Estimating the elasticity of consumer prices to the exchange rate: an accounting approach
Abstract

We analyse the elasticity of the household consumption expenditure (HCE) deflator to the exchange rate, using world input-output tables (WIOT) from 1995 to 2019. In line with the existing literature, we find a modest output-weighted elasticity of around 0.1. This elasticity is stable over time but heterogeneous across countries, ranging from 0.05 to 0.22. Such heterogeneity mainly reflects differences in foreign product content of consumption and intermediate products. Direct effects through imported consumption and intermediate products entering domestic production explain most of the transmission of an exchange rate appreciation to domestic prices. By contrast, indirect effects linked to participation in global value chains play a limited role. Our results are robust to using four different WIOT datasets. As WIOT are data-demanding and available with a lag of several years, we extrapolate a reliable estimate of the HCE deflator elasticity from 2015 onwards using trade data and GDP statistics.

JEL Classification: C67, E31, F42, F62

Keywords: input-output linkages, spillovers, global value chains, cost-push inflation
Non-technical summary

Understanding the influence of exchange rate on inflation is critically important for setting monetary policy and measuring the extent of expenditure switching that follows exchange rate variations, which, in turn, has an impact on real activity.

In this paper, we analyse the impact of exchange rate variations on domestic consumer prices using several datasets covering most advanced and emerging economies, from 1995 to 2019. We perform an accounting exercise based on information contained in world input-output tables, by way of large matrices inversions. Our accounting approach helps identify which countries and sectors are under pressure to adjust their prices when subject to an exchange rate variation.

Our main findings are fourfold. First, we document the evolution over time of the impact of exchange rate variations on consumer prices. In line with the existing literature, we find that in response to a 1% appreciation of the domestic currency, domestic consumer prices decrease by around 0.10% on average at the world level. The impact of exchange rate variations on consumer prices has remained broadly stable over the past two decades. This modest estimate is likely an upper bound. Indeed, we make two assumptions to simplify our computations. We assume that exchange rate fluctuations completely pass-through to import prices. However, a large body of literature suggests that the pass-through is incomplete, even in the long run, as a result of slow nominal price adjustments or the pricing-to-market behaviour of firms (see Özyurt (2016) for a discussion of the literature). For example, the pass-through depends on the intensity of competition in domestic markets: while an exchange rate appreciation lowers the price of imported inputs, a firm with limited competitive pressure may avail of greater profit margins rather than reduce prices in an effort to maintain its market share. Hence, pricing-to-market strategies of exporters aiming to defend their market shares would imply a lower exchange rate pass-through.

In addition, we work under the producer pricing assumption. However, in large and attractive markets, competitive pressures may push producers to adopt local currency pricing strategies, where exporting firms adapt their mark-ups depending on the destination market to offset exchange rate movements. Under the local currency pricing paradigm, prices are thus sticky in the currency of the destination market. Hence, using alternative pricing assumptions would entail lower estimates of the percentage change in consumer prices in response to a 1% change in the exchange rate.
The impact of a 1% exchange rate fluctuation on domestic prices is heterogeneous across countries. It ranges from 0.05% to 0.22%, reflecting different degrees of openness to trade. In the euro area, the impact is close to 0.10 in Italy, France, Germany, Spain, Portugal and Greece, whereas it is twice higher for small open economies like Luxembourg, Malta, Slovakia and Ireland. We also estimate the impact of an appreciation of the US dollar on its trading partners. The highest impacts are observed for the US’s major trading partners (Canada, Mexico and Ireland).

Second, we examine which sectors experience higher spillovers from an exchange rate appreciation. Non-energy industrial goods explain the bulk of the impact of an exchange rate variation on consumer prices. Services also play a significant role, especially in advanced economies such as the US, Japan, Germany and France. Although services are mainly produced domestically and do not rely much on imported inputs, they account for a substantial share of total consumption. Thus, even small price changes have a large effect on the HCE deflator.

Third, we analyse the role of global value chains in the transmission of an exchange rate appreciation to consumer prices. When production processes are global, an exchange rate appreciation impacts consumer prices through four distinct channels: i) the prices of imported final goods sold directly to domestic consumers; ii) the prices of imported inputs entering domestic production; iii) the price of exported inputs feeding through imported foreign production; iv) changes in domestic and foreign production costs in turn pass through to the price of inputs for domestic and foreign goods, causing further production costs variations through input-output linkages.

We find that the first two channels explain three-quarters of the transmission of an exchange rate appreciation to domestic prices. The last two channels, which reflect the impact of participation in global value chains, play a limited role, with marked across-countries heterogeneity.

Fourth, we show that a precise assessment of the impact of exchange rate variations on consumer prices can be estimated without resorting to world input-output tables. The construction of World Input-Output tables is data-demanding and WIOTs are typically released with a lag of several years. As a result, most WIOTs are not available for the most recent years. To fill the data gap, we extrapolate the impact of exchange rate variations on consumer prices using up-to-date GDP and trade statistics. We obtain a reliable estimate. We thus provide a simple accounting tool to estimate the percentage change in prices in response to exchange rate variations for the most recent years.
Introduction

This paper examines the elasticity of the household consumption expenditure (HCE hereafter) deflator to the exchange rate. We analyse the composition and determinants of the HCE deflator elasticity using world input-output tables (WIOT hereafter) covering twenty years of data, from 1995 to 2019. For the sake of robustness, we use several datasets (WIOD, two distinct releases of the OECD TiVA database and the MRIO database developed by the Asian Development Bank). We perform an accounting exercise based on information contained in WIOTs with large matrices inversion. We make two assumptions to simplify our computations. First, we assume a full exchange rate pass-through to import prices. Hence, we do not consider the fact that the pass-through might be incomplete, as suggested by a large body of literature (see for example Berman et al. (2012)). As a result, our estimates provide an upper bound of the HCE deflator elasticity. Using alternative pricing assumptions would entail lower values. Second, we suppose that all pricings occur using the currency of the producing country, despite the well-documented role of dominant-currency pricing (Gopinath et al. (2020)). As a consequence of these two assumptions, we also assume that the impact of the exchange rate fluctuation is proportional across sectors. Despite these simplifying assumptions, our estimates provide an accounting-based gauge of how large the elasticity of consumer prices to the exchange rate could be, considering direct and indirect import content in consumption and global value chain linkages. This accounting approach helps identify which countries and sectors are under pressure to adjust their prices when subject to an exchange rate variation.

Our contribution to the literature is fourfold. First, we analyse the evolution of the elasticity of the HCE deflator to the exchange rate. We document differences across countries. We pay particular attention to the heterogeneity observed in the euro area, reflecting different degrees of openness to trade.

Second, building on sectoral data, we examine which sectors experience higher spillovers from an appreciation of the national currency. We focus on the main components of the HCE deflator, i.e. manufacturing goods, services, food and energy. We analyse the contribution of these different products to the HCE deflator elasticity and document cross-country heterogeneity in the elasticity.

