changes. The figures
indicate a kurtosis of 2.7 in the US and 3.2 in the euro area, around a kurtosis of 3 of the
Gaussian distribution.

The distribution shows some pronounced bimodality in the US with some missing mass close
to zero, which is in line with the presence of fixed costs of price adjustment. At the same time,
the share of small reference-price changes stays high in the US, much higher than models with
strong state dependence would predict (Golosov and Lucas, 2007).

4 Evidence on State Dependence: Generalized and Du-

ration Hazards

The conventional moments described in the previous section provide only indirect information
about an important feature of price setting: the extent of its state dependence. Previous
research has established that state dependence, which influences which prices adjust, can have
as large an impact on aggregate price flexibility as frequency, which determines how many
prices adjust. For example, in realistic models of price setting with strong state dependence
(for example, Golosov and Lucas, 2007), the price level can respond almost completely flexibly
to monetary policy shocks even though only a few prices adjust. The reason is that in these
models, firms face a small fixed menu cost when changing prices, so they find it optimal to
adjust the highly misaligned prices. When these prices change, they change by a lot, which
can offset the impact of price rigidity and make the price level flexible. In this section, we
present two sets of moments that are more directly informative about the extent of state
dependence than conventional moments are.

4.1 Generalized Hazard

The first moment is the generalized hazard function, which expresses the probability of price
adjustment as a function of price misalignments, or price gaps. The price gap is the distance
between the posted price and the optimal reset price the store would set if all price-adjustment

ECB Working Paper Series No 2853 14



frictions were temporarily absent. The gap influences the strength of the product-level price-
adjustment force: a larger price gap means that the price is further from its optimal level,
and the foregone profit is larger.

A key empirical challenge is that the optimal reset price is unobservable. As a proxy, we
calculate competitors’ reset price (Karadi et al., 2020). This is the average reference price12

of a product in competing stores that also changed the price of the same product in the
same month.13 The measure also controls for the permanent store- and category-level price
differences caused by heterogeneity in amenities, geography, or market power. The proxy
relies on three assumptions: (i) the price of the same good among price-changing competitors
tracks the evolution of aggregate demand conditions and the product’s wholesale price, which
are the primary drivers of the optimal reset price; (ii) differences in amenities and market
power between stores cause permanent store- and category-level differences between prices;
and (iii) chains follow national price-setting strategies (DellaVigna and Gentzkow, 2019), so
local demand conditions have an insignificant impact on the optimal reset prices. We validate
our proxy by showing that the size of the price change has a very tight, almost exactly
one-to-one, negative relationship with the price gap.

Formally, we formulate the competitor-reset-price gap xpst for product p in store s in month t

in three steps. First, we take the (logarithm of) the sales-filtered reference prices pfpst. Second,

we calculate an unadjusted gap as x̃pst = pfpst − p̄
f
p(−s)t, where p̄fp(−s)t is the average reference

reset price of the same product across alternative stores that changed the price of the same
product in month t. Third, we deal with the persistent heterogeneity across stores (that
is, chains, locations) by subtracting the average store- and category-level gap αcs, and we
reformulate the price gap as xpst = x̃pst − αcs, where product p belongs to category c.

Panel (a) in Figure 3 shows the density of the price-gap distributions in the four euro-area
countries and the US.14 To arrive at the densities, we control for unobserved heterogeneity
across items and the common impact of aggregate fluctuations by estimating item and time

12By concentrating on reference prices, the measure controls for the impact of temporary sales.
13In our baseline measure, we include all stores in the country that sell the product in a given week in the

set of competing stores. The results are robust to using a more conservative measure, which only includes
local stores (same two-digit ZIP region in the euro area and same market in the US). In particular, the average
slope of the hazard and the shape of the density function stay broadly unchanged (not shown).

14See Appendix F for evidence on heterogeneity across euro-area countries.
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Figure 3: Price-gap density and the size of nonzero price changes as a function of the price
gap, and the generalized and duration hazards

(a) (b) (c) (d)
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Note: The figures show (a) the density of the price gap, (b) the average size of nonzero reference-price

changes, (c) the frequency of reference-price changes (generalized hazard) as a function of the price

gap, and (d) the frequency of reference-price changes as a function of the age of the price (duration

hazard) in EA4 and the US. The V-shaped generalized hazard and the increasing duration hazard

indicate the presence of state dependence in price setting, albeit at a moderate level in both regions.

The density indicates wide dispersion of price gaps, higher on average in the US. The size figure

validates the price-gap measures by showing a tight relationship between the gap and the eventual

price-change size.

fixed effects15 in a panel regression of the form

xpst = αps + αt + εpst. (1)

We calculate the share of normalized gaps (xpst − α̂ps − α̂t) in the 101 unit-percentage-point
ranges between −50.5% and 50.5%. We censor the normalized gaps at −50.5% and 50.5%.

The figure shows that the gaps are high, on average, and higher in the US (14%) than in the
EA4 (10%). At the same time, the distribution is dispersed in both regions with a high mass
of small gaps and a fat tail of large gaps. This is true even though we control for sales-related
price changes as well as permanent differences between the store-specific prices.

We now assess the relationships between the price gap in period t−1 and the probability and
average size of price adjustment in the following month t. We aim to estimate these relation-
ships nonparametrically with a minimal set of structural assumptions. First, we allocate price

15An alternative specification includes item and time-store fixed effects. The time-store fixed effects control
for store-wide synchronization of price changes (see, for example, Bonomo et al., 2023). The specification leads
to virtually identical US hazard-function estimates (not shown), suggesting that synchronization is present
but plays a quantitatively insignificant role.
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gaps into 101 bins, each covering a unit-percentage-point range between −50.5% and 50.5%.

The indicator function I
[xj−1,xj)
pst−1 for bin j takes the value 1 when the gap xpst ∈ [xj−1, xj), and 0

otherwise. Second, we estimate a relationship coefficient (βj
y) between the gap x and a variable

of interest ypst,t+1 (frequency or size) for each bin j using the following panel specification:

ypst,t+1 =
J∑

j=1

βj
yI

[xj−1,xj)
pst−1 + αps + αt + εpst (2)

Here, αps are product-store fixed effects and αt are time fixed effects. The fixed effects help
us to control for unobserved heterogeneity across items and common comovement caused
by aggregate fluctuations. Third, we obtain the estimated relationship as a sum of two
components. The first component is the βj

y coefficients for j = [1, 101]. The second component
is the average of the estimated fixed effects meanpsα̂ps +meantα̂t added to each bin j. Adding
the second component makes sure that the weighted average across bins approximates the
sample average of the variable of interest y.

Panel (b) in Figure 3 shows the average size of nonzero price changes as a function of the
price gap in EA4 and the US. It is estimated following the above-described steps when the
dependent variable is the nonzero reference-price changes ypst,t+1 = ∆pfpst+1|∆pf 6=0. The figures
show a tight, almost exactly one-to-one, negative relationship between the gap and the average
nonzero price changes in the subsequent month.16 This validates our price-gap measure by
showing that stores choose to close the gap, on average, when adjusting the price.

We are now ready to turn to one of the key empirical moments we are interested in: the
generalized hazard functions, shown in Panel (c) of Figure 3. They are estimated for each
region following the steps outlined above when the dependent variable is an indicator function
that takes the value 1 when the reference price of product p in store s changed in period t+1,
and 0 otherwise ypst,t+1 = Ifpst+1. The figures show clear evidence for state dependence in price
setting in both regions: the probability of price adjustment clearly increases with the price gap
as illustrated by the V shape of the hazard functions.17 The slopes of the hazard functions,
however, are moderate in both regions: the estimated probability of adjustment stays below
40% even for price gaps of 50%. The (density weighted) average slope is 0.51 in EA4 and

16The slope of the relationship is actually somewhat above one. This is consistent with the presence of
concurrent item-level shocks, which hit after the gap was measured (remember that the gap is lagged by a
month). If items with higher unobserved shocks are changed with a higher probability, which is in line with
state dependence, the selection effect increases the average absolute size of price changes at each gap size. That
the relationship is only marginally steeper than one suggests that the measured gap plays a quantitatively
much more important role than the unobserved concurrent shocks.

17See Appendix F for evidence on heterogeneity across euro-area countries.
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0.38 in the US; the difference between the regions is caused by the larger slope at lower gaps,
where the largest mass of price gaps is concentrated. Additionally, the probability of a price
change is strictly positive even at zero gaps, and the hazard functions are asymmetric: the
probability of adjustment is higher when the item is below the competitors’ reset price than
when it is above. The height of the hazard function is larger in the US, in line with the higher
frequency of price changes there, as documented above.

4.2 Duration Hazard

An alternative way of looking at state dependence is duration hazard, which expresses the
probability of price adjustment as a function of the months elapsed since the last price ad-
justment. In the presence of state dependence, the duration hazard is upward sloping because
the probability of a price change rises as the optimal price drifts further and further from the
posted price. The advantage of using granular scanner data to estimate the hazard function is
that we can control for cross-item heterogeneity, which can bias the slope estimate downward.

