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Abstract

This paper studies optimal second-best corrective regulation, when some agents/activities 
cannot be perfectly regulated. We show that policy elasticities and Pigouvian wedges 
are sufficient statistics to characterize the marginal welfare impact of regulatory policies 
in a large class of environments. We show that a subset of policy elasticities, leakage 
elasticities, determine optimal second-best policy, and characterize the marginal value of relaxing 
regulatory constraints. We apply our results to scenarios with unregulated agents/activities, 
uniform regulation across agents/activities, and costly regulation. We illustrate our results in 
applications to financial regulation with environmental externalities, shadow banking, behavioral 
distortions, asset substitution, and fire sales.

JEL Codes: H23, Q58, G28, D62
Keywords: corrective regulation, second-best policy, Pigouvian taxation
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Non-technical summary

In the aftermath of the 2007-2009 financial crisis, most economies have expanded the set and scope

of regulations faced by the financial sector, which has spurred heated debates about the unintended

consequences of regulation. For instance, the increase in intermediation activities carried out

outside the regulated financial sector observed in Europe, the US, and China in recent years is

often interpreted as an immediate consequence of tighter financial regulation faced by regulated

investors.

In an ideal world, if regulation is desirable, an ideal outcome can be achieved if regulators have

the ability to regulate every economic decision made by every market participant. However, for

numerous reasons, regulatory policies in practice must be conducted with imperfect instruments.

In particular, it may be that a given regulator is able to regulate some agents but not others.

Alternatively, it may be that a regulator can regulate some of the activities carried out by a given

agent, but not all of them. Alternatively, it may be that a regulator can only set uniform policies

across agents or activities. Finding the optimal regulation in these and related environments may

seem daunting because there are many possible market failures to consider and many seemingly

disparate imperfections in policy instruments.

In this paper, we show that the design of optimal regulation whenever policies are conducted

with imperfect instruments can be derived from the same set of principles. Initially, after

characterizing the welfare impact of arbitrary policy changes, we present the unconstrained

(Pigouvian) benchmark, in which optimal regulations are set to equal marginal distortions.

Next, we present our two main sets of results. First, we identify the variables that determine

whether an activity should be over- or under-regulated relative to the unconstrained (Pigouvian)

benchmark when some activities cannot be perfectly regulated. We then show that regulators want

to discourage imperfectly regulated activities that are underregulated and encourage those that are

overregulated. Leakage elasticities, which measure how imperfectly regulated activities respond to

the regulator’s unconstrained policy choices, are a key input to the optimal policy. In particular, we

demonstrate that the nature of the optimal policy with imperfect instruments depends crucially on

whether perfectly and imperfectly regulated decisions are gross substitutes or gross complements.

Second, we characterize how social welfare changes when relaxing regulatory constraints. This
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is a relevant object in light of recent policy proposals that aim to extend the scope of institution-

or activity-level regulations. This object is also important to understand the optimal regulation

of imperfectly regulated decisions. We show that besides the direct effect of relaxing a particular

constraint, there is always a feedback effect that incorporates the welfare impact of the responses

of perfectly regulated decisions to the changes in the regulation of imperfectly regulated decisions.

Interestingly, we show that this second effect systematically dampens the welfare benefit of relaxing

constraints whenever decisions are either substitutes or complements. In practice, this result implies

that the welfare gains from relaxing regulatory constraints are typically less than its direct impact

may suggest.

After specializing our general results, we characterize optimal regulation in detail for three

classes of policy imperfections (unregulated investors/activities, uniform regulation, and regulation

subject to quadratic costs). Finally, we study five applications of practical relevance. Our headline

application studies optimal financial regulation in the presence of environmental externalities,

contrasting the role of climate-related risks when regulation has a narrow/financial mandate versus

a broad/environmental mandate. The first of our additional applications studies optimal regulation

motivated by the presence of implicit government subsidies when some agents are unregulated. The

second application illustrates how our results apply in the context of behavioral distortions. The

third application yields new insights into the asset substitution problems, in which regulators must

set uniform policy across different investment activities. Our final application studies a model

of fire-sale externalities in which regulation is constrained to be uniform across different types of

investors.
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1 Introduction

Many economic policies are motivated by the desire to correct externalities. However, the
instruments available to policymakers are often imperfect. Financial regulation is a prime example
of this phenomenon. In particular, in the aftermath of the 2007–2009 financial crisis and guided
by theories of corrective policy in the presence of a diverse set of market failures — including fire-
sale externalities and distortive government subsidies (e.g., Lorenzoni, 2008; Bianchi, 2016; Farhi
and Werning, 2016; Dávila and Korinek, 2018) — most economies have expanded the set and
scope of regulations faced by the financial sector. At the same time, many agents and activities
in the financial system remain unregulated, and regulators are frequently forced to impose uniform
regulations across heterogeneous agents and activities. In addition, recent policy discussions have
focused on how to employ financial regulation to address environmental externalities, a view that
must deal with significant restrictions on the set of feasible policy instruments.

These policy imperfections are often viewed as generating “unintended consequences” (e.g.,
Adrian and Ashcraft, 2016; Hachem, 2018).1 Hence, a natural normative question is how regulators
should proceed once they are aware of previously unintended consequences. The associated second-
best policy problem appears daunting because, as we have outlined, there are many possible market
failures to consider and many seemingly disparate imperfections in policy instruments.

This paper characterizes, for a broad class of economies, how the presence of imperfect
regulatory instruments affects the design of optimal corrective regulation. Our goal is to identify
a set of unifying economic principles for regulation in a second-best world in which regulation is
costly and/or subject to constraints. Therefore, our results build on and complement the existing
theoretical literature, which focuses on the properties of particular types of market failures and
regulatory imperfections.

We initially consider a general model in which multiple investors have access to a rich
set of investment and financing opportunities, which may induce externalities.2 A regulator
can, in principle, impose corrective Pigouvian taxes/subsidies on each decision to address these
externalities. However, the regulator has to choose such regulations from a constrained set. Our
general results impose minimal structure on the nature of regulatory constraints. We show four
results in this general framework before considering its various applications.

First, we characterize the marginal welfare impact of varying any given regulatory instrument.
We show that the marginal welfare effects of varying corrective regulations are determined by two
sets of statistics: i) policy elasticities and ii) Pigouvian wedges. Policy elasticities correspond to
the general equilibrium responses of financing and investment decisions, both across and within
investors. Pigouvian wedges correspond to the difference between the existing corrective regulation

1In the context of financial regulation, there are concerns about leakage of activity to the unregulated financial
sector in the US and China in recent years, and about asset substitution, whereby institutions tilt their portfolios
towards the riskier end of each asset category defined by regulatory “risk weights”.

2This general model, phrased in terms of investment and financing decisions, allows us to directly explore different
dimensions of financial regulation. Focusing on financial regulation is natural, since financial activity is inherently
hard to regulate (Arseneau et al., 2022). However, our results apply beyond the sphere of financial regulation. Indeed,
we provide a formal counterpart of our results using classical consumer theory in Section E of the Online Appendix.
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that directly affects a given activity and the actual marginal distortion (externality) generated by
that activity. These wedges capture the extent to which different activities are regulated too strictly
or too leniently for any given set of corrective policies.

Second, as a benchmark, we characterize the optimal first-best policy, in which the regulator
has access to an unconstrained set of regulations, and note that the Pigouvian principle — also
called the principle of targeting — applies.3 In that case, the optimal regulation is chosen so that
all Pigouvian wedges are exactly equal to zero, with Pigouvian regulations set to equal marginal
distortions. Hence, policy elasticities do not form part of the first-best policy. In other words,
policy elasticities are only inherently important for corrective regulation in second-best scenarios,
in which the set of regulatory instruments is imperfect.

Third, we characterize optimal second-best policy. We show that the second-best regulation
of perfectly regulated decisions (i.e., decisions for which regulatory constraints are not binding)
is given by the sum of i) the associated marginal distortion, guided by the first-best Pigouvian
principle, and ii) a second-best correction. Two sets of sufficient statistics determine the sign of
this correction and, therefore, whether an activity should be overregulated relative to the Pigouvian
principle (super-Pigouvian regulation) or underregulated (sub-Pigouvian regulation). The first set
of statistics contains the Pigouvian wedges associated with all imperfectly regulated decisions (i.e.,
all decisions associated with a binding regulatory constraint). The second is a subset of policy
elasticities, which we refer to as leakage elasticities, and which measure the responses of imperfectly
regulated decisions to the changes in the regulation of perfectly regulated decisions. Intuitively,
under the second-best policy, regulators want to discourage imperfectly regulated activities that
are underregulated (with a negative Pigouvian wedge), and encourage those that are overregulated
(with a positive wedge). The leakage elasticities measure how these activities respond to the
regulator’s unconstrained policy choices. In particular, we demonstrate that the nature of the
second-best correction depends crucially on whether perfectly and imperfectly regulated decisions
are gross substitutes or gross complements. In our applications, we discuss natural examples of
both cases.

Fourth, the last of our general results characterizes the marginal welfare effect of relaxing
regulatory constraints. This is a relevant object in light of recent policy proposals that aim to
extend the scope of institution- or activity-level regulations (e.g., Gorton, Metrick, Shleifer and
Tarullo, 2010; Adrian and Ashcraft, 2016). This object is also important to understand the optimal
regulation of imperfectly regulated decisions. We decompose this marginal welfare effect into two
terms. The first is the direct effect, which is determined by the policy elasticities of imperfectly
regulated decisions and the associated Pigouvian wedges. For example, welfare is improved most by
relaxing a constraint if doing so discourages severely underregulated activities, with large negative
wedges. The second effect is a feedback effect that incorporates the welfare impact of the responses
of perfectly regulated decisions to the changes in the regulation of imperfectly regulated decisions
under the second-best policy — this is a form of reverse leakage. Interestingly, we show that this

3Throughout the paper, we use the term first-best regulation to refer to the benchmark in which a planner can
freely correct every individual decision, while also respecting individual/technological constraints.
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second effect systematically dampens the welfare benefit of relaxing constraints whenever decisions
are either substitutes or complements. While the logic behind this result is reminiscent of the Le
Chatelier principle (e.g., Milgrom and Roberts, 1996), we find the opposite qualitative conclusion:
when we let our system adjust further by accounting for the impact of relaxing a constraint on the
perfectly regulated decisions under the second-best policy, the shadow welfare gains from regulation
are typically dampened, not amplified.4

Next, we specialize these general results to characterize in detail three classes of imperfections
regarding the set of policy instruments, given their practical relevance. First, we consider the case
in which some investors or activities are entirely unregulated. In this case, the optimal second-best
regulation is given by a weighted sum of distortions in both the regulated and unregulated segments,
with the sign and magnitude of the appropriate weights determined by the leakage elasticities. This
part of our analysis generalizes the well-known Tinbergen (1952) rule by deriving the optimal policy
when the number of policy instruments is less than the number of targets. Second, we consider
the case of uniform regulation, where the same regulations must apply to different investors or
activities, even if they impose externalities of different magnitudes. We derive the optimal second-
best uniform regulation in a general environment, in which other (non-uniform) regulations may
remain freely adjustable. The optimal uniform regulation, which generalizes insights from Diamond
(1973), takes the form of a weighted average of distortions, with weights that account for the
responses of perfectly and imperfectly regulated decisions according to the Le Chatelier/reverse
leakage adjustment discussed above. Third, we consider the case in which a subset of regulations is
subject to smooth, quadratic costs. In this case, we show that the optimal regulation is optimally
attenuated. This case also underlines the more general idea that the presence of perfectly regulated
decisions — once again via the Le Chatelier adjustment — is a force that contributes to attenuating
the optimal regulation of imperfectly regulated decisions.

Finally, to demonstrate the usefulness of these general principles, we consider a suite of
applications. In our headline application, we leverage our general results to provide new insights
into the question of financial regulation in the presence of environmental externalities. This question
has only recently received interest in academic and policy circles, and remains underexplored. For
this application, we develop a canonical model of modern banking/leveraged investment, in which
investors choose the scale of their risky investment, the composition of their portfolios, and their
leverage.

The planner in our headline application controls a risk-weighted capital requirement, which we
show to be equivalent to imperfect corrective taxes. The planner can effectively regulate investors’
leverage and portfolio ratios, but the overall scale of investment is a free, unregulated choice.
Moreover, regulated and unregulated activities (e.g., leverage and the scale of risky investment) are
gross complements, implying an incentive to over-regulate the regulated decisions. Following the

4In its simplest form, the Le Chatelier principle states that whenever choices are either complements or substitutes,
the long-run response of a system is larger than its short-term response — see Milgrom and Roberts (1996) for a
modern treatment. More generally, as described by Milgrom (2006), all versions of the Le Chatelier principle explain
how the direct effect of a parameter change is typically amplified by feedbacks in a system.
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current policy debate on climate finance, we then compare optimal policy under a narrow/financial
mandate that only considers externalities related to financial stability, and a broad mandate
that considers the impact of financial regulation on environmental externalities. Crucially, we
demonstrate that the nature of optimal regulation is substantially different once we account for the
imperfections inherent in current regulatory regimes. One implication of our approach is that it
is natural to adjust risk weights, as opposed to leverage caps, when regulators become concerned
with broader environmental mandates.

In four further applications, we show how our results can be employed in common regulatory
scenarios, each with different kinds of regulatory instruments and constraints. These applications
also illustrate how our results apply to different rationales for regulation. The economic insights
from our further applications can be summarized as follows:

1. Shadow Banking/Unregulated Investors: We study a model with two types of leveraged
investors that can be interpreted as regulated banks and unregulated (shadow) banks.
Regulation is imperfect in the sense that shadow banks cannot be subject to any corrective
regulation. We derive optimal second-best leverage regulation in a setting where the
government provides ex-post bailouts without commitment. We find that the optimal policy
in the regulated segment is commonly sub-Pigouvian. Concretely, the optimal policy imposes
regulations below marginal distortions whenever i) leverage imposes negative externalities,
and ii) leverage choices between regulated and unregulated investors are gross substitutes.
Existing direct measurements of leakage elasticities (e.g., Irani, Iyer, Meisenzahl and Peydro,
2021) suggest that the substitutes case is the empirically relevant one. Our results further
clarify how optimal second-best policy responds to potential changes in marginal distortions
that arise from unregulated activities in general equilibrium. We also illustrate how the
Le Chatelier/reverse leakage adjustment affects the welfare gains of being able to regulate
unregulated investors.

2. Behavioral Distortions/Unregulated Activities: This application demonstrates how our general
method and, in particular, the notions of Pigouvian wedges and policy/leakage elasticities,
can be employed to analyze economies with behavioral distortions. We consider a model in
which macro-prudential regulation is motivated by a type of internality, namely, distortions
in investors’ and creditors’ beliefs about investment returns. We derive optimal policy under
the assumption that the planner can regulate investors’ leverage, i.e., the ratio of borrowing
to risky investment, but not the overall scale of investment. In this situation, regulated and
unregulated activities (e.g., leverage and the scale of risky investment) are gross complements,
and the second-best optimal policy is super-Pigouvian.

3. Asset Substitution/Uniform Activity Regulation: We consider an environment where investors
choose between two types of risky investment, but where regulation is imperfect in that the
regulator imposes a uniform regulation across both types of investments. Regulation in this
application is motivated by the fact that investors are “too big to fail” and enjoy an implicit
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government subsidy. This case leads to novel insights into the classical “asset substitution”
problem in financial economics (e.g., Jensen and Meckling, 1976). The optimal second-best
regulation is a weighted average of the downside distortions imposed by different types of
investment, with weights proportional to the policy elasticities of investment. Our general
formula also leads us to a deeper characterization of the optimal weights, which reveals that
they are closely related to the elasticity of the probability of receiving government support.

4. Pecuniary Externalities with Heterogeneous Investors/Uniform Investor Regulation: Finally,
we consider a model of excessive credit booms along the lines of Lorenzoni (2008) in
which the investment decisions of investors/entrepreneurs are associated with distributive
pecuniary/fire-sale externalities. While most of the related literature focuses on characterizing
constrained-efficient allocations, often assuming that a planner has access to investor-specific
regulations, we assume that all investors must face the same regulation. Consistent with our
general results, we show that the optimal second-best regulation is a weighted average of
the induced distortions (pecuniary externalities), which in this case are given by differences
in marginal valuations, net trade positions, and price sensitivities. This application is of
independent interest, since it shows that even when a planner does not have access to investor-
specific regulations, it may still be desirable to set corrective regulation to address pecuniary
externalities.

In each application, we provide numerical illustrations of the optimal second-best policy, and how
it compares to the first-best policy. When possible, we discuss how the existing empirical findings
can be used to guide the optimal policy.

Our paper is directly related to the literature on imperfect regulation. In particular, the issue
of regulatory arbitrage and shadow banking has been widely studied in recent years. Within the
theoretical literature, Plantin (2015), Farhi and Tirole (2017), Huang (2018), and Martinez-Miera
and Repullo (2019) study the impact of capital requirements on banking activity and financial
stability. Hachem and Song (2021) explore how increased liquidity requirements can generate credit
booms when banks are heterogeneous. Grochulski and Zhang (2019) show, in an environment in
which regulation is motivated by a pecuniary externality as in Farhi, Golosov and Tsyvinski (2009),
how regulation is constrained by the presence of shadow banks. Gennaioli, Shleifer and Vishny
(2013) and Moreira and Savov (2017) develop theories that highlight the fragile nature of shadow
banking arrangements. Ordoñez (2018) shows how shadow banking enables better-informed banks
to avoid blunt regulations. Bengui and Bianchi (2018), building on Bianchi (2011), provide a
theoretical and quantitative analysis of macroprudential policy with imperfect instruments based
on a collateral pecuniary externality. Dávila and Korinek (2018) briefly discuss the impact of
specific regulatory constraints on policy in a setup with pecuniary externalities, while Korinek
(2017) provides a systematic study of optimal corrective policy in environments with multiple
regulators. Clayton and Schaab (2021) study regulatory policy in the presence of shadow banks
when there are pecuniary externalities. Korinek, Montecino and Stiglitz (2022) study the role
of technological innovation as regulatory arbitrage. Begenau and Landvoigt (2021) provide a
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quantitative general equilibrium assessment of regulating commercial banks for financial stability
and macroeconomic outcomes in the presence of ex-post subsidies — see Dempsey (2020) for a
related quantitative assessment. Xiao (2020) characterizes monetary policy transmission in an
environment with shadow banks. One can view monetary policy as an example of uniform corrective
regulation with potentially heterogeneous responses. There is also a growing empirical literature on
regulatory arbitrage and shadow banking, which includes the work of Acharya, Schnabl and Suarez
(2013), Demyanyk and Loutskina (2016), and Buchak, Matvos, Piskorski and Seru (2018a,b), among
others.

More broadly, our results are connected to the public economics literature that deals with
imperfect corrective regulation. Along this dimension, one contribution of this paper is to show
that several classic results that have been treated as independent can be derived and expanded upon
using a common approach. For instance, the uniform corrective taxation result derived in Diamond
(1973) is seemingly distinct from the characterization of second-best policy in Lipsey and Lancaster
(1956), but we show that both are corollaries of Proposition 1 in this paper. To our knowledge, we
provide the first general, systematic treatment of corrective regulation with imperfect instruments.
Other contributions in this literature, often focused on whether indirect regulation is effective or
even more desirable than direct regulation, include Baumol (1972), Sandmo (1975), Green and
Sheshinski (1976), Balcer (1980), Wijkander (1985), and Cremer, Gahvari and Ladoux (1998) —
see also the textbook treatment of Salanié (2011) and the lecture notes of Werning (2012).

Our results are also related to Hendren (2016), from whom we adopt the terminology “policy
elasticity”. We identify the special role that a subset of policy elasticities, leakage elasticities, play
when studying second-best regulation. Finally, second-best corrective regulation is often discussed
in the context of environmental policy and congestion — see Bovenberg and Goulder (2002) for a
comprehensive review of that literature — as well as rent-seeking. Rothschild and Scheuer (2014,
2016) study optimal taxation with both corrective and redistributive motives in environments with
rent-seeking, highlighting the importance of general equilibrium effects.

Outline The structure of the paper is as follows. Section 2 introduces our general framework and
characterizes its equilibrium. Section 3 characterizes the general marginal effects that determine
the optimal regulation and presents their implications for optimal regulation. Sections 4 and 5
provide concrete illustrations of the general results in a set of tractable applications. Section 6
concludes. All proofs and derivations are in the Appendix.

2 General Framework

This section lays out our general framework, which is broad enough to capture a wide range of
scenarios, but sufficiently tractable to yield precise insights and highlight the channels at work.
We consider an environment in which a group of agents (investors) make multiple financing and
investment decisions that can be subject to a potentially rich set of regulations.

In this section, we assume that the decisions made by an investor directly induce externalities
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on others, providing a rationale for corrective regulation. In Sections 4 and 5, we provide concrete
applications of our results, which illustrate how our general formulation encompasses various
rationales for regulation.

2.1 Environment

There are two dates t ∈ {0, 1} and a single consumption good, which serves as numeraire. At date
1, there is a continuum of possible states of nature s ∈ S, where S = [s, s]. The state s is a random
variable with cumulative distribution function F (s).

There are two sets of agents: investors and creditors. There is a finite number of investor
types (investors, for short), with each type in unit measure and indexed by i, j, ` ∈ I, where
I = {1, 2, . . . , |I|}.5 There is a unit measure of representative/identical creditors, indexed by C.
Finally, there is also a social planner/regulator/government, who sets regulatory policy.

At date 0, investors have access to a set of financing opportunities, given by B = {1, 2, . . . , |B|},
and a set of investment opportunities, given by K = {1, 2, . . . , |K|}. We denote the financing and
investment choices of investor i by bi ∈ R|B|+ and ki ∈ R|K|+ , respectively. We collect the financing
and investment choices/decisions/activities of an investor i in a vector

xi =
(
bi,ki

)
.

When needed, we denote the investors’ choice set by X = B∪K, so |X | = |B|+|K| and xi ∈ R|X |+ . We
emphasize that our approach does not depend on interpreting X through a financing/investment
lens. We choose this formulation because it is directly applicable to the study of regulation in
economies with financial frictions. However, our general results also apply in the context of classical
consumer theory — see Online Appendix E.

At date 1, once s is realized, investors receive the return on their investments and pay back
(fully or partially) their financial obligations. Creditors provide financing to investors at date 0
and receive (full or partial) repayments from investors at date 1. We define these repayments in
detail below.

Investors. Investor i’s preferences are of the form:

ui
(
ci0,
{
ci1 (s)

}
s∈S

,
{
xj
}
j∈I

)
, (1)

where ui (·) is a function of ci0 and ci1 (s), which denote the consumption of investor i at date 0 and
at date 1 in state s, as well as xj , which denotes the balance-sheet choices of type j investors as a
whole. In equilibrium, as explained below, it will be the case that xj = xj , ∀j ∈ I. Importantly, an
individual type i investor, being infinitesimal, does not account for the impact on xi when choosing
xi.

5The notion of investor used in this paper is meant to be understood broadly. Investors could be households,
firms, or (financial) intermediaries. We could also have referred to investors as experts or entrepreneurs.
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Investor i faces the following budget constraints:

ci0 ≤ ni0 +Qi
(
xi
)
−Υi

(
xi
)
− τ i · xi + T i0 (2)

ci1 (s) ≤ ni1 (s) + ρi
(
xi, s

)
, ∀s, (3)

where we use · to denote the inner product between two vectors. At date 0, investor i is initially
endowed with ni0 dollars. We denote the amount of financing raised by investor i by Qi

(
xi
)
, whose

determination in equilibrium is described below. Moreover, the balance-sheet decisions made by
investor i are associated with a cost Υi

(
xi
)
≥ 0. This term can capture, among other forces, the

technological adjustment costs associated with investment, or represent financing frictions.
Importantly, each investor faces investor-specific taxes/subsidies on balance-sheet decisions, via

the vector τ i ∈ R|X |, ∀i. In Section 3, our main results consider alternative regulatory scenarios by
imposing constraints on τ i. Finally, investor i receives a lump-sum transfer T i0 ≥ 0 at date 0, as
described below. Notice that, in principle, individual- and decision-specific regulation with τ i 6= τ j

is possible in this environment.
At date 1, investor i is endowed with ni1 (s) dollars when state s is realized. We denote the

final return on the investments of investor i in state s, net of any financial obligations contained
in the balance-sheet xi, by ρi

(
xi, s

)
. As shown in the Appendix, this general formulation of ρi (·)

can accommodate the possibility of default by investors, as we also illustrate in our applications.