Third, we look into the determinants of the HCE deflator elasticity and the role of global value chains in the transmission of an exchange rate appreciation. We identify four channels through
which the exchange rate impacts the HCE deflator when production processes are global: i) the prices of imported final goods sold directly to domestic consumers; ii) the prices of imported inputs entering domestic production; iii) the price of exported inputs feeding through imported foreign production; iv) changes in domestic and foreign production costs in turn pass through to the price of inputs for domestic and foreign goods, causing further changes in production costs through input-output linkages. We find that the first two channels explain three-quarters of the transmission of an exchange rate appreciation to domestic prices. By contrast, the last two channels, which reflect the impact of global value chains, play a more limited role, with marked cross-countries heterogeneity. Hence, only one-fourth of the elasticity of the HCE deflator to the exchange rate is attributable to participation in global value chains.

Fourth, we show that a precise assessment of the HCE deflator elasticity to the exchange rate can be estimated for recent years without resorting to WIOTs. The construction of World Input-Output tables is data-demanding and WIOTs are typically released with a lag of several years. As a result, WIOTs are not available for the most recent years. For instance, the latest WIOD dataset dates back to 2014. Although the MRIO dataset covers most recent years, it suffers from data quality issues in 2018. To address the data gap in WIOTs, we extrapolate the HCE deflator elasticity from 2015 onwards using up-to-date GDP statistics and trade data on consumption and intermediates. We obtain a reliable estimate of the HCE deflator elasticity up to 2019.

The rest of the paper is organised as follows. Section 1 reviews the related literature. Section 2 presents the methodology and the data sources. In section 3, we estimate the elasticity of the HCE deflator to the exchange rate up to 2019 and analyse its determinants. In section 4, we use up-to-date GDP and trade data to estimate the elasticity of the HCE deflator for the most recent years.

1 Related literature

Exchange rate pass-through to domestic prices A large body of literature documents the exchange rate pass-through (ERPT hereafter) to domestic prices. The pass-through depends, among other things, on trade openness, integration in international production chains, firms’ pricing strategies and the currency of invoicing for trade.

In the euro area, Özyurt (2016) shows that the pass-through is partial and has declined in the 2000s. This decline coincided with the increasing share of emerging economies in world trade and
1 Related literature

the accession of China to the WTO. The lowest degree of pass-through is found for Germany, most likely reflecting the large size of the country and the high share of local currency pricing. By contrast, Ortega and Osbat (2020) find that the ERPT to euro area import and consumer prices has been stable since the 1990s.

The choice of invoicing currency determines the extent of the response of prices to an exchange rate movement. An exporter can price its products either in its own currency (‘producer currency pricing’ paradigm), in the destination’s currency (‘local currency pricing’ paradigm), or in a third ‘dominant’ currency (see Ortega and Osbat (2020) for a discussion of the literature). The invoicing decision is an active channel through which producers adjust their prices in relation to their own market power and to local competitive pressures. While prices fixed in the local currency are insensitive to the bilateral exchange rate between the local currency and the currency of the producer, prices in the producer or dominant currency have a higher ERPT. A large body of empirical literature suggests that the vast majority of trade is invoiced in a small number of ‘dominant currencies,’ with the U.S. dollar playing a major role. The ‘dominant currency paradigm’ (Gopinath et al. (2020)) implies that for non-U.S. countries, the exchange rate pass-through into import prices (in home currency) should be high and driven by the dollar exchange rate as opposed to the bilateral exchange rate, whereas for the U.S. the pass-through into import prices should be low.

The ERPT also depends on integration in global value chains. Based on Belgian firm-product-level data, Amiti et al. (2012) find that import intensity and market share are key determinants of the ERPT to export prices. Although we do not estimate the ERPT (we rather assume a full exchange rate pass-through), our approach provides an accounting-based gauge of how large the exchange rate pass-through could be, considering direct and indirect import content in consumption. In this respect, the elasticity we compute can be regarded as an upper bound.

The Input-Output model applied to a change in production costs The Leontief’s production model (or Input-Output model, I-O thereafter) analyses the impact of a demand shock in a closed economy (Leontief, 1951). The trade in value-added analysis reconciles international trade statistics with national I-O tables, thus allowing to extend Leontief’s analysis to an international context. Leontief’s production model has a dual: the cost-push price model, which helps analysing the consequences of a change in production prices. Using this framework, Cochard
et al. (2016) analyse the effects of costs on prices (“cost-push inflation”) and show a higher impact for more open countries.

Supply-driven price models have a number of well-documented limitations (Folloni and Miglierina, 1994) and rely on a number of simplifying assumptions. Firms’ margins are assumed to be fixed. Prices only adjust to absorb cost changes. Production techniques are fixed during successive production cycles. Inputs substitution caused by change in relative prices (for instance, between countries producing the same goods) is not accounted for. Although global value chains are often internal to multinational firms, supply-driven price models assume a unique pricing system based on market prices and independent of firms’ strategies. Despite these shortcomings, supply-driven price models provide a measure of the vulnerability of each sector to price or productivity shocks (Acemoglu et al., 2012; Carvalho, 2014). Hence, though unrealistic, these models help identifying which countries and sectors are under pressure to adjust their prices when subject to exogenous cost shocks.

2 The PIWIM model

Based on initial work from the OFCE (Observatoire Français des Conjonctures Économiques) Cochard et al. (2016), we have developed the PIWIM model (Push-cost Inflation through World Input-output Matrices).

2.1 Defining the impact of a change in prices using an I-O model

To identify which countries are most affected by a change in prices through value-added and vertical international trade flows, we need a large structural matrix that integrates input flows between sectors, both within each country and between countries. This matrix traces the sectoral and geographical origin of inputs.

The standard I-O model relies on input-output tables registering transactions of goods and services (domestic or imported) at current prices. The I-O tables describe the sale and purchase relationships between producers and consumers within an economy. Each column indicates, for each industry j, the intermediate consumption of goods and services from the various sectors.

By extension, a "world" I-O table (WIOT) describes the sale and purchase relationships between producers and consumers in the whole world, differentiating between sectors in different countries. The WIOT has, on its diagonal, country blocks recording flows of domestic transactions of
intermediate goods and services between domestic industries. The "bilateral" blocks outside of the diagonal represent international flows of intermediate goods and services via bilateral sectoral exports and imports.

Traditionally, WIOTs are interpreted in a Leontief framework using Leontief production functions to analyse the evolution of quantities in the economy. Here, we assume a Cobb-Douglas production function: the technical coefficients correspond to the share of each input in total costs. We derive a price equation, following De Soyres et al. (2018).

We define N as the product of the number of countries (I) and the number of sectors (J), A the matrix of technical input coefficients of dimension (N, N), and Y the gross output vector of dimension $(1, N)$.

In each sector of each country, a representative firm uses domestic production factors (V) and domestic and imported intermediates m according to a Cobb-Douglas technology:

$$ Y_n = V_n^\gamma_n \times \prod_{n'=1}^{N\times N} a_{n,n'}^{\gamma_n} \text{ with } \gamma_n + \sum_{n'=1}^{N\times N} a_{n,n'} = 1 $$

Where γ_n is the share of domestic production factors, $a_{n,n'}$ the share of output from (country,sector) n' in the total production of (country,sector) n.