We estimate the following panel regression:

Ipst,t+1 =
48∑
j=1

βjIjpst−1 + αps + αt + εpst (3)

The indicator function Ijpst−1 takes value 1 if the reference price of product p in store s in
month t − 1 is j months old, and 0 otherwise. As with the generalized hazard, we add the
average of the estimated item fixed effects and time fixed effects to the βj coefficients in order
to make the weighted average of the coefficients approximate the frequency of reference-price
changes.

Panel (d) of Figure 3 shows the results for EA4 and the US.18 It shows that the duration
hazard is upward sloping in both regions: the probability of adjustment increases with the
age of the product. The slope of the adjustment hazard is higher in EA4 than in the US.
In Appendix G, we show that controlling for both cross-item heterogeneity and sales-related
price changes is essential to obtain upward-sloping hazards.

18See Appendix F for evidence on heterogeneity across euro-area countries.
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4.3 State Dependence and Price-Level Flexibility

In the previous section, we argued that the V-shaped generalized hazard function and the
upward-sloping duration hazard function are in line with state dependence in price setting.
In this section, we quantify the extent of this state dependence. A natural measure of state
dependence is how much it contributes to price flexibility, specifically to the price-level impact
of a permanent money shock. To measure this, we follow the framework of Caballero and
Engel (2007), who showed that under mild conditions, the generalized hazard function and
the density provide sufficient information to quantify the contributions of the intensive and
extensive margins of adjustment. We first describe the framework and explain how the relevant
objects in the model relate to our empirical moments before turning to use it to decompose
an aggregate money shock to adjustment margins.

In the price-setting framework of Caballero and Engel (2007), there is a continuum of firms,
each producing a single product i. Firms set the (log nominal) prices of their product (pit)
subject to price-adjustment frictions. If these frictions were temporarily absent, the optimal
price in period t would be p∗it. The optimal price is driven by both aggregate and idiosyncratic
factors p∗it = mt+νit. For simplicity, we assume that shocks to both mt and νit are permanent.
The aggregate shock mt shifts the optimal nominal price of all firms, whereas the idiosyncratic
shock νit affects only firm i. The gap between the price and its optimal value xit = pit − p∗it
is the relevant state variable and is sufficient to characterize each firm’s price-setting choice.
Assuming that the product i is sold in a continuum of stores, the average price set by price-
changing stores reveals the optimal price p∗it, in line with our empirical application.

The firms’ price-adjustment decision can be described by a generalized hazard function Λ(x).
The function takes values between 0 and 1, and its value expresses the probability of price
adjustment for a firm with a price gap x. The hazard function is constant in the time-
dependent Calvo (1983) model, in which the probability of adjustment is independent of the
price gap. At the other extreme, in the fixed-menu-cost model (Caplin and Spulber, 1987;
Golosov and Lucas, 2007), the hazard function is a step function, which takes the value 0 when
the gap is within the inaction band, and 1 otherwise. Caballero and Engel (2007) show that a
continuum of intermediate hazard functions can arise when the menu cost is an i.i.d. random
variable as in Dotsey et al. (1999) and when the firm is subject to a rational-inattention
friction as in Woodford (2009) (see also Alvarez et al., 2022).

In this economy, inflation can be expressed as

π =

∫
−xΛ(x)f(x)dx, (4)

where f(x) is the density of price gaps across firms and we suppress subscripts for notational
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convenience. The expression is intuitive: the inverse price gap (−x) is the size of the price
adjustment when it takes place, and the hazard is the probability of a price adjustment taking
place. Their product summed across the gap distribution and weighted by the density of the
gap is, therefore, equal to the inflation rate.

How flexibly does the inflation rate react to a small aggregate money increase m? Caballero
and Engel (2007) point out that the aggregate shock increases the optimal price of all firms,
so it reduces the price gaps of each firm uniformly. The response to the aggregate shock can
therefore be expressed as a derivative of the expression on the right-hand side of Equation
(4) with respect to x, which implies

∂π

∂m
=

∫
Λ(x)f(x)dx︸ ︷︷ ︸

intensive

+

∫
xΛ′(x)f(x)dx︸ ︷︷ ︸

extensive

, (5)

where Λ′(x) is the slope of the hazard function. The expression has two terms. The first
term, which Caballero and Engel (2007) call the intensive margin, results in each adjusting
firm changing its price by marginally more to incorporate the impact of the aggregate shock.
Notably, it is exactly equal to the frequency of price adjustment, and this is the only margin
that is active in the time-dependent Calvo (1983) model, which has a constant hazard. The
second term is the extensive-margin effect, which takes into account any shifts in the identity
of price-adjusting firms. The slope of the hazard function appears in this expression because it
measures the mass of new price adjusters as the aggregate shock shifts the price-gap density.
The extensive margin is powerful if the new adjusters are primarily those with large price
gaps. This tends to be the case with strongly state-dependent (S,s)-type menu-cost models
(Golosov and Lucas, 2007).

Our empirical estimates of the hazard function and the density of the price gap shown in
Figure 3 allow us to conduct the Caballero and Engel (2007) decomposition described by
Equation (5). The intensive-margin effect is the average frequency, approximated here with
the average of the hazard function weighted by the density at each bin. To obtain the
extensive-margin effect, we first calculate the slope of the hazard function at each bin as the
centered finite difference between subsequent bins. Second, we multiply the slope with the
size of the misalignment. Third, we calculate a weighted average using the density weight of
each bin.

The first row of Table 3 shows the overall impact effect of a permanent money shock in the
euro area, in the US, and in each of the four euro-area countries. The second and third rows
decompose these into intensive-margin and extensive-margin effects (or state dependence).
The fourth and fifth rows show the relative contributions of the two channels.
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The table shows that the effect is larger in the US relative to EA4 because of both stronger
intensive- and extensive-margin effects. The stronger intensive-margin effect is the conse-
quence of a higher frequency of price changes. The stronger extensive-margin effect is the
consequence of stronger state dependence, which is driven by two main factors: the slope of
the hazard function and the average absolute size of gaps.19 In the simple and realistic case
of a symmetric and (piecewise-)linear hazard function, the slope of the hazard is constant
|Λ′(x)| = Λ′, where Λ′ > 0 is a parameter. It is straightforward to see that in this case,
the extensive-margin effect in Equation (5) is simply

∫
xΛ′(x)f(x)dx = Λ′

∫
|x|f(x)dx, which

is the product of the slope of the hazard and the average absolute size of price gaps. The
expression shows that the extensive-margin effect does not depend only on the slope of the
hazard function but also the dispersion of the price gaps. Indeed, the extensive-margin effect
is larger in the US even though the slope of the hazard function is somewhat higher in the
EA4. The reason is that the higher dispersion of the price gaps more than compensates for the
lower slope. Through increasing price-gap dispersion, therefore, higher product-level volatility
raises the state dependence of price setting. The relative contribution of the extensive-margin
effect is around 25% in both the euro area and the US. This means that accounting for state
dependence raises the price-level flexibility by around 33% = 25%/(1 − 25%) relative to a
time-dependent benchmark (Calvo, 1983).

As Table 3 also shows, there is sizable heterogeneity among euro-area countries in the size of
the overall impact effect. The heterogeneity is mainly driven by differences in the intensive-
margin effect, determined by the frequency of price changes. The extent of state dependence
among euro-area countries is similar, with the notable exception of France, where it is sub-
stantially below average.

5 Structural Analysis

In this section, we interpret the evidence through the lens of a price-setting model (Woodford,
2009). We ask which structural features drive the differences in price setting in the food-retail
sector between the US and the euro area and across euro-area countries.

19There is a potential third factor—the covariance of the slope and the gap—but it plays a marginal role
in the realistic case of an approximately linear hazard function (see Karadi et al., 2020).
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Table 3: Overall impact effect and absolute and relative contributions of adjustment margins

Margins US EA4 DE FR IT NL

Overall impact effect 18.4% 11.6% 8.6% 15.3% 12.3% 14.0%

Intensive (absolute) 13.9% 8.8% 5.3% 13.1% 9.0% 10.7%
Extensive (absolute) 4.5% 2.7% 3.3% 2.2% 3.3% 3.3%

Intensive (relative) 75.4% 76.4% 61.8% 85.4% 73.1% 76.3%
Extensive (relative) 24.5% 23.6% 38.2% 14.6% 26.9% 23.7%

Note: The table presents the overall impact effect of a marginal money shock and
the absolute and relative contributions of the intensive- and extensive-margin
effects (Caballero and Engel, 2007). It shows that stronger state dependence
(extensive-margin effect) amplifies price flexibility in the US relative to EA4.
EA4: average of the 4 euro area countries; DE: Germany; FR: France; IT: Italy;
NL: the Netherlands.

5.1 Structural Model

We use a quantitative price-setting model with price-adjustment costs and information fric-
tions. It provides a microfoundation for the popular random-menu-cost models (Dotsey et al.,
1999; Alvarez et al., 2022) and includes the time-dependent Calvo (1983) model and the fixed-
menu-cost model of Golosov and Lucas (2007) as special cases.