Creditors. Creditors’ preferences are of the form:

uC
(
cC0 ,

{
cC1 (s)

}
s∈S

,
{
xj
}
j∈I

)
, (4)

where uC (·) is a function of cC0 and cC1 (s), which denote the consumption of creditors at date 0
and at date 1 in state s, as well as xj , which denotes the balance-sheet choices of type j investors
as a whole.

Creditors face the following budget constraints:

cC0 ≤ nC0 −
∑
i∈I

hCi Q
i
(
xi
)

(5)

cC1 (s) ≤ nC1 (s) +
∑
i∈I

hCi ρ
C
i

(
xi, s

)
, ∀s. (6)

At date 0, creditors are initially endowed with nC0 dollars. They choose to fund a share hCi of each
investor i’s financing needs Qi (·), although, in equilibrium, hCi = 1, as we explain below. At date 1,
when state s is realized, creditors are endowed with nC1 (s) dollars and receive repayments ρCi

(
xi, s

)
from investor i. As we show in the Appendix and illustrate through our applications, this general
formulation of ρCi (·) can accommodate deadweight losses associated with the possibility of default
by investors.
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Regulation with imperfect instruments. As explained when introducing the investors’
problem, the regulator has access to investor-specific taxes/subsidies on all balance-sheet decisions.
Formally, the regulator controls the vector τ ∈ R|X ||I|, given by stacking the investor-specific
vectors τ i ∈ R|X |, as follows:

τ =



τ 1

...
τ i

...
τ |I|


, where τ i =



τ i1
...
τ in
...
τ i|X |


, (7)

where τ in denotes the regulation that directly affects the balance-sheet decision n of investor i.
Any revenue raised by the regulator is returned back to investors in the form of lump-sum

transfers
{
T i0
}
i∈I , whose sum across investors must satisfy

∑
i∈I

T i0 =
∑
i∈I
τ i · xi. (8)

Our results are valid for any policy
{
τ i, T i0

}
i∈I that satisfies Equation (8).6 In particular, note

that Equation (8) trivially holds when the set of transfers
{
T i0
}
i∈I satisfies the more restrictive

condition T i0 = τ i · xi, ∀i. In this special case, any revenue raised from type i investors is returned
to themselves, which allows us to interpret the choice of τ as quantity regulation — see Section 4
for an example.

The main focus of this paper is on situations in which the set of instruments available to the
regulator is imperfect. We flexibly model such imperfections by assuming that the regulator chooses
taxes/subsidies τ subject to M ≥ 0 predetermined constraints, which we write as

Φ (τ ) ≤ 0,

where the vector-valued function Φ : R|X ||I| → RM defines the set of feasible regulations. This
general specification captures many scenarios of interest for regulators. For instance, when
Φ (·) ≡ 0, then the regulator is unconstrained and can achieve the first-best policy, which we
characterize in Section 3.3.

Alternatively, it is natural to consider the case of linear constraints, in which Φ (τ ) takes the
form

Φ (τ ) ≡ Aτ − c, (9)

where A denotes a matrix of dimension M × |X | |I| and c is an M -dimensional vector. As we
formally study in Section 3.6, the linear constraint case captures second-best scenarios in which the

6If the regulator finds it optimal to implement subsidies, revenue raised and the associated lump-sum transfers
can be negative. Note that the distribution of transfers

{
T i0
}
i∈I

can affect the actual optimal policy, however, it only
does so through the sufficient statistics that we identify in Proposition 1.
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regulator i) can only regulate the activities of a particular subset of investors, ii) can only regulate
a specific subset of activities, iii) faces constraints on the level that some particular regulation must
take, perhaps because it is set by a different authority, or iv) must impose uniform regulations across
heterogeneous investors and activities, among others. These different scenarios simply correspond
to different specifications of A and c.

Even though, to simplify the exposition, we mostly focus on scenarios in which a regulator faces
hard constraints, our results apply almost unchanged to the case in which imposing regulations on
different agents and/or activities is subject to costs, as we describe in Section 3.4. In that case,
it is natural to consider quadratic costs of adjusting regulations, which effectively correspond to
assuming that Φ (τ ) takes the form

Φ (τ ) ≡ 1
2τ
′Bτ , (10)

as we further describe in Section 3.6.3. In addition, it is worth noting that the case of unregulated
activities, emphasized in some of our applications, can arise endogenously if regulation is subject
to a cost function that induces sparsity, such as the L1 norm of the tax vector.7

Finally, it is worth highlighting that the main general results of this paper, in Propositions 1
through 4, are valid for any specification of constraints/costs Φ (·).

Equilibrium definition. An equilibrium, given corrective taxes/subsidies
{
τ i
}
i∈I and lump-

sum transfers
{
T i0
}
i∈I , consists of consumption bundles

{
ci0, c

i
1 (s)

}
i∈I and

{
cC0 , c

C
1 (s)

}
, investors’

decisions
{
xi
}
i∈I =

{
b
i
,k

i
}
i∈I

, creditors’ funding decisions
{
hCi

}
i∈I

, financing schedules{
Qi
(
xi
)}
i∈I , investors’ investment returns net of repayments

{
ρi
(
xi, s

)}
i∈I , and creditors’ received

repayments
{
ρCi
(
xi, s

)}
i∈I

given investors’ default decisions such that i) investors maximize utility,
Equation (1), subject to budget constraints (2) and (3); ii) creditors maximize utility, Equation (4),
subject to budget constraints (5) and (6); iii) any revenue raised is transferred back to investors,
satisfying Equation (8); iv) financing decisions satisfy market clearing so that hCi = 1, ∀i; and v)
investors’ balance-sheet decisions are consistent in the aggregate, that is, xi = xi, ∀i.

Our notion of equilibrium, in which investors internalize that their balance-sheet decisions can
affect their cost of financing in equilibrium, is standard in models that allow for default (e.g., Dubey,
Geanakoplos and Shubik, 2005). Until we introduce our applications in Section 5, we proceed as
if the environment considered here is well-behaved. We discuss the necessary regularity conditions
for this to be the case within each of our applications.

Remarks. Before characterizing the equilibrium of the model, we conclude the description of the
environment with three remarks.

First, assuming that the utility functions of investors or creditors depend directly on the choices
of others — in Equations (1) and (4) — immediately justifies the desirability of corrective regulation.
Given that the main insights of this paper do not rely on the exact rationale behind the corrective
regulation, we adopt this formulation since it is the simplest. In Section 5, we show how our

7See Tibshirani (1996) and Gabaix (2014) for examples of cost functions based on the L1 norm in different contexts.
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formulation encompasses widely studied rationales for regulation, including bailouts, pecuniary
externalities, and internalities.

Second, note that we model investors and creditors as distinct groups of agents mostly for
tractability. One can interpret creditors in our model as a type of investor who is only allowed to
fund other investors, and does so without generating welfare-relevant externalities. Therefore, as
we show in Section 3.3, it is sufficient to regulate the balance-sheet decisions of investors to reach
the first-best outcome of the model.8

Finally, note that by suitably interpreting the utility of creditors, our model captures non-
pecuniary benefits that may accrue to creditors from some particular form of financing. For
instance, the liabilities of some investors are often seen as special, featuring a convenience yield,
which is consistent with our framework — see, in related contexts, Stein (2012), Sunderam (2015),
or Begenau and Landvoigt (2021).

2.2 Equilibrium Characterization

For given corrective taxes/subsidies and lump-sum transfers, we now succinctly characterize the
equilibrium conditions of the model. First, we present the optimality conditions associated with
creditors’ optimal funding decisions, which are given by

Qi
(
xi
)

=
ˆ
mC (s) ρCi

(
xi, s

)
dF (s) , ∀i, (11)

where mC (s) denotes creditors’ stochastic discount factor. Equation (11), which is an Euler
equation for creditors, will determine the financing conditions that investors face. Note that the
stochastic discount factor mC (s) is an equilibrium object, which depends on the choices of all
investors in the model and the regulatory policy. Hence, regulating an investor j impacts investor
i in equilibrium through Qi

(
xi
)
, via changes in creditors’ stochastic discount factor.

Next, we present the optimality conditions associated with investors’ optimal balance-sheet
decisions, which are given by

− ∂Qi
(
xi
)

∂xi
+ ∂Υi

(
xi
)

∂xi
+ τ i =

ˆ
mi (s) ∂ρi

(
xi, s

)
∂xi

dF (s) , ∀i, (12)

where mi (s) denotes the stochastic discount factor of investor i. Note that Equation (12)
represents the |X | optimality conditions that determine the optimal balance-sheet of investors.
These conditions are Euler equations for both financing and investment. Given Equations (11) and
(12), which fully characterize the equilibrium of the model once xi = xi, we can now study the
optimal corrective regulation.

8In an earlier version of this paper, we allowed for investors to invest in each other’s liabilities and for creditors’
decisions to also be associated with welfare-relevant externalities. Since the main insights are identical in both
formulations, we adopt the current formulation, which substantially simplifies the notation.
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3 Optimal Corrective Regulation

In this section, which contains the main contributions of this paper, we study the problem of a
planner who can set the optimal corrective regulation under different constraints on the set of
regulatory instruments τ . First, we provide a general characterization of the marginal welfare
effect of adjusting corrective regulation. Subsequently, we characterize the optimal first-best and
second-best regulations. In Subsection 3.1, we preemptively introduce the notation and definitions
necessary to formulate our results.

3.1 Notation and Definitions

We denote by
{
V i (τ )

}
i∈I and V

C (τ ) the indirect utilities of investors and creditors, as a function of
the full set of regulatory instruments τ ∈ R|X ||I|. In order to abstract from redistributional concerns
and focus on the corrective nature of the regulation, we assess the aggregate welfare gains/losses
of a marginal change in regulation by aggregating money-metric utility changes across all agents.
This approach can be interpreted as selecting equal-weighted generalized social marginal welfare
weights, using the terminology of Saez and Stantcheva (2016). In the Appendix, we describe how
to allow for traditional social welfare weights and how to account for redistributional considerations
in our framework.

Formally, we express the change in social welfare induced by a marginal change in a given
variable (or vector) z, denoted by dW

dz , as follows:

dW

dz
=
∑
i∈I

dV i
m

dz
+ dV C

m

dz
, (13)

where dV im
dz = dV i

dz /λi0 and dV Cm
dz = dV C

dz /λC0 denote the money-metric change in indirect utility for
investors and creditors, and where λi0 and λC0 denote the marginal value of a dollar at date 0 for
investors and creditors.9 In particular, we will characterize the marginal welfare effect of varying
the set of balance-sheet regulations τ , given by

dW

dτ
=



dW
dτ1
...
dW
dτ j

...
dW
dτ |I|


, where dW

dτ j
=



dW

dτ j1...
dW

dτ jn...
dW

dτ j|X|


, (14)

and where dW
dτ ∈ R|X ||I| and dW

dτ j
∈ R|X |. Each element of dW

dτ j
denotes the marginal welfare effect

of varying the regulation that investor j faces. By vertically stacking dW
dτ j

, we collect the set of

9We use the same notation for partial derivatives, that is, ∂V
i
m

∂z
=

∂V i

∂z

λi0
and ∂V Cm

∂z
=

∂V C

∂z

λC0
. The sub-index m stands

for money-metric.
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marginal welfare effects associated with varying each of the elements of τ in the vector dW
dτ .

We also define the vectors of investors’ balance-sheets x ∈ R|X ||I| and marginal
distortions/externalities δ ∈ R|X ||I|, given by stacking the vectors xi ∈ R|X | and δi ∈ R|X |, as
follows:

x =



x1

...
xi

...
x|I|


and δ =



δ1

...
δi

...
δ|I|


, where xi =



xi1
...
xin
...

xi|X |


and δi =



δi1
...
δin
...

δi|X |


, (15)

where xin denotes the balance-sheet decision n of investor i and δin corresponds to the money-metric
aggregate of marginal externalities associated with balance-sheet decision n of investor i, given by

δin = −

∑
`∈I

1
λ`0

∂u`

∂xin
+ 1
λC0

∂uC

∂xin

 . (16)

Note that an activity generates negative externalities when ∂u`

∂xin
or ∂uC

∂xin
is negative, making δin

positive. Conversely, an activity generates positive externalities when ∂u`

∂xin
or ∂uC

∂xin
is positive,

making δin negative.
We define the Jacobian matrix of investors’ balance-sheets x with respect to τ , of dimension

|X | |I| × |X | |I|, as follows:

dx

dτ
=


dx1

dτ1 · · · dx|I|

dτ1
... dxi

dτ j
...

dx1

dτ |I|
· · · dx|I|

dτ |I|

 , where dxi

dτ j
=


dxi1
dτ j1

· · ·
dxi|X|

dτ j1... dxin
dτ j
n′

...
dxi1
dτ j|X|

· · ·
dxi|X|

dτ j|X|

 , (17)

where dxin
dτ j
n′

denotes how the balance-sheet decision n of investor i changes when regulating the

balance-sheet decision n′ of investor j. Following Hendren (2016), we refer to the elements of dx
dτ ,

which represent the equilibrium responses of balance-sheets x to changes in regulation τ , as policy
elasticities.

Finally, we define Pigouvian wedges ω ∈ R|X ||I| between corrective regulations τ and marginal
distortions δ as follows:

ω = τ − δ. (18)

As we show in Proposition 2, Pigouvian wedges are zero at the first-best, so they define the distance
between a given set of regulations and the first-best regulation. Outside of the first-best, Pigouvian
wedges can be positive or negative. If a wedge ωin is positive, then decision n of investor i is
overregulated, in the sense that it is welfare-improving to increase the level of the associated xin.
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Alternatively, if a wedge ωin is negative, the balance-sheet decision n of investor i is underregulated,
in the sense that it is welfare-improving to reduce the level of the associated xin. Therefore, we say
that:

ωin > 0⇒ Overregulation
(
increasing xin is welfare-improving

)
ωin < 0⇒ Underregulation

(
decreasing xin is welfare-improving

)
.

Our results below demonstrate that both over- and underregulation can arise as part of the optimal
second-best policy, depending on the nature of the constraints faced by the planner.

3.2 Marginal Welfare Effects of Corrective Regulation

Given these definitions, we are ready to present Proposition 1, which characterizes the marginal
welfare effects of varying the set of balance-sheet regulations, dWdτ . Proposition 1 highlights that dW

dτ

can be characterized in terms of two sets of sufficient statistics: policy elasticities and Pigouvian
wedges.

Proposition 1. [Marginal Welfare Effects of Corrective Regulation: Policy Elasticities and
Pigouvian Wedges] The marginal welfare effects of varying the set of balance-sheet regulations τ ,
dW
dτ , are given by

dW

dτ
= dx

dτ
(τ − δ) = dx

dτ
ω, (19)

where dW
dτ is a vector of dimension |X | |I| × 1, defined in Equation (14); dx

dτ is the square Jacobian
matrix of policy elasticities of dimension |X | |I|×|X | |I|, defined in Equation (17); and τ and δ are
vectors of dimension |X | |I|×1, where the vector of regulations τ is defined in Equation (7) and the
vector of marginal distortions δ is defined in Equation (15). Therefore, the marginal welfare effects
dW
dτ can be exclusively characterized in terms of two sets of sufficient statistics: policy elasticities,
dx
dτ , and Pigouvian wedges, ω.10

Proposition 1 shows that in order to characterize the welfare impact of any change in regulation
it is sufficient to understand i) how the decisions of all investors react in equilibrium to such a
change, via the matrix of policy elasticities, and ii) the size of the marginal uncorrected externalities
associated with each individual balance-sheet decisions, via the vector of Pigouvian wedges.11

The first set of sufficient statistics are the policy elasticities, dxdτ , defined in Equation (17), which
capture the general equilibrium responses of the balance-sheet decisions of investor i to changes in

10Note that Equation (19) implies that the marginal welfare effects of varying the balance-sheet regulations that
directly affect agent j can also be expressed as follows:

dW

dτ j
= dx

dτ j
ω =

∑
i∈I

dxi

dτ j
ωi =

∑
i∈I

∑
n∈X

dxin
dτ j

(
τ in − δin

)
.

11Note that the planner accounts for the welfare impact of policy changes on equilibrium prices. As we show in
the Appendix, the impact of changes in equilibrium prices is zero-sum on aggregate. Using the language of Dávila
and Korinek (2018), the distributive pecuniary impact of a policy change nets out on aggregate, which simplifies the
characterization of dW

dτ
.
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the regulation that affect every other investor. Note that policy elasticities both across investors,
e.g., dxin

dτ jn
, and across balance-sheet activities within the same investor, e.g., dxin

dτ i
n′
, are relevant.

Equation (19) implies that, for a given Pigouvian wedge, whether balance-sheet activities are gross
substitutes ( dxi

dτ j
> 0) or gross complements ( dxi

dτ j
< 0) becomes critical to determine the welfare

impact of policy changes. The distinction between substitutes and complements is central to the
design of optimal second-best regulation.

The second set of sufficient statistics are the Pigouvian wedges between corrective
taxes/subsidies and marginal distortions. For any given set of regulations, these wedges capture
the extent to which different balance-sheet activities are regulated too strictly or too leniently. For
example, if ωin = τ in − δin < (>) 0, then the corrective regulation on the balance-sheet activity n
of investor i is smaller (larger) than the marginal distortion that this activity creates. Therefore,
negative wedges imply that the private marginal cost of an activity is smaller than social marginal
cost, while positive wedges imply that the private marginal cost exceeds the social marginal cost.

Moreover, Equation (19) shows that the marginal welfare effects of any regulatory change can be
interpreted as a linear transformation of wedges, with the matrix dx

dτ of policy elasticities acting as a
transformation matrix. Intuitively, welfare will increase if a policy reform discourages (encourages)
activities, e.g., dx

i
n

dτ jn
< (>) 0, that are currently regulated too leniently (strongly), e.g., ωin < (>) 0,

or vice versa. The overall marginal welfare effect corresponds to adding up the products of leakage
elasticities and Pigouvian wedges.

The marginal welfare effects presented in Proposition 1 are useful to characterize the form of
the optimal regulation in alternative regulatory scenarios. In the remainder of this section, we show
how to employ Proposition 1 to characterize the optimal first-best and second-best regulations.

3.3 First-Best Regulation: Benchmark

Under the first-best regulation, a planner is allowed to set arbitrary corrective regulations
τ ∈ R|X ||I| for all investors. Note that we use the term first-best regulation to refer to
the benchmark in which a planner can freely correct every individual decision, while also
respecting individual/technological constraints.12 In that case, Proposition 2 provides a well-known
characterization of the first-best policy, which provides a benchmark against which we evaluate the
optimal second-best policy.

Proposition 2. [First-Best Regulation/Pigouvian Principle] If the planner can freely regulate all
investors without constraints, and the matrix of policy elasticities has full rank, then the first-best
regulation satisfies:

ω = 0 ⇐⇒ τ ? = δ.

12We could have alternatively refer to this benchmark as the constrained efficient benchmark (Diamond, 1967;
Hart, 1975; Geanakoplos and Polemarchakis, 1986). We avoid using the terminology constrained efficient to avoid
confusion between the use of the term constrained in constrained efficiency, which refers to individual/technological
constraints, and the focus of our paper, which are constraints on the planner’s instruments.
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Therefore, the first-best regulation does not depend directly on the magnitude of the policy
elasticities.

This is an instance of the Pigouvian principle, i.e., the “polluter pays” (Pigou, 1920; Sandmo,
1975).13 The first-best regulation on investors is set to perfectly align private and social incentives
across every activity undertaken by each agent. In terms of the Pigouvian wedges defined in
Equation (18), the optimal regulation is such that all wedges are set to zero. Proposition 2 directly
implies that an economy without externalities, i.e., one for which ∂uj

∂xin
= 0 and ∂uC

∂xin
= 0, ∀i, j ∈ I,

is efficient.
An important consequence of Proposition 2 is that the first-best regulation does not directly

depend on the magnitude of the policy elasticities. It is exclusively a function of the Pigouvian
wedges. Intuitively, the first-best regulation must satisfy dW

dτ = dx
dτω = 0, which defines a system

of homogeneous linear equations in ω. If the matrix of policy elasticities dx
dτ is invertible (i.e., has

full rank), then the only solution to this system is the trivial solution, in which ω = 0 and τ ? = δ.
Importantly, while Proposition 2 characterizes the optimal first-best regulation, it does not

provide a solution in terms of primitives unless the marginal distortions δ are invariant to the
level of regulation (this will be the case in several of our applications). Whenever the marginal
distortions are endogenous to the level of the regulation, our claims here become statements about
the form of the optimal policy formulas. The same caveat applies to our discussions of Propositions
3 through 4.

3.4 Second-Best Regulation

Now we consider scenarios in which the planner faces a set of predetermined constraints on the
set of instruments τ , providing a novel general characterization of the optimal second-best policy.
Formally, the optimal second-best policy is given by

τ ?? = arg max
τ

W (τ )

s.t. Φ (τ ) ≤ 0,

where the vector-valued function Φ (·) : R|X ||I| → RM defines a set of M ≥ 0 constraints on the set
of instruments τ . This general specification of Φ (·) allows us to consider a wide range of regulatory
constraints, which we further describe in Section 3.6. For instance, as discussed above, when the
planner cannot regulate agent j, the appropriate constraints are τ jn = 0, ∀n ∈ X . Similarly, when
the planner cannot regulate a particular activity n, the appropriate constraints are τ in = 0, ∀i ∈ I.
Alternatively, when all agents are regulated at the same rate or when all activities are regulated at
the same rate, the appropriate constraints are τ in = τn, ∀i ∈ I, or τ in = τ i, ∀n ∈ X . Many other
scenarios of practical relevance can be interpreted as combinations of these.

13It is common to also refer to the Pigouvian principle as the principle of targeting, see e.g., Dixit (1985); Rothschild
and Scheuer (2016).
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Consequently, the second-best regulation must satisfy

dW

dτ
− dΦ
dτ
µ = 0, (20)

where dΦ
dτ denotes the Jacobian of the constraints — a matrix of dimension |X | |I| ×M — and

where µ ∈ RM denotes the vector of Lagrange multipliers associated with the constraints, formally
given by

dΦ
dτ

=


dΦ1

dτ1 · · · dΦM
dτ1

... dΦm
dτ j

...
dΦ1

dτ |I|
· · · dΦM

dτ |I|

 where dΦm

dτ j
=


dΦm
dτ j1
...

dΦm
dτ j|X|

 , and µ =


µ1
...
µM

 .

At this point, we make a distinction between i) perfectly regulated decisions and ii) imperfectly
regulated decisions. We say that a balance-sheet decision of a given investor is perfectly regulated
when all constraints associated with that decision are slack, and imperfectly regulated when its
regulation is subject to a binding constraint. Formally, we denote the mutually exclusive sets of
perfectly regulated (R) and imperfectly regulated (U) decisions by14

R =
{

(j, n) : j ∈ I, n ∈ X , ηjn = 0
}
⇒ Perfectly Regulated,

U =
{

(j, n) : j ∈ I, n ∈ X , ηjn 6= 0
}
⇒ Imperfectly Regulated, (21)

where η ∈ R|X ||I| is defined as the |X | |I| × 1 vector

η = dΦ
dτ
µ.

The vector η quantifies, for each regulatory instrument in τ , the shadow cost of increasing the
regulation associated with the regulatory constraints. Notice that, because we have a general
specification of constraints, the shadow costs in η can be negative. For example, if one of the
constraints embedded in Φ (τ ) imposes a binding lower bound on a tax/subsidy τ jn, then the
corresponding shadow cost is ηjn < 0. It is important not to confuse this property of η with the
Lagrange multipliers µ, which must be non-negative when appropriately defined.