Assuming perfectly competitive firms and prices set at the marginal cost, standard cost minimisation for each country leads to the following pricing system:

$$ p_n = x_n \times w_n^\gamma_n \times \prod_{n'=1}^{N\times N} a_{n,n'}^{\gamma_n} \forall n $$

With w_n the unit income of domestic production factors and x_n a constant depending only on parameters:

$$ x_n = \gamma_n^{-\gamma_n} \times \prod_{n'=1}^{N\times N} a_{n,n'}^{-\gamma_n} $$

Using logs, we have:

$$ \log(p_n) = \log(x_n) + \gamma_n \log(w_n) + \sum_{n'=1}^{N\times N} a_{n,n'} \cdot \log(p_{n'}) \forall n $$
Define \(P \) the vector of prices and \(Z \) a vector of \(\log(x_n) + \gamma_n \log(w_n) \), both of dimension \((1, N)\):

\[
\log(P) = Z + \log(P)A
\]

(1)

Suppose an exogenous change in input prices defined in log points (i.e. approximating percentages for small changes). Define \(\Delta^0 \log(P) \) the vector of dimension \((1, N)\) computed as the difference between the original price vector \(\log(P^0) \) and the new vector \(\log(P^1) \). Then:

\[
\Delta^0 \log(P) = \log(P^1) - \log(P^0) = C,
\]

with \(C \) the vector of dimension \((1, N)\) that contains the direct effect of the change in prices expressed in log points. \(C \) directly affects the HCE deflator. In addition, firms face a change in their costs, which affects their prices according to equation 1. Hence, the price change is transmitted to country-specific industries that are using domestic input through the change in input prices. The higher the country-specific industries’ reliance on those inputs, the higher the change in their production prices.

In a first step, the impact of the change in input prices on each country-specific industry’s output prices amounts to \(\Delta^1 \log(P) = CA \).

In a second step, the impact of the change in input prices is passed on to all the country-specific industries using these inputs. For the \(k \)th step, the increase in production prices amounts to \(\Delta^k \log(P) = CA^k \).

As the technical coefficients are smaller than 1, the effect of the change in input prices wears out as \(k \) increases. The overall effect of the change in input prices is equal to the sum of the initial change in prices and all the subsequent changes in each step. Let us call \(S \) the total effect of the change in input prices (in log points), a vector \((1, N)\) composed of the elements \(s_{ij} \) measuring the total effect of the shock on the price of sector \(j \) in country \(i \). We have:

\[
S = C(I + A + A^2 + \ldots + A^k + \ldots) = C(I - A)^{-1}
\]

(2)
2 The PIWIM model

with \((I - A)^{-1}\) the Leontief inverse matrix. If the change in the input prices is small enough, the elements of \(S\) correspond to the elasticity of sectoral prices to a change in input prices. Using consumption shares to perform a weighted average of these elasticities yields the household consumption expenditure (HCE) deflator elasticity to a change in input prices.\(^1\)

2.2 Data

WIOTs are an extension of the national input-output tables. National input-output tables measure the relationships between the producers of goods and services (including imports) within an economy and the users of these goods and services (including exports). The national tables specify, in line, for each industry, the use of their product as intermediate or final use. In a national table, final use includes exports alongside domestic final uses, whereas exports are not a final use in world input-output tables. WIOTs show which foreign industry produces a good for a specific final use, and which foreign industry or final user uses the exports of a given country. Aggregating national input-output tables into world input-output tables is challenging for a number of reasons. National input-output tables vary widely in terms of detail and scope, and are therefore not fully consistent. Furthermore, the availability of year-specific national input-output tables is limited, especially for developing economies.

This paper uses several multi-year WIOTs for the sake of robustness: the World Input Output Database (WIOD), the multi-regional input-output tables (MRIO) developed by the Asian Development Bank (ADB) and the Trade in Value Added Database (TiVA) from the OECD-ICIO.

The World Input Output Database (WIOD) is hosted and updated by the University of Groningen (Netherlands). It benefits from the financial support of the European Commission. The WIOD contains time series of inter-country input-output tables from 2000 to 2014. It provides WIOTs that reconcile national input-output tables (or supply-use tables) with bilateral trade statistics. The WIOD covers 43 countries (of which 28 members of the European Union, see Table 1) accounting for 85% of global GDP (see Table 1). It contains information for 56 industries (see Online Appendix A). It provides annual WIOTs expressed in U.S. dollars at basic prices. Market exchange rates were used for currency conversion (Timmer et al., 2015).

\(^1\) The HCE deflator covers more products and has different sectoral weights than the headline consumer price index (CPI) as the former also encompasses, for example, the rental equivalent of real estate expenditures.
The PIWIM model

Europe: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, United Kingdom

North America: Canada, United States

Latin America: Brazil, Mexico

Asia-Pacific: Australia, China, India, Indonesia, Japan, Korea, Taiwan

Other: Russia, Turkey

Tab. 1: Geographical coverage of WIOD

The Asian Development Bank’s MRIO database is an extension of WIOD for 2000 and 2007-2019. WIOD provides disaggregate information for a limited number of Asian economies. The Asian Development Bank (ADB) has augmented the WIOD with details for nineteen additional Asian economies\(^2\). This wider geographical coverage comes at the price of a less precise industrial desaggregation (35 vs 56 sectors in WIOD). The conceptual framework of the MRIO database (and hence the methods used in the construction of the tables) are similar to those of WIOD. Its main advantage is to be updated up to 2019.

The Trade in Value Added (TiVA) database is compiled by the OECD. It builds on the OECD harmonised country-level input-output tables to provide matrices of inter-industrial flows of goods and services in current prices (U.S. dollars). We use two versions of TiVA (see OECD (2018) on the differences between the two datasets.). The 2016 edition of the TiVA database (third revision) includes 64 economies covering OECD, EU28, G20, most East and South-east Asian economies, a selection of South American countries and the Rest of the world (see Table 2). The industry list includes 34 sectors, among which 16 manufacturing and 14 services sectors. It covers the period 1995-2011 and is based on the 1993 system of national accounts. The fourth revision, released in 2018, includes 65 economies (see Table 2) and 36 sectors and covers the 2005-2015 period. It is based (like WIOD and MRIO) on the 2008 system of national accounts.

Comparison of databases All four databases are constructed using similar assumptions (OECD (2018); OECD and WTO (2011); Timmer et al. (2015)). For example, all start with the construction of harmonised country-specific supply-use tables (SUTs) that are then transformed into world input-output tables. All databases use the “import proportionality assumption” to