We sketch the key features of the model here and direct the interested reader to the original
paper for details and derivations. The paper generalizes the fixed-menu-cost model of Golosov
and Lucas (2007). There is a continuum of differentiated goods (i), which are sold in a market
with monopolistic competition. This market structure gives the producer of each good market
power to set prices at a markup above marginal cost. The market power is determined by the
elasticity of demand, which, in turn, is governed by the (constant) elasticity of the substitution
parameter ε.

The production requires labor, and the product-specific productivity is subject to idiosyncratic
shocks. As argued by Golosov and Lucas (2007), these shocks are necessary to explain the
large absolute size of price changes. Specifically, productivity follows a random walk, with an
idiosyncratic shock zt(i) with standard deviation σz (At(i) = At−1(i)+zt(i), zt(i) ∼ N(0, σ2

z)).
All the relevant firm-level information is incorporated into the price gap, defined as the dis-
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tance of its (log) price from its (log) optimal price xt(i) = pt(i) − p∗t (i).20 In particular, the
discounted present value of its profit is a function of the price gap, and it is maximized when
the price gap is zero. The price gap fluctuates as idiosyncratic shocks hit the optimal price,
and the firm does not necessarily reset it to zero because adjusting the product price (pt(i))
is costly.

The firms face two types of adjustment costs. First, as in Golosov and Lucas (2007), the
firm needs to pay a fixed (menu) cost κ when it conducts a price review. After paying the
cost, the firm obtains full information; it thereby learns its price gap and optimally closes
it. Second, the firm needs to decide about the timing of its price review under imperfect
information about the state of the economy and therefore about its price gap. The imperfect
information is modeled as rational inattention, whereby the firm can obtain a costly signal
f(x) about the price gap, and the cost increases linearly with the informativeness (I) of the
signal with a coefficient θ (θI = −θE [log f(x)])). Woodford (2009) establishes two useful
results. First, the optimal policy is described by a hazard function Λt(xt): a firm chooses
to obtain a signal with probability Λt(xt) as a function of its price gap xt and conducts a
price review if it receives a signal. Second, the functional form of the hazard function is
well defined, it is (weakly) increasing with the (absolute value of the) price gap, and its slope
depends on the information-cost parameter θ. As the cost parameter θ increases without limit,
the hazard function approaches a constant, which is the time-dependent Calvo (1983) case;
and as the cost parameter approaches zero, the hazard function approaches a step function
as in the fixed-menu-cost case of Golosov and Lucas (2007). In between these two extremes,
the theoretical hazard function shares some key features of the empirical hazard functions
shown in Section 4. In particular, it is increasing with higher absolute gaps, implies a positive
hazard at a zero gap, and is asymmetric with a higher probability of adjustment when prices
are below the reset price.

We assess the dynamic impact of aggregate fluctuations in the model by approximating the
aggregate equilibrium conditions up to a first order around the nonlinear stationary equilib-
rium using the method proposed by Reiter (2009).21 As in Midrigan (2011), we assume that
aggregate nominal expenditure equals the money supply PtYt = Mt. Money growth follows an
exogenous autoregressive process gMt = ρMgMt−1 + εMt, with εmt ∼ N(0, σ2

m). Money shocks
can alternatively be interpreted as nominal expenditure shocks. We assume, furthermore,
that the production of each product i is affected by an aggregate productivity factor At.

22

20The price gap can be equivalently expressed as the difference between the normalized price (qt(i)) as
defined in Woodford (2009) and its optimum (xt(i) = pt(i)− p∗t (i) = qt(i)− q∗t ).

21We extend the code used in Costain and Nakov (2011). We thank Anton Nakov for posting his code.
22Formally, yt(i) = AtAt(i)ht(i)

1/φ, where yt(i) is the (log) output of firm i, At is an aggregate, At(i) is
firm-specific productivity, ht(i) is firm-level labor, and φ is a parameter governing the extent of decreasing
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Aggregate productivity follows a first-order autoregressive process At = ρAAt−1 + εAt, with
εAt ∼ N(0, σ2

A).

5.2 Estimation

Our goal in this section is to identify the most relevant structural features that account for
the differences between price setting in the US and EA4 and across euro-area countries. We
do this by matching the empirical moments obtained in previous sections to estimate key
structural parameters in the model.

We calibrate some parameters to levels used in the literature following Woodford (2009),
with one difference. We set the elasticity of the substitution parameter (ε) to 3. This is the
parameter used by Midrigan (2011), and it implies markup levels relevant for supermarkets.23

Furthermore, we calibrate the autoregressive coefficient of the money-growth process (ρm) to
0.61 as in Midrigan (2011), and the autoregressive coefficient of aggregate productivity (ρA)
to 0.95, which is a standard value in the literature.

The three parameters we estimate are (i) the standard deviation of the idiosyncratic shocks
(σz), which affects the volatility of the product-level environment, and the two parameters
governing the price-adjustment costs: (ii) the review (menu) cost (κ) and (iii) the information
cost (θ). We estimate these parameters by targeting three empirical moments with their
simulated counterparts in the stationary equilibrium: the shape of the generalized hazard,24

and the frequency and size of the price changes.25 We also check how the model matches
some untargeted moments, such as the duration hazard and the standardized price-change
distribution.

returns to scale of labor.
23The parameter is below that used by Woodford (2009)—namely, 6. The lower parameter implies weaker

competition and a flatter profit function, which helps us to match the consistently low slope of the empirical
hazard function.

24The estimation algorithm minimizes the squared difference between the empirical and theoretical hazard
functions, weighted by the price-gap density. The empirical hazard, calculated as the probability of price
change next month as a function of the current price gap, is matched with a simulated hazard, which similarly
expresses the probability of price change in the next month as a function of the current gap.

25For internal consistency of our quantitative exercise, the frequency and size measures we match here are
derived from (unweighted, truncated at + − 50%) generalized hazard and density estimates. In particular,
frequency is measured as

∑
j Λjfj , and size as

∑
j |xj |Λjfj/

∑
j Λjfj , where Λj is the height of the generalized

hazard, fj is the relative share of products in the price-gap bin j, and xj is its midpoint. These measures are
not equal to the (weighted, untruncated) frequency (EA4: 9.5% versus 8.9%, US: 13.8% versus 14.1%) and
size (EA4: 9.3% versus 8.0%, US: 15.2% versus 11.8%) measures reported in Sections 3.1 and 3.2, but they
are close and have comparable relative magnitudes.
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5.3 Results

Figure 4 shows the fit of the theoretical and empirical generalized hazards (Panel a) and
densities (Panel b) for EA4 and the US. The fit is good for both the hazards and the densities,
especially over the range in which most of the mass concentrates, as indicated by the shaded
areas. The distribution of the gaps in the euro area is more concentrated than in the US,
and the theoretical distribution partially captures this. The model is also reasonably good at
matching the duration hazard (Panel c) and the standardized price-change distribution (Panel
d), even though these moments were not directly targeted. In Section 5.4, we show that the
results are robust to more realistic assumptions and alternative calibration strategies.

Figure 4: Estimation, targeted and nontargeted moments
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0

10

20

30

40

50

60

70

-5
0

-4
0

-3
0

-2
0

-1
0 0 10 20 30 40 50

Euro area hazard, model
Euro area hazard, data

0

10

20

30

40

50

60

70

-5
0

-4
0

-3
0

-2
0

-1
0 0 10 20 30 40 50

United States hazard, model
United States hazard, data

Price gapPrice gap

%

0
1
2
3
4
5
6
7
8
9

10

-5
0

-4
0

-3
0

-2
0

-1
0 0 10 20 30 40 50

United States gap density, model
United States gap density, data

0
1
2
3
4
5
6
7
8
9

10

-5
0

-4
0

-3
0

-2
0

-1
0 0 10 20 30 40 50

Euro area gap density, model
Euro area gap density, data

Price gap Price gap

%

(c) (d)

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23

United States age hazard, model
United States age hazard, data

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23

Euro area age hazard, model
Euro area age hazard, data

Months Months

%

0
0.5

1
1.5

2
2.5

3
3.5

4

-3
.0

-2
.4

-1
.8

-1
.2

-0
.6 0.
0

0.
6

1.
2

1.
8

2.
4

3.
0

United States, density, model
United States, density, data

0

0.5

1

1.5

2

2.5

3

3.5

-3
.0

-2
.4

-1
.8

-1
.2

-0
.6 0.
0

0.
6

1.
2

1.
8

2.
4

3.
0

Euro area, density, model
Euro area, density, data

Standardized price change Standardized price change

%

Note: The figures show the matches of the simulated and empirical generalized hazards and price-gap

densities (matched moments, Panels a and b) and the duration hazards and price-change densities

(unmatched moments, Panels c and d) in the euro area (EA4) and the US. Shaded areas cover the

67% (darker) and 90% (lighter) masses of the corresponding densities.