Accordingly, we define the values of the perfectly and imperfectly regulated decisions by xR ={
xjn
}

(j,n)∈R and xU =
{
xjn
}

(j,n)∈U , and similarly partition other vectors such as τ =
{
τR, τU

}
,

δ =
{
δR, δU

}
, and ω =

{
ωR,ωU

}
. The Jacobian matrix dx

dτ of policy elasticities, introduced in
Equation (17), can also be decomposed into smaller Jacobian matrices: dxU

dτR
, dxU

dτU
, dxR

dτU
, and dxR

dτR
,

as described in the Appendix. For the remainder of this section, we will assume that the matrices
of own-regulatory effects dxU

dτU
and dxR

dτR
are invertible.

In this paper, we introduce the notion of leakage elasticities to refer to the elements of the
Jacobian matrix dxU

dτR
, which capture the responses of imperfectly regulated decisions to changes

14We choose U to denote the set of imperfectly regulated decisions since “unregulated” decisions are a leading case
of imperfectly regulated decisions.
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in regulation. Below, we will refer to the elements of the Jacobian matrix dxR

dτU
as reverse leakage

elasticities. In Proposition 3, we show that leakage elasticities are a key determinant of the second-
best policy.

Proposition 3. [Second-Best Regulation: Perfectly Regulated Decisions] The optimal second-best
regulation satisfies

τR = δR + −dx
R

dτR

)−1
dxU

dτR
ωU , (22)

where δR is a vector of distortions of dimension |R| × 1, dxR

dτR
and dxU

dτR
are Jacobian matrices of

dimension |R|× |R| and |R|× |U|, respectively, and ωU = τU −δU is a vector of Pigouvian wedges
of dimension |U|×1. Therefore, the optimal second-best regulation only depends directly on a subset
of all policy elasticities: dxR

dτR
and, importantly, dxU

dτR
(leakage elasticities).

Proposition 3 provides direct insights into the form of the optimal second-best policy. Since
the first-best solution is given by τR = δR, whether the optimal second-best policy overregulates
or underregulates perfectly regulated decisions is determined by the sign of −

(
dxR

dτR

)−1
dxU

dτR
ωU ,

which we refer to as the second-best correction.15 First, we provide a heuristic interpretation of
the general characterization in Equation (22), which explains the most relevant economic effects.
Next, we provide formal insights in the context of two illustrative examples.

At a heuristic level, as long as perfectly regulated activities decrease when their regulation
is tightened (dxR

dτR
is “negative”), the sign of the second-best correction becomes a product of

the leakage elasticities and the Pigouvian wedges of imperfectly regulated choices. Under the
natural presumption that the constraints are such that imperfectly regulated activities are indeed
underregulated (τU < δU or, equivalently, ωU < 0), whether the optimal second-best policy
overregulates or underregulates an activity becomes a function of whether such an activity is a
gross substitute or a gross complement with respect to imperfectly regulated decisions. Therefore,
it is optimal to underregulate the regulated relative to the first-best (ωR < 0), when regulated
and unregulated are gross substitutes (dxU

dτR
> 0). Alternatively, it is optimal to overregulate the

regulated relative to the first-best (ωR > 0) when regulated and unregulated are gross complements
(dxU
dτR

< 0). Indeed, our applications below demonstrate that both gross substitutes and gross
complements are common in standard scenarios, depending on which activities are imperfectly
regulated.

To provide formal insights, it is useful to study two special cases. First, we consider a scenario
in which there is a single fully regulated decision. Second, we consider a scenario in which the
responses of perfectly regulated activities to changes in regulation are independent of one another.
In both cases, the formulas for second-best regulation simplify because we do not have to account

15As explained when describing the first-best regulation, Equation (22) does not characterize the optimal second-
best regulation in terms of primitives. When the set of marginal distortions δ =

{
δR, δU

}
is invariant to the level

of regulation, any statement on whether the second-best policy overregulates or underregulates a decision relative to
the first-best is an exact directional statement — this will be the case in several of our applications. Whenever the
marginal distortions are endogenous to the level of the regulation, our claims here become statements about the form
of the optimal policy formulas.
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for the responses of different regulated activities on one another.

Example 1. [Single Decision] Consider the simple scenario in which there are two investors |I| = 2,
and each investor has a single decision |X | = 1. Assume that only investor 1 can be regulated, with
regulatory constraints dictating that τ2 ≡ 0. In that case, it follows from Proposition 3 that the
optimal regulation for the regulated is simply given by

τ1 = δ1 − −dx
1

dτ1

)−1
dx2

dτ1 δ
2. (23)

This case clearly shows the relationships discussed above. The optimal regulation on investor type
1 is equal to the first-best equivalent δ1 minus a correction that accounts for the distortion imposed
by the other unregulated agent. Assume, for instance, that the distortion by the unregulated agent
satisfies δ2 > 0. The weight on the distortion by the unregulated agent is negative, implying
that it pushes τ1 towards underregulation, whenever i) the regulated agent responds negatively
to increased regulation (the “regular” case with dx1

dτ1 < 0), and ii) the associated leakage elasticity
indicates gross substitutes with dx2

dτ1 > 0.16

Example 2. [Diagonal Case] Assume that dxR

dτR
is a diagonal matrix. Then, the second-best

regulation on choice (j, n) ∈ R is

τ jn = δjn + −dx
j
n

dτ jn

)−1 ∑
(j′,n′)∈U

dxj
′

n′

dτ jn
ωj
′

n′ .

The simplified formula again shows the importance of leakage elasticities, which are weighted by
wedges and summed across all unregulated activities (j′, n′) ∈ U . It is clear in this case that it is
optimal to underregulate the regulated (τ jn < δjn) if each of the imperfectly regulated activities is

underregulated (ωj
′

n′ < 0) and is a gross substitute to the regulated activity (dx
j′

n′

dτ jn
> 0). In addition,

the formula shows that, even when not every activity satisfies gross substitutes, it is optimal to
underregulate the regulated when a weighted average of leakage elasticities — with the weights
proportional to the associated wedges — is positive.

We conclude the discussion of Proposition 3 with two remarks. Our first remark explains how
our characterization of the optimal second-best policy relates to the classic results in Lipsey and
Lancaster (1956). Our second remark highlights the duality between considering regulatory costs
or constraints.

16While this is the simplest example for building intuition, note that the same insight extends to any economy
with a single regulated decision R = {(j′, n′)}, and with an arbitrary set of unregulated decisions U for which
taxes/subsidies are forced to be zero. In this more general example, the optimal policy formula becomes

τR = δR −
∑

(j,n)∈U

(
−dx

R

dτR

)−1
dxjn
dτR

δjn.
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Remark 1. [Connection to Lipsey and Lancaster (1956)] Equation (22) immediately implies that
ωR 6= 0 as long as ωU 6= 0 and dxU

dτR
6= 0. This insight is related to the discussion of second-best

policy in Lipsey and Lancaster (1956), who show that price distortions for one good imply optimal
distortions in other goods in the context of second-best tariff and monopoly regulation. The results
of that paper are often perceived as implying that there is little structure to the problem of the
second-best.17 While it is true that over and underregulation relative to the first-best are possible,
our results show that there is significant structure on how the optimal second-best regulation must
be conducted. Our formal general results show that leakage elasticities and the distinction between
gross complements and substitutes are critical to determine the optimal second-best regulation.
Lipsey and Lancaster (1956) are also often credited with the insight that social welfare can decrease
when relaxing a constraint. We revisit this argument after Proposition 4, which comes next and
characterizes the welfare effects of relaxing regulatory constraints.

Remark 2. [Regulatory constraints/costly regulation: dual interpretation] It is worth highlighting
that Proposition 3 applies unchanged to the case in which imposing regulations to a subset of
agents and/or activities is costly for a planner, even when there are no hard regulatory constraints.
In that case, the vector µ is simply a primitive of the planning problem, instead of having the
interpretation of a multiplier, while the definitions of the sets R and U in Equations (21) and (22)
remain unchanged.

3.5 Imperfectly Regulated Decisions/Welfare Effects of Relaxing Regulatory
Constraints

Next, we proceed to characterize the marginal welfare impact of relaxing regulatory constraints or,
equivalently, the shadow value of regulating imperfectly regulated choices xU , under the optimal
second-best regulation. This result is important for two reasons. First, a regulator may genuinely
be interested in understanding the welfare effect of extending the scope of institution- or activity-
level regulation. Second, our characterization of dW

dτU
under the optimal second-best regulation

is informative to understanding how the set of imperfectly regulated decisions (U) is optimally
regulated. Formally, in the case of regulatory constraints, the optimality conditions dW

dτU
= dΦ

dτU
µ

along with Φ
(
τU
)

= 0 can be used to characterize τU and µ (see, e.g., Section 3.6.2). In the case
of regulatory costs, dW

dτU
= dΦ

dτU
is sufficient to characterize τU (see, e.g., Section 3.6.3).

Proposition 4 evaluates the marginal welfare effects of hypothetical (i.e., unconstrained)
adjustments to the constrained taxes/subsidies τU under the optimal second-best regulation.

Proposition 4. [Second-best Regulation: Imperfectly Regulated Decisions/Welfare Effects of
Relaxing Regulatory Constraints] The marginal welfare effects of regulating the set of imperfectly

17Lipsey and Lancaster (1956) explicitly write:
“It is important to note that in general, nothing can be said about the direction or the magnitude of the
secondary departures from optimum conditions made necessary by the original non-fulfillment of one
condition”.
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regulated decisions, τU , under the optimal second-best regulation, are given by

dW

dτU
= dxU

dτU
(I −L)ωU , (24)

where dxU

dτU
is a Jacobian matrix of dimension |U| × |U|, I is the identity matrix of dimension

|U| × |U|, L is a matrix of dimension |U| × |U|, given by

L = dxU

dτU

)−1
dxR

dτU

(
dxR

dτR

)−1
dxU

dτR
, (25)

and where ωU = τU − δU is a vector of dimension |U| × 1.

Equation (24) decomposes the value of regulating xU into two parts. First, we have the
direct welfare effect of adjusting τU , which would prevail in a scenario in which all perfectly
regulated decisions in the set R remained unchanged. By Proposition 1, this direct effect is equal
to the product dxU

dτU
ωU of policy elasticities and Pigouvian wedges on all imperfectly regulated

decisions. Second, Equation (24) makes an adjustment for the indirect policy effect, that is, for the
welfare effect associated with the response of the perfectly regulated decisions to relaxing regulatory
constraints, dxR

dτU
, which is a form of reverse leakage. Proposition 4 shows that, under the second-

best policy, the appropriate adjustment is given by −dxU

dτU
LωU . Interestingly, this adjustment due

to the reverse leakage tends to attenuate the welfare effect of regulating the imperfectly regulated,
regardless of whether unregulated and regulated choices are substitutes or complements, as we
describe next.

To illustrate this effect most clearly, we revisit the simple case from Example 1:

Example 3. [Single Decision, cont.] Assume, as in Example 1, that there are two agents, each of
whom makes a single decision, and only agent 1 is regulated, with τ2 = 0. Then, substituting the
optimal second-best regulation from Equation (23), the welfare effect of marginally increasing τ2

above zero is

dW

dτ2 = −dx
2

dτ2

1−
dx2

dτ1
dx1

dτ2

dx1

dτ1
dx2

dτ2︸ ︷︷ ︸
=L

 δ2.

To interpret this expression, assume that the distortion δ2 > 0, and that we are in the “regular”
case where the own-regulatory responses are negative with dx1

dτ1 < 0 and dx2

dτ2 < 0. First, consider
the substitutes case, in which dx2

dτ1 < 0 and dx1

dτ2 < 0. We have L > 0, so that the welfare gain
from increasing τ2 is smaller than it would be in the absence of an indirect effect on agent type
1. Intuitively, regulating the unregulated pushes distorted activity back to the regulated sector,
which dampens the direct welfare gains. Second, consider the complements case, in which dx2

dτ1 > 0
and dx1

dτ2 > 0. Once again, we have L > 0. This result arises from the nature of the second-best
regulation of agent type 1, which in the case of complements involves overregulation (ω1 > 0; see
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Example 1). Raising τ2 in this scenario reduces the activity of agent 1 which, due to the initial
overregulation, dampens the associated welfare benefit.18

Notice that Proposition 4 generalizes this reasoning to the case with multiple decisions.
Heuristically, suppose that we are in the regular case where the own-regulatory responses are
“negative” (dxR

dτR
< 0, dxU

dτU
< 0). Then, the adjustment matrix L is “positive”, both in the case of

gross substitutes (dxR
dτU

< 0, dxU

dτR
< 0) and gross complements (dxR

dτU
> 0, dxU

dτR
> 0), implying once

again that the welfare effect of regulating the imperfectly regulated choices xU is dampened. These
insights bear a connection to the Le Chatelier principle, which we discuss in the following remark.

Remark 3. [Connection to Le Chatelier principle (Samuelson, 1948; Milgrom and Roberts, 1996)]
A prominent result in economic theory that is similarly invariant to complementarity versus
substitutability is the Le Chatelier principle. In its simplest form, it states that whenever choices
are either complements or substitutes, the long-run response of a system is larger than its short-
term response — see Milgrom and Roberts (1996) for a modern treatment. More generally, as
noted by Milgrom (2006), all versions of the Le Chatelier principle explain how the direct effect of
a parameter change is typically amplified by feedback in a system. In our case, the feedback occurs
because the relaxation of a regulatory constraint also impacts social welfare through the response
of the perfectly regulated decisions. Interestingly, even though the logic behind Proposition 4 is
reminiscent of the logic behind the Le Chatelier principle, we find the exact opposite implication for
welfare. When we let our system adjust further by accounting for the welfare impact of relaxing a
constraint on the perfectly regulated decisions under the second-best policy, the welfare gains from
regulation are typically dampened, not amplified.

It is worth making two final observations. First, note that, under the second-best regulation,
the planner does not always wish to push regulations for imperfectly regulated choices towards
their first-best value. As noted above in our discussion of Lipsey and Lancaster (1956), even when
dxU

dτU
ωU > 0, it is possible to finds scenarios in which dW

dτU
< 0. This result shows that loosening some

regulations can be welfare-decreasing in our environment. Proposition 4 shows that this reversal is
more likely when the matrix of Le Chatelier/reverse leakage adjustments L plays an important role.
Second, note that the fact that the welfare effect of regulating imperfectly regulated decisions is
typically attenuated when some decisions are perfectly regulated implies that imperfectly regulated
decisions are typically lower in magnitude relative to first-best. We provide a clear example of this
phenomenon in Section 3.6.3.

3.6 Common Scenarios of Regulatory Constraints/Costs

Finally, before illustrating our general results in the context of the applications, we specialize
our results in the case of three natural scenarios in which regulation is subject to constraints or
costs. First, we consider the case in which some investors or activities cannot be regulated at all.

18Note that it is conceivable to construct environments in which decisions are neither complements nor substitutes.
In this example, this would correspond to dx1

dτ2 and dx2

dτ1 having opposite signs. Our characterization also applies to
these cases, which are rare in common economic applications — see Milgrom and Roberts (1996).
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Second, we consider the case in which the same corrective regulation must apply to all activities
and/or investors. Third, we consider the case in which setting regulatory instruments is subject to
quadratic costs.

3.6.1 Unregulated investors/activities

A particular type of regulatory constraint that is highly relevant in practice is when some investors
or activities cannot be regulated at all. Formally, here we assume that the planner faces a constraint
of the form

Φ (τ ) = τU = 0,

so a subset of investors/activities are not subject to regulation at all.19 In that case, a specialized
version of Equation (22) applies.

Proposition 5. [Second-Best Regulation: Unregulated Investors/Activities] When some investors
and/or activities cannot be regulated at all, i.e., Φ (τ ) = τU = 0, the optimal second-best regulation
satisfies

τR = δR − −dx
R

dτR

)−1
dxU

dτR
δU , (26)

where δR and δU are vectors of distortions of dimensions |R|×1 and |U|×1, respectively, and dxR

dτR

and dxU

dτR
are Jacobian matrices of dimensions |R| × |R| and |R| × |U|.

As in Proposition 3, whether the regulated and unregulated decisions are gross complements or
substitutes is critical for the determination of the optimal second-best policy. In the case in which
some activities are unregulated, ωU = −δU , so the planner only relies on the value of the distortion
of the unregulated δU , instead of the value of the Pigouvian wedge of the unregulated.

Remark 4. [Connection to the Tinbergen (1952) rule] Proposition 5 relates to the classical analysis
of policy instruments in Tinbergen (1952). The Tinbergen (1952) rule states that first-best policy
must have access to as many instruments as it has targets. A concordant interpretation of Equation
(26) is that a second-best planner must use the |R| instruments contained in the free taxes/subsidies
τR (on the left-hand side of the equation) to target |R|+ |U| distortions contained in δR and δU (on
the right-hand side). It is immediate from the equation that first-best cannot be achieved unless
δU = 0, consistent with the Tinbergen rule. The characterization of second-best regulation in the
equation offers a further refinement of the Tinbergen rule: with insufficient policy instruments, the
optimal tax/subsidy equals a weighted sum of all distortions in the economy, whose weights are
linked directly to leakage elasticities.

3.6.2 Uniform regulation

A second type of regulatory constraints that is highly relevant in practice is when the same corrective
regulation must apply to all activities and/or investors, despite the fact that each activity and/or

19Slightly more generally, one could consider the case in which Φ (τ ) = τU − τU = 0, so same regulations are fixed
at a predetermined value τU .
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investor may be associated with externalities of different magnitudes. Formally, here we assume
that the planner is forced to set the same regulation for a subset U of choices, that is, the planner
faces constraints of the following form:20

τ jn = τ j
′

n′ , ∀ (j, n) ,
(
j′, n′

)
∈ U .

It follows immediately that dΦ
dτ for the subset of regulated decisions, which we denote by dΦ

dτU
, is

given by

dΦ
dτU

=



1 · · · 0

−1 1
...

. . . . . .
... −1 1
0 · · · −1


︸ ︷︷ ︸

|U|×(|U|−1)

.

We say that in this case the planner’s regulation is imperfectly targeted. In Proposition 6, we show
that Equation (22) can be specialized to conclude that the second-best policy is given by a weighted
average of distortions.

Proposition 6. [Second-Best Regulation: Imperfect Targeting] When some investors and/or
activities must be regulated at the same rate, i.e., τ jn = τ j

′

n′ , ∀ (j, n) , (j′, n′) ∈ U , the optimal second-
best regulation satisfies

τ jn = τU =
ι′ dx

U

dτU
(I −L) δU

ι′ dx
U

dτU
(I −L) ι

, ∀ (j, n) ∈ U , (27)

where ι is a vector of ones with dimension |U|×1, dxU
dτU

is a Jacobian matrix of dimension |U|× |U|,
and L is the matrix of dimensions |U| × |U| defined in Proposition 4, with

L = dxU

dτU

)−1
dxR

dτU
dxR

dτR

)−1
dxU

dτR
.

Unlike our previous characterizations, Proposition 6 provides an explicit formula for
taxes/subsidies on imperfectly regulated activities, leveraging the special case where regulation
must be uniform on a subset of activities. Equation (27) demonstrates that the optimal second-
best uniform regulation τU is a weighted average of the distortions δU generated by the associated
activities. Notice that, if distortions are symmetric across activities with δU = ιδ , then Equation
(27) implies that the planner should set the first-best regulation τU = δ̄. However, if there is any
asymmetry, then the first-best cannot be achieved with uniform regulation.

To build further intuition for this result, it is useful to first consider the special case where all
activities are subject to uniform regulation (xU = x). In that case, it follows from Proposition 6

20Note that all choices in U will be generically associated with a binding constraint, so this notation is consistent
with the way we introduced the set U .
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that the optimal uniform regulation is given by

τU =
∑
j∈I

∑
n∈X

dxjn
dτU

δjn∑
j∈I

∑
n∈X

dxjn
dτU

, (28)

where we have re-written the total response of activity xjn to the uniform regulation as

dxjn
dτU

=
∑
j′∈I

∑
n′∈X

dxjn

dτ j
′

n′

.

This optimal regulation is a weighted average of distortions generated by imperfectly regulated
activities, and the weights are equal to the total policy elasticities of each activity. Intuitively, the
optimal regulation is large when activities with large (positive) distortions are most responsive to
uniform regulation.

Equation (27) generalizes this idea to the case where there may also be perfectly regulated
activities xR, on which the planner can set regulation freely, in addition to the uniformly regulated
activities xU . In the general case, the optimal weights are adjusted for the endogenous responses
of perfectly regulated activities xR. Interestingly, the necessary adjustment is captured by the
same matrix L that features in the value of relaxing regulatory constraints in Proposition 4. In
the special case where either dxR

dτU
= 0 or dxU

dτR
= 0, we have L = 0, and we recover the expression in

Equation (28).
We close this section by relating these results to the classical analysis of uniform corrective

taxation in Diamond (1973):

Remark 5. [Connection to Diamond (1973)] The insight that uniform regulation of heterogeneous
externalities is given by a weighted average of the distortions can be traced back to Diamond
(1973). Indeed, the special case where all activities are subject to uniform regulation in our model
yields Equation (28), which corresponds to Diamond’s result that the optimal weights on different
distortions are equal to policy elasticities. The general analysis in Proposition 6 further shows
that when there are policy instruments that are freely adjustable, the optimal weights on different
distortions for the optimal uniform regulation must account for the Le Chatelier/reverse leakage
adjustments that we introduce in Section 3.5.

3.6.3 Quadratic costs of regulation

A third relevant scenario is one in which setting some regulations is costly. In particular, we
consider the tractable case in which setting a subset U of regulations is subject to quadratic costs,
defined in Equation (10). This formulation can be interpreted as allowing for the restrictions on
the regulatory toolbox to arise endogenously, in the sense that adjusting one regulation may make
it easier or harder to adjust another.

Formally, the optimal regulation of the subset of instruments subject to quadratic costs must
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satisfy
dW

dτU
= dΦ
dτU

= BτU , (29)

where dW
dτU

is defined in Equation (24) and B is defined in Equation (10). In Proposition 7, we
show that the optimal policy in the presence of quadratic adjustment costs is given by a scaled
down version of the first-best policy.

Proposition 7. [Second-Best Regulation: Attenuation under Quadratic Costs of Regulation] When
adjusting the regulations of some investors and/or activities faces quadratic adjustment costs, the
optimal second-best regulation satisfies

τU = (B +K)−1KδU , (30)

where K is given by

K = −dx
U

dτU

)
(I −L) ,

and L is the matrix of dimensions |U| × |U| defined in Proposition 4.

Interestingly, as in the uniform regulation case, the adjusted product of policy elasticities
dxU

dτU
(I −L) is a key input for the optimal policy. The larger dxU

dτU
(I −L) is relative toB, the smaller

the deviation of the optimal policy with quadratic costs from the first-best policy. Alternatively,
as expected, when the costs vanish, as B → 0, the optimal policy converges to the first-best, so
τU → δU . When B 6= 0, Equation (30) can be interpreted as stating that the optimal policy is
simply an attenuated version of the first-best policy, in which τU = δU . As discussed in Section 3.5,
note that the presence of perfectly regulated decisions — via a large L— is a force that contributes
to attenuating the optimal choice of τU .

In general, the correction relative to the first-best policy is given by (B +K)−1K, which has
the interpretation of an attenuation matrix. For instance, in a scenario with a single agent, |I| = 1,
and a single activity, |X | = 1, Equation (30) becomes

τU =

(
−dxU

dτU

)
b+

(
−dxU

dτU

)δU , (31)

where b is a non-negative scalar that modulates the cost. In the well-behaved case in which dx
dτ < 0,

it follows that the optimal regulation is simply a scaled down version of the first best-regulation.21

This result concludes the characterization of second-best policy with imperfect instruments in
our general model. In the remainder of the paper, we discuss the usefulness of these general results
in the context of specific applications. We begin with our headline application to macro-prudential

21In this case, note that the perfectly regulated decisions in turn must satisfy:

τR = δR +
(
−dx

R

dτR

)−1
dxU

dτR

(
(B +K)−1K − I

)
δU .
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regulation in the presence of environmental externalities, and then consider a sequence of further
applications.