\(^2\) The MRIO database includes the following additional economies: Bangladesh, Bhutan, Brunei Darussalam, Cambodia, Fiji, Hong Kong, Kazakhstan, Kyrgyz Republic, Lao People’s Democratic Republic, Malaysia, Maldives, Mongolia, Nepal, Pakistan, Philippines, Singapore, Sri Lanka, Thailand and Vietnam.
allocate specific bilateral imports to using industries. National input-output statistics provide how much of each product firms use for intermediary consumption and investment. However, the breakdown of these into domestic and imported product is not available. Hence, the construction of world input-output tables requires allocating imports to using industries. The import proportionality assumption assumes that the proportion of intermediates that an industry purchases from abroad is equal to the ratio of imports of intermediates to the total domestic demand of intermediates in that product. This assumption can be misleading. Feenstra and Jensen (2012) find that shares of imported materials differ substantially across U.S. industries. Based on Asian input-output tables, Puzzello (2012) finds that the proportionality assumption understates the use of foreign intermediate inputs. All databases, however, rely on the BEC (Broad Economic Categories) classification to map detailed six-digit products into intermediate use, final consumption and investment (Dietzenbacher et al., 2013). One explicit difference between the databases is that WIOD and MRIO assume that the input mix is independent from the destination market. The TiVA databases do not rely on this assumption for two countries (Mexico and China). Instead, the TiVA databases use different input-output tables for the exporting, import processing and domestic-market oriented sectors of these countries (or at least two of those, depending on the country and the version of the TiVA database). Despite this difference, we obtain similar results with TiVA, WIOD and MRIO, which probably reflects the fact that we do not focus on Mexico and China. Another difference relates to the method for harmonising national data and trade statistics. WIOD and MRIO rely on the shares of imported inputs provided by national account, contrary to TiVA. As a result, TiVA is closer to international trade statistics than WIOD. This explains
why the share of imported inputs is smaller in TiVA for some countries (other than China and the USA). All computations in this paper have been conducted with the four databases. For ease of exposition, we use the WIOD as a baseline, since it covers the largest number of industries.

2.3 Accounting impact of an exchange rate variation on domestic prices

We are primarily interested in the impact of an exchange rate appreciation on consumer prices in the country whose currency’s value is changing (country A by convention). We also estimate the inflationary impact on countries that directly and indirectly, through third countries linkages, consume inputs from country A. Hence, we will also analyse the impact of an appreciation of the US dollar. In both cases, implementing an exchange rate variation is more complex than implementing a change in production costs. The appreciation of the currency of country A leads to a fall in the national currency price of country A’s imports, while the foreign-currency price of its exports increases.

Suppose a world with two countries A and B, each having its own national currency, and using a third currency for international transactions, the dollar. Following a 5% appreciation of the currency of country A against the two other currencies, the prices of country A expressed in dollars increase by 5% compared to those of country B expressed in dollars. Country B pays more for its imports of inputs, in dollars as well as in national currency, since its exchange rate against the dollar has not changed. Conversely, the price of imported inputs in country A remains constant in dollars, since the prices of country B have not changed, and declines once expressed in country A’s national currency. This has an impact on consumer prices expressed in national currency in country A.

Note that, for the sake of simplicity, we make the strong assumption that producers completely pass the exchange rate appreciation on their production prices. We do not consider other relevant determinants of the exchange rate pass-through. For instance, pricing-to-market strategies of exporters aiming to defend their market shares would imply a lower exchange rate pass-through. Similarly, settlement and invoicing of imports in the domestic currency is another factor likely to weaken the elasticity of domestic prices to exchange rate movements. Assuming that only 60% of invoices in the euro area goods trade are denominated in foreign currency (see Ortega and Osbat (2020)) would entail lower elasticity values. To anticipate on our results (see Figure 9), reducing the exchange rate pass-through on consumption goods would entail lower elasticity values than reducing the pass-through on inputs. Our estimates thus provide an upper bound of
the HCE deflator elasticity.

Back to our accounting approach, the change in the prices of imported goods is therefore transmitted to all domestic prices, both directly and through inter-industry linkages. These upward (downward) movements for country B (country A) affect all input prices in both countries.

The effects of the change in prices spread over multiple simultaneous production cycles. The overall impact of the exchange rate appreciation in dollar terms is equal, for the shocked country A, to the decline in consumer prices directly due to the exchange rate fluctuation, plus direct and indirect decreases (via inter-industry linkages in the country), in national currency and then converted back into dollar terms, in the prices of inputs imported from B and disseminated to all branches. The overall impact on prices in dollar terms in country A is therefore lower than the initial exchange rate variation, as national currency prices are also affected. For country B, the final impact is equal to the cumulative direct and indirect effects of the higher prices of imported inputs.

In a global economy composed of \(I \) countries, each with \(J \) sectors,\(^3\) the appreciation of a country’s currency \(i \) against all other currencies translates into a rise in country \(i \)’s prices in dollars. The dollar price of each sector will vary in percentage (approximated as log point assuming that the exchange rate variation is small enough) by: \(c'_{ij} \) for sectors in the shock-stricken country \(i \) and 0 in other countries.

Hence, for each sector \(j \) in country \(i \) (see notation table):

\[
\Delta^0\log(p_{0ij}) = \log(p^1_{0ij}) - \log(p^0_{0ij}) = c'_{ij} = c'_{kij}
\]

And for each sector \(j \) in country \(k (k \neq i) \),

\[
\Delta^0\log(p_{kij}) = \log(p^1_{kij}) - \log(p^0_{kij}) = c_{kij} = 0
\]

The appreciation affects producers through changes in relative prices between countries and, therefore, through changes in input prices traded between the shock-stricken country \(i \) and other countries.

Consider first the direct impact on other countries of the rise in imported input prices from shocked country \(i \). For any sector \(l \) of a country \(k (k \neq i) \), the increase in producer prices

\(^3\) Online appendix D explores the two-country, one-sector case and contrasts the effect of an exchange rate variation and the effect of a price variation.
2 The PIWIM model

depends directly on the quantity of inputs imported from the shock-stricken country i, weighted by the variation in level of the price of inputs in dollars (i.e. the exchange rate variation). If $a_{kl,ij}$ is the share of inputs from the country i’s sector j needed in the production of country’s k sector l, we have:

$$
\Delta^1 \log(p_{kl}) = c_{kl} a_{kl,1} + \ldots + c_{kl} a_{kl,j} + \ldots + c_{kl} a_{kl,J} = \sum_{j=1}^{J} c_{kl} a_{kl,ij} = \sum_{j=1}^{J} a_{kl,ij} \quad (3)
$$

For the shocked country, an appreciation of the currency has a disinflationary effect. In national currency, the prices of imported inputs fall in each sector by $c_i = -\frac{c_i}{1+c_i}$, or by $-\frac{10}{100}$% with $c_i = 10\%$.

We approximate these changes by their log point equivalent. This decline then spreads to all domestic-input using sectors. In sector j of the shocked country i, this fall amounts in national currency to:

$$
\Delta^1 \log(p_{ij}) = \sum_{l=1}^{J} c_{ij,1} a_{ij,1l} + \ldots + \sum_{l=1}^{J} c_{ij,J} a_{ij,Jl} = \left(-\frac{c_i}{1+c_i} \right) \sum_{l=1}^{J} \sum_{k=1}^{I} a_{ij,kl} \quad (4)
$$

This change can be converted into dollars:

$$
\Delta^1 \log(p_{ij}) = (1 + c_i) \cdot \left(-\frac{c_i}{1+c_i} \right) \sum_{k=1}^{I} \sum_{l=1}^{J} a_{ij,kl} \quad (4)
$$

This yields the first step impact of the exchange rate variation on all input prices of all countries.

To express this in matrix notation, we define two matrices that build on the world input-output matrix A defined in 2.1: B and \hat{B}. These two matrices retain only the first-step effects of the exchange rate variation on the price of goods and services imported by the shocked country i and

We could have used the log point approximation earlier and write that $c_i = -\hat{c}_i$ with nearly the same results for small exchange rate variations.