Table 4 shows the estimated structural parameters for the euro area, the US, and the spe-
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Table 4: Estimated parameters

Parameters US EA4 DE FR IT NL

Review cost (κ,%) 21.6 15.9 22.0 5.4 20.1 21.2
Std. dev. of idiosyncratic shocks (σz,%) 5.5 3.0 2.7 2.1 3.6 3.9
Information cost (θ) 0.65 0.65 0.40 0.54 0.58 1.07

Note: The table shows that state dependence is present but mild in both regions (because
information frictions are high). Higher idiosyncratic-shock variation in the US plays a promi-
nent role in explaining higher frequency and size of price changes. EA4: average of the 4
euro area countries; DE: Germany; FR: France; IT: Italy; NL: the Netherlands.

cific euro-area countries. Several results are worth pointing out. First, the information-cost
parameters are finite, indicating the presence of state dependence in line with an increasing
hazard function. Second, the information costs are sizable, indicating mild state dependence,
which is quantitatively closer to the time-dependent Calvo (1983) model than the strongly
state-dependent fixed-menu-cost model of Golosov and Lucas (2007). This is in line with flat
hazard functions. Third, the information-cost parameters are actually the same across the
regions, indicating a similar shape of the generalized hazard functions. Fourth, the estimated
review-cost (menu cost) parameters are somewhat higher in the US. Finally, the quantitatively
most relevant structural reason for the differences across the regions is the distinct standard
deviation of the idiosyncratic shocks.

Figure 5 shows impulse responses to a money-growth shock in models calibrated in the euro
area and in the US and in a simulation of the euro area with US counterfactual idiosyn-
cratic volatility. The figure shows that the inflation response is more flexible, and the output
response is correspondingly smaller and less persistent in the US, and the difference in id-
iosyncratic volatility is responsible for most of the difference. Therefore, the volatility of
the product-level environment is higher in the US, which leads to (i) higher-frequency price
changes, (ii) larger price changes, and (iii) a more dispersed price-gap distribution, contribut-
ing to stronger aggregate responses both at the intensive- and extensive-adjustment margins.

Among the euro-area countries, the heterogeneity in the standard deviation of idiosyncratic
shocks is also sizable and plays a key role in explaining the overall heterogeneity in price
flexibility. The extent of price-adjustment frictions (κ) is similar across countries and compa-
rable to the US, with the notable exception of France, where prices are estimated to be much
more flexible. The information-cost parameter varies somewhat, but within a limited range,
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Figure 5: Simulated response to a money-growth shock
Money-growth shock Inflation Output
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Note: The figures show the impulse response to a unit money-growth shock in the model calibrated

to the euro area, the US, and the euro area with US idiosyncratic volatility. They show that the

inflation response is weaker in the euro area, and the output response is correspondingly larger and

more persistent. The difference is primarily driven by higher idiosyncratic volatility in the US.

implying mild state dependence in all euro-area countries.

What share of the difference in the volatility in food inflation between the US and the EA4 is
explained by the model? The question is important because even if the model can successfully
capture differences in key features of price setting, different volatilities across countries may
be the consequence of numerous unmodeled factors, such as heterogeneity in the nature and
magnitude of aggregate or sectoral shocks. We assess the importance of differences in price
setting through a simple exercise. First, we estimate the standard deviation of aggregate
money shocks σm to match the standard deviation of year-on-year inflation in the US in
the model and the data. Then we measure the predicted inflation volatility in the model
if we feed the same money shocks to the model calibrated to the euro area. We repeat the
same exercise with aggregate productivity shocks (σA). The first three columns of Table
5 show the results. As the second row shows, assuming money (or nominal expenditure)
shocks, the model correctly predicts lower inflation volatility in the euro area, but it only
explains somewhat over a third of the difference observed in the data. As the third row
shows, assuming productivity shocks, the model explains most of the difference in inflation
volatility. It is outside the scope of the paper to assess the importance of the two shocks
in driving food inflation, but arguably both types of shocks are active. We conclude that
differences in price-setting frictions, though not the only factor at play, can account for a
relevant share of the observed difference in inflation volatility.
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Table 5: Simulated inflation response

Inflation volatility COVID shock
US EA4 Difference DE IT Difference

Data 0.95% 0.64% 0.31% 0.54% 1.65% 1.11%
Model (σm) 0.95% 0.83% 0.12% 0.92% 1.31% 0.39%
Model (σA) 0.95% 0.66% 0.29%

Note: The table shows the inflation volatility in the US and EA4 (columns 1–3) and
the inflation response to the COVID shock in Germany and Italy (columns 4–6) in
the data (row 1) and in the model. The second row assumes aggregate money shocks
(σm). The third row assumes aggregate productivity shocks (σA). Around one-third
of the observed difference is accounted for by the model. EA4: average of the 4 euro
area countries; DE: Germany; IT: Italy.

5.4 Robustness

In this section, we test the robustness of our baseline results to alternative modeling assump-
tions and calibration targets.

5.4.1 Asymmetric Linear Hazard

In this section, we present a price-setting model that captures the shape of the generalized
hazard function and the price-gap densities and, consequently, also the price-change distribu-
tions better than the baseline Woodford (2009) model. We ask whether the impulse responses
of our baseline model are robust to these modifications.

We assume that the firm adjusts its price subject to the following hazard function:

Λ(x) =

{
ω + α+x if x ≥ 0
ω − α−x if x < 0

(6)

Here, ω is the height of the hazard function at zero gap, α− is the (inverse) slope of the hazard
for negative gaps, and α+ is the slope for positive gaps.

We assume that the idiosyncratic shocks follow a Laplace distribution in the euro area εt ∼
L(0, σε), where L is the Laplace distribution. We keep all the other features of the baseline
model unchanged.
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Figure 6 shows the fit of the generalized hazard and the price-gap densities of the model. The
fit improves substantially relative to the baseline Woodford (2009) model. The framework is
even able to capture the bimodality of the US price-change distribution, which our baseline
model was unable to achieve. However, as Figure 7 shows, the improvement is quantitatively
inconsequential, as it implies an insignificant change relative to the baseline as a response to
a money-growth shock.

Figure 6: Estimation, targeted and nontargeted moments, asymmetric linear hazard
(a) (b)
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Note: The figures show the matches of the simulated and empirical generalized hazards and price-gap

densities (matched moments, Panels a and b) and the duration hazards and price-change densities

(unmatched moments, Panels c and d) in the euro area (EA4) and the US in the model with asym-

metric linear hazard. The model matches the generalized hazard and the price-gap densities better

than the baseline model. It is even able to capture the bimodality of the price-change distribution

in the US. Shaded areas cover the 67% (darker) and 90% (lighter) masses of the corresponding

densities.
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Table 6: Estimated parameters, asymmetric linear hazard

Parameters US EA4

Std. dev. of idiosyncratic shocks (σz,%) 5.3 4.1
Hazard at 0 gap (ω, %) 8.9 5.9
Slope (x < 0, α−) 0.78 0.66
Slope (x ≥ 0, α+) 0.39 0.37

Note: The table shows the parameters of the model with
an asymmetric linear hazard. The EA4 calibration assumes
idiosyncratic shocks with a Laplace distribution, while the
US calibration assumes a Gaussian distribution.

Figure 7: Simulated response to a money-growth shock in the model with asymmetric linear
hazard

Money-growth shock Inflation Output
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Note: The figures show that even though the model with asymmetric linear hazard and a Laplace

distribution (in EA4) captures the shape of the hazard, the gap density, and the price-change dis-

tribution somewhat better than the baseline, the improved fit has only a marginal impact on the

impulse responses.

ECB Working Paper Series No 2853 30



5.4.2 Targeting the Kurtosis

This section presents an exercise in which we target the shape of the standardized price-change
distribution along with the frequency and size of the price changes as in Woodford (2009). Not
surprisingly, the model’s fit with the price-change distribution improves but at the cost of a
worse fit with the hazard function. The calibration strategy implies a somewhat-higher state
dependence (lower information-cost, or α, parameters) and more flexible inflation response
(see Figure 7) than the baseline model. At the same time, the idiosyncratic shock volatility
stays the key underlying factor driving the predicted differences in inflation volatility across
regions, as in our baseline calibration.

Figure 8: Estimation, kurtosis targeted
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Note: The figures show the fit of the simulated and empirical generalized hazards and price-gap

densities (first row) and the duration hazards and price-change densities (second row) in the euro

area (EA4) and the US in the model in which the kurtosis of the price-change distribution is targeted

(instead of the hazard function). The model matches the price-change distribution better at the cost

of a worse fit of the hazard function. Shaded areas cover the 67% (darker) and 90% (lighter) masses

of the corresponding densities.
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Table 7: Estimated parameters, kurtosis targeted

Parameters US EA4

Menu cost (κ,%) 11.3 10.2
Std. dev. of idiosyncratic shocks (σz,%) 5.1 2.9
Information cost (α) 0.10 0.18

Note: The table shows the parameters of the model in
which the kurtosis is targeted.