4 Application: Financial Regulation with Environmental
Externalities

Central banks and macro-prudential regulators have increasingly become interested in accounting
for environmental concerns. There are two possible motivations for this. First, there are links
between the financial system, a primary target of macro-prudential regulation, and climate-related
risks, as evidenced by a growing literature on climate finance (e.g., Giglio, Kelly and Stroebel,
2021). For instance, the safety and soundness of financial institutions may be at risk if they are
heavily exposed to climate-related risks. Second, some believe that prudential regulation should
take into account its effect on the broader societal goal of sustainable investment.22 For instance,
the European Central Bank’s bond purchase program has taken the latter motivation into account
by introducing preferential treatment for bonds associated with “green” technologies (Piazessi,
Papoutsi and Schneider, 2021).

A nascent academic literature studies the welfare implications of financial regulatory reforms
when there are environmental concerns (e.g., Oehmke and Opp, 2022; Rola-Janicka and Döttling,
2022). In this section, we use our general results to characterize optimal policy with environmental
externalities and imperfect macro-prudential regulation. This is a particularly important question
because regulators are already discussing potential imperfections and unintended consequences of
policies in the presence of environmental externalities.23

In this application, we first show that imperfections are inherent to the primary mode of
financial regulation in advanced economies, namely, risk-weighted leverage constraints. Indeed,
these requirements constrain only relative quantities on institutions’ balance sheets but leave the
overall scale of investment as a free variable. Next, we analyze second-best optimal regulation in
this setting. To capture the two motivations for policy discussed above, we pay special attention
to contrasting the role of climate-related risks when regulation has a narrow/financial mandate
versus a broad/environmental mandate. Our results, which directly leverage the formulae from the
general model, yield new insights into the differences between these two cases, and into the way in
which climate-conscious regulation should be adjusted for imperfections. Finally, we characterize

22The Bank for International Settlements has recently summarized these two concerns as follows: “Given the impact
of climate change on traditional risk categories, the speech makes the case that prudential policy needs to be adjusted
to account for the impact of climate-related risks on the safety and soundness of financial institutions as part of the
core mandate of supervisory authorities (what we could call the financial motivation for regulatory action). Moreover,
this adjustment has often been presented as a contribution by prudential regulation to facilitate the transition to a
more sustainable economy by providing incentives for a more climate-friendly allocation of financial resources (that
would be the economic motivation).”

23For example, Andrew Bailey, the Governor of the Bank of England, has recently commented that “any
incorporation of climate change into regulatory capital requirements would need to be grounded in robust data
and be designed to support safety and soundness while avoiding unintended consequences or compromising our
other objectives”. See: https://www.bankofengland.co.uk/speech/2021/june/andrew-bailey-reuters-events-global-
responsible-business-2021.
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the value of extending the set of policy tools in the face of environmental externalities, which relates
to the Le Chatelier/reverse leakage adjustments that we have characterized in the general case.

Environment. We assume that there is a single type of investor, in unit measure and indexed
by i, and a unit measure of creditors, indexed by C. Both investors and creditors have risk-neutral
preferences given by

ci0 + βi
ˆ
ci1 (s) dF (s) and cC0 + βC

ˆ
cC1 (s) dF (s)−Ψ

(
θi
)
ki,

where the term Ψ
(
θi
)
ki introduces an environmental externality, as described below.24 The budget

constraints of investors at date 0 and date 1 are given by

ci0 = ni0 +Qi
(
bi, θi

)
ki −Υ

(
ki
)
− Ω

(
θi
)
ki,

ci1 (s) = ki max
{
d1 (s) θi + d2 (s)

(
1− θi

)
+ t

(
bi, θi, s

)
− bi, 0

}
. ∀s.

At date 0, investors, endowed with ni0 dollars, make capital investments ki in two sectors of the
economy. A fraction θi is invested in sector 1, and the remaining 1−θi in in sector 2. Investors issue
debt with face value biki to creditors, so that bi measures investors’ leverage. We conjecture and
verify that the equilibrium price of debt can be written as Qi

(
bi, θi

)
ki, where Qi

(
bi, ki

)
denotes the

market value per unit of capital. Capital investments are subject to an adjustment cost Υ
(
ki
)
and

an additional cost Ω
(
θi
)
ki of adjusting the sectoral composition of investors’ portfolios.25 At date

1, once a state s is realized, investor i receives dj (s) dollars for each unit of investment in sector
j ∈ {1, 2} and a bailout transfer ti

(
bi, θi, s

)
per unit of capital that potentially depends on the

amount of debt issued by the investor and portfolio weights. If the sum of these revenues exceeds
the face value of debt, then investors repay their debt and consume the residual claim. Otherwise,
as discussed below, they optimally choose to default and consume zero.26

In this application, motivated by the existing regulatory instruments, we assume that investors
24The assumption that this distortion only impacts creditors and is linear in capital simplifies the exposition, but

does not affect the qualitative insights of our analysis.
25Alternatively, the investors’ problem can be formulated in terms of the total capital investments, namely, ki1 = θiki

and ki2 =
(
1− θi

)
ki. Our formulation holds as long as portfolio adjustment costs are homogeneous of degree 1 in

capital investments.
26This specification of bailouts corresponds to a model where the government has limited commitment, which

connects our work to the treatment of bailouts in Farhi and Tirole (2012), Bianchi (2016), Chari and Kehoe (2016),
Keister (2016), Gourinchas and Martin (2017), Cordella, Dell’Ariccia and Marquez (2018), Dávila and Walther
(2020a), and Dovis and Kirpalani (2020), among others.
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are subject to a risk-weighted capital requirement:27

bi + ϕθi ≤ b̄. (32)

As we show below, imposing this constraint on investors is equivalent to imposing corrective taxes.
Therefore, this application also serves to illustrate how our approach to imperfect regulation can be
applied to quantity-based instruments that are often used in practice. Intuitively, the requirement
in Equation (32) places an upper bound b̄ on investors’ leverage, which is adjusted in proportion
to the share θi invested in sector 1. In the case with ϕ > 0, on which we will focus without loss of
generality, the relative risk weight ϕ on sector 1 is positive, and the leverage cap becomes tighter
when investors increase θi.

The budget constraints of creditors at date 0 and date 1 are given by

cC0 = nC0 − hiQi
(
bi, θi

)
ki,

cC1 (s) = nC1 (s)− (1 + κ) t
(
bi, θi, s

)
ki + hiP i

(
bi, θi, s

)
ki.

At date 1, creditors are taxed (1 + κ) times the government bailout, where κ > 0 denotes the
deadweight cost of fiscal intervention. Moreover, creditors who buy a fraction hi of investors’ debt
pay the market price at date 0, and receive a payment P i

(
bi, θi, s

)
ki at date 1. This payment,

which preemptively incorporates investors’ optimal default decision, is defined as follows:

P i
(
bi, θi, s

)
=

b
i, d1 (s) θi + d2 (s)

(
1− θi

)
+ t

(
bi, θi, s

)
≥ bi

φ
[
d1 (s) θi + d2 (s)

(
1− θi

)]
, otherwise.

Investors default when their assets are worth less than the promised repayment bi per unit of
capital, and repay bi in full otherwise. In default, creditors recover a fraction φ < 1 of their assets,
so that 1− φ can be interpreted as the deadweight cost of default. For simplicity, we assume that
primitives are such that there exists a default threshold s?

(
bi, θi

)
, so that investors default when

s < s?
(
bi, θi

)
and repay otherwise.28

Finally, recall that creditors’ preferences include a utility loss of Ψ
(
θi
)
ki as a result of investors’

choices. This term reflects an environmental externality. Investors’ portfolio choices θi can affect
27Risk-weighted capital requirements under the Basel accords ensure that the ratio of equity to risk-weighted assets

in leveraged institutions (e.g., banks) is at least equal to a constant fraction C. In our context, equity is
(
1− bi

)
ki and

risk-weighted assets can be represented as
[
w1θ

i + w2
(
1− θi

)]
ki, where wj is the risk weight on sector j investments.

Thus, we can express a risk-weighted capital requirement as

1− bi ≥ C
[
w1θ

i + w2
(
1− θi

)]
⇐⇒ bi + (w1 − w2)︸ ︷︷ ︸

≡ϕ

θi ≤ 1− Cw2︸ ︷︷ ︸
≡b̄

,

which is equivalent to our formulation in (32), with ϕ denoting the relative risk weight on sector 1 investments.
28The uniqueness of this threshold s?

(
bi, θi

)
is guaranteed under the standard assumptions that i) dj (s), j ∈ {1,2},

is increasing in s (i.e., higher asset returns in good states), and ii) the bailout transfer t
(
bi, θi, s

)
is decreasing in s

and increasing in bi (i.e., larger bailouts in bad states/for more levered investors).
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this loss. For example, if ∂Ψ′
∂θi

> 0, then the environmental externality is increasing in the investment
share in sector 1, meaning that sector 1 is associated with more pollution than sector 2.

Equilibrium. For given regulatory parameters
{
b̄, ϕ

}
defining the constraint (32) and a given

bailout policy t
(
bi, θi, s

)
, an equilibrium is defined by leverage, portfolio, and investment decisions{

bi, θi, ki
}
, a default decision rule, and a pricing schedule Q

(
bi, θi

)
such that investors and creditors

maximize their utility and the market for debt clears, i.e., hi = 1.
We rely on the following characterization of the equilibrium.

Lemma 1. [Equilibrium characterization] Equilibrium choices
{
bi, θi, ki

}
are given by the

solution to the following reformulation of the problem faced by investors:

max
{bi,θi,ki}

[
M
(
bi, θi

)
− Ω

(
θi
)
− 1

]
ki −Υ

(
ki
)

subject to ki
(
bi + ϕθi

)
≤ kib, (33)

where M
(
bi, θi

)
is given by

M
(
bi, θi

)
= βi

ˆ s̄

s?(bi,θi)

(
d1 (s) θi + d2 (s)

(
1− θi

)
+ t

(
bi, θi, s

)
− bi

)
dF (s)︸ ︷︷ ︸

equity

+ βC
(ˆ s̄

s?(bi,θi)
bidF (s) + φ

ˆ s?(bi,θi)

s

[
d1 (s) θi + d2 (s)

(
1− θi

)
+ t

(
bi, θi, s

)]
dF (s)

)
︸ ︷︷ ︸

debt =Q(bi,θi)

,

(34)

and s?
(
bi, θi

)
solves the equation

d1 (s?) θi + d2 (s?)
(
1− θi

)
+ t

(
bi, θi, s?

)
= bi.

Intuitively, we characterize the equilibrium by incorporating the pricing of debt into the
investors’ problem at date 1. The function M

(
bi, θi

)
can be interpreted as the sum of the market

values of equity (owned by investors) and debt (owned by creditors) per unit of investment. Notice
that the second term in Equation (34) corresponds to the equilibrium price of debt Q

(
bi, θi

)
, which

incorporates the fact that investors default in states s < s?
(
bi, θi

)
in which the value of their assets

is less than the promised repayment bi. In problem (33), investors maximize the market value
of investment net of costs. For convenience, and without loss of generality, we have scaled the
regulatory constraint in this problem by total investment ki ≥ 0.

An important aspect of this application is that the planner’s instruments are imperfect. This
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can be seen by writing investors’ first-order conditions as

∂M
(
bi, θi

)
∂bi

= µ ≡ τb (35)

∂M
(
bi, θi

)
∂θi

− Ω′
(
θi
)

= µϕ ≡ τθ (36)

M
(
bi, θi

)
− Ω

(
θi
)
− 1−Υ′

(
ki
)

= 0, (37)

where µ ≥ 0 is the Lagrange multiplier on the regulatory constraint. The first two conditions,
which define optimal leverage and portfolio weights, show that the constraint in Equation (32)
implies effective corrective taxes τb on leverage bi and τθ on portfolios θi. The third condition,
which defines optimal total investment ki, does not contain a corrective tax. Intuitively, the capital
requirement (32) constrains ratios but leaves the overall scale ki of investors’ balance sheet as a
free, unregulated variable. By contrast, in a world with perfect instruments, the planner would be
able to set a corrective tax τk on ki in addition to τb and τθ. We return to the value of introducing
such a tax below.

Optimal Corrective Policy. In this environment, we can express the marginal externalities
{δk, δb, δθ} associated with investors’ choices and decompose them into a financial (i.e., bailout-
related) and an environmental component as follows:

δb = (1 + κ)βC
ˆ s̄

s

∂t
(
bi, θi, s

)
∂bi

dF (s)︸ ︷︷ ︸
≡χb

(38)

δθ = (1 + κ)βC
ˆ s̄

s

∂t
(
bi, θi, s

)
∂θi

dF (s)︸ ︷︷ ︸
≡χθ

+ ∂Ψ
(
θi
)

∂θi︸ ︷︷ ︸
≡ψθ

(39)

δk = (1 + κ)βC
ˆ s̄

s
t
(
bi, θi, s

)
dF (s)︸ ︷︷ ︸

≡χk

+ Ψ
(
θi
)

︸ ︷︷ ︸
≡ψk

. (40)

For instance, χk in Equation (40) measures the marginal distortion in capital choices due to bailouts,
while ψk is the distortion due to environmental externalities. Equations (38) and (39) define the
distortions associated with leverage and portfolio choices per unit of capital. An important point
is that leverage induces only a financial distortion, since environmental damage is determined by
the technologies that are operated in this economy, and is independent of how these technologies
are financed.

In Proposition 8, we characterize the form of the second-best policy.

Proposition 8. [Financial Regulation with Environmental Externalities]
a) The marginal welfare effects of varying the leverage cap b̄ and the risk weight ϕ, respectively, are
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given by

dW

db̄
= dbi

db̄
(τb − δb) ki + dθi

db̄
(τθ − δθ) ki −

dki

db̄
δk (41)

dW

dϕ
= dbi

dϕ
(τb − δb) ki + dθi

dϕ
(τθ − δθ) ki −

dki

dϕ
δk. (42)

b) The optimal regulation satisfies

τb

τθ

)
=

δb

δθ

)
+

dbi

db̄
dθi

db̄
dbi

dϕ
dθi

dϕ

)−1 d log ki
db̄

d log ki
dϕ

 δk. (43)

Proposition 8, which is an instance of Propositions 1 and 3, characterizes the marginal welfare
effects of adjusting the two instruments available to the planner and the optimal regulation in
terms of the parameters of the risk-weighted capital constraint, which are the leverage cap b̄ and
the relative risk weight ϕ. Notice that, even though we are working in terms of a quantity constraint,
our general characterization of welfare effects from Proposition 1 applies, after suitably adjusting for
ki. This feature highlights the usefulness of our approach for analyzing quantity-based regulation.

Specifically, Equations (41) and (42) show that marginal welfare effects depend on Pigouvian
wedges — defined in terms of the equivalent taxes {τb, τθ} in Equations (35) and (36) — as well as
policy elasticities. First-best regulation is prevented by the fact that the unregulated scale decision
ki introduces an additional distortion δk. The optimal regulation, which we discuss in more detail
below, takes into account this distortion along with the appropriate leakage elasticities d log ki

db̄
and

d log ki
dϕ .29

In the remainder of this section, we use this characterization to derive several concrete insights
into optimal regulation with environmental externalities. First, we analyze the distinction between
optimal policy motivated by narrow financial stability mandates and broader mandates that take
environmental externalities into account. Importantly, we provide a novel treatment of these
questions taking into account imperfections in policy instruments. Finally, we characterize the
value of relaxing regulatory constraints by imposing corrective regulation on the total scale of
investment.

Imperfect Regulation with Narrow/Financial Mandates. We first consider a financial
regulator who has a narrow mandate and is only concerned with financial externalities. In terms
of our decomposition of distortions, we interpret a narrow mandate as meaning that the regulator
acts as if the climate-related distortions {ψθ, ψk} are both equal to zero. In the background, one
can interpret that the distribution of states, F (s), and the payoffs of the different investments,
d1 (s) and d2 (s), account for climate risks. Applying Proposition 8 and substituting Equations
(38) through (40) yields the optimal policy in this case:

29The appropriate leakage elasticities in this application are semi-elasticities, i.e., responses of log investment to
policy reforms. Compared to our general model, this formulation arises because we have expressed leverage and
portfolio choices per unit of capital.
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Corollary 1. [Imperfect Regulation with Narrow/Financial Mandates] The optimal policy
of a regulator with a narrow/financial mandate is given by

τb

τθ

)
=

χb

χθ

)
+

dbi

db̄
dθi

db̄
dbi

dϕ
dθi

dϕ

)−1 d log ki
db̄

d log ki
dϕ

χk, (44)

where χb, χθ, and χk denote the financial component of the respective externalities, defined in
Equations (38) through (40).

Equation (44) shows that the optimal leverage cap — represented by τb — and the optimal
risk weight — represented by τθ — are set in response to two terms. The first term captures
the marginal externality associated with a change in b or θ, which in this case corresponds to the
marginal response of expected bailouts to more leverage or more investment in sector 1.

The second term, which arises only with imperfect instruments, is proportional to the leakage
elasticities d log ki

db̄
and d log ki

dϕ , and scales with the total expected bailout, via χk. In the Appendix,
we prove that both these elasticities fall into the “complements” case: Stricter leverage regulation
(↓ b̄) or a stricter relative risk weight (↑ ϕ) both lead to increases in ki in equilibrium. Therefore,
Equation (44) generally calls for overregulation of leverage and risk. Finally, notice that the relevant
leakage elasticities are modulated by an inverse matrix of policy elasticities between bi and θi.

The implication for financial regulation with environmental externalities is that any adjustment
for climate-related risk should be determined only by its impact on financial externalities (in this
particular case, this emerges from the presence of bailouts). For instance, the risk weight equivalent
tax τθ should be increased if sector 1 is associated with climate-related tail risk that makes large
bailouts more likely (i.e., if Es

[
∂t(bi,θi,s)

∂θi

]
> 0). In addition, the setting with imperfect instruments

implies that taxes on both leverage and portfolio weights should increase if climate-related risk
increases the magnitude of the total expected bailout. This prediction is unique to our analysis
and directly leverages our general tools.

Imperfect Regulation with Broad/Environmental Mandates. We now consider a financial
regulator with a broad mandate who cares directly about mitigating environmental distortions. We
will focus now on the case where the environmental distortions satisfy ψθ > 0 and ψk > 0. In this
case, increases in overall scale as well as concentrated investments in sector 1 are associated with
greater environmental damage.

Corollary 2. [Imperfect Regulation with Broad/Environmental Mandates]

a) When policy has been set optimally according to a narrow/financial mandate, the welfare
benefits of marginal policy changes are given by

dW

db̄
= −dθ

i

db̄
ψθ −

dki

db̄
k (45)

dW

dϕ
= −dθ

i

dϕ
ψθ −

dki

dϕ
ψk, (46)
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where ψθ and k denote the environmental component of the respective externalities, defined in
Equations (39) and (40).

b) The optimal policy of a regulator with a broad/environmental mandate is given by

τb

τθ

)
=

χb

χθ + ψθ

)
+

dbi

db̄
dθi

db̄
dbi

dϕ
dθi

dϕ

)−1 d log ki
db̄

d log ki
dϕ

 (χk + k) , (47)

where χb, χθ, and χk denote the financial component and ψθ and k denote the environmental
component of the respective externalities, defined in Equations (38) through (40).

Corollary 2 develops two insights into the distinction between narrow/financial and
broad/environmental mandates. First, Equations (45) and (46) highlight the additional welfare
effects, from the perspective of a broad mandate, of adjusting either the leverage cap and risk
weights, when policy has previously been optimized according a narrow mandate. These equations
are useful for deciding whether policy should be adjusted at the margin once a regulator decides to
take environmental outcomes into account. The relevant marginal welfare effects are determined
by the environmental distortions ψθ and k and the associated leakage elasticities. It is interesting
to note that the leakage elasticities to leverage (i.e., dbi

db̄
and dbi

dϕ ) are irrelevant here, because the
mode of financing has no marginal impact on environmental concerns.

Equation (45) shows that a regulator who adjusts the leverage cap b̄ in response to environmental
concerns faces a potential conflict of interest. Indeed, while it is natural that scale and leverage
are generally complements, implying dki

db̄
> 0,30 the response of optimal portfolio choices dθi

db̄
is

ambiguous in theory, and depends on the functional form of returns to investment in each sector.
Since the environmental distortions ψθ, b are assumed positive, the two terms in Equation (45)
may have opposite signs. As a result, it is unclear whether leverage requirements should be relaxed
or tightened in response to environmental concerns, and their impact on welfare may be offset by
portfolio adjustments.

By contrast, Equation (46) demonstrates that risk weights are a natural tool for addressing
environmental concerns. Both the portfolio share θi and total capital ki are generally complements
to the risk weight, implying that dθi

dϕ < 0 and dki

dϕ < 0. Therefore, it is clear that risk weights ought
to be tightened when regulators account for environmental externalities.

The second insight emerging from Corollary 2 is the characterization of optimal policy in
Equation (47). There are two differences to the equivalent characterization with a narrow mandate
in Equation (44). First, the marginal distortion on portfolio choices is augmented, which calls
for greater relative risk weights on the polluting sector (sector 1). Second, the scale distortion is
augmented by ψk. The latter point is particularly important for our analysis. The scale distortion
matters purely due to imperfect regulation and leakage elasticities. Equation (47) demonstrates

30Recall that db̄ > 0 stands for a looser leverage cap, that is, a lower effective tax on leverage. Hence, dk
i

db̄
> 0 is

equivalent to dki

dτb
< 0, which corresponds to the complements case in our general, tax-based notation.

ECB Working Paper Series No 2723 / September 2022 38



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 1: Financial Regulation with Environmental Externalities

Note: The left panel of Figure 1 compares the marginal welfare effects of varying corrective leverage regulation (τb)
in three different scenarios. The green dashed line corresponds to the first-best scenario, in which τθ and τk are held
fixed at their first-best levels (previously computed). The solid dark blue line corresponds to a second-best scenario
in which the regulator has a broad mandate and cares about financial and environmental distortions. In this case,
we compute welfare gains setting τk = 0 and holding τθ fixed at the optimal second-best level for a broad mandate
(previously computed). The light blue dotted line corresponds to a second-best scenario in which the regulator has
a narrow mandate and cares exclusively about financial distortions. In this case, we compute welfare gains setting
τk = 0 and holding τθ fixed at the optimal second-best level for a narrow mandate (previously computed). The right
panel of Figure 1 compares the analogous marginal welfare effects of varying corrective risk-weights regulation (τθ)
in the same three scenarios.
To generate this figure, we assume that the bailout policy is linearly separable, ti

(
bi, s
)

= αi0 + αibb
i + αiθθ

i − αiss,
that the adjustment cost is quadratic, Υ

(
ki
)

= a
2

(
ki
)2, and that the functions Ω

(
θi
)
and Ψ

(
θi
)
are of the CES

(constant elasticity of substitution) form in terms of ki1 and ki2, so Ω (θ) = zΩ
(
aΩ
(
θi
)ηΩ + (1− aΩ)

(
1− θi

)ηΩ
) 1
ηΩ

and Ψ (θ) = zΨ
(
aΨ
(
θi
)ηΨ + (1− aΨ)

(
1− θi

)ηΨ
) 1
ηΨ . The parameters used to generate this figure are βi = 0.9,

βC = 0.98 φi = 0.7, a = 1, αi0 = αis = 0, αib = 0.015, αiθ = 0.01, κ = 0.15, d1 (s) = d1s with d1 = 1.01, d2 (s) = d2s
with d2 = 1, zΩ = 0.25, aΩ = 1.5, ηΩ = 1.5, zΨ = 0.25, aΨ = 0.55, ηΨ = 1.5, nC0 = 50, and nC1 (s) = 50 + 0.1s, where
s is normally distributed with mean 1.3 and standard deviation 0.8, truncated to the interval [0, 3]. For reference, the
optimal first-best regulation is τb = 1.69%, τθ = 3.05%, and τk = 14.22%, the optimal second-best regulation with
a broad mandate is τb = 3.33%, τθ = 3.65%, and τk = 0, while the optimal second-best regulation with a narrow
mandate is τb = 1.83%, τθ = 1.11%, and τk = 0.
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that adjustments for leakage elasticities become more important once the regulator cares about
environmental effects.