2 The PIWIM model

the first-step effects of the exchange rate variation on the price of goods and services imported by the rest of the world from country i. Compared to A, we "close off" the links between a change in domestic input prices and the price of goods as well as the link between non-shocked input prices and the price of goods in a non-shocked country (see the notation table and infra).

Let us first consider the impact of the exchange rate variation from the perspective of countries that import inputs from country i.

Let C_i^e be the vector of log points changes in dollar prices following the appreciation of the currency of country i against all other currencies. Hence,

$$C_i^e = (0 \ldots 0 \ldots c_{ki} \ldots c_{ki} \ldots 0 \ldots 0)$$

with $c_{kj} = c_{kj} = c_i^e$ for all sectors j and k in the shocked country i.

Building on Equation 3, the direct impact of the exchange rate variation on the other countries corresponds to the product of the shock vector C_i^e and a matrix B^i. B^i builds on the large matrix A of technical coefficients, but only keeps the coefficients of each country’s sectoral inputs imported from the shocked country i. The other coefficients are replaced by 0, including those of the block of country i concerning the domestic inputs of country i. The first-step impact of the appreciation of a currency against the dollar on the price of inputs in countries that are not impacted by the appreciation is equal to $C_i^eB^i$ with

$$C_i^eB^i = (0 \ldots c_i^e \ldots 0)
\begin{pmatrix}
0 & \cdots & 0 \\
0 & a_{l,ij} & a_{l,ij} \\
0 & \cdots & 0
\end{pmatrix}
$$

where each $a_{l,ij}$ element of the line block represents the technical coefficient related to imports of inputs by sector l in country k (with $k \neq i$) from sector j of country i.

Let us now consider the impact of the exchange rate fluctuation from the perspective of the shocked country i.

Define C^i the vector of change in prices everywhere expressed in country i’s currency.
\[C^i = \left(\begin{array}{ccc} \frac{-c_1^i}{1+c_1^i} & \ldots & 0 \\ \ldots & \ldots & \ldots \\ \frac{-c_k^i}{1+c_k^i} & \ldots & 0 \end{array} \right) \]

From Equation 4, we write the first-step impact for country \(i \) of the fall in input prices from the rest of the world. The first-step impact is the product of the shock vector \(C^i \) and a matrix \(\tilde{B}^i \). \(\tilde{B}^i \) builds on the large matrix \(A \) of which only the country blocks of those inputs imported by country \(i \) from other countries have been retained. The other coefficients are replaced by 0, including those of the block of country \(i \) concerning the domestic inputs of country \(i \).
Notation table

- \(a_{kl,ij} \): the share of inputs from country \(i \)'s sector \(j \) in the production of country's \(k \) sector \(l \).
- \(A \): Matrix of world input-output coefficients.
- \(B_i \): \(A \) including only the country blocks of each country’s sectoral inputs imported from country \(i \) (excluding domestic inputs in \(i \)).
- \(\tilde{B}_i \): \(A \) including only the country blocks of the inputs imported by country \(i \) from other countries (excluding domestic inputs in \(i \)).
- \(c_i \$: change in the exchange rate of the currency of country \(i \) in dollar. If it appreciates by 10%, \(c_i = 0.1 \).
- \(c_i \$: impact of the exchange rate variation on the price of non-\(i \) goods expressed in the currency of \(i \). \(c_i = -\frac{c_i}{1+c_i} \). If \(c_i = 0.1 \), \(c_i = -0.009 \).
- \(C_i \$: vector of log point changes in prices everywhere expressed in country \(i \)'s currency: \(C_i = \left(-\frac{c_i}{1+c_i}, \ldots, 0, \ldots, -\frac{c_i}{1+c_i}\right) = \left(c_i, \ldots, 0, \ldots, c_i\right) \)
- \(\tilde{C}_i \$: vector of log points changes in dollar prices following the appreciation of the currency of country \(i \) against all other currencies. \(\tilde{C}_i = \left(0, \ldots, 0, c_{ki} \ldots c_{ki}, \ldots, 0, \ldots, 0\right) \) with \(c_{ki} = c_{ik} \).
- \(\hat{C}_i \$: vector of the log point changes in dollar prices of goods and services from country \(i \) used as inputs in all other countries. \(\hat{C}_i = \left(0, \ldots, \frac{c_i}{1+c_i}, \ldots, 0, \ldots, 0\right) \)
- \(p_{hij} \$: price of goods produced by the sector \(j \) in country \(i \) in dollars (or any international reference currency).

The first-step impact of the appreciation of the country \(i \)'s currency on the price of its inputs.
The PIWIM model corresponds, in national currency, to $C_i \sim B_i$ with:

$$C_i \sim B_i = \left(\frac{-c_i}{1 + c_i}, 0, \ldots, 0 \right) \mathbf{A} \left(\frac{-c_i}{1 + c_i}, 0, \ldots, 0 \right)'$$

(6)

where each $a_{ij,kl}$ element in the column block represents imports of inputs by sector j in country i from sector l of country k. We then convert the direct impact into dollars, by multiplying it by the new value of the national currency in dollars, $(1 + c_i)$. The direct impact of the appreciation of country i’s currency on the price of its inputs corresponds, in dollars, to $\tilde{C}_i \sim \tilde{B}_i$ with:

$$\tilde{C}_i \sim \tilde{B}_i = \left(\frac{1 + c_i}{1 + c_i}, 0, \ldots, 0 \right) \mathbf{A} \left(\frac{1 + c_i}{1 + c_i}, 0, \ldots, 0 \right)'$$

(7)

The first-step effect on the world is therefore the sum of the vectors from equations 5 and 7, i.e. $C_i \sim B_i + \tilde{C}_i \sim \tilde{B}_i$.

The change in input prices then spreads to all sectors in all countries via the global intersectoral exchanges transcribed by the matrix of technical coefficients of the large matrix A. This process will be simultaneously repeated several times, until the effects completely wear off. In the end, the total price effect of the exchange rate variation is equal to the sectoral shock itself, incremented by changes in input prices due to changes in imported input prices (both in the shocked country and in non-shocked countries), and by all changes in prices during the production processes:

$$S_i = \Delta P_i = C_i + \left(C_i \sim B_i + \tilde{C}_i \sim \tilde{B}_i \right) + \left(C_i \sim B_i + \tilde{C}_i \sim \tilde{B}_i \right) A + \left(C_i \sim B_i + \tilde{C}_i \sim \tilde{B}_i \right) A^2 + \ldots$$

$$S_i = C_i + \left(C_i \sim B_i + \tilde{C}_i \sim \tilde{B}_i \right) * (I - A)^{-1}$$

(8)

With S_i the total impact vector composed of the elements $s_{i,kj}$ showing the total impact of a
change in the exchange rate of country i on the price of the country k’s sector j in international currency expressed in log points. Equation 8 gives the evolution of sectoral prices in international currency. Analysing this vector is the main objet of Cochard et al. (2016), which focuses on the evolution of price-competitiveness.