6 Price Setting during the COVID-19 Pandemic in Ger-

many and Italy

In this section, we analyze the price-setting response of German and Italian supermarkets to
the first wave of COVID-19 lockdowns. The shock had a large, persistent, and broadly similar
effect on supermarket demand in both countries. Contrasting the response in the two countries
is relevant because price setting is heterogeneous across the countries: the frequency of price
changes is higher in Italy than in Germany (see Table 2), and the extent of state dependence
is similar between the countries (see Table 3). Price-setting models, therefore, predict higher
flexibility of Italian supermarket inflation and faster pass-through of the COVID shock, which
we can test in the data.

6.1 Data

The analysis in this section uses an auxiliary dataset covering large German and Italian
supermarkets over the three months encompassing the first wave of the COVID-19 pandemic:
from mid-February till mid-May 2020. The dataset also covers the analogous period in 2019,
which we use as the base period in our index calculations. The dataset covers 20 two-digit
ZIP areas.26

Our analysis uses the 2013–17 German and Italian pre-COVID sample as a benchmark to
assess the significance of changes observed over the 2019–20 period. To minimize the impact
of compositional shifts over time, we restrict our baseline sample to stores and products with

26The ZIP areas in the sample cover 16% and 40% of the population and shares of supermarket expenditures
of 22% and 46% throughout 2013–17 in Germany and Italy, respectively.
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positive sales in both the first quarter of 2013 and the sample quarter in 2020. The majority
of stores are such established stores.27 A sizable fraction of the products is such established
products.28

6.2 Supermarkets and the First Wave of the Pandemic

The pandemic and the accompanying lockdown measures had a large and persistent impact
on supermarket demand. During the lockdowns, access to food away from home was severely
restricted, while supermarkets were deemed essential and sheltered from the lockdowns. The
Italian government imposed a national lockdown on March 9, 2020, and gradually eased it only
after mid-May. In Germany, a federal lockdown was introduced on March 22 and was gradually
eased in early May. In both countries, supermarkets stayed open during the lockdowns, while
alternative forms of access to food and beverages were restricted: restaurants, canteens, and
bars were deemed unessential and closed.

Our data allow us to quantify the magnitude of the demand change because the scanner data
records weekly expenditures at the store-product level. We restrict attention to established
products in established stores, which are the focus of our analysis. We measure year-on-year
nominal expenditure growth as the 52-week change in overall expenditure on items sold in
positive quantities both in the current and base weeks.

Panels a and b of Figure 9 show the evolution of nominal expenditure growth between mid-
February to mid-May in German and Italian supermarkets. The figure shows that the ex-
penditure growth significantly exceeded its long-term average. The increase was particularly
pronounced during the weeks preceding the introduction of the lockdowns. The growth rate
reached as high as 19%–29% during this “stock-up shock,” as households increased their home
stock of nonperishable groceries for precautionary reasons. The expenditure growth during
the lockdowns stayed persistently well above average. It stabilized by the end of our sample
at around 7.4% in Germany and at 6% in Italy, which significantly exceeded the long-term
nominal expenditure growth experienced over the 2013–17 period.

6.3 Inflation Response

How did prices respond to the persistent increase in demand? Panels c and d of Figure 9 show
the evolution of reference prices in Germany and Italy (see Appendix H for the evolution of

27Established stores are 668 out of 815 total stores in Germany and 1,486 out of 2,387 in Italy.
28Established products are 57,000 out of 266,000 total products in Germany and 83,800 out of 535,500 in

Italy with an expenditure share in Germany of 43.43% and in Italy of 42.43%.
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Figure 9: Nominal expenditure growth and reference-price inflation in supermarkets during
the COVID-19 pandemic, year on year

Nominal expenditure growth
(a) Germany (b) Italy
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Note: The figure shows weekly, year-on-year nominal expenditure growth (blue solid line) between

mid-February and mid-May in 2020 in Germany and Italy (Panels a and b) and weekly reference-price

inflation in the same period and countries (Panels c and d). Panels a and b show that the five-week-

average expenditure growth (blue dashed line) exceeds the average long-term expenditure growth

(yellow dashed line) by more than one standard deviation in both Germany and Italy. Panels c and

d show that the increase in average five-week-average inflation over the quarter is smaller (0.54%)

and within a confidence band of two standard deviations in Germany, while it is three times as large

in Italy (1.65%) and clearly exceeds the band.
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posted-price inflation). It shows that the increase between the first and third months was
substantially lower in Germany (0.54%) than in Italy (1.65%), albeit from a higher initial
level. The increase in Germany stayed within a confidence band of two standard deviations,
while it clearly exceeded the band in Italy. This happened despite the similarity of the shock,
the type of retailers, and the basket of products.

Can differences in price setting account for the differences in the inflation response? Previously
we showed that prices change less frequently in Germany (see Table 2), while the extent
of state dependence is similar across the two countries (Table 3). The structural model
calibrated to the two countries explained this outcome with comparable price-setting frictions
but substantially smaller product-level volatility and somewhat-smaller information frictions
in Germany (Table 4). Table 5 shows the simulated impact of a permanent 6% nominal
expenditure shock on two-month cumulative inflation (equivalent to a change in the year-on-
year inflation between the third and first months in the data) in the two models calibrated to
Germany and Italy. The model reproduces the more sluggish inflation response in Germany
and accounts for around one-third of the difference between the countries.

7 Conclusion

This paper contrasted price setting in the euro area and the US using a novel supermarket-
scanner dataset in four euro-area countries and the US. It found that the higher flexibility of
food inflation in the US is driven both by the higher frequency of repricing and the stronger
state dependence of price changes. It argues that the driving force behind both factors is a
more volatile product-level environment in the US. The models were able to explain over a
third of the differences in inflation volatility across the regions.

Our conclusions have implications for both model selection and policy. First, the evidence is
in line with models with sizable nominal rigidities in both regions, which amplify the impact of
monetary and fiscal policy on the real economy. The greater nominal rigidities in the euro area
imply that, at least in the food sector, changes in nominal expenditure growth have a smaller
impact on prices and a larger impact on quantities than in the US. Second, the evidence
presented in the paper supports state dependence in price setting. Even though we find that
the estimated magnitude of state dependence has a mild impact on price flexibility in response
to small aggregate shocks, state dependence necessarily implies that prices endogenously
become more flexible after large aggregate shocks and higher trend inflation (Karadi and
Reiff, 2019; Alvarez et al., 2019; Costain et al., 2022). Third, the sizable differences in the
implied product-level volatility between the US and the euro area raise important questions
for future research. Although in the simplest class of price-setting models, product-level
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volatility matters only insofar as it influences frequency and state dependence (Alvarez et al.,
2022), in more complicated models, it can have an independent impact on price flexibility, as
high product-level volatility can make retailers limit their attention to aggregate fluctuations
(Mackowiak and Wiederholt, 2009), which could mitigate their responsiveness to aggregate
shocks. Its key role in driving differences across regions also highlights the importance of
further research to understand better the underlying sources of the product-level volatility,
including whether they are the consequence of larger shocks or greater responsiveness to these
shocks (Berger and Vavra, 2019).
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Appendix

A Official vs IRi expenditure distribution

Figure 10 contrasts the expenditure distribution within the IRi sample across nine product
categories in each country, and the corresponding expenditure share of the same category
in the official HICP (EA4) and CPI (US) indexes.29 Some categories, such as bread, meat,
fruits, and vegetables are somewhat underrepresented in the IRi supermarket samples, as
these products are regularly purchased also from specialized stores. The match is less tight
in the US sample, which only includes a selected set of product categories (for example, only
processed sausages ‘Frankfurters’ as meat products).

Figure 10: Official vs IRi expenditure shares by category

29The nine categories are constructed to represent large, but still fairly homogeneous groups of products
with a sizable share in our sample across all five countries. They are constructed as a suitable combination of
3-digit and 4-digit COICOP categories. We use categories (EA4) and subcategories (US) provided by IRi to
allocate products into the nine categories.
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B Construction of store projection weights for Ger-

many and Italy

In the German and Italian samples, some supermarket chains share a representative sample
(as opposed to a full census as in the US, France, and the Netherlands) of their stores with
IRi. To maintain the representativeness of our sample, we need to adjust the weight of the
sample stores suitably.

In particular, we ‘upweight’ stores (s) by projection weight νs. The weights for the stores that
appear as census are ν̃sw = 4/3, which offsets the impact of the dataset being a 75 percent
share of the full sample.

To obtain projection weights for sample stores in Germany and Italy, we need to estimate
the overall number of stores by store type. This data is part of the IRi dataset.30 In Italy,
the overall number of stores by store type is available annually at the end of each year: here,
we use linear projections between end-of-year observations to obtain estimates of the weekly
number of stores by store type ÑSw. In Germany, the number of stores by store type is only
available at the end of 2017 (NST ). Here, we use the evolution of the stores in the census
population in our sample to obtain estimates of the weekly number of stores by store type.
First, we calculate the average weekly entry (γS) and exit rates (δS) by census store type
(S) over the 2013-2017 sample. Second, the estimated number of stores by store types is
obtained by assuming constant entry and exit rates by store type ÑSw = (1 + γS − δS)ÑSw−1,
ÑST = NST .