Figure 1 illustrates the relation between the first-best and second-best solutions in both the
narrow and the broad mandate cases. In particular, the left panel shows the marginal welfare
effect of varying leverage regulation (in terms of τb), while the right panel shows the marginal
welfare effect of varying risk-weights (in terms of τθ). As we have formally shown above, Figure 1
illustrates that the optimal second-best policy under a broad mandate overregulates both leverage
and portfolio weights relative to the first-best. However, consistent with the insights discussed
above, the relation between the first-best regulation and the second-best regulation for a regulator
with a narrow mandate is more nuanced. In the case we illustrate, it turns out that a narrow
regulator overregulates leverage relative to the first-best, but not portfolio weights. This is mainly
due to the fact that the leakage elasticity with respect to capital is greater in magnitude for leverage,
as Figures OA-1 and OA-2 illustrate. By contrast, a broad regulator overregulates both leverage and
portfolio weights relative to first best, because she places a greater weight on all leakage elasticities
to capital.

The Value of Regulating Scale To close the analysis of this application, we consider a regulator
who is able to impose a corrective tax τkk

i on investors in order to correct for the (previously
unregulated) externalities associated with the scale decision ki. The key economic insights can be
obtained by considering the marginal welfare effect of increasing τk.

Corollary 3. [Environmental Externalities/Regulating Unregulated Decision]

When the planner can impose a corrective tax τk on the total scale of investment ki, the marginal
welfare effect of varying τk is given by

dW

dτk
= dbi

dτk︸︷︷︸
=0

(τb − δb) ki + dθi

dτk︸︷︷︸
=0

(τθ − δθ) ki −
dki

dτk
(τk − δk) (48)

= −dk
i

dτk
ωk.

An interesting property of this environment is that there are no reverse leakage effects from
regulating scale onto leverage and portfolio decisions. Intuitively, the investors’ problem (see Lemma
1) can be broken down into a two-step procedure. First, investors choose leverage and portfolios to
maximize market values M

(
bi, θi

)
per unit of total capital. Second, they set the marginal cost of

capital equal to its maximized market value. Since the first step does not depend on the cost/tax
of capital, bi and θi are independent of τk in equilibrium.

This fact has two novel economic implications. First, we note that the case for regulating scale
here is much stronger than in other applications. In particular, the capital-specific elements of
the Le Chatelier/reverse leakage adjustment matrix L, which usually dampens the welfare impact
of regulating unregulated decisions, are zero. Moreover, the case for regulating scale is clearly
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stronger when the regulator has a broad/environmental mandate, other things equal, since this
mandate takes into account the full marginal distortion δk = χk + ψk.

Second, we see from Equation (48) that the optimal level of the tax on capital is always given by
τk = δk, which corresponds to the first best or Pigouvian correction. The absence of reverse leakage
implies that there is no incentive to over- or underregulate scale, once the regulator is allowed to
do so. This is true even when the regulation of leverage and portfolio decisions is imperfect (with
τb 6= δb and/or τθ 6= δθ).

In summary, this application highlights how the tools we have developed can yield tractable
and novel insights into the issue of “green” capital regulation. Several of these insights cannot be
obtained without taking seriously the imperfections that regulatory instruments exhibit in practice.

5 Further Applications

In this section, we present four additional applications of our general results. This section has
several purposes. First, the study of these applications allows us to show how our results can be
employed to determine the optimal second-best policy in several scenarios of practical relevance.
Second, these applications, which are special cases of the general framework studied in Sections
2 and 3, illustrate how our results encompass widely studied rationales for regulation, including
bailouts, pecuniary externalities, and internalities. Third, by studying specific applications, we
can connect leakage (and policy) elasticities and Pigouvian wedges to model primitives. Finally,
we discuss how our results can be used to interpret existing empirical findings and guide future
measurement efforts in the context of each application.

Table 1 provides a schematic summary of our applications. Each application is designed to be
the simplest one that illustrates the form of the optimal second-best policy in a particular second-
best scenario. In the Online Appendix, we provide detailed derivations for each application.31

Table 1: Summary of Applications

Application Restricted Instrument |I| |X |
#1 Shadow Banking Unregulated Investors 2 1
#2 Behavioral Distortions Unregulated Activities 1 2
#3 Asset Substitution Uniform Activity Regulation 1 2
#4 Pecuniary Externalities Uniform Investor Regulation 2 1

Note: Table 1 summarizes our applications. The column |I| denotes the number of investors and the column |X |
denotes the number of balance-sheet decisions.

In Application 1, we study a model in which some investors are unregulated and regulation
is motivated by the presence of implicit government subsidies. In Application 2, we study an
environment where regulation constrains the ratio of investors’ risky investments to borrowing. In

31These applications are not exhaustive. For instance, one could study the role of imperfect corrective regulation in
models of strategic behavior and imperfect competition, as in Corbae and D’Erasmo (2010) and Corbae and Levine
(2018, 2019), or in the context of regulation of asset markets, as in Dávila (2014) or Cai, He, Jiang and Xiong (2020).
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this application, to illustrate how our model applies to a different rationale for intervention, we
consider a behavioral distortion (distorted beliefs). In Application 3, regulation is constrained to be
uniform across different investment activities, with intervention motivated by government bailouts,
which yields new insights into asset substitution problems. In the final application, we analyze
a model of fire-sale externalities, along the lines of Lorenzoni (2008), in which regulation is also
constrained to be uniform across different types of investors.

5.1 Application 1: Shadow Banking/Unregulated Investors

The notion of shadow banking is typically used to describe the financial activities that take place
outside of the regulated financial sector.32 In this application, we consider an environment with
two types of investors, in which only one type of investor can be regulated (the traditional sector),
while the other is outside of the scope of the regulation (the shadow sector).

Environment. We assume that there are two types of investors i ∈ {1, 2}. In this application,
investors should be broadly interpreted as financial intermediaries or banks. Investors have risk-
neutral preferences of the form:

ci0 + βi
ˆ
ci1 (s) dF (s) ,

with budget constraints given by

ci0 = ni0 +Qi
(
bi
)
− τ ibbi + T i0

ci1 (s) = ni1 (s) + max
{
vis+ ti

(
bi, s

)
− bi, 0

}
, ∀s.

At date 0, an investor i endowed with ni0 dollars chooses the face value of its debt, bi, which
determines the amount of financing obtained at date 0, Qi

(
bi
)
, determined in equilibrium by

creditors, as described below. Investor i faces a corrective tax τ ib per unit of bi due at date 0. At
date 1 in state s, investor i receives vis dollars, as well as a bailout transfer ti

(
bi, s

)
.

Creditors are risk-averse, with preferences of the form

u
(
cC0

)
+ βC

ˆ
u
(
cC1 (s)

)
dF (s) .

Their budget constraints are given by

cC0 = nC0 −
∑
i∈I

hiQi
(
bi
)
,

cC1 (s) = nC1 (s) +
∑
i∈I

hiP i
(
bi, s

)
− (1 + κ)

∑
i∈I

ti
(
bi, s

)
, ∀s,

where hi is the fraction of bonds purchased from investor i, and P i
(
bi, s

)
denotes the repayment

32Pozsar, Adrian, Ashcraft and Boesky (2010), Gorton, Metrick, Shleifer and Tarullo (2010), and Claessens, Pozsar,
Ratnovski and Singh (2012) provide a detailed overview of shadow banking institutions, activities, and regulations.
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received by creditors from investor i in state s, as we explicitly describe in the Online Appendix.
At date 1, all bailout funds are raised from creditors, with a constant net marginal cost of public
funds κ ≥ 0. Note that investors only interact in this application through changes in the price of
credit, i.e., through the stochastic discount factor of creditors: mC (s) = βCu′(cC1 (s))

u′(cC0 ) .

Equilibrium. In this application, for given corrective taxes/subsidies
{
τ1
b , τ

2
b

}
, lump-sum

transfers
{
T 1

0 , T
2
0
}
, and bailout transfers

{
t1
(
b1, s

)
, t2
(
b2, s

)}
, an equilibrium is fully determined

by investors’ borrowing decisions,
{
b1, b2

}
, and financing schedules,

{
Q1 (b1) , Q2 (b2)}, such that

investors maximize their utility, given the financing schedules, and creditors set the schedules
optimally, so that h1 = h2 = 1.

In the first-best scenario, the planner is able to set τ1
b and τ2

b freely. However, we are interested
in scenarios in which the planner cannot regulate type 2 investors, so

τ2
b = 0,

which makes the problem of choosing the optimal τ1
b a second-best problem.

Optimal Corrective Policy/Simulation. First, in Proposition 9, we characterize the form of
the optimal second-best policy. Next, we explore a numerical simulation of this application.

Proposition 9. [Shadow Banking/Unregulated Investors]
a) The marginal welfare effect of varying the corrective regulation of regulated investors, τ1

b , is given
by

dW

dτ1
b

= db1

dτ1
b

(
τ1
b − δ1

b

)
− db2

dτ1
b

δ2
b ,

where the marginal distortions in this application are defined by

δib = (1 + κ)
ˆ
mC (s) ∂t

i
(
bi, s

)
∂bi

dF (s) , (49)

where mC (s) denotes the stochastic discount factor of creditors.
b) The optimal corrective regulation satisfies

τ1
b = δ1

b − − db
1

dτ1
b

)−1
db2

dτ1
b

δ2
b .

Proposition 9 is an application of Propositions 3 and 5 and exploits the structure of this
application to extract further insights. In this application, the marginal distortions associated with
borrowing, δib, are determined by the expected marginal bailout ∂ti(bi,s)

∂bi
, augmented by default

deadweight losses κ if present, valued using the creditors’ stochastic discount factor. The departure
of the optimal regulation from the first-best critically depends on the leakage elasticity db2

dτ1
b
and the

unregulated distortion δ2
b . A number of recent studies provide direct measurements of the relevant
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Figure 2: Shadow Banking/Unregulated Investors (Application 1)

Note: The left panel of Figure 2 compares the marginal welfare effects of varying corrective regulations in two different
scenarios. The green dashed line corresponds to the first-best scenario in which the horizontal axis corresponds to
τb = τ1

b = τ2
b . The solid blue line corresponds to a second-best scenario in which τ2

b = 0 and the horizontal axis
corresponds to τ1

b . Since we assume that both types of investors are symmetric, the value of τb that makes the
first-best marginal welfare effect zero defines the first-best regulation. The value of τ1

b that makes the second-best
marginal welfare effect zero defines the second-best regulation.
The right panel of Figure 2 illustrates Proposition 4 by showing the marginal value of being able to regulate the
shadow sector. The solid dark blue line corresponds to the total marginal welfare gain of increasing τ2

b , while τ1
b is

continually adjusted to be at the optimal second-best value given τ2
b . The total gain can be decomposed into a direct

effect, which corresponds to dxU

dτU
ωU in Equation (24), and a reverse leakage effect, which corresponds to dxU

dτU
LωU

in Equation (24). The green dashed line corresponds to the direct effect of relaxing the regulatory constraint, while
the light blue dotted line corresponds to the reverse leakage effect. Note that both the direct effect and the reverse
leakage effect are zero at the first-best, when τb = τ1

b = τ2
b = 2.60%, but have opposite signs otherwise.

To generate this figure, we assume that the bailout policy is linearly separable: ti
(
bi, s
)

= αi0 −αiss+αibb
i, and that

creditors’ utility is isoelastic: u (c) = c1−γ

1−γ . The parameters used to generate this figure are βi = 0.7, φi = 0.25,
vi = 1, αi0 = αis = 0, αib = 0.01, for i ∈ {1, 2}. Also κ = 0.13, γ = 6, βC = 0.98, nC0 = 50, and nC1 (s) = 50 + 0.1s,
where s is normally distributed with mean 1.3 and standard deviation 0.3, truncated to the interval [0, 3]. For
reference, the optimal first-best regulation is τ1

b = τ2
b = 2.60%, while the optimal second-best regulation, when the

second type of investors cannot be regulated, is τ1
b = 1.99%. Since borrowing decisions are gross substitutes in this

application, the optimal second-best policy is sub-Pigouvian.
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leakage elasticity (e.g., Buchak, Matvos, Piskorski and Seru, 2018a; Irani, Iyer, Meisenzahl and
Peydró, 2020).33 As we show in the Online Appendix, in this application, consistent with the
empirical literature, we find that tighter regulation on the regulated sector (higher τ1

b ) increases
the activities carried out by the unregulated/shadow sector ( db2

dτ1
b
> 0), so leverage choices are gross

substitutes. Therefore, we expect the optimal second-best policy to be sub-Pigouvian.34

Moreover, the presence of unregulated investors may exacerbate the welfare distortion δ1
b

associated with regulated investors. Concretely, when unregulated investors receive bailouts in
state s, the marginal utility of creditors increases in this state due to taxation. In Equation (49),
this increases the distortion associated with marginal increases in regulated investors’ leverage. In
this sense, our results reconcile two common narratives. On the one hand, leakage to the shadow
banking system motivates sub-Pigouvian regulation. On the other hand, the optimal corrective
policy must also adjust to increases in overall leverage, which raise marginal distortions δ1

b in
general equilibrium.

An instructive special case, which we use to solve the model numerically, is obtained by using
a linearly separable bailout policy: ti

(
bi, s

)
= αi0 − αiss + αibb

i, where αis, αib ≥ 0. In this case,
marginal distortions δib = 1+κ

Rf
αib are invariant to policy, and the optimal corrective regulation is

τ1
b = 1 + κ

Rf

α1
b − − db

1

dτ1
b

)−1
db2

dτ1
b

α2
b

 ,
where Rf =

(´
mC (s) dF (s)

)−1
denotes the creditors’ riskless discount rate.

The left panel of Figure 2 illustrates the comparison between the first-best and second-best
policy when simulating this model.35 To more clearly illustrate the insights that we present in
this paper, in Figure 2 we assume that both types of investors are ex-ante identical, and that
the only difference between the two is that investor 2 cannot be regulated. Given this symmetry
assumption, it is possible to represent the marginal value of varying the regulation τb = τ1

b = τ2
b

for both investors, which yields the first-best regulation when dW
dτb

= 0. In contrast, the solid line in

33This work focuses on the elasticity of substitution between the market share of regulated and unregulated
investments. Due to space constraints, we have held the scale of investment fixed in this application, but one
could easily extend the framework to account for both leverage and investment choices, in which case the measured
elasticities of substitution in those papers become directly relevant. In addition, our application highlights that the
elasticity of substitution between regulated and unregulated leverage is a key statistic for second-best regulation.

34Note that one can also use this model to analyze quantity-based policies, such as capital requirements. For
instance, suppose that regulated investors are subject to a binding quantity regulation b1 ≤ b̄1, where the
regulator chooses the upper bound b̄1. In our model, a marginal change db̄1 is equivalent to the local tax reform
dτ1
b =

(
db1

dτ1
b

)−1
db̄1. The associated leakage elasticity is db2

db̄1
=
(
db1

dτ1
b

)−1
db2

dτ1
b

, and the optimal corrective regulation in
Proposition 9 can be alternatively expressed as

τ1
b = δ1

b + db2

db̄1
δ2
b .

35Figure OA-3 in the Online Appendix illustrates comparative statistics of different endogenous outcomes of the
model that are useful to better understand the form of the optimal second-best policy. Figures OA-4 through OA-6
in the Online Appendix do the same for the remaining applications.
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Figure 2 shows the marginal value of varying the regulation that investor 1 faces (the traditional
sector), when investor 2 (the shadow sector) is unregulated, that is, when τ2

b = 0. As implied by
our theoretical results, since db2

dτ1
b
> 0 and db1

dτ1
b
< 0, we find that the optimal second-best policy is

sub-Pigouvian, so the optimal second-best regulation that investor 1 faces is lower than the first-
best regulation. In this particular simulation, the optimal first-best regulation is τ1

b = τ2
b = 2.60%,

while the second-best regulation (when τ2
b = 0) is τ1

b = 1.99%.
The right panel of Figure 2 illustrates Proposition 3 by showing the marginal value of being able

to regulate the shadow sector. This panel provides a clear illustration of the Le Chatelier/reverse
leakage adjustment discussed above. Regardless of whether the shadow sector is underregulated
(when τ2

b is below first-best) or overregulated when (when τ2
b is above first-best), the reverse leakage

effect has the opposite sign of the direct effect of adjusting the regulation of the shadow sector,
attenuate welfare gains/losses. This illustrates how the presence of perfectly regulated decisions
contributes to attenuating the welfare gains of relaxing regulatory constraints.

5.2 Application 2: Behavioral Distortions/Unregulated Activities

In this application, we characterize the form of the optimal scale-invariant policy in a model in
which regulation is motivated by belief distortions.

Environment. We assume that there is a single type of investor, in unit measure and indexed
by i, and a unit measure of creditors, indexed by C. Both investors and creditors have risk-neutral
preferences given by

ci0 + βi
ˆ
ci1 (s) dF i (s) and cC0 + βC

ˆ
cC1 (s) dFC (s) ,

where F i (s) and FC (s) denote the beliefs (cumulative distribution functions) of investors and
creditors over the possible states. Endowments and technologies are specified as in our canonical
model in Section 4, with the simplification that investors do not choose the composition of their
capital portfolio. Accordingly, the budget constraints of investors at date 0 and date 1 are given by

ci0 = ni0 +Qi
(
bi
)
ki −Υ

(
ki
)

ci1 (s) = ni1 (s) + max
{
s− bi, 0

}
ki, ∀s.

Creditors’ budget constraints are given by

cC0 = nC0 − hiQi
(
bi
)
ki

cC1 (s) = nC1 (s) + hiP i
(
bi, s

)
ki, ∀s,

where P i
(
bi, s

)
denotes the repayment received by creditors from investors in state s per unit of

investment, explicitly described in the Online Appendix.
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Figure 3: Behavioral Distortions/Unregulated Activities (Application 2)

Note: Figure 3 compares the marginal welfare effects of varying the corrective regulation in two different scenarios.
The green dashed line corresponds to a scenario in which τ ik is set at the first-best level. The solid blue line corresponds
to a second-best scenario in which τ ik = 0. Therefore, the value of τ ib that makes the first-best marginal welfare effect
zero defines the first-best leverage regulation, since τ ik is already set at the first-best level. The value of τ ib that makes
the second-best marginal welfare effect zero defines the second-best regulation. To generate this figure, we assume
that the adjustment cost is quadratic: Υ

(
ki
)

= a
2

(
ki
)2. The parameters used to generate this figure are βi = 0.9,

βC = 0.95, φi = 0.8, and a = 1. We assume that investors and creditors perceive s to be normally distributed
with mean 1.5 and standard deviation 0.4, and the planner perceives the mean to be 1.3 instead. For reference,
the optimal first-best regulation is given by τ ib = 2.91% and τ ik = 18.45%, while the second-best regulation, when
investment cannot be regulated, is τ ib = 3.21%. Since leverage and investment decisions are gross complements in
this application, the optimal second-best policy is super-Pigouvian.

As in Section 4, we consider regulation via a capital requirement

bi ≤ b̄.

We show below that this is equivalent to a corrective tax on leverage choices bi.
We assume that the planner computes welfare using different probability assessments than

those used by investors and creditors to make decisions. This provides a corrective rationale for
intervention. As highlighted in Dávila and Walther (2020b) and Proposition 10 below, the rationale
for regulation is determined by the difference between private agents’ and the planner’s valuations
per unit of risky investment, which represent a levered version of Tobin’s q. These valuations are,
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respectively, given by

M
(
bi
)

= βi
ˆ

max
{
s− bi, 0

}
dF i (s) + βC

ˆ
P i
(
bi, s

)
dFC (s)

MP
(
bi
)

= βi
ˆ

max
{
s− bi, 0

}
dFP (s) + βC

ˆ
P i
(
bi, s

)
dFP (s) ,

where FP (s) denotes the probability distribution used by the planner to calculate welfare.

Equilibrium. In this application, for a given leverage cap b̄, an equilibrium is defined by an
investment decision, ki, a leverage decision, bi, and a default decision rule such that i) investors
maximize their utility given Qi (·), and ii) creditors set the schedule Qi (·) optimally, so that hi = 1.

In the first-best scenario, the planner is able to set corrective taxes on both leverage and
investment. In this application, the planner’s only instrument is the leverage cap b̄, which is
imperfect. This can be seen by writing investors’ first-order conditions as

∂M
(
bi
)

∂bi
= µ ≡ τb

M
(
bi, θi

)
− 1−Υ′

(
ki
)

= 0,

As in Section 4, the planner can therefore impose an effective tax on leverage via b̄, but cannot
affect investors’ marginal incentive to create investment capital ki.

Optimal Corrective Policy/Simulation. In Proposition 10, we characterize the form of the
optimal second-best policy, which we discuss along with a numerical simulation.

Proposition 10. [Behavioral Distortions/Unregulated Activities]
a) The marginal welfare effect of varying the regulation of investors’ leverage, τ ib, is given by

dW

dτ ib
= dbi

dτ ib

(
τ ib − δib

)
− dki

dτ ib
δik,

where the marginal distortions in this application are defined by

δib = dM
(
bi
)

dbi
− dMP

(
bi
)

dbi

δik = M
(
bi
)
−MP

(
bi
)
.

b) The optimal corrective regulation satisfies

τ ib = δib − − db
i

dτ ib

)−1
dki

dτ ib
δik.

Proposition 10 is the counterpart of Propositions 3 and 5, and it identifies the distortions
associated with leverage and investment the planner perceives. In this application, the welfare
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distortion associated with leverage, δib, is driven by the difference in marginal valuations, while the
distortion associated with investment, δik, is driven by the difference in the level of valuations. In
this application we have dbi

dτ i
b

< 0 and, critically, the leakage elasticity from leverage to investment is

negative, that is, dki
dτ i
b

< 0, implying that leverage and investment are gross complements. As implied
by our results in Section 3, the optimal second-best regulation on leverage is super-Pigouvian.

Importantly, a comparison between this application with the previous one (shadow banking)
highlights that both leakage elasticities featuring substitutes and those featuring complements are
important in common regulatory scenarios. A number of recent empirical studies confirm that the
leakage elasticity from leverage to risky investments is negative, in the sense that banks with lower
capital ratios originate a larger volume of risky loans (e.g., Jiménez, Ongena, Peydró and Saurina,
2014; Dell’Ariccia, Laeven and Suarez, 2017; Acharya, Eisert, Eufinger and Hirsch, 2018).

Figure 3 compares the marginal welfare effects of varying regulation in the first-best and second-
best scenarios when simulating this model. To illustrate the first-best solution for leverage, we fix
τ ik to its first-best value when showing the marginal welfare associated with varying τ ib . The second-
best marginal welfare gain simply sets τ ik = 0. As implied by our theoretical results, the optimal
second-best policy is super-Pigouvian, so it is optimal for the planner to overregulate leverage
relative to the first-best scenario. In this particular simulation, the optimal first-best regulation is
τ ib = 2.91% and τ ik = 18.45%, while the second-best regulation (when τ ik = 0) is τ ib = 3.21%.

5.3 Application 3: Asset Substitution/Uniform Activity Regulation

A common concern in financial regulation is that corrective policy instruments are somewhat coarse
in practice. For example, when imposing capital requirements on banks, financial regulators tend
to set risk weights for wide classes of risky investments (e.g., mortgage loans), but within the
class, banks can freely optimize their portfolios (e.g., among loans to borrowers with different
credit scores) without any change in the associated capital charge. In our model, this situation
corresponds to a uniform regulation across different capital investments. In this application, we
consider uniform corrective policy in a model where investors enjoy government guarantees. We
use the properties of uniform regulation to derive new insights into the classical asset substitution
problem (e.g., Jensen and Meckling, 1976), and characterize the optimal second-best policy.