By contrast, we focus on the effect of an exchange rate variation on consumer prices. Hence, we are interested in the same impact expressed in national currency. To obtain the evolution of the sectoral prices of the shocked country in national currency, we remove the exchange rate variation in international currency, multiply the balance by the scalar of conversion equal to $\frac{1}{1+c_i}$ and add the initial exchange rate variation in national currency.

$$S_i = C_i + \left(1 + c_i\right) \cdot (S_i - C_i)$$

$$= C_i + \left(1 + c_i\right) \cdot \left(C_i B^i + \tilde{C}_i B^i\right) \cdot (I - A)^{-1}$$

$$= \hat{C}_i B^i + \tilde{C}_i B^i \cdot (I - A)^{-1}$$

Where $\hat{C}_i = \left(0 \ldots \frac{1}{1+c_i} \ldots 0\right)$ is the increase in dollar prices of goods and services from country i used as inputs in all other countries. S_i represents the overall impact of an exchange rate variation on prices in each sector of each country expressed in the currency of country i. S_i is expressed in log points. If the variation is small enough, the elements of S_i correspond to the elasticities to the exchange rate of consumer prices in country i. We return to this equation and its interpretation in section 4 (see equation 14).

To convert this vector into the HCE deflator elasticity in country i, \bar{s}_i, we use the household consumption shares to compute a weighted average of the elements of S_i. Let HCi be the vector...
3 Accounting impact of an exchange rate variation on consumer prices

of sectoral shares in country i’s household consumption5:

$$HC_i = \begin{pmatrix}
hc_{i1} & ... & hc_{ikj} & ... & hc_{iJ}
\end{pmatrix}$$

Where $hc_{i kj}$ corresponds to household consumption in country i of goods and services produced by sector j from country k and hc_i represents the total household consumption of country i.

$s_{ii,HC}$ provides the elasticity of the HCE deflator of country i to its own exchange rate. Following an appreciation of the national currency versus all other currencies, imported inputs and imported consumer goods become cheaper and domestic prices expressed in national currency decrease.

3.1 Heterogeneity across countries

Using the WIOD database, which covers a sample of 43 countries, we find that the HCE deflator elasticity ranges from 0.05 to 0.22 depending on the country (see Figure 1). This heterogeneity reflects different degrees of openness to trade and differences in foreign product content in domestic consumption. The elasticity is lower for large advanced and developing countries.

5 Consumption is at market prices, whereas all WIOs are at basic prices. To move from one to the other, we make the simplifying assumption that all taxes and subsidies on products are proportional, as is the value-added tax.
instance, we find an elasticity of 0.06 in 2014 for the US. Within the euro area, the elasticity of the HCE deflator differs substantially, ranging from 0.07 in Italy to 0.18 in Ireland, a small open economy with a large traded sector and a large share of trade outside the euro area. For larger countries (France, Germany, Italy and Spain) and countries whose trade is concentrated with euro area partners (such as Portugal and Greece), the elasticity is close to 0.10, reflecting a lower degree of openness to trade. The elasticity is twice higher for small open economies like Luxembourg, Malta, Slovakia and Ireland.

Fig. 1: Elasticity of the HCE deflator to the domestic currency (WIOD), 2014.

Sources: WIOD and authors’ calculations.

Figure 2 compares the results obtained with WIOD and two distinct releases of TiVA for
3 Accounting impact of an exchange rate variation on consumer prices

years 2011 and 2014.

Figure 3 shows that the value of the elasticity is closely, but not perfectly, related to the share of imported goods and services (from outside the euro area for euro area countries) in household consumption. The higher the country’s import share in consumption, the higher the elasticity of the HCE deflator to the exchange rate. We come back to the relations between the HCE deflator and various openness measures in section 4.
3 Accounting impact of an exchange rate variation on consumer prices

The model can also track the effect on the domestic economy of variations in the currency of foreign countries. As an example, we estimate the impact of an appreciation of the US dollar (USD) using WIOD. This exercise assumes that exports are always invoiced in the exporter’s currency. We do not take into account the large role of the dollar in international trade invoicing.

The US example illustrates that countries are affected in proportion to their trading links with the country whose currency appreciates. We obtain the highest elasticities for the major trading partners of the US. The elasticity of the HCE deflator to the USD amounts to 0.12 for Canada and 0.09 for Mexico (see Figure 4). The elasticity is below 0.06 for most euro area countries. Ireland stands out, with an elasticity of 0.09, i.e. close to that of Canada and Mexico. The U.S. is Ireland’s major trading partner outside of the EU, even if a large portion of Irish imports from the US (pharmaceuticals and aircraft) are later exported by Irish-based firms without being purchased by Irish consumers (Reddan and Rice, 2017), and therefore have a negligible

Fig. 3: HCE deflator elasticity and share of imported consumption in total consumption (WIOD, 2014)

Sources: WIOD and authors’ calculations

3.2 Impact of an appreciation of the US dollar

The model can also track the effect on the domestic economy of variations in the currency of foreign countries. As an example, we estimate the impact of an appreciation of the US dollar (USD) using WIOD. This exercise assumes that exports are always invoiced in the exporter’s currency. We do not take into account the large role of the dollar in international trade invoicing.

The US example illustrates that countries are affected in proportion to their trading links with the country whose currency appreciates. We obtain the highest elasticities for the major trading partners of the US. The elasticity of the HCE deflator to the USD amounts to 0.12 for Canada and 0.09 for Mexico (see Figure 4). The elasticity is below 0.06 for most euro area countries. Ireland stands out, with an elasticity of 0.09, i.e. close to that of Canada and Mexico. The U.S. is Ireland’s major trading partner outside of the EU, even if a large portion of Irish imports from the US (pharmaceuticals and aircraft) are later exported by Irish-based firms without being purchased by Irish consumers (Reddan and Rice, 2017), and therefore have a negligible
3 Accounting impact of an exchange rate variation on consumer prices

... contribution to domestic consumer goods inflation.

![Elasticities of HCE to USD (WIOD) - 2014](image)

Sources: WIOD and authors’ calculations.

3.3 Evolution over time of the HCE deflator elasticity

The output-weighted elasticity of the HCE deflator to the exchange rate has remained broadly stable over the past two decades. Output-weighted elasticities are lower than arithmetic means, reflecting the fact that large countries are relatively closed compared to small economies. Using WIOD, we find that the mean output-weighted elasticity of the HCE deflator increased from 0.06 in 2000 to 0.08 in 2008 (see Figure 5). After peaking in 2008, the elasticity sharply declined in 2009. It has hovered around 0.08 in subsequent years. Our results concur with the literature.
Using comprehensive measures of global value chain integration, Timmer et al. (2016) find that the expansion of global value chain has slowed down since the Great Recession. While the latest dataset available for WIOD dates back to 2014, MRIO covers the most recent years, up to 2019. Results from the MRIO database suggest that the elasticity has bounced back from 2016 onwards, reaching 0.09 in 2019. However, the version of MRIO we use (March 2021) suffers from data quality issues for 2018 and 2019 (see Online Appendix F). Between 2017 and 2018, the HCE deflator elasticity sharply increased in a number of countries (e.g. China and India). Hence, we assume that the elasticity estimated using MRIO is not reliable for 2018 and 2019 (see Section 4.3 for further details).