The weights for the sample stores are obtained as

ν̃sw =
4

3

non-census population by type in week w

4/3 · (non-census sample by type in week w)
, (7)

where (non-census population in type in week w) = (estimated aggregate population by type
in week w (ÑSw))-4/3(the number of census stores by type in week w).

Finally, we normalize the projection weights to make sure that they sum to unity each week:

νsw =
ν̃sw∑
s ν̃sw

, for each w. (8)
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Table 8: Data-cleaning moments

DE FR IT NL US

% same-direction changes 2.15 5.39 8.1 3.58 6.03
% also fractional 1.66 3.71 5.36 1.65 3.31

% fractional price 7.6 8.05 11.66 5.91 6.96
% below closest integer 68.93 53.83 59.48 62.33 58.95

% missing (obs) 43.91 42.09 46.58 42.97 38.49
% missing (exp) 55.37 46.88 59.12 38.9 55.5
% missing (exp >4w) 22.16 21.04 26.27 16.7 13.49

Note: ’Missing (exp)’ refers to the expenditure share of products that record zero
sales in a single (over four consecutive) week(s).

C Posted-price filter

Unit-value prices do not necessarily reflect posted prices. There are two main reasons for
this. First, mid-week price changes generate unit values that are in-between actual prices.
Second, coupons and other buyer-specific discounts can reduce the average revenue from a
product below its posted price. We transform unit prices to estimated posted prices using the
following filtering rules.31

First, to reduce the impact of mid-week price changes, we filter out same-direction consecutive
price changes. A one-time mid-week permanent price change necessarily generates such same-
direction consecutive unit-price changes. The mid-week price change increases the average
weekly unit price only partially in the initial week, and pass-through fully only during the
second week. Formally, if we observe two consecutive price increases (I+

psw,w−1 > 0, I+
psw+1,w >

0) or decreases (I−psw,w−1 > 0, I−psw+1,w > 0), we conclude that there was a mid-week price
change during week w. We set the end-of-the-week posted price during this week as the
unit-value price in the following week Ppsw = P uv

psw+1. As Table 8 shows, 2-8 percent of the
prices are affected by the same-direction filter. Of these filtered prices, more than half are
usually fractions of a cent. As fractional unit values cannot be posted prices, their presence
strongly confirms mid-week price changes. Their high share suggests that the filter recovers
the true posted prices in most cases. And even though some of the filtered same-direction

30The number of stores is available by store type and geographical area, but the latter we ignore in the
current analysis.

31There is a potential third reason: a within-week temporary price discount. These within-week price
changes would be recorded as (smaller) changes in the weekly average price, potentially distorting the price-
setting moments at the highest frequencies. As our focus is monthly frequency, we do not expect such changes
to influence our conclusions.
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price changes could have been true adjustments, filtering them out biases our results only
marginally, especially at the monthly frequency, which is going to be our focus.

Second, to mitigate the impact of buyer-specific discounts, we round prices upwards to the
nearest cent. Posted prices need to be integers in cent units. However, 6-12 percent of unit-
value prices are fractional even after controlling for same-direction price changes (see Table
8). As most of the deviations from the posted price result from discounts, we round the prices
upwards. Indeed, the closest integer is higher than the price in over 60 percent of the fractional
prices. A higher than 50 percent share is expected when the fractional prices are caused by
discounts paid by a small fraction of the buyers. In cases when the discounts are paid by
such a small fraction of the buyers that the unit-value price deviates from the posted price by
at most a cent, our filter picks up the actual posted price. Even when the discounts reduce
the average price by more than a single cent, upward rounding brings us closer to the posted
price. However, there can still be many cases where the share of buyers paying a discount is
large enough to reduce the unit-value price away from the posted price by more than a single
cent. In these cases, the filter does not recover the actual posted price. Therefore, we show
the robustness of our results below when we exclude fractional prices from the analysis.

The posted price also remains unobserved when there is no sale of the item in a particular
week. Zero-sale weeks (I∅psw) for existing items32 are frequent in the data. In particular, 38-47
percent of the observations are missing (see Table 8). Furthermore, the expenditure share
of items with missing observations is also high, so the issue does not only affect rarely-sold
unpopular products with a small expenditure share. In particular, the annual expenditure
share of products with at least one missing observation over a year is 40-60 percent. The issue
is somewhat less pressing if we realize that consecutive missing observations are usually short,
much shorter than a month. In particular, the annual expenditure share of products with at
least one case of 4 or more consecutive missing observations is between 15-25 percent. This
is the relevant metric for our analysis, which focuses on monthly price developments since
monthly prices are only missing if weekly prices are missing for four consecutive weeks. The
presence of a not insignificant fraction of missing prices can still be considered a caveat of our
dataset, and its potential impact needs to be carefully assessed in the analysis below.

The dataset requires careful treatment during the rare occasions when the product identifiers
stop referring to the same product over time. This happens in the US sample in 2007:01,
2008:01, and 2012:01, when the identifiers of some private-label products get reassigned by
IRi. We lack additional information about the rules followed during the reassignment, so,
conservatively, we assume that new private-label products replaced old private-label products

32We consider a product p in store s existing in week w if Mps ≤ w ≤ Tps, where Mps is the date of entry
(the first week when product p was sold in store s), and Tps is the date of exit (the last week it was sold).
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during these three months, and we do not link price spells of private-label products over
these months. We treat similarly a subset of German beer- and beer-cocktail products in
2014:01, when their EAN got reassigned to refer to a crate instead of a bottle (which could
occasionally generate artificial 24-fold price increases): we treat them as separate products
and do not link their prices over the 2014:01 period. Lastly, we drop from the Dutch dataset
over the 2013-2014 period a subset of (overwhelmingly fresh) products, which had inconsistent
unit treatment resulting in unreliable price development. In particular, we drop products with
‘internal use’ EANs and ‘random weight’ volume measurements over the 2013-2014 period.
The internal-use EANs are assigned by the stores to products packaged internally (e.g., fresh
meat). The ‘random weight’ volume measurement implied a non-standardized unit treatment
before 2014, which could have resulted in random unit variation over time if the store changed
its reporting. To avoid artificial variation in our data, we drop these products from the
analysis. The treatment impacts a small subset of the products (around 12 percent share of
annual expenditures) over only two years and only in the Dutch data, so we expect it to have
a marginal impact on our analysis.

D Inflation

In this section, we construct an inflation index and compare its dynamics with the official
food-at-home inflation subindices.

Our baseline inflation index is constructed as a geometric average of price changes weighted
by their annual expenditures. Formally:

Πt =
∏
ps

(
Ppst

Ppst−1

)ωpst−1,t

, (9)

where Πt is the gross inflation rate in month t, and Ppst is the posted-price of product p in
store s in month t. The weight is the annual expenditure on product p in store s as a share
of the annual expenditures.

Formally, ωpsy =
∑

t∈y TRpst/
∑

ps

∑
t∈y TRpst, where TR is the total revenue (nominal ex-

penditure), and y is the year of month t.33 The price index Pt =
∏t

s=0 Πs is simply a chained

33To arrive at monthly expenditures TRpsm, we transform weekly expenditures as

TRpsm =
52

12

∑
w∈m

∑
TRpsw∑

w∈m 1
, (10)

where the normalization controls for the number of weeks in the month (either 4 or 5). We first divide the
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product of the inflation index.

Figure 11: The year-on-year change of the IRi supermarket inflation index, and the official
food and beverage subindexes

Note: The figure shows the evolution of the year-on-year IRi supermarket inflation and the official

food and beverage subindexes. The comovement between the series is apparent, especially at low

frequencies.

Our baseline inflation index captures the business cycle fluctuations in official food and bever-
age inflation reasonably well. Figure 11 shows the evolution of the year-on-year inflation rates
of the two series in each country. The comovement is apparent, especially at low frequencies.34

sum of expenditures by the number of weeks in the particular month and then multiply it by the average
number of weeks in the year. The index only considers items which exist both in months t−1 and t, therefore
the actual expenditure weights used are

ωpst−1,t =
Ipst−1,tωpsy∑
ps Ipst−1,tωpsy

,

where Ipst−1,t is an indicator function that takes the value 1 if product p in store s exists in both months t−1
and t.

34At the same time, our inflation index underestimates the level of official inflation. As we detail in Appendix
D.3, the primary reason for this is that our index excludes the impact of new product introductions. These
tend to have a small impact on inflation variability at business cycle frequencies (see also Argente and Yeh,
2022), but can substantially raise the level of inflation.
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In the upcoming analysis, we decompose the baseline index into key components to establish
relevant stylized price-setting facts.