Environment. We assume that there is a single type of investor, in unit measure and indexed
by i, and a unit measure of creditors, indexed by C. Both investors and creditors have risk-neutral
preferences given by

ci0 + βi
ˆ
ci1 (s) dF (s) and cC0 + βC

ˆ
cC1 (s) dF (s) .
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Figure 4: Asset Substitution/Uniform Activity Regulation (Application 3)

Note: Figure 4 compares the marginal welfare effects of varying the corrective regulation in two different scenarios.
The green dashed line and the light blue dotted line illustrate the first-best regulation. The green dashed line
corresponds to a scenario in which τ2

k is set at the first-best level (previously computed), while the light blue dotted
line corresponds to a scenario in which τ1

k is set at the first-best level (previously computed). Therefore, the values of
τ1
k and τ2

k that respectively make each line zero define the first-best regulation. The solid dark blue line corresponds
to a second-best scenario in which τk = τ1

k = τ2
k , so its zero defines the second-best regulation. To generate this

figure, we assume that the adjustment cost is quadratic: Υ
(
ki1, k

i
2
)

= z1
2

(
ki1
)2 + z2

2

(
ki2
)2. We also assume that

d1 (s) = µ1 +σ1s and d2 (s) = µ2 +σ2s when s is distributed as a standard normal. The parameters used to generate
this figure are βi = 0.8, βC = 1, κ = 0.1, z1 = z2 = 1, bi = 1.4, µ1 = 1.5, µ2 = 1.3, σ1 = 0.3, and σ2 = 0.5. For
reference, the optimal first-best regulation is given by τ1

k = 2.27% and τ2
k = 0.39%, while the second-best regulation,

when the regulation is uniform, is τk = 1.33%.

The budget constraints of investors at date 0 and date 1 are given by

ci0 = ni0 −Υ
(
ki1, k

i
2

)
− τ1

kk
i
1 − τ2

kk
i
2 + T i0

ci1 (s) = max
{
d1 (s) ki1 + d2 (s) ki2 + t

(
ki1, k

i
2, b

i, s
)
− bi, 0

}
, ∀s.

At date 0, investors, endowed with ni0 dollars, choose the scale of two risky capital investments
ki1 and ki2, which are subject to an adjustment cost of Υ

(
ki1, k

i
2
)
. Hence, investors make |X | = 2

free choices regarding their balance-sheet.
At date 1, investors earn the realized returns on capital investments ki1 and ki2, which are given

by d1 (s) and d2 (s) and are increasing in s. In addition, they receive a bailout transfer t
(
ki1, k

i
2, b

i, s
)

from the government. We further assume that investors have legacy debt (i.e., debt issued before
the start of the model) with face value bi. Hence, investors owe a predetermined repayment of
bi to creditors at date 1. We make this simplifying assumption in order to sharpen our focus on
asset substitution, which describes investors’ choice between different risky investments, as opposed

ECB Working Paper Series No 2723 / September 2022 50



to leverage choices. At date 1, investors consume the difference between i) the cash flow from
investments augmented by the bailout transfer and ii) the debt owed, if this difference is positive.
Otherwise, they default and consume zero.

For simplicity, we focus on a particular form of bailout that fully prevents default — this may
correspond to an investor that is “too big to fail”. Concretely, we assume that the government
bailout is equal to the minimum amount required to avoid default

t
(
ki1, k

i
2, b

i, s
)

= max
{
bi − d1 (s) ki1 − d2 (s) ki2, 0

}
. (50)

Given this form of bailout policy, creditors are guaranteed a repayment of bi at date 1. We write
s?
(
ki1, k

i
2
)
for the threshold state below which bailouts are positive.36

Hence, the budget constraints of creditors at date 0 and date 1 are given by

cC0 = nC0

cC1 (s) = nC1 (s) + bi − (1 + κ) t
(
ki1, k

i
2, b

i, s
)
, ∀s.

Even though creditors are always repaid bi in every state, we assume that in order to finance
the bailout, the government imposes a tax of (1 + κ) per dollar of bailout on creditors, where
κ > 0 measures the deadweight fiscal cost of bailout transfers. The rationale for regulation in this
environment is a classical “moral hazard” argument. Investors, whose debt is implicitly guaranteed
by the government, do not internalize the impact of their risky capital investments on fiscal costs,
which ultimately reduces the consumption of creditors.

Equilibrium. In this application, for given corrective taxes/subsidies
{
τ1
k , τ

2
k

}
, lump-sum

transfers T i0 = τ1
kk

i
1 + τ2

kk
i
2, bailout policy t

(
ki1, k

i
2, b

i, s
)
, and legacy debt bi, an equilibrium is

defined by investment decisions such that investors maximize their utility. In the first-best scenario,
the planner is able to set τ1

k and τ2
k freely. However, we are interested in a scenario in which the

planner is unable to treat investments differentially for regulation purposes. Thus, the planner
chooses τ1

k ≥ 0 and τ2
k ≥ 0 subject to the uniform regulation constraint:

τk = τ1
k = τ2

k .

Optimal Corrective Policy/Simulation. In Proposition 11 we characterize the form of the
second-best policy, which we discuss along with a numerical simulation.

Proposition 11. [Asset Substitution/Uniform Activity Regulation]
a) The marginal welfare effect of varying the uniform corrective regulation of capital investments,
τk = τ1

k = τ2
k , is given by

dW

dτk
= dki1
dτk

(τk − δ1) + dki2
dτk

(τk − δ2) ,

36Formally, for a fixed value bi of legacy debt, this threshold is the unique solution to bi − d1 (s) ki1 − d2 (s) ki2 = 0.

ECB Working Paper Series No 2723 / September 2022 51



where the marginal distortions in this application are defined by

δj = (1 + κ)βC
ˆ s?(ki1,ki2)

s
dj (s) dF (s) .

b) The optimal corrective regulation satisfies

τk =
dki1
dτk

dki1
dτk

+ dki2
dτk

δ1 +
dki2
dτk

dki1
dτk

+ dki2
dτk

δ2.

Proposition 11 identifies the distortions associated with the different types of investment
decisions in this application. The shape of the distortions δj highlights the nature of the asset
substitution problem: investors’ private incentives are driven by the returns to investment in
“upside” states s ≥ s?

(
ki1, k

i
2
)
, while the planner’s concern about bailouts focuses on “downside”

states s < s?
(
ki1, k

i
2
)
. The optimal uniform regulation is a weighted average of the downside

distortions imposed by both types of capital. As implied by our general results in Section 3, the
appropriate weight assigned by the planner to each of the distortions in the optimal second-best

policy is given by how sensitive each capital decision is to changes in the regulation,
dki1
dτk

dki1
dτk

+
dki2
dτk

and

dki2
dτk

dki1
dτk

+
dki2
dτk

. Figure 4 illustrates this intuition by comparing the marginal welfare effects of varying

regulation in the first-best and second-best scenarios.
In the Online Appendix, assuming that investment costs are quadratic, we provide further

intuition on how the weights dki1
dτk

and dki2
dτk

are determined. We show that the sufficient statistics for
the optimal weights are i) the sensitivity of the probability of receiving a bailout to the uniform
regulation, and ii) the marginal contribution dn (s?) of each asset class at the bailout boundary.
Intuitively, a large ratio d2(s?)

d1(s?) means that changes in the default boundary affect mostly returns to
ki2, which makes investors’ optimal investment in ki2 more sensitive to the uniform regulation.

5.4 Application 4: Pecuniary Externalities/Uniform Investor Regulation

Pecuniary/fire-sale externalities coupled with incomplete markets and/or collateral constraints
provide a well-studied rationale for corrective macro-prudential regulation. The natural notion
of efficiency in those environments, constrained efficiency, typically requires individual-specific
regulations, which can be mapped to our first-best benchmark. In this application, we study
the form of the second-best policy in an environment in which it would be optimal to set investor-
specific regulations, but the planner is constrained to set the same corrective regulation for all
investors.

Environment. We assume that there are two types of investors/entrepreneurs, indexed by
i ∈ {1, 2}, and households, indexed by H — who in a richer model would also play the role of
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creditors. There are three dates, t ∈ {0, 1, 2} and no uncertainty.37 Investors, who for simplicity
do not discount the future, have preferences of the form:

ui = ci0 + ci1 + ci2,

subject to non-negativity constraints, ci0 ≥ 0, ci1 ≥ 0, ci2 ≥ 0, where their budget constraints are
given by

ci0 = ni0 −Υi
(
ki0

)
− τ ikki0 + T i0

ci1 = q
(
ki0 − ki1

)
− ξiki0

ci2 = ziki1.

At date 0, an investor i endowed with ni0 dollars chooses how much to produce, ki0, given a
technology Υi

(
ki0
)
. Investor i also faces a corrective tax τ ik per unit invested at date 0. At date 1,

an investor i must reinvest ξi > 0 per unit of invested capital at date 0, which needs to be satisfied
by selling ki0− ki1 units of capital at a market price q — this is a simple way to generate a fire-sale.
At the final date, whatever capital is left yields an output ziki1. For simplicity, we assume that, in
equilibrium, T i0 = τ ikk

i
0, ∀i.

Households, who exclusively consume at date 1, have access to a decreasing returns to scale
technology to transform capital into output at date 1. Formally, the utility of households is given
by

uH = cH1 = F
(
kH1

)
− qkH1 ,

where F (·) is a well-behaved concave function and kH1 denotes the amount of capital purchased
by households at date 1. The solution to the households’ problem will define a downward sloping
demand curve for sold capital at date 1.

Equilibrium. In this application, for given corrective taxes/subsidies
{
τ1
k , τ

2
k

}
and lump-sum

transfers
{
T 1

0 , T
2
0
}

=
{
τ1
kk

1
0, τ

2
kk

2
0
}
, an equilibrium is fully determined by investors/entrepreneurs’

investment decisions
{
ki0, k

i
1
}
at dates 0 and 1, households’ capital allocation kH1 at date 1, and

an equilibrium price q, such that investors’ and households’ utilities are maximized, subject to
constraints, and the capital market clears, that is,

∑
i

(
ki0 − ki1

)
= kH1 .

In the first-best scenario, the planner is able to set τ1
k and τ2

k freely. However, we are interested
in scenarios in which the planner must regulate both investors equally, so

τk = τ1
k = τ2

k ,

which makes the problem of choosing the optimal τk a second-best problem.
In Section D of the Online Appendix, we provide a detailed characterization of the equilibrium.

37It is well known that for pecuniary externalities to matter there must be more than one trading stage. The two
final dates in this application can be mapped to the second date in Section 2.
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Figure 5: Pecuniary Externalities/Uniform Investor Regulation (Application 4)

Note: Figure 5 compares the marginal welfare effects of varying the corrective regulation in two different scenarios.
The green dashed line and the light blue dotted line illustrate the first-best regulation. The green dashed line
corresponds to a scenario in which τ2

k is set at the first-best level (previously computed), while the light blue dotted
line corresponds to a scenario in which τ1

k is set at the first-best level (previously computed). Therefore, the values of
τ1
k and τ2

k that respectively make each line zero define the first-best regulation. The solid dark blue line corresponds
to a second-best scenario in which τ1

k = τ2
k = τk, so its zero defines the second-best regulation. To generate this

figure, we assume that the adjustment cost of investment is quadratic: Υi
(
ki0
)

= ai

2

(
ki0
)2, and that the technology

of households is isoelastic: F
(
kH1
)

= (kH1 )α
α

. The parameters used to generate this figure are α = 0.5, a1 = a2 = 1,
z1 = z2 = 1.5, ξ1 = 0.3, and ξ2 = 0.4. For reference, the optimal first-best regulation is given by τ1

k = 3.43% and
τ2
k = 4.57%, while the second-best regulation, when the regulation is uniform, is τk = 3.99%.

At date 1, the non-negativity constraint of investors’ consumption will necessarily bind, so the
amount sold by investor i at date 1 will be proportional to date 0 investment: ki0 − ki1 = ξi

q k
i
0. The

households’ optimality condition is given by q = F ′
(
kH1

)
. When combined with market clearing

and the characterization of optimal investment at date 0 that we present in the Online Appendix,
we show that the equilibrium price can be characterized in terms of primitives as the solution to

q =
∑
i

ξi

ai
zi 1− ξi

q

)
− τ ik

))α−1
α

,

where we have assumed quadratic adjustment costs Υi
(
ki0
)

= ai

2
(
ki0
)2 and the isoelastic production

function F
(
kH1

)
= (kH1 )α

α .

Optimal Corrective Policy/Simulation. In Proposition 12 we characterize the form of the
second-best policy, which we discuss along with a numerical simulation.
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Proposition 12. [Pecuniary Externalities/Uniform Investor Regulation]
a) The marginal welfare effect of varying the uniform corrective regulation of investments, τk =
τ1
k = τ2

k , is given by
dW

dτk
= dk1

0
dτk

(
τk − δ1

k

)
+ dk2

0
dτk

(
τk − δ2

k

)
,

where

δik = − ∂q

∂ki0

2∑
`=1

z`

q
− 1

)(
k`0 − k`1

)
.

b) The optimal corrective regulation satisfies

τk =
dk1

0
dτk

dk1
0

dτk
+ dk2

0
dτk

δ1
k +

dk2
0

dτk
dk1

0
dτk

+ dk2
0

dτk

δ2
k.

Proposition 12 identifies the distortions associated with the investment choices of
investors/entrepreneurs. In this application, the distortion is generated by a distributive pecuniary
externality, using the terminology of Dávila and Korinek (2018). Consistent with the results in
that paper, this type of externality is determined by price sensitivities, differences in marginal
valuations, and net trade positions. In this case, these three statistics are given by ∂q

∂ki0
, z`

q − 1,
and k`0 − k`1. Note that δik includes the sum of the latter two terms across both types of investors,
since a given investor does not internalize how his individual investment decision affects prices and
consequently the welfare of other investors of the same and different types.

As implied once again by our general results in Section 3, the appropriate weight assigned by
the planner to each of the distortions in the optimal second-best policy is given by how sensitive
each capital decision is to changes in the regulation. Figure 5 illustrates this intuition by comparing
the marginal welfare effects of varying regulation in the first-best and second-best scenarios. By
comparing Application 3 with Application 4, it becomes evident that the principles that guide the
second-best regulation when it is forced to be uniform across choices for a given agent or across
agents for a given choice are identical.

6 Conclusion

This paper provides a systematic study of optimal corrective regulation with imperfect instruments.
We have shown that leakage elasticities and Pigouvian wedges are sufficient statistics to account for
the marginal welfare impact of imperfect regulatory policies in a large class of environments. The
same statistics can also serve to characterize the social value of relaxing regulatory constraints. We
have explicitly characterized the optimal regulatory policy with unregulated investors, unregulated
activities, with uniform regulation across heterogeneous investors and activities, and with costly
regulation.

A central insight is that leakage elasticities from perfectly regulated to imperfectly regulated
activities play a crucial role in determining second-best policy. In particular, we show that
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the optimal second-best policy depends crucially on whether perfectly and imperfectly regulated
decisions are gross substitutes or gross complements. Our work provides concrete examples of
the relevant elasticities. We have leveraged the general methodology to highlight the common
fundamental economic principles in a number of practical scenarios, such as financial regulation
with environmental externalities, shadow banking, behavioral distortions, asset substitution, and
fire-sale externalities with heterogeneous investors. We hope that our general results spur the
development of future measurement efforts and new applications of practical interest.
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A Proofs and derivations: Section 2
Investors’ problem: The problem solved by investor i in Lagrangian form is

max
ci0,{ci1(s)},xi

Li,

where Li is given by

Li = ui
(
ci0,
{
ci1 (s)

}
s∈S ,

{
xj
}
j∈I

)
− λi0

(
ci0 − ni0 −Qi

(
xi
)

+ Υi
(
xi
)

+ τ i · xi − T i0
)

−
ˆ
λi1 (s)

(
ci1 (s)− ni1 (s)− ρi

(
xi, s

))
dF (s) ,

where λi0 and λi1 (s) denote the Lagrange multipliers that correspond to investor i’s budget constraints.38

The consumption optimality conditions imply that λi0 = ∂ui

∂ci0
and λi1 (s) dF (s) = ∂ui

∂ci1(s) . The balance-sheet
optimality conditions for investor i are given by

− λi0 −
∂Qi

(
xi
)

∂xi
+
∂Υi

(
xi
)

∂xi
+ τ i

)
+
ˆ
λi1 (s)

∂ρi
(
xi, s

)
∂xi

dF (s) = 0, ∀i, (51)

where Equation (51) corresponds to Equation (12) in the text, and where mi (s) = λi1(s)
λi0

.39 Formally, the

|X | × 1 vectors ∂Qi(xi)
∂xi , ∂Υi(xi)

∂xi , and τ i are given by:

∂Qi

∂xi
=



∂Qi

∂bi1
...

∂Qi

∂bi|B|
∂Qi

∂ki1
...

∂Qi

∂ki|K|


,

∂Υi

∂xi
=



∂Υi
∂bi1
...

∂Υi
∂bi|B|
∂Υi
∂ki1
...

∂Υi
∂ki|K|


, and τ i =



τ ib,1
...

τ ib,|B|
τ ik,1
...

τ ik,|K|


.

Similarly, we define the |X | × 1 vector
´
λi1 (s) ∂ρi(x

i,s)
∂xi dF (s) as follows:

ˆ
λi1 (s)

∂ρi
(
xi, s

)
∂xi

dF (s) =



´
λi1 (s) ∂ρi(x

i,s)
∂bi1

dF (s)
...´

λi1 (s) ∂ρi(x
i,s)

∂bi|B|
dF (s)

´
λi1 (s) ∂ρi(x

i,s)
∂ki1

dF (s)
...´

λi1 (s) ∂ρi(x
i,s)

∂ki|K|
dF (s)


.

38Without loss of generality, we define the state s multipliers λi1 (s) inside the expectation.
39Note that a sufficient regularity condition for the second term of Equation (51) to be valid is that ρi

(
xi, s

)
is

continuous. Otherwise, all results follow when the second term is ∂
∂xi

[´
λi1 (s) ρi

(
xi, s

)
dF (s)

]
.

ECB Working Paper Series No 2723 / September 2022 61



Creditors’ problem: The problem solved by creditors in Lagrangian form is

max
cC0 ,{cC1 (s)},{hCi }

LC ,

where LC is given by

LC = uC
(
cC0 ,
{
cC1 (s)

}
s∈S ,

{
xj
}
j∈I

)
− λC0 cC0 − nC0 +

∑
i∈I

hCi Q
i
(
xi
))

−
ˆ
λC1 (s) cC1 (s)− nC1 (s)−

∑
i∈I

hCi ρ
C
i

(
xi, s

))
dF (s) ,

where λC0 and λC1 (s) denote the Lagrange multipliers that correspond to the creditors’ budget constraints.
The consumption optimality conditions imply that λC0 = ∂uC

∂cC0
and λC1 (s) dF (s) = ∂uC

∂cC1 (s) . The optimality
conditions for creditors regarding

{
hCi
}
are

−λC0 Qi
(
xi
)

+
ˆ
λC1 (s) ρCi

(
xi, s

)
dF (s) = 0, ∀i, (52)

where we use the fact that xi = xi in equilibrium. Equation (52), which exactly corresponds to Equation
(11) in the text once we define mC (s) = λC1 (s)

λC0
, characterizes the financing schedules Qi

(
xi
)
that investors

face.
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B Proofs and derivations: Section 3
Proof of Proposition 1 [Marginal Welfare Effects of Corrective Regulation: Policy
Elasticities and Pigouvian Wedges]:

Proof. We initially characterize the |X | × 1 vectors
dV i

dτj

λj0
and

dV C

dτj

λC0
, which correspond to the money-metric

welfare changes of type i investors and creditors when τ j changes. In vector form, these are given by

dV im
dτ j

=
dV i

dτ j

λi0
=



dV i

dτ
j
1

λi0
...

dV i

dτ
j

|X|
λi0

 and dV Cm
dτ j

=
dV C

dτ j

λC0
=



dV C

dτ
j
1

λC0
...

dV C

dτ
j

|X|
λC0

 .

Investors. We express the financing schedules faced by investors as a function of the stochastic discount
factor of creditors mC (s), which is in turn in equilibrium a function of the consumption of creditors in
all dates and states. This allows us to separately account for any general equilibrium pecuniary effects.
Formally, we represent the equilibrium financing schedules in Equation (11) for an investor i as follows:

Qi
(
xi;mC (s)

)
=
ˆ
mC (s) ρCi

(
xi, s

)
dF (s) ,

where we make explicit the dependence on mC (s). The money-metric change in indirect utility for investor
i when varying the regulation that investor j faces is given by the following |X | × 1 vector:

dV i

dτ j

λi0
= dci0
dτ j

=0︷ ︸︸ ︷ ∂ui

∂ci0
− λi0
λi0

+
ˆ
dci1 (s)
dτ j

=0︷ ︸︸ ︷
∂ui

∂ci1(s)

dF (s) − λ
i
1 (s)

λi0

 dF (s)

+ dxi

dτ j

=0︷ ︸︸ ︷(
∂Qi

(
xi;mC (s)

)
∂xi

−
∂Υi

(
xi
)

∂xi
− τ i +

ˆ
mi (s)

∂ρi
(
xi, s

)
∂xi

dF (s)
)

+ dT i0
dτ j
− dτ i

dτ j
xi +

∂Qi
(
xi;mC (s)

)
∂mC (s)

dmC (s)
dτ j

+
∑
`∈I

dx`

dτ j
1
λi0

∂ui

∂x`
, (53)

where the |X | × 1 vectors dT i0
dτ j and xj are given by

dT i0
dτ j

=


dT i0
dτ j1
...
dT i0
dτ j|X|

 and xi =



bi1
...
bi|B|
ki1
...

ki|K|


=



xi1
...
xin
...

xi|X |


,
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and where the matrix dτ i

dτ j , of dimension |X | × |X |, is given by

dτ i

dτ j
=

I|X |, if i = j

0|X |, if i 6= j,

which is either a |X |-dimensional identity matrix, I|X |, when i = j, or a |X |× |X | matrix of zeros, 0|X |, when

i 6= j. We also define the |X | × 1 vector ∂Qi(xi;mC(s))
∂mC(s)

dmC(s)
dτ j as

∂Qi
(
xi;mC (s)

)
∂mC (s)

dmC (s)
dτ j

=


´ dmC(s)

dτj1
ρCi
(
xi, s

)
dF (s)

...´ dmC(s)
dτj|X|

ρCi
(
xi, s

)
dF (s)

 .

Note that we use the fact that

dQi
(
xi;mC (s)

)
dτ j

= dxi

dτ j
∂Qi

∂xi
+ ∂Qi

∂mC (s)
dmC (s)
dτ j

,

as well as
d
(
τ i · xi − T i0

)
dτ j

= dτ i

dτ j
xi + dxi

dτ j
τ i − dT i0

dτ j
.

Note that we define the |X | × |X | matrix dxi

dτ j as follows:

dxi

dτ j
=


dxi1
dτj1

· · · dxi|X|

dτj1
... dxin

dτj
n′

...
dxi1
dτj|X|

· · · dxi|X|

dτj|X|

 . (54)

This matrix is the Jacobian of the equilibrium vector of the balance-sheet decisions of investor i with respect
to a change in the set of regulations that agent j faces. Note also that ∂ui

∂x`
denotes a |X |×1 gradient vector.