Overall, our estimates are robust to using different databases. WIOD and MRIO provide similar elasticities. The main difference between the two databases relates to the broader geographic coverage of MRIO, which includes nineteen additional emerging Asian economies. Given these economies’ relative small size, using MRIO provides aggregate results similar to those of WIOD. By contrast, using data from TiVA rev. 3, which covers a sample of 64 countries up to 2011, yields a higher elasticity. TiVA rev. 3 suggests that the output-weighted elasticity has increased by 25% between 1995 and 2008, reaching 0.10 in 2008. The higher estimates obtained with TiVA rev. 3 likely reflects the different treatment of contract manufacturing in the 2008 system of national accounts compared to the 1993 system, which reduces imported inputs. The slight differences observed between WIOD and TiVA rev. 4 likely reflect different ways of reconciling national accounts and international trade statistics.
3 Accounting impact of an exchange rate variation on consumer prices

Fig. 5: Evolution of the HCE deflator elasticity, 1995-2019

Sources: WIOD, MRIO, TIVA rev. 3, TIVA rev. 4 and authors’ calculations

3.4 Contributors to the HCE deflator elasticity

In this section, we analyse the contributions of each part of the consumption basket to the pass-through of exchange rate variations to consumer prices. We start with the contributions of domestic versus imported goods. We define

$$\eta_{i,i}^{HC} = \eta_{i,imp}^{HC} + \eta_{i,dom}^{HC} = S_i^{HC, dom} + S_i^{HC, imp}$$ \hspace{1cm} (11)

Where:

$$HC_i = \begin{pmatrix}
0 \\
... \\
\frac{hc_{ij}}{N} \\
... \\
0
\end{pmatrix} + \begin{pmatrix}
\frac{hc_{ij}}{N} \\
... \\
0 \\
... \\
\frac{hc_{ij}}{N}
\end{pmatrix}$$ \hspace{1cm} (12)
3 Accounting impact of an exchange rate variation on consumer prices

For example,

\[\pi_{t,\text{imp}}^{HC} = \sum_{j=1}^{J} a_{kj} \frac{hc_{kj}}{hc_i} \]

Figure 6 shows that changes in the prices of imported final consumer goods and services contribute more to the total effect than changes in the prices of domestic final goods and services. Furthermore, imported final consumer goods also explain the differences in price elasticities observed between open and relatively closed economies. Although imported final consumer goods account for a smaller share of total consumption than domestic goods, they are the most impacted by exchange rate fluctuations.

![Fig. 6: Contribution of imported and domestic final goods and services to the HCE deflator elasticity (WIOD, 2014)](image)

Sources: WIOD and authors’ calculations

We also examine the contributions of each sectors to the HCE deflator elasticity. We regroup industries into four categories: manufacturing goods, services, food and energy. Figure 7 shows the impact of a change in the exchange rate on the main components of the HCE deflator. Non-energy industrial goods explain the bulk of the total impact. However, services also play a significant role, especially in advanced economies. Although services are mainly produced domestically and do not rely much on imported inputs, they represent a substantial share of
3 Accounting impact of an exchange rate variation on consumer prices

total consumption: even small price changes have large impacts on the HCE deflator.
Finally, mixing both the industrial and origin analysis shows that domestic core inflation (i.e. all
domestic products except food and energy) accounts for a significant share of the total impact
(Figure 8), reflecting the weight of domestic services and non-energy industrial goods in total
consumption.

Fig. 7: Contribution of different products to the HCE deflator elasticity (WIOD, 2014)

Sources: WIOD and authors’ calculations
4 Filling the data gap: estimating the HCE deflator elasticity without resorting to WIOTs

4.1 Assessing the role of global value chains in the transmission of exchange rate variations to domestic prices

In this section, we analyse the determinants of the HCE deflator elasticity. In particular, we assess the role of global value chains in the transmission of an exchange rate appreciation to the HCE deflator. We identify four channels through which an exchange rate appreciation impacts the HCE deflator when production processes are global: i) the prices of imported final goods sold directly to domestic consumers; ii) the prices of imported inputs entering domestic production; iii) the price of exported inputs feeding through imported foreign production; iv), changes in domestic and foreign production costs in turn passing through to the price of inputs for domestic and foreign goods and causing further changes in production costs through input-output linkages. Mathematically, we break down ε^{HC} into these different elements. Starting from equation 9,
we have:

\[
S_i = C_i + \left(\hat{C}_i B^0 + C_i \hat{B} \right) (I - A)^{-1}
\]

(S1) direct effect through imported consumption goods

\[
S_i = C_i + \left(\hat{C}_i B^0 + C_i \hat{B} \right) (I - A)^{-1}
\]

(S2) effect on domestic consumption goods through imported inputs

\[
S_i = C_i + \left(\hat{C}_i B^0 + C_i \hat{B} \right) (I - A)^{-1} \ast A
\]

(S3) effect on imported consumption goods through domestic inputs

(S4) residual

Defining \(HC_i^{dom}\) and \(HC_i^{imp}\) as the domestic and imported shares of \(HC_i\) and adjusting the dimension of E1, E2 and E3, we have:

\[
\pi_i^{HC} = S_i \cdot HC = E1 \cdot HC + E2 \cdot HC + E3 \cdot HC + E4 \cdot HC
\]

\[
\pi_i^{HC} = E1 \cdot HC^{dom} + E2 \cdot HC^{imp} + E3 \cdot HC^{dom} + E4 \cdot HC^{imp}
\]

When the domestic currency appreciates, \(E1 \cdot HC^{imp}\) (\(E1\) hereafter) and \(E2 \cdot HC^{dom}\) (\(E2\) hereafter) reduce consumer prices in country \(i\), whereas \(E3 \cdot HC^{imp}\) (\(E3\)) increases them. This decomposition differs from equation 11. Equation 11 focuses on the contribution of domestic versus imported goods to the HCE deflator elasticity to the exchange rate. By contrast, equation 15 highlights the transmission channels of the exchange rate fluctuation. Figure 9 plots the shares of \(E1 \cdot HC\), \(E2 \cdot HC\), \(E3 \cdot HC\) and \(E4 \cdot HC\) (\(E4\) HC) in \(\pi_i^{HC}\). Direct effects through imported consumer goods (\(E1\) HC) dominate. The effect on domestic consumer goods through imported inputs (\(E2\) HC) is also important. While the effect on imported consumer goods through domestic inputs (\(E3\) HC) is negligible (except for Germany and the Netherlands), \(E4\) HC accounts for 10% to 30% of \(\pi_i^{HC}\) for most countries (and close to 50% for India, Brazil, Portugal and Luxembourg). With the exception of Luxembourg, the less open to trade is a country, the larger the share of \(E4\) HC.