D.1 Temporary sales

A salient feature of price spells is their high-frequency variation. Prices regularly get tem-
porarily reduced (or increased) for a couple of weeks, after which they tend to return to
exactly the initial price. As we show momentarily, most price changes in our sample are due
to such temporary sales. Previous research has established that the nature of high-frequency
price changes is distinct from those of more persistent reference price changes (Nakamura and
Steinsson, 2008; Kehoe and Midrigan, 2015; Eichenbaum et al., 2014). While reference prices
are driven primarily by costs, sales are used as a marketing tool to trigger households to try
out new products and stores, to gain the trade of bargain-hunter households, as well as a tool
to fine-tune inventory. The high-frequency variation influences inflation dynamics differently
than the evolution of reference prices, therefore, it is instructive to analyze them separately.

We employ the reference-price filter of Kehoe and Midrigan (2015) to filter out temporary
sales. As in Kehoe and Midrigan (2015), we iteratively update the reference prices to align
the reference-price change with the posted-price change. We do this because a change to a
new reference price is sometimes picked up with a delay by the algorithm (it takes a while
until the new price becomes a mode within the rolling window). The algorithm corrects this
by aligning the change in the reference price with the change in the posted price. As an
additional step, we control for clearance and introductory sales in the first and last 5 weeks of
the spell (Argente and Yeh, 2022). We do this by carrying forward (backward) the reference
price in the 6th week before the last (after the first) price of the spell. A key advantage of the
reference-price filter over a more conventional regular-price filter that controls for V-shaped
temporary price cuts (Nakamura and Steinsson, 2008) is that it also controls for temporary
increases (spikes) in price spells. Such increases can be rationalized, for example, by inventory
management: higher prices temporarily reduce demand and make sure the store does not run
out of the product until a new delivery arrives. Spikes can account for as high as one-third
of high-frequency price changes (Eichenbaum et al., 2011; Kehoe and Midrigan, 2015).

Figure 12 decomposes our baseline inflation series into a reference-price inflation series and
a sales inflation series. The reference-price inflation series is constructed analogously to our
baseline series (Equation 9) with reference prices replacing posted prices. Sales inflation is
defined as the difference between posted-price inflation and reference-price inflation. The
figure shows that sales-price inflation is subject to large high-frequency noise and it explains
a small share of inflation variability at business cycle frequencies. This is one of the key
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Figure 12: The year-on-year reference-price and sales inflation

Note: The figure decomposes inflation into reference-price inflation and residual sales inflation. The

figure shows that the reference-price inflation evolves smoothly and it accounts for most inflation

variation at business cycle frequencies. Sales inflation, by contrast, varies little at business cycle

frequencies, while it is subject to sizable high-frequency noise.

reasons why we concentrate on reference-price changes in our analysis.

Even though sales inflation accounts for a small share of inflation variability at business cycle
frequencies, a large fraction of price changes are due to sales. To show this, we calculate
the average monthly frequency of price changes for both posted and reference prices. We
weigh the item-level frequency with annual expenditure weights analogously to our baseline
inflation index and take a simple average over time. Formally, the frequency (ξt) of monthly
price changes is

ξt =
∑
s

∑
p

ωpst−1,tIpst−1,t, (11)

where Ipst−1,t is an indicator that takes the value 1 if the posted price of product p in store s in
month t changed from the previous month, and 0 otherwise. The frequency of reference-price
changes is calculated analogously with an indicator function that takes the value 1 in case of
a reference-price change. Table 9 shows the frequency of posted- and reference-price changes
in the 4 euro area countries and the US in rows 1 and 2 and shows their ratio in row 3. The
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table shows that around 2/3 of price changes are due to sales and that this share is fairly
stable across countries.

Table 9: Frequency of posted- and reference-price changes

Frequency (monthly, mean) US EA4 DE FR IT NL

Posted (%) 39.35 21.42 12.41 25.47 27.56 24.77
Reference (%) 13.34 8.97 4.53 15.27 9.04 10.06

Ratio 2.95 2.39 2.74 1.67 3.05 2.46

Note: The table presents the frequency of posted- and reference-price changes
and their ratio. It shows that almost 2/3 of price changes are due to sales.

D.2 Features of the baseline inflation index

The construction of our baseline index resembles that of the HICP and CPI, which can also
be characterized as chained, annual-expenditure-weighted price indices. One difference is
that the weights are contemporaneous in our index, while HICP and CPI rely on lagged
expenditures. The advantage of setting contemporaneous weights is that we do not need to
restrict our analysis to products that exist also in the preceding year. This is a relevant
advantage in the fast-moving supermarket-product category, where there is a sizable turnover
between products. Linking closely related products with distinct barcodes over time is beyond
the scope of this paper, while statistical offices put substantial effort into regularly replacing
exiting with entering products after suitable quality adjustment.

Annual weighting has multiple advantages over schemes that use more frequent weighting.
First, because our focus is on price setting (as opposed to the measurement of the welfare-
relevant inflation), annual weights minimize the impact of high-frequency quantity changes
on the measurement of price dynamics, while still correctly tracking trend changes in the
relative importance of different products. For example, it mitigates the seasonality of the
index that more frequent weighting schemes would cause. This is particularly relevant among
supermarket goods, where seasonal sales generate large seasonal variations in expenditures.
Second, annual weighting mitigates a bias called chain drift, which impacts chained indices
with high-frequency weighting schemes. Chain drift is present if the index does not return
to 1 when the price returns to its initial level. One cause of the chain drift is the inventory
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behavior of households, who stock up during temporary promotions. As a result, the quantity
of purchases drops below its initial level after it increased during the promotions. In the
presence of such dynamic behavior, even superlative chained indices (e.g., Tornqvist35) with
high-frequency weights measure deflation even though the price returned to its initial level
(Ivancic et al., 2011). Lower-frequency weights mitigate the impact of the chain drift by taking
into account the longer planning horizon of the households (Feenstra and Shapiro, 2002) and
bringing the index closer to fixed-base indexes, which are free of chain drift. To assess the
remaining impact of chain drift on our index, we compare our index with the unchained
year-on-year price index of existing products.

Figure 13 presents the year-on-year change of the baseline chained inflation index and the
unchained 12-month inflation index for all countries together with the relevant official inflation
subindex. Table 10 shows the average year-on-year inflation rates and the correlation between
the chained and unchained indices. The results indicate that even annual weighting is not
sufficient to completely eliminate chain drift from our baseline inflation measure. At the same
time, the correlation of close to one between the unchained and the chained series shows that
the chain drift has an insignificant impact on the variation of measured inflation at business
cycle frequencies, which is the main focus of our analysis.

Table 10: Chain drift: Average inflation of and correlation between the year-on-year change
of the baseline chained inflation index and the unchained 12-month inflation index

Series moment DE FR IT NL US

Inflation - chained 1m average -0.40 -0.92 -0.71 -0.10 1.47
Inflation - unchained 12m average 0.13 -0.97 -0.31 0.39 1.67
1m-12m inflation correlation 0.99 0.99 0.99 0.98 0.96

D.3 New product introductions

A feature of the inflation index described by Equation (9) is that it includes the price change
of existing products, but excludes the impact of product entry and exit on the price level.
We justify our focus on the price setting of existing products by showing below that it is
this component of the price level that is mostly responsible for its responsiveness to business-
cycle fluctuations. The component of inflation caused by product entry and exit, which we

35The Tornqvist index between month t and t− 1 equals to Πt =
∏
ps

(
Ppst

Ppst−1

)(ωpst+ωpst−1)/2

, where ωpst is

the expenditure share of product p in store s in month t.
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Figure 13: Chain drift: the year-on-year change of the baseline chained inflation index and
the unchained 12-month inflation index

Note: The figure compares the year-on-year change of the baseline chained inflation index and the

unchained 12-month inflation index. The level difference between the series indicates that our baseline

inflation index suffers from some remaining chain drift, however, the close comovement of the series

shows that the chain drift has an insignificant impact on the fluctuations of the series.

call new-product inflation, by contrast, is broadly stable and insensitive to business-cycle
fluctuations. Notably, this letter component, through the sizable difference between the price
of the entering and exiting products, is what is responsible for the level of inflation.

The role of new-product inflation is not the focus of this paper. However, we find it useful to
show some indicative evidence of its behavior by comparing the evolution of an ‘all-product’
inflation index to our baseline existing-product index. We measure the former as the monthly
change in the price levels defined as the geometric average of prices weighted by the annual
expenditure weights. Formally,

Πap
t =

∏
ps P

ωpst

pst∏
ps P

ωpst−1

pst−1

, (12)

where the weights ωpst are annual expenditure-share of items that are present in month t.36

The key difference between the existing-product and the all-product inflations is in the set
of products they consider. The existing-product inflation only includes products that exist

36Formally, the weights are given by ωpst = Ipstωpsy/
∑
ps Ipstωpsy, where Ipst is an indicator function that

takes a value 1 if product p in store s is sold in positive quantities.
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in both periods (the weights ωpst−1,t are positive only for products that exist both in months
t − 1 and t), and the all-product price levels include all existing prices (the weights ωpst are
positive for all products existing in period t), therefore, the all-product inflation takes into
account price differences between exiting and entering products.