Creditors. In the case of creditors, we can express the |X | × 1 vector
dV C

dτj

λC0
as follows:

dV C

dτ j

λC0
= dcC0
dτ j

=0︷ ︸︸ ︷ ∂uC

∂cC0
− λC0
λC0

+
ˆ

=0︷ ︸︸ ︷
∂uC

∂cC1 (s)

dF (s) − λ
C
1 (s)

λC0

 dcC1 (s)
dτ j

dF (s)

−
∑
i∈I

dhCi
dτ j

=0︷ ︸︸ ︷(
Qi
(
xi;mC (s)

)
−
ˆ
mC (s) ρCi

(
xi, s

)
dF (s)

)

−
∑
i∈I

hCi
dQi

(
xi;mC (s)

)
dτ j

−
ˆ
mC (s)

dρCi
(
xi, s

)
dτ j

dF (s)
)

+
∑
`∈I

dx`

dτ j
1
λC0

∂uC

∂x`

= −
∑
i∈I

dxi

dτ j
∂Qi

∂xi
−
ˆ
mC (s)

∂ρCi
(
xi, s

)
∂xi

dF (s)
)

︸ ︷︷ ︸
=0

−
∑
i∈I

∂Qi

∂mC (s)
dmC (s)
dτ j

+
∑
`∈I

dx`

dτ j
1
λC0

∂uC

∂x`
, (55)
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where in the second equality we use the fact that hCi = 1 and the fact that dρCi (xi,s)
dτ j = dxi

dτ j
∂ρCi
∂xi , and where

the |X | × 1 vector ∂ρCi
∂xi is given by

∂ρCi
∂xi

=


∂ρCi
∂xi1
...

∂ρCi
∂xi|X|

 .

Note that dx`

dτ j is defined as in Equation (54), and that ∂uC

∂x`
denotes a |X | × 1 gradient vector.

Social Welfare: First, we can express the sum among investors of the change in money-metric indirect
utilities as follows:

∑
i∈I

dV im
dτ j

=
∑
i∈I

(
dT i0
dτ j
− dτ i

dτ j
xi
)

+
∑
i∈I

∂Qi

∂mC (s)
dmC (s)
dτ j

+
∑
i∈I

∑
`∈I

dx`

dτ j
1
λi0

∂ui

∂x`

=
∑
i∈I

dxi

dτ j
τ i +

∑
`∈I

1
λ`0

∂u`

∂xi

)
+
∑
i∈I

∂Qi

∂mC (s)
dmC (s)
dτ j

,

where we use the fact that Equation (8) implies that

∑
i∈I

(
dT i0
dτ j
− dτ i

dτ j
xi
)

=
∑
i∈I

dxi

dτ j
τ i,

as well as the following identity:

∑
i∈I

∑
`∈I

dx`

dτ j
1
λi0

∂ui

∂x`
=
∑
i∈I

∑
`∈I

dxi

dτ j
1
λ`0

∂u`

∂xi
.

Therefore, we can express dW
dτ j as follows:

dW

dτ j
=
∑
i∈I

dV im
dτ j

+ dV Cm
dτ j

=
∑
i∈I

dxi

dτ j
τ i +

∑
`∈I

1
λ`0

∂u`

∂xi

)
+
∑
i∈I

dxi

dτ j
1
λC0

∂uC

∂xi

=
∑
i∈I

dxi

dτ j

τ i − −
∑
`∈I

1
λ`0

∂u`

∂xi
+ 1
λC0

∂uC

∂xi

))
︸ ︷︷ ︸

=δi

 ,

which, after being stacked, corresponds to Equation (19) in the text — see also Footnote 10. Note that δi

is a |X | × 1 vector.

Redistributional concerns: Given the money-metric marginal welfare effects of varying τ j , defined in
Equations (53) and (55), we can express the marginal welfare effects of varying τ j , for any set of generalized
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social marginal welfare weights (Saez and Stantcheva, 2016), ωi for i ∈ I and ωj , as follows:

dW

dτ j
=
∑
i

ωi
dV i

dτ j

λi0
+ ωj

dV C

dτ j

λC0
= EiC

[
dV iC

dτ j

λx0

]
+ CoviC

[
ωiC ,

dV iC

dτ j

λx0

]
︸ ︷︷ ︸

Redistribution

, (56)

where we assume, without loss of generality that the weights add up to one, that is,
∑
i ω

i + ωj = 1, and
where we use the index iC to refer to the set of investors and creditors, that is, {I, C}.40

When ωi = ωC = 1, then the redistribution term in Equation (56) is zero. This case is the one studied in
the body of the paper. When ωi 6= ωC 6= 1, Equation (56) clearly shows that redistributional concerns enter
additively to the marginal welfare effects of varying τ j . A utilitarian planner simple corresponds to setting
marginal welfare weights of the form ωi = λi0, where λi0 typically equals marginal utility of consumption.
Note that a utilitarian planner with access to lump-sum taxes/transfers finds it optimal to endogenously set
ωi = ωC = 1.

Proof of Proposition 2 [First-Best Regulation/Pigouvian Principle]:

Proof. The optimal first-best regulation is characterized by

dx

dτ
ω = 0,

which defines a system of homogeneous linear equations in ω. If the matrix of policy elasticities dx
dτ is

invertible (i.e., has full rank), the only solution to this system is the trivial solution ω = 0.

Proof of Proposition 3 [Second-Best Regulation: General Case]:

Proof. Note that the Jacobian matrix dxR

dτU
, of dimensions |U| × |R|, can be written as

dxR

dτU
=


· · ·

... dxin
dτj
n′

...

· · ·

 ,

where the balance-sheet activities are such that (i, n) ∈ R and (j, n′) ∈ U . One can similarly define dxU

dτU
,

dxU

dτR
, and dxR

dτR
, with dimensions |U| × |U|, |R| × |U|, and |R| × |R| respectively, by switching the sets of

coefficients.
Consider the marginal welfare effects of increasing the perfectly regulated taxes/subsidies τR. By

definition of the perfectly regulated activities, we have ηR = 0, so that Equation (20) yields dW
dτR

= 0
at the second-best optimum. Using Equation (19) (or, more directly, its expanded version in Footnote 10)
we obtain:

0 = dW

dτR
= dx

dτR
(τ − δ) = dxU

dτR

(
τU − δU

)
+ dxR

dτR

(
τR − δR

)
.

40In Equation (56), the expectation and covariance operators, indexed by iC, correspond to cross-sectional moments
including investors and creditors.
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Assuming that the matrix dxR

dτR
is invertible, we rearrange this equation as follows to complete the proof:

dxR

dτR

(
τR − δR

)
= −dx

U

dτR

(
τU − δU

)
⇐⇒ τR = δR −

(
dxR

dτR

)−1

︸ ︷︷ ︸
|R|×|R|

dxU

dτR︸ ︷︷ ︸
|R|×|U|

(
τU − δU

)
︸ ︷︷ ︸
|U|×1

.

Derivations with diagonal policy elasticities: When the own-regulatory policy elasticity matrix
dxR

dτR
is diagonal, we have

(
dxR

dτR

)−1
dxU

dτR
ωU =


(
dxR1
dτR1

)−1
0

0
. . . (

dxR|R|
dτR|R|

)−1





dxU1
dτR1

dxU2
dτR1

dxU1
dτR2

dxU2
dτR2

. . .
dxU|U|
dτR|R|




ωU1
...

ωU|U|



=



(
dxR1
dτR1

)−1
dxU1
dτR1

(
dxR1
dτR1

)−1
dxU2
dτR1(

dxR2
dτR2

)−1
dxU1
dτR2

(
dxR2
dτR2

)−1
dxU2
dτR2

. . . (
dxR|R|
dτR|R|

)−1
dxU|U|
dτR|R|




ωU1
...

ωU|U|



=



(
dxR1
dτR1

)−1 (
dxU1
dτR1

ωU1 + dxU2
dτR1

ωU2 + · · ·
)

(
dxR2
dτR2

)−1 (
dxU1
dτR2

ωU1 + dxU2
dτR2

ωU2 + · · ·
)

...(
dxR|R|
dτR|R|

)−1(
dxU1
dτR|R|

ωU1 + dxU2
dτR|R|

ωU2 + · · ·
)


.

It follows that the second-best regulation on choice (j, n) ∈ R is given by

τ jn = δjn −
(
dxjn

dτ jn

)−1 ∑
(j′,n′)∈U

dxj
′

n′

dτ jn
ωj
′

n′ .

Proof of Proposition 4 [Welfare effects of relaxing regulatory constraints]:

Proof. Using Equation (19) (or, more directly, its expanded version in Footnote 10) we obtain the welfare
effects of changes in the imperfectly regulated taxes/subsidies τU :

dW

dτU
= dxU

dτU

(
τU − δU

)
+ dxR

dτU

(
τR − δR

)
.

From the characterization of τR at the second-best optimum from Proposition 3, we have that

τR − δR =
(
−dx

R

dτR

)−1
dxU

dτR

(
τU − δU

)
.
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Combining, we obtain the required expression as follows:

dW

dτU
= dxU

dτU

(
τU − δU

)
− dxR

dτU

(
dxR

dτR

)−1
dxU

dτR

(
τU − δU

)

= dxU

dτU

I −
(
dxU

dτU

)−1
dxR

dτU

(
dxR

dτR

)−1
dxU

dτR︸ ︷︷ ︸
≡L

(τU − δU)︸ ︷︷ ︸
≡ωU

= dxU

dτU
(I −L)ωU .

Proof of Proposition 5 [Second-Best Regulation: Unregulated Investors/Activities]:

Proof. This proposition follows directly from Proposition 3 and the observation that, at the second-best
optimum, the constraints are binding with τU = 0. Concretely, we have

τR = δR +
(
−dx

R

dτR

)−1
dxU

dτR

 τU︸︷︷︸
=0

− δU
 = δR −

(
−dx

R

dτR

)−1
dxU

dτR
δU ,

as required.

Proof of Proposition 6 [Second-Best Regulation: Imperfect Targeting]:

Proof. Note that the case of uniform regulation is a particular case of linear constraints — see Equation (9)
— in which

A =


1 −1 · · · 0

1 −1
...

...
. . . . . .

0 · · · 1 −1

 ,

where A has dimensions (|U| − 1)× |U|. In this case, dΦ
dτ = A′, so Equation (20) implies that

dW

dτU
= dxU

dτU
(I −L)ωU = A′µ.

Adding up across all |U|, where ι denotes a column vector of ones with dimension |U|, we obtain that

ι′
dW

dτU
= ι′

dxU

dτU
(I −L)ωU = ι′A′µ = 0,

since Aι = 0 — this corresponds to adding up the rows of A — which in turn implies that ι′A′ = 0 — this
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correspond to adding up the columns of A′). It then immediately follows that

0 = ι′
dxU

dτU
(I −L)ωU

= ι′
dxU

dτU
(I −L)

(
τU − δU

)
= ι′

dxU

dτU
(I −L)

(
τU ι− δU

)
,

where the last line uses the fact that all elements of τU must be equal to the same scalar, denoted τU , at
the constrained solution; that is, τU = ιτU . We solve as follows for the scalar τU to complete the proof:

ι′
dxU

dτU
(I −L) ι︸ ︷︷ ︸

scalar

τU = ι′
dxU

dτU
(I −L) δU︸ ︷︷ ︸
scalar

⇐⇒ τU =
ι′ dx

U

dτU
(I −L) δU

ι′ dx
U

dτU
(I −L) ι

.

Proof of Proposition 7 [Second-Best Regulation: Attenuation under Quadratic Costs
of Regulation]:

Proof. Note that we can express Equation (29) as follows:

dxU

dτU
(I −L)

(
τU − δU

)
= BτU . (57)

Solving for τU simply yields

τU =
(
B +

(
−dx

U

dτU

)
(I −L)

)−1((
−dx

U

dτU

)
(I −L) δU

)
,

which corresponds to Equation (30) in the paper. With a single agent and activity, L = 0, and Equation
(57) collapses to

dxU

dτU
(
τU − δU

)
= bτU ,

which in turn implies Equation (31) in the text.
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Online Appendix
Sections C and D of this Online Appendix include detailed proofs and derivations associated with the

applications described in Sections 4 and 5 of the paper. Section E of this Online Appendix shows that the
results of the paper apply unchanged to a classical consumer theory scenario.

C Proofs and derivations: Section 4
Proof of Lemma 1 [Welfare effects of relaxing regulatory constraints]: Since creditors are
risk-neutral, they must be indifferent between all quantities of debt purchased in equilibrium. Hence, the
valuation of debt per unit of capital in equilibrium is

Qi
(
bi, θi

)
=
ˆ s̄

s?(bi,θi)
bidF (s) + φ

ˆ s?(bi,θi)

s

[
d1 (s) θi + d2 (s)

(
1− θi

)]
dF (s) .

Substituting the valuation of debt and the budget constraints into investors’ objective function, and ignoring
exogenous endowments, we obtain the simplified version of their maximization problem in Lemma 1.

Proof of Proposition 8 [Financial Regulation With Environmental Externalities]:
Adding the utilities of investors and creditors, imposing market clearing, and ignoring exogenous
environments, we find that maximizing welfare is equivalent to maximizing

W
(
bi, θi, ki

)
=
[
M
(
bi, θi

)
− Ω

(
θi
)
− 1
]
ki −Υ

(
ki
)

− (1 + κ)
ˆ s̄

s

t
(
bi, θi, s

)
kidF (s)−Ψ

(
θi
)
ki.

We can now write bi
(
b̄, ϕ
)
, θi

(
b̄, ϕ
)
and ki

(
b̄, ϕ
)
for optimal choices as a function of regulatory parameters,

and totally differentiate the welfare function with respect to b̄ to obtain

dW

db̄
= ki

(
∂M

∂bi
− δb

)
dbi

db̄
+ ki

(
∂M

∂θi
− Ω′

(
θi
)
− δθ

)
dθi

db̄
− δk

dki

db̄

= ki (τb − δb)
dbi

db̄
+ ki (τθ − δθ)

dθi

db̄
− δk

dki

db̄
,

where we have substituted the definitions of {δb, δθ, δk} from Equations (38) through (40), as well as the
first-order conditions (35), (36) and (37). Similarly, we differentiate with respect to ϕ to obtain

dW

dϕ
= ki

(
∂M

∂bi
− δb

)
dbi

dϕ
+ ki

(
∂M

∂θi
− Ω′

(
θi
)
− δθ

)
dθi

dϕ
− δk

dki

dϕ

= ki (τb − δb)
dbi

dϕ
+ ki (τθ − δθ)

dθi

dϕ
− δ dk

i

dϕ
,

as stated in Proposition 8, part a). Part b) of the proposition follows by solving for τb and τθ in the system
dW
db̄

= 0, dWdϕ = 0.

Characterization of complementarities: Investors’ first-order condition for ki can be written as

J
(
b̄, ϕ
)

= 1 + Υ′
(
ki
)
, (58)
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Figure OA-1: Financial Regulation with Environmental Externalities: Second-Best Comparative
Statics, Leverage (τb)

Note: Figure OA-1 illustrates relevant comparative statics of our application on financial regulation with
environmental externalities. In particular, we show how different variables vary with different values of τb, when
τk = 0 and when τθ is set at the second-best level (previously computed). The top row show equilibrium leverage bi,
portfolio allocations θi, and capital ki. The second row shows leverage, portfolio, and capital distortions, defined in
Equations (38) through (40), while the third row shows the associated Pigouvian wedges. The bottom row shows the
policy elasticity db

dτb
and the two leakage elasticities, dθ

dτb
and dk

dτb
(since in this figure we are keeping τθ predetermined).

The parameters used are described in Figure 1.
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Figure OA-2: Financial Regulation with Environmental Externalities: Second-Best Comparative
Statics, Risk Weights (τθ)

Note: Figure OA-2 illustrates relevant comparative statics of our application on regulation with environmental
externalities. In particular, we show how different variables vary with different values of τb, when τk = 0 and when τθ
is set at the second-best level (previously computed). The top row show equilibrium leverage bi, portfolio allocations
θi, and capital ki. The second row shows leverage, portfolio, and capital distortions, defined in Equations (38) through
(40), while the third row shows the associated Pigouvian wedges. The bottom row shows the policy elasticity db

dτb

and the two leakage elasticities, dθ
dτb

and dk
dτb

(since in this figure we are keeping τθ predetermined). The parameters
used are described in Figure 1.
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where
J
(
b̄, ϕ
)

= max
bi,θi

{
M
(
bi, θi

)
− Ω

(
θi
)
subject to bi + ϕθi ≤ b̄

}
. (59)

By the envelope theorem, we have

∂J

∂b̄
= υ ≥ 0

∂J

∂ϕ
= −υθi ≤ 0,

where υ denotes the Lagrange multiplier on the constraint in (59). Totally differentiating (58), we now
obtain

∂J

∂b̄
= dki

db̄
Υ′′ (k?)

∂J

∂ϕ
= dki

dϕ
Υ′′ (k?) ,

so that the convexity of Υ (.) immediately implies

dki

db̄
≥ 0, dk

i

dϕ
≤ 0,

as claimed in the text.

Further simulation results: Given our functional form assumptions for the simulation, note that we
can express the default threshold s?

(
bi, θi

)
as

s?
(
bi, θi

)
=
bi −

(
αi0 + αibb

i + αiθθ
i
)

d1θi + d2 (1− θi)− αis
.

Relatedly, note that the marginal distortions in Equations (38) through (40) correspond then to

δb = βC (1 + κ)αb︸ ︷︷ ︸
≡χb

δθ = βC (1 + κ)αθ︸ ︷︷ ︸
≡χθ

+
∂Ψ
(
θi
)

∂θi︸ ︷︷ ︸
≡ψθ

δk = βC (1 + κ)
(
αi0 + αibb

i + αiθθ
i − αis

)︸ ︷︷ ︸
≡χk

+
(
θi
)︸ ︷︷ ︸

≡ψk

.

Also, note that
Ω′
(
θi
)

= zη (Ω (θ))1−η
(
a
(
θi
)η−1 − (1− a)

(
1− θi

)η−1)
,

and similarly for Ψ′
(
θi
)

= ∂Ψ(θi)
∂θi .
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D Proofs and derivations: Section 5

D.1 Application 1

Default and repayments: Investor i optimally defaults at date 1 if vis+ti
(
bi, s

)
−bi < 0.41 Assuming

that vi + ∂ti(bi,s)
∂s > 0, there exists a unique threshold si?

(
bi
)
such that default occurs if and only if

s < si?
(
bi
)
. Therefore, the definition of the repayment eventually received by creditors, Pi

(
bi, s

)
, is

Pi
(
bi, s

)
=

φivis+ ti
(
bi, s

)
s ∈

[
s, si∗

(
bi
))

bi s ∈
[
si∗
(
bi
)
, s
]
.

In our simulation, we let ti
(
bi, s

)
= αi0 − αiss + αibb

i, with αis < vi, so that we can solve explicitly for the
default threshold

si?
(
bi
)

=
(

1− αib
vi − αis

)
bi − 1

vi − αis
αi0.

We further assume that creditors have constant relative risk aversion with coefficient γ.

Creditors’ optimal choices and asset pricing: We conjecture and verify that the price
Qi
(
bi;mC (s)

)
of investors’ debt is a function of bi and creditors’ stochastic discount factor mC (s) =

βC
u′(cC1 (s))
u′(cC0 ) . Substituting creditors’ budget constraints into their objective, we obtain the simplified version

of their maximization problem:

V C
(
bi,mC (s)

)
= max
{hi}i∈I

u nC0 −
∑
i∈I

hiQi
(
bi;mC (s)

))

+ βC
ˆ
u nC1 (s) +

∑
i∈I

hiPi
(
bi, s

)
− (1 + κ)

∑
i∈I

ti
(
bi, s

))
dF (s) ,

where V C (·) denotes creditors’ indirect utility as a function of investors’ debt choice and market prices.
The first-order conditions for this problem, combined with market clearing (hi = 1), yield the following
debt-pricing equation:

Qi
(
bi;mC (s)

)
=
ˆ si?(bi)

s

mC (s)
(
φivis+ ti

(
bi, s

))
dF (s) +

ˆ s

si?(bi)
mC (s) bidF (s) .

Note that the stochastic discount factor in equilibrium must satisfy the fixed-point equation

mC (s) = βC
u′
(
nC1 (s) +

∑
i∈I Pi

(
bi, s

)
− (1 + κ)

∑
i∈I t

i
(
bi, s

))
u′
(
nC0 −

∑
i∈I Q

i (bi;mC (s))
) .

Investors’ optimal choices: Substituting investors’ budget constraints into their objective, and
ignoring exogenous endowments, we obtain the simplified version of their maximization problem:

41Note that it is straightforward to make bailouts depend on the decisions of all investors, as in, e.g., Farhi and
Tirole (2012).
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Figure OA-3: Application 1: Second-Best Comparative Statics

Note: Figure OA-3 illustrates relevant comparative statics of Application 1 for different values of τ1
b , when τ2

b = 0.
The top left plot shows equilibrium borrowing bi for both types of investors. The top right plot shows the equilibrium
creditors’ riskless rate, defined on page 44. The middle left plot shows the distortion associated with the borrowing
choice of each investor, δ1

b and δ2
b , defined in Equation (60) — note that the distortions move inversely with changes

in the riskless rate Rf and quantitatively the changes are small. The middle right plot shows the Pigouvian wedge
associated with the borrowing decision of each investor, ω1

b and ω2
b . The bottom plot shows the policy elasticity db1

dτ1
b

and the critical leakage elasticity db2

dτ1
b

> 0. The parameters used are described in Figure 2.

ECB Working Paper Series No 2723 / September 2022 75



V i
(
τ ib , T

i
0,m

C (s)
)

= max
bi

βi
ˆ s

si?(bi)

(
vis+ ti

(
bi, s

)
− bi

)
dF (s)

+Qi
(
bi;mC (s)

)
− τ ibbi + T i0,

where V i (·) denotes investors’ indirect utility as a function of regulation and market prices. The first-order
condition determining the optimal bi is

−βi
ˆ s

si?(bi)

(
1− ∂ti

∂b

(
bi, s

))
dF (s) +

∂Qi
(
bi;mC (s)

)
∂bi

= τ ib ,

where

∂Qi
(
bi;mC (s)

)
∂bi

=
ˆ s

si?(bi)
mC (s) dF (s) +

ˆ si?(bi)

s

∂ti

∂b

(
bi, s

)
mC (s) dF (s)

− (1− φ)mC
(
si?
(
bi
))
visi?

(
bi
)
f
(
si?
(
bi
))
.

Marginal welfare effects: The money-metric marginal welfare effects of changing the regulation τ jb of
investor type j ∈ {1, 2} are given by

dW

dτ jb
= 1
λC0

dV C

dτ jb
+
∑
i∈I

dV i

dτ jb
,

where λC0 = u′
(
cC0
)
, since λi0 = 1. Using an envelope argument parallel to our general results in Proposition

1, we obtain, abstracting from pecuniary effects that cancel after aggregating,

dV C

dτ jb
= − (1 + κ)βC

ˆ
u′ (c1 (s))

∑
i∈I

∂ti
(
bi, s

)
∂bi

dbi

dτ jb
dF (s) ,

and
dV i

dτ jb
= τ ib

dbi

dτ jb
,

where we have used the assumption that T i0 = τ ibb
i. Thus, we obtain

dW

dτ jb
=
∑
i∈I

dbi

dτ jb

τ ib − (1 + κ)
ˆ
mC (s)

∂ti
(
bi, s

)
∂bi

dF (s)︸ ︷︷ ︸
=δi

b

 . (60)

It follows that the first-best policy must satisfy τ ib = δib, i ∈ {1, 2}.

Proof of Proposition 9 [Shadow Banking/Unregulated Investors]:

Proof. The proposition follows directly by evaluating Equation (60) in the case where the planner is forced
to set τ2

b ≡ 0.
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Further simulation results: Figure OA-3 illustrates comparative statics of the model in the context
of the second-best policy, in which τ2

b = 0.

D.2 Application 2

Default and repayments: At date 1, investors optimally decide to default when s < bi, and to repay
otherwise. Therefore, the definition of the repayment eventually received by creditors per unit of capital ki,
Pi
(
bi, s

)
, is

Pi
(
bi, s

)
=

φis s ∈
[
s, bi

)
bi s ∈

[
bi, s

]
.

Creditors’ optimal choices and asset pricing: Since creditors are risk-neutral, they must be
indifferent between all quantities of debt purchase in equilibrium. Hence, the valuation of debt per unit of
capital in equilibrium satisfies

Qi
(
bi
)

= βC

(ˆ s

bi
bidFC (s) + φ

ˆ bi

s

sdFC (s)
)
.

Investors’ optimal choices: Substituting the valuation of debt and the budget constraints into
investors’ objective function, and ignoring exogenous endowments, we obtain the simplified version of their
maximization problem:

max
bi,ki

M
(
bi
)
ki −Υ

(
ki
)
− τ ibbiki − τ ikki + T i0,

where M
(
bi
)
is given by

M
(
bi
)

= βi
ˆ s

bi

(
s− bi

)
dF i (s) +Qi

(
bi
)
.

We assume that all corrective taxes/subsidies are reimbursed to investors with T i0 = τ ibb
iki + τ ikk

i. The
first-order conditions in this problem, which yield demand functions for credit and investment, are given by
the solution to

dM
(
bi
)

dbi
− τ ib = 0 (61)

M
(
bi
)
−Υ′

(
ki
)
− τ ik = 0, (62)

where
dM

(
bi
)

dbi
= βC

ˆ s

bi
dFC (s)− βi

ˆ s

bi
dF i (s)− (1− φ)βCbifC

(
bi
)
.

As shown in Dávila and Walther (2020b), assuming that 0 < βi < βC ≤ 1 and that φ is not too small
guarantees an interior solution for leverage. Note that the equilibrium value of bi is independent of ki,
and consequently of τ ik. In our simulation, we assume that investment adjustment costs are quadratic, i.e.,
Υ
(
ki
)

= a
2
(
ki
)2, in which case Equation (62) takes the form

ki = 1
a

(
M
(
bi
)
− τ ik

)
.
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Marginal welfare effects: As shown by Dávila and Walther (2020b), social welfare for a planner who
computes welfare using beliefs F i,P and FC,P is given by

W = MP
(
bi
)
ki −Υ

(
ki
)
,

where MP
(
bi
)
denotes the present value of payoffs under the planner’s beliefs

MP
(
bi
)

= βi
ˆ s

bi

(
s− bi

)
dF i,P (s) + βC

(ˆ s

bi
bidFC,P (s) + φ

ˆ bi

s

sdFC,P (s)
)
.

The marginal welfare effects of varying τ ib , after differentiating and substituting investors’ first-order
conditions, can be written as

dW

dτ ib
=
dMP

(
bi
)

dbi
dbi

dτ ib
+
(
MP

(
bi
)
−Υ′

(
ki
)) dki
dτ ib

=

τ ib −
dM

(
bi
)

dbi
−
dMP

(
bi
)

dbi

)
︸ ︷︷ ︸

δi
b


dbi

dτ ib
+

τ ik − (M (
bi
)
−MP

(
bi
))︸ ︷︷ ︸

δi
k

 dki

dτ ib
. (63)

Proof of Proposition 10 [Behavioral Distortions/Unregulated Activities]:

Proof. The proposition follows directly by evaluating Equation (63) in the case where the planner is forced
to set τ ik ≡ 0.

Further simulation results: Figure OA-4 illustrates comparative statics of the model in the context
of the second-best policy, in which τ ik = 0.

D.3 Application 3

Default and repayments: The bailout policy specified in Equation (50) implies that investors always
(weakly) prefer not to default. Creditors are therefore guaranteed a repayment equal to the face value of
legacy debt, bi. We treat bi as an exogenous constant throughout this application. The threshold state below
which bailouts are positive, denoted s?

(
ki1, k

i
2
)
, is implicitly defined by

bi = d1
(
s?
(
ki1, k

i
2
))
ki1 + d2

(
s?
(
ki1, k

i
2
))
ki2.

Notice that this equation has a unique solution because we have assumed that the returns to investment,
d1 (s) and d2 (s), are increasing in s.

Creditors’ optimal choices and asset pricing: In this application, we assume for simplicity that
investors’ debt bi is legacy debt, i.e., issued before the start of the model. Therefore, there is no market for
debt, and no market price, at date 0. Creditors are passive agents who simply consume their endowments
and debt repayments, and pay the taxes raised for bailouts. Creditors’ indirect utility, as a function of
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Figure OA-4: Application 2: Second-Best Comparative Statics

Note: Figure OA-4 illustrates relevant comparative statics of Application 2 for different values of τb, when τk = 0.
The top left plot and the top middle-left plot show equilibrium leverage b and investment k. The top middle-right
and right plots show the leverage distortion δb and the capital distortion δk, respectively. The bottom left plot and
the bottom middle-left plot show the associated Pigouvian wedges, ωb and ωk. The bottom middle-right plot and
bottom right plot show the policy elasticity db

dτb
and the leakage elasticity dk

dτb
. The parameters used are described in

Figure 3.
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investment choices, is then given by

V C
(
ki1, k

i
2
)

= βC bi − (1 + κ)
ˆ s̄

s

t
(
ki1, k

i
2, b

i, s
)
dF (s)

)

= βC bi − (1 + κ)
ˆ s?(ki1,ki2)

s

(
bi − d1 (s) ki1 − d2 (s) ki2

)
dF (s)

)
.

Investors’ optimal choices: Substituting investors’ budget constraints into their objective, and
ignoring exogenous endowments, we obtain the simplified version of their maximization problem:

V i
(
τ1
k , τ

2
k , T

i
0
)

= max
ki1,k

i
2

βi
ˆ s̄

s?(ki1,ki2)

[
d1 (s) ki1 + d2 (s) ki2 − bi

]
dF (s)−Υ

(
ki1, k

i
2
)

− τ1
kk

i
1 − τ2

kk
i
2 + T i0,

where V i
(
τ1
k , τ

2
k , T

i
0
)
denotes investors’ indirect utility as a function of taxes/subsidies.

Investors’ first-order conditions are given by

βi
ˆ s̄

s?(ki1,ki2)
d1 (s) dF (s)−

∂Υ
(
ki1, k

i
2
)

∂ki1
− τ1

k = 0

βi
ˆ s̄

s?(ki1,ki2)
d2 (s) dF (s)−

∂Υ
(
ki1, k

i
2
)

∂ki2
− τ2

k = 0.

Marginal welfare effects: The marginal welfare effect of changing the regulation τ jk of investment
type j ∈ {1, 2} is given by

dW

dτ jk
= dV C

dτ jk
+ dV i

dτ jk
.

Using the envelope theorem, parallel to our general results in Proposition 1, we obtain

dV C

dτ jk
= − (1 + κ)βC

∑
m∈{1,2}

ˆ s?(ki1,ki2)

s

dm (s) dF (s) dk
i
m

dτ jk
,

and

dV i

dτ jk
= ∂V i

∂τ jk
+ ∂V i

∂T i0

dT i0

dτ jk

=
∑

m∈{1,2}

τm
dkim

dτ jk
,

where we have used the assumption that T i0 = τ1
kk

i
1 + τ2

kk
i
2. Thus, we obtain

dW

dτ jk
=

∑
m∈{1,2}

dkim

dτ jk

τm − (1 + κ)βC
ˆ s?(ki1,ki2)

s

dm (s) dF (s)︸ ︷︷ ︸
=δm

 .
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Proof of Proposition 11 [Asset Substitution/Uniform Activity Regulation]:

Proof. To establish this proposition, we can use the general expression for optimal uniform regulation from
Proposition 6

τU =
ι′ dx

U

dτU
(I −L) δU

ι′ dx
U

dτU
(I −L) ι

.

We have L = 0 in this application, because there is no perfectly regulated choice. Hence, we obtain

ι′
dxU

dτU
δU =

(
1 1

) dki1
dτ1
k

dki2
dτ1
k

dki1
dτ2
k

dki2
dτ2
k

( δ1

δ2

)

=
(
dki1
dτ1
k

+ dki1
dτ2
k

)
δ1 +

(
dki2
dτ1
k

+ dki2
dτ2
k

)
δ2,

and
ι′
dxU

dτU
ι =

(
dki1
dτ1
k

+ dki1
dτ2
k

)
+
(
dki2
dτ1
k

+ dki2
dτ2
k

)
.

Combining the last three expressions yields the required result, since

τk =

(
dki1
dτ1
k

+ dki1
dτ2
k

)
δ1 +

(
dki2
dτ1
k

+ dki2
dτ2
k

)
δ2(

dki1
dτ1
k

+ dki1
dτ2
k

)
+
(
dki2
dτ1
k

+ dki2
dτ2
k

)
=

dki1
dτk

dki1
dτk

+ dki2
dτk

δ1 +
dki2
dτk

dki1
dτk

+ dki2
dτk

δ2,

where we have defined the total response of kim to a change in the uniform regulation as

dkim
dτk

= dkim
dτ1
k

+ dkim
dτ2
k

.

Derivation of leakage elasticities with separable costs: Assume that the adjustment cost takes
the form Υ

(
ki1, k

i
2
)

= z1
2
(
ki1
)2 + z2

2
(
ki2
)2. Investors’ first-order conditions now become

ki1 = 1
z1

βi
ˆ s̄

s?(ki1,ki2)
d1 (s) dF (s)− τ1

k

)

ki2 = 1
z2

βi
ˆ s̄

s?(ki1,ki2)
d2 (s) dF (s)− τ2

k

)
.

Applying the implicit function theorem and Leibniz rule to investors’ first-order conditions, and imposing
uniform regulation τ1

k = τ2
k = τk, we have

dkin
dτk

= 1
zn

−βidn
(
s?
(
ki1, k

i
2
))
f
(
s?
(
ki1, k

i
2
)) ds? (ki1, ki2)

dτk
− 1
)
.
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Notice that the probability of bailout is

P
(
ki1, k

i
2
)

= F
(
s?
(
ki1, k

i
2
))
,

and has the property that
dP
(
ki1, k

i
2
)

dτk
= f

(
s?
(
ki1, k

i
2
)) ds? (ki1, ki2)

dτk
.

Hence, we can write
dkin
dτk

= 1
zn

−βidn
(
s?
(
ki1, k

i
2
)) dP (ki1, ki2)

dτk
− 1
)
.

It follows that the sufficient statistics for leakage elasticities are i) the scaling factor zn of the cost function,
ii) the sensitivity of the probability of bailout to the regulation, and iii) the marginal contribution dn (s?)
of each asset class at the bailout boundary. Notice that the weight on δ1 in the optimal tax formula now
becomes

dki1
dτk

dki1
dτk

+ dki2
dτk

=

1
z1

(
−βid1

(
s?
(
ki1, k

i
2
)) dP(ki1,ki2)

dτk
− 1
)

1
z1

(
−βid1

(
s?
(
ki1, k

i
2
)) dP(ki1,ki2)

dτk
− 1
)

+ 1
z2

(
−βid2

(
s?
(
ki1, k

i
2
)) dP(ki1,ki2)

dτk
− 1
)

= 1
1 + ξ1

,

where

ξ1 = z1

z2

1 + βid2 (s?) dP(ki1,ki2)
dτk

1 + βid1 (s?) dP(ki1,ki2)
dτk

.

Further simulation results Figure OA-5 illustrates comparative statics of the model in the context
of the second-best policy, in which τk = τ1

k = τ2
k .

D.4 Application 4

Households’ optimal choices and asset pricing: Households’ optimization problem at date 1 can
be expressed as

V H (q) = max
kH1

F
(
kH1
)
− qkH1 ,

where V H (·) denotes households’ indirect utility as a function of market prices. The solution to the
households’ problem is characterized by q = F ′

(
kH1
)
. When combined with market clearing, given by∑

i

(
ki0 − ki1

)
= kH1 , we find the following equation, which the price q must satisfy:

q = F ′
(
kH1
)

= F ′
∑
i

(
ki0 − ki1

))
= F ′

(
1
q

∑
i

ξiki0

)
.

Notice that this equation defines q as an implicit function of capital investments ki0. Below, we derive a
solution for the equilibrium value of q in terms of primitives under standard functional forms.
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Figure OA-5: Application 3: Second-Best Comparative Statics

Note: Figure OA-5 illustrates relevant comparative statics of Application 3 for different values of τk = τ1
k = τ2

k .
The top left plot shows the default threshold s?. The top right plot shows risky capital investments ki1 and ki2. The
middle left plot shows the distortions associated with each investment decisions, δ1 and δ2, and the middle right plot
shows the associated Pigouvian wedges, ω1 and ω2. The bottom plot shows the leakage/policy elasticities dki1

dτk
and

dki2
dτk

. The parameters used are described in Figure 4.
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Investors’ optimal choices: We solve the investors’ problem recursively. At date 1, the non-negativity
constraint on consumption is necessarily binding. It follows that the investor optimally chooses ci1 = 0 and

ki1 =
(

1− ξi

q

)
ki0.

Thus, investor i’s maximized utility (i.e., value function) from date 1 onwards is

vi1
(
q, ki0

)
= zi

(
1− ξi

q

)
ki0.

At date 0, ignoring exogenous endowments, we can express investors’ optimization problem as

V i
(
τ ik, T

i
0, q
)

= max
ki0

{
vi1
(
q, ki0

)
−Υi

(
ki0
)
− τ ikki0 + T i0

}
,

= max
ki0

{
zi
(

1− ξi

q

)
ki0 −Υi

(
ki0
)
− τ ikki0 + T i0

}
,

where V i (·) denotes investors’ indirect lifetime utility as a function of taxes and market prices. The first-
order condition determining optimal investment ki0 is given by

zi
(

1− ξi

q

)
= Υi′ (ki0)+ τ ik.

Assuming quadratic adjustment costs, we obtain the closed form solution

ki0 = 1
ai

(
zi
(

1− ξi

q

)
− τ ik

)
.

Marginal welfare effects: The marginal welfare effect of changing the regulation τ jk of investor type
j is given by

dW

dτ jk
=
∑
`∈I

dV `

dτ jk
+ dV H

dτ jk
.

Using the envelope theorem, parallel to our general results in Proposition 1, we obtain

dV H

dτ jk
= ∂V H

∂q

dq

dτ jk
.

Similarly, we have

dV `

dτ jk
= ∂V `

∂τ jk
+ ∂V `

∂T `0

dT `0

dτ jk
+ ∂V `

∂q

dq

dτ jk

= τ `k
dk`0

dτ jk
+ ∂v`1

∂q

dq

dτ jk
,
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where we have used the assumption that T `0 = τ `kk
`
0. Combining, we obtain

dW

dτ jk
= −kH1

dq

dτ jk
+
∑
`∈I

τ `k
dk`0

dτ jk
+ ∂v`1

∂q

dq

dτ jk

)

=
∑
i∈I

τ ik
dki0

dτ jk
+

∑
`∈I

∂v`1
∂q
− kH1

)
dq

dτ jk
. (64)

Since q in equilibrium is an implicit function of initial capital investments ki0, i ∈ {1, 2}, we can write

dq

dτ jk
=
∑
i∈I

∂q

∂ki0

dki0

dτ jk
.

Moreover, notice that

∑
`∈I

∂v`1
∂q
− kH1 =

∑
`∈I

z`

q

ξ`

q
k`0 − kH1 =

∑
`∈I

(
z`

q
− 1
)(

k`0 − k`1
)
,

where the last equality follows from the market clearing condition kH1 =
∑
`∈I

(
k`0 − k`1

)
. Substituting into

(64) yields

dW

dτ jk
=
∑
i∈I

τ ik
dki0

dτ jk
+
∑
`∈I

(
z`

q
− 1
)(

k`0 − k`1
)∑
i∈I

∂q

∂ki0

dki0

dτ jk

=
∑
i∈I

τ ik −
(
− ∂q

∂ki0

)∑
`∈I

(
z`

q
− 1
)(

k`0 − k`1
)

︸ ︷︷ ︸
=δi

k


dki0

dτ jk
.

Proof of Proposition 12 [Fire-Sale Externalities/Uniform Investor Regulation]:

Proof. With uniform taxation, the planner is forced to set τk = τ1
k = τ2

k . The marginal welfare effect of
changing the uniform tax is

dW

dτk
=
∑
j∈I

dW

dτ jk

=
∑
i∈I

(
τ ik − δik

)∑
j∈I

dki0

dτ jk

=
∑
i∈I

(
τk − δik

) dki0
dτk

,

and solving for the optimal regulation dW
dτk

= 0, we obtain the required second-best solution:

τk =
∑
i∈I

dki0
dτk

δik∑
i∈I

dki0
dτk

.
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Closed-form solutions: Under the assumption that F
(
kH1
)

= (kH1 )α
α , which implies that F ′

(
kH1
)

=(
kH1
)α−1, we can express the equilibrium price in closed form as

q =
∑
i

ξiki0

)α−1
α

. (65)

With quadratic adjustment costs Υi
(
ki0
)

= ai

2
(
ki0
)2, investors’ optimal choices at date 0 satisfy

ki0 = 1
ai

(
zi
(

1− ξi

q

)
− τ ik

)
.

Note that ∂ki0
∂q = zi

ai
ξi

q2 > 0. Note also that zi
(

1− ξi

q

)
− τ ik > 0 is required for ki0 > 0. Combining the

optimal choice of ki0 with the characterization of the price in Equation (65) yields a solution for q in terms
of primitives:

q =
∑
i

ξi

ai

(
zi
(

1− ξi

q

)
− τ ik

))α−1
α

.

As expected, the same change in ki0 has a stronger impact on the price at date 1 for those investors with a
higher ξi, who are forced to sell more at date 1. Note that we can write ∂q

∂ki0
= ξi α−1

α q
1

1−α , so ∂q
∂ki0

is higher
in absolute, when q is higher.

Further simulation results Figure OA-6 illustrates comparative statics of the model in the context
of the second-best policy, in which τk = τ1

k = τ2
k .
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Figure OA-6: Application 4: Second-Best Comparative Statics

Note: Figure OA-6 illustrates relevant comparative statics of Application 4 for different values of τ1
k = τ2

k = τk. The
top left plot shows the price of capital in equilibrium q. The top middle plot shows investment at date 0 for both
investor types, k1

0 and k2
0. The top right plot shows the amount of capital sold at date 1 for both investor types,

k1
0 − k1

1 and k2
0 − k2

1. The bottom left plot and the bottom middle plot show the distortions associated with the
investment decisions of each investor, δ1

k and δ2
k, and the associated Pigouvian wedges, ω1

k and ω2
k. The bottom right

plot shows the leakage/policy elasticities dk1
0

dτk
and dk2

0
dτk

. The parameters used are described in Figure 5.
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E Classical Consumer Theory Formulation
In this section, we show that Proposition 1 holds unchanged in the context of classical consumer theory
after suitably reinterpreting some of the variables. Since the remaining propositions in the body of the
paper follow from Proposition 1, showing that Proposition 1 holds unchanged in a classical consumer theory
scenario is sufficient to establish that all other results are also applicable in that case. Here, we follow closely
the notation in Mas-Colell, Whinston and Green (1995).

Environment There is a finite number of consumer types, indexed by i, j,m ∈ I, where I = {1, 2, . . . , I}.
There are L different commodities, indexed by `. The preferences of a type i consumer are represented by
the following utility function, which directly depends on the consumption of all consumers:

ui
(
xi,
{
xj
}
j∈I

)
, (66)

where xi ∈ RL denotes the consumption bundle of a type i consumer.42 As in Section 2, we denote by
xj ∈ RL the consumption bundles of type j consumers as a whole.

Thus a type i consumer maximizes Equation (66) subject to the budget constraint

p ·
(
xi − ei

)
≤ wi − τ i · xi + T i0, (67)

where p ∈ RL is the vector of commodity prices, ei ∈ RL is the endowment in terms of the different
commodities of a type i consumer, wi is the wealth of a type i consumer, and τ i ∈ RL and T i0 are the
(potentially consumer-type specific) taxes/subsidies and the transfer received by a type i consumer. As a
whole, the transfers must satisfy ∑

i∈I
τ i · xi =

∑
i∈I

T i0. (68)

An equilibrium, given corrective taxes/subsidies
{
τ i
}
i∈I and lump-sum transfers

{
T i0
}
i∈I , consists of

consumption bundles
{
xi
}
i∈I and prices p, such that i) investors maximize utility, Equation (66), subject

to budget constraint (67), ii) any revenue raised is returned back to investors, satisfying Equation (68), iii)
markets clear, that is,

∑
i∈I
(
xi − ei

)
= 0, and iv) consumption allocations are consistent in the aggregate,

that is, xi = xi, ∀i.

Result Here we provide the counterpart of Proposition 1 in the text. As in Section 3, welfare is computed
in money-metric terms.

Proposition 13. [Marginal Welfare Effects of Corrective Regulation: Classical Consumer Theory] The
marginal welfare effects of varying the set of regulations τ , dWdτ , are given by

dW

dτ
= dx

dτ
(τ − δ) = dx

dτ
ω, (69)

42It should be evident that our results apply to even more general environments. For instance, it is straightforward
to derive a counterpart of Propositions 1 and 13 in a game theoretic environment in which agent’s utilities are given
by

V i = ui
(
xi,
{
xj
}
j∈I

)
− τ i · xi + T i0 .
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where dW
dτ is a vector of dimension L·I×1, dxdτ is the square Jacobian matrix of policy elasticities of dimension

L · I × L · I, and τ and δ are vectors of dimension L · I × 1, where

τ =



τ 1

...
τ i

...
τI


and δ =



δ1

...
δi

...
δI


, where τ i =



τ i1
...
τ i`
...
τ iL


and δi =



δi1
...
δi`
...
δiL


,

and where δi = −
∑
m∈I

∇
xi
um(·)
λm .

Proof. First, we characterize the change in indirect utility of consumer-type i when varying the vector of
taxes/subsidies on consumer-type j:

dV i

dτ j
= dxi

dτ j
∇xiui (·) +

∑
m∈I

dxm

dτ j
∇xmui (·)− λi

(
dxi

dτ j
p+ dp

dτ j
(
xi − ei

)
+ dτ i

dτ j
xi + dxi

dτ j
τ i − dT i0

dτ j

)
= dxi

dτ j
[
∇xiui (·)− λi

(
p+ τ i

)]︸ ︷︷ ︸
=0

+
∑
m∈I

dxm

dτ j
∇xmui (·)− λi

(
dp

dτ j
(
xi − ei

)
+ dτ i

dτ j
xi − dT i0

dτ j

)
,

which follows from the Envelope Theorem when we define dxi

dτ j ,
dxm

dτ j ,
dp
dτ j , and

dτ i

dτ j as L × L Jacobians and
∇xui (·), ∇xui (·), and dT i0

dτ j as L× 1 gradient vectors. Note that dV i

dτ j is a L× 1 vector and that we use dxi

dτ j

and dxi

dτ j indistinctly going forward, since they are equal in equilibrium.
Normalizing by the marginal value of wealth, we can express this change in money-metric terms as

follows:

dV i

dτ j

λi
=
∑
m∈I

dxm

dτ j
∇xmui (·)

λi
− dp

dτ j
(
xi − ei

)
− dτ i

dτ j
xi + dT i0

dτ j
.

Now, adding up across consumer types, we have

∑
i∈I

dV i

dτ j

λi
=
∑
i∈I

∑
m∈I

dxm

dτ j
∇xmui (·)

λi
− dp

dτ j

∑
i∈I

(
xi − ei

)
−
∑
i∈I

(
dτ i

dτ j
xi − dT i0

dτ j

)
=
∑
i∈I

∑
m∈I

dxi

dτ j
∇xium (·)

λm
+
∑
i∈I

dxi

dτ j
τ i,

where the second line follows from the market-clearing condition,
∑
i∈I
(
xi − ei

)
= 0, and the fact that

Equation (68) implies that ∑
i∈I

dτ i

dτ j
xi +

∑
i∈I

dxi

dτ j
τ i −

∑
i∈I

dT i0
dτ j

= 0.

Therefore, we can write the aggregate marginal welfare change in money metric terms as

dW

dτ j
=
∑
i∈I

dV i

dτ j

λi
=
∑
i∈I

dxi

dτ j
(
τ i − δi

)
,
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where
δi = −

∑
m∈I

∇xium (·)
λm

,

so Equation (69) follows immediately after stacking.
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