The all-product inflation is the relevant inflation index if the exiting products are all replaced
by similar quality entering products. This is admittedly a strong assumption. There are
both ‘true’ product exits as well as ‘true’ product introductions without a matching entry
or exit respectively in our dataset. But the replacements constitute arguably the majority
of exits and entries.37 These could include pure barcode changes (when the exact same
product is reintroduced with a different barcode), changes in packaging, volume, or minor
flavor/color/form upgrades. The true entries and the replacements require different treatment
by the price index. With some reasonable assumptions about the utility function (including
how quality affects demand), Feenstra (1994) and Broda and Weinstein (2010) show how
the quality of true introductions can be assessed by relying on their market share relative
to existing products. Intuitively, if their quality is high relative to their price (which is
observable) their relative market share (which is also observable) is also going to be high.
The same techniques, however, are not applicable in case a producer, which influences the
supply of both the old and the new products, replaces an old product with a new one. In
this case, the market share is influenced by the producer’s choices and is not informative
about the quality of the new product. There is arguably a lot of product replacement among
supermarket goods, where what is changing is the packaging and the price, but not the quality
of the good. In these cases, the all-product inflation is the valid index.

Table 11: Level and comovement of key inflation indexes

Series moment DE FR IT NL US

All-product inflation average 1.51 1.39 0.37 2.78 2.25
Surviving-product inflation average -0.40 -0.92 -0.71 -0.10 1.47
Official food and beverage inflation average 1.63 0.56 0.91 1.21 2.72

All-Surviving inflation correlation 0.93 0.74 0.71 0.52 0.96
Official-Surviving inflation correlation 0.49 0.71 0.32 0.87 0.89

Figure 14 presents the all-product and surviving-product inflation rates for all countries to-

37Using the US IRi Academic Dataset, Argente and Yeh (2022) consistently find that ‘product line ex-
tensions, such as flavor or form upgrades or novelty and seasonal items, are much more prevalent than the
introduction of new brands.’
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Figure 14: New product introductions: The year-on-year change of the baseline inflation
index, the all-product index, and the HICP/CPI subindexes

Note: The figure compares the year-on-year change of the baseline chained inflation index (surviving-

product index) and the all-product inflation index. The all-product inflation rates get closer to the

level of the HICP/CPI inflation than our baseline index and capture the variation of the official

indices well across countries.

gether with the relevant official inflation subindex. Table 11 shows the average year-on-year
inflation rates as well as correlations between the series. The results show that the all-product
inflation rates get closer to the level of the HICP inflation than our baseline index and capture
the variation of the official indices well across countries. This suggests that the all-product
inflation, despite its simplicity, captures most of the information inherent in official price in-
dices, which are based on much more careful judgment of product replacement and quality
adjustment.
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E Time variation of EA4 and US frequency

Figure 15 shows the evolution of the frequency of reference-price changes in the US (2001-
2012) and in EA4 (2013-2017). Even though the US and EA4 datasets do not overlap, this
does not affect the comparison of the key moments used in our analysis, as they are relatively
stable over our sample period.

Figure 15: Frequency of reference-price changes, EA4 vs US

Note: The figure shows the evolution of the frequency of reference-price changes in the US (2001-

2012) and in EA4 (2013-2017). The figure shows that the frequency is robustly lower in EA4 than

in the US, implying higher price rigidity in EA4 relative to the US.
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F Heterogeneity across euro area countries

Figure 16: Generalized hazard functions and price-gap densities and duration hazard functions
across euro area countries and the US
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Note: The figure shows the generalized hazard functions (first row), the price-gap densities (second

row), and the duration hazard functions (third row) across four euro area countries and the US. The

figure provides evidence for moderate state dependence in all countries, with notable heterogeneity

across countries.
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G Duration hazard, sales and cross-sectional hetero-

geneity

Controlling for both cross-item heterogeneity as well as sales-related price changes is essential
to obtain upward-sloping duration hazards. The left and right panels of Figure 17 show,
respectively, our estimates without controlling for fixed effects in Equation (2) and using
posted-price changes, as opposed to reference price changes. The figures show that both
factors bias the estimated slope downward, so much so that in both cases we would erroneously
conclude that the hazard function is downward sloping.

Figure 17: Duration hazard functions without controlling for cross-item heterogeneity and
sales
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Note: The figures show the duration hazards without controlling for cross-item heterogeneity (left

panel) and including sales-related price changes (right panel). The figures show that controlling for

both factors is important to conclude that the hazard function is upward sloping.
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H Supermarket inflation during Covid

We measure inflation using the year-on-year change in the Tornqvist price index with quarterly
expenditure weights. The Tornqvist index is a superlative price index with desirable welfare-
theoretical properties38. Quarterly expenditure weights reduce the impact of high-frequency
variation in the composition of products, both due to seasonal factors and temporary sales.
Additionally, concentrating on year-on-year indexes minimizes the impact of seasonal variation
as well as the potential impact of the ‘chain drift,’ which can be present with higher-frequency
indexes relying on scanner data (Ivancic et al., 2011).

Formally, we calculate headline and reference-price inflation as

πi
w =

∑
ps

γpsw(logP i
psw − logP i

psw−52), (13)

where P i
psw is the posted (i = h) or reference price (i = f) of product p in store s in week w

and the weights are

γpsw =
Ipsw,w−52(ωpsq−4 + ωpsq)/2∑
ps Ipsw,w−52(ωpsq−4 + ωpsq)/2

, (14)

where Ipsw,w−52 is an indicator function that takes the value 1 if product p in store s is sold in
strictly positive quantities in both w and w − 52 and 0 otherwise39, and ωpsq is the quarterly
expenditure share of product p in store s in quarter q.40

Figure 18 shows the weekly, year-on-year supermarket inflation in Germany and Italy between
mid-February and mid-May. We concentrate on the 5-week-average inflation, which smooths
out some high-frequency variability of the weekly series. The 5-week-average inflation started
at around its long-term average in 2020 in both Germany and Italy and increased throughout
the quarter in both countries. The increase was higher and clearly exceeded a one-standard-
deviation band41 in Italy (1.89 percentage points), while it was smaller and stayed within a

38It is the second-order approximation of the welfare-relevant price index under an arbitrary homothetic
utility function.

39We match weeks with previous-year weeks based on their distance from the Easter week, the strongest
seasonal factor over the mid-February-mid-May period we have data for in 2019 and 2020.

40The ensuing supermarket inflation rates in both countries co-move with the respective HICP food and
beverages subindices. The correlation coefficients of the monthly inflations are 43% in Germany and 54% in
Italy. The level of supermarket inflation is below the HICP subindices. The main reason is that we focus
on surviving products and ignore the impact of new product introductions, which generate a major share of
trend inflation.

41The band shows the standard deviation of 5-week-inflation rates over the first two quarters of the years
between 2013-2017.
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Figure 18: Supermarket inflation during the first wave of the Covid-19 pandemic, year-on-year

Germany Italy

-1%

0%

1%

2%

3%

20/02 05/03 19/03 02/04 16/04 30/04

2020
Average
2013-2017
Standard deviation of 5 week averages

-1%

0%

1%

2%

3%

13/02 27/02 12/03 26/03 09/04 23/04 07/05

2020
Average
2013-2017
Standard deviation of 5 week averages

-1%

0%

1%

2%

3%

20/02 05/03 19/03 02/04 16/04 30/04

2020
Average
2013-2017
Standard deviation of 5 week averages

-1%

0%

1%

2%

3%

13/02 27/02 12/03 26/03 09/04 23/04 07/05

2020
Average
2013-2017
Standard deviation of 5 week averages

Note: The figure shows the weekly, year-on-year supermarket inflation (blue solid line) between mid-

February and mid-May in 2020 in Germany and Italy. It shows that the average inflation in the

first 5 weeks (blue-dashed line) stayed close to the average inflation rate during the first two quarters

of 2013-2017 (yellow-dashed lines). Over the quarter, the 5-week-average inflation (blue dashed

line) increased sizeably in both Germany (0.95%) and Italy (1.89%). The change stayed within a

confidence band of two standard deviations in Germany but exceeded it in Italy.

one-standard-deviation band in Germany (0.95 percentage points). The increases are compa-
rable to the HICP food-and-beverage subindexes between February and May in Italy (1.96
percentage points) and Germany (0.79 percentage points).

Figure 19 shows the real expenditure growth in supermarkets in Germany and Italy. It is
defined as the difference between nominal expenditure growth and the inflation rate. The
figure shows that most of the nominal expenditure growth translated into real expenditure
growth. This is consistent with the observation that prices responded sluggishly to the Covid
shock.
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Figure 19: Real expenditure growth in supermarkets during the Covid-19 pandemic, year-on-
year
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Note: The figure shows the weekly, year-on-year real expenditure growth (blue solid line) between mid-

February and mid-May in 2020 in Germany and Italy. It shows that the 5-week-average expenditure

growth (blue-dashed line) exceeded the average long-term expenditure growth (yellow dashed lines) by

more than a standard deviation in both Germany and Italy. The expenditure growth was particularly

high in the weeks preceding the lockdowns (‘stock-up’ shock), but stayed persistently high also during

the lockdowns.
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