Figure 10 shows that input-output mechanisms (i.e. all channels except \(E1\) HC) explain a large share of the elasticity, especially for large countries or euro area countries. The share explained by input-output mechanisms has increased until 2013-2014 (see Figure 11), implying an increasing need of data from WIOTs to perform our computations.
Fig. 9: Decomposition of γ_{HC} into $E_1.HC$, $E_2.HC$, $E_3.HC$ and $E_4.HC$ (WIOD, 2014)

Sources: WIOD and authors’ calculations
4 Filling the data gap: estimating the HCE deflator elasticity without resorting to WIOTs

Fig. 10: Decomposition of \(\gamma_{HC} \) (WIOD, 2014)

Sources: WIOD and authors’ calculations
Overall, the first two channels explain three-quarters of the transmission of an exchange rate appreciation to domestic prices. By contrast, the last two channels, which reflect the impact of global value chains, play a more limited role, with marked across-countries heterogeneity. Approximately one-fourth of the HCE deflator elasticity to the exchange rate is attributable to participation in global value chains.

Still, $E_{1, HC}$ and $E_{2, HC}$ are relatively important (especially for small countries). Although the model as it stands cannot easily accommodate simultaneous exchange rate changes in different currencies (which would require increasing the number of B matrices and C vectors), we expect the effect of simultaneous variations of different currencies to be correctly approximated by an own-currency exchange rate change of the trade-weighted average of the country-specific exchange rate changes.
4.2 Estimating the HCE deflator elasticity using the shares of imported goods and imported inputs in household consumption

The importance of E_1^{HC} and E_2^{HC} suggests that the HCE deflator elasticity to the exchange rates could be estimated using national accounts data and input-output matrices. National accounts data provide E_1^{HC} and E_2^{HC}, whereas world input-output matrices are needed for computing E_3^{HC} and E_4^{HC}. We investigate whether E_3^{HC} and E_4^{HC} can be inferred from easier-to-compute elements of s, i^{HC}.

We infer s_i^{HC} from E_1^{HC} and E_2^{HC} using equation 16. Figure 12 depicts the relationship between s_i^{HC} and $E_1^{HC} + E_2^{HC}$. The high R^2 (0.98) suggests that $E_1^{HC} + E_2^{HC}$ is a good predictor of s_i^{HC}.

$$s_i^{HC} = \alpha + \beta \left(E_1^{HC, imp} + E_2^{HC, dom} \right) + \varepsilon_i$$ \hspace{1cm} (16)

![Fig. 12: Comparison of s_i^{HC} and $E_1^{HC, imp} + E_2^{HC, dom}$ (WIOD, 2014)](image)

Sources: WIOD and authors’ calculations

We check whether the relationship is constant over time by estimating yearly cross-sections of equation 16. With the exception of 2009, the relationship is broadly stable (see Figures 13).
4 Filling the data gap: estimating the HCE deflator elasticity without resorting to WIOTs

Fig. 13: Evolution of \(\alpha \) (the constant), \(\beta \) (the coefficient of \(E1.HC + E2.HC \)) and \(R^2 \) over time (WIOD)

Sources: WIOD and authors’ calculations

We obtain similar results with TiVA (see Online Appendix B). Our results suggest that we can approximate the HCE deflator elasticity using the share of imported goods in household consumption and the share of imported inputs in household consumption of domestic goods. \(E1.HC + E2.HC \) is a good predictor of the total effects. Interestingly, they cannot be extrapolated in a multiplicative way, as the other effects \((E3.HC + E4.HC) \) add to them rather than amplifying them. They are of similar size for small open economies and large closed ones. This likely reflects the fact that a small economy compensates for its small size (and small influence on global value chains) by being more open (and hence more sensitive to changes in global value chains).

4.3 Extrapolating the HCE deflator elasticity using GDP and trade statistics

In this section, we show that a precise assessment of the HCE deflator elasticity to the exchange rate can be estimated without resorting to WIOTs. The construction of World Input-Output

\footnote{Although this functional form might seem counterintuitive (we expected the elasticity to be an affine function of openness as summarized by \(E1.HC \)), the analytical examination of the two-country, one-sector case shows that it is plausible (see Online Appendix E).}
Filling the data gap: estimating the HCE deflator elasticity without resorting to WIOTs

tables is data-demanding and WIOTs are typically released with a lag of several years. As a result, world input-output matrices are not available for the most recent years. The latest years covered by WIOD and TiVA rev. 4 are, respectively, 2014 and 2015. While the MRIO database covers more recent years, it is fraught with data quality issues for 2018 (see Section 3.3 and Online Appendix F). Using WIOTs also involves cumbersome computations. Given these difficulties, we look for a simpler way to compute the elasticity of the HCE deflator to the exchange rate. We estimate the HCE deflator elasticity from 2015 onwards using GDP statistics and trade data on consumption and intermediates.

As a starting point, the sum of the share of imported goods in household consumption and the share of imported inputs in household consumption of domestic goods \((E_{1,HC} + E_{2,HC})\) is a good predictor of the impact of exchange rate fluctuations on household consumption prices. However, these data \((E_{1,HC} and E_{2,HC})\) are not up-to-date for a large number of countries, as they are not routinely computed by national statistical institutes. We can rely on a proxy to identify consumption and intermediate goods imports using the CEPII BACI database and the BEC classification (Gaulier and Zignago, 2010). Household consumption and intermediate products are more difficult to collect systematically for many countries and many years. In Online Appendix C, we use data from the World Bank and Eurostat, which are only available for a limited number of countries. Hence, the study reported in Online Appendix C only includes a limited number of observations.

Here, to expand our panel, we use an even simpler proxy for \(E_{1,HC} + E_{2,HC}\), using only trade data from BACI and GDP data from the World Bank (see equation 17). These data are available until 2019.

\[
\begin{align*}
\frac{\Delta f_{HC}}{s_{i,t,HC}} = & \alpha + \beta_1 \frac{\text{imported consumption goods}_{i,t}}{\text{GDP}_{i,t}} + \beta_2 \frac{\text{imported intermediate goods}_{i,t}}{\text{GDP}_{i,t}} + \beta_3 \frac{\text{total sample imported consumption goods}}{\text{total sample GDP}_{t}} + \beta_4 \frac{\text{total sample imported intermediate goods}}{\text{total sample GDP}_{t}} + f + \epsilon_{i,t}
\end{align*}
\]

We perform an out-of-sample prediction for WIOD, 2014, using data for years 2000 to 2008. The results are satisfactory, although the mean and median errors are larger than in Online

\(^{7}\) BACI provides disaggregated data on bilateral trade flows for more than 5000 products and 200 countries. The database is built from data directly reported by each country to the United Nations Statistical Division (Comtrade). Products are defined as items from the Harmonized System nomenclature, at the 6-digit level.
Appendix C (see Figure 14). Our findings are robust to using other databases (results obtained with TiVA revisions 3 and 4 are available upon request).

Fig. 14: Comparing the HCE deflator elasticity in 2014 (WIOD) and the prediction from a panel regression on the 2000-2008 period with fixed effects using only World Bank and Comtrade data.

Sources: WIOD, World Bank, BACI and authors’ calculations

Using these equations, we can predict the HCE deflator elasticity from 2015 onwards. Figure 15 shows that the in-sample predictions are robust, giving confidence in the quality of the out-of-sample predictions. We also compare our predictions with the elasticity estimated using MRIO, which provides WIOTs up to 2019. Our predictions are in line with results from MRIO up to 2017. For the most recent years, there seem to be data issues in MRIO (see Online Appendix F), which the comparison helps to identify. We thus provide a simple accounting tool to estimate the percentage change in prices in response to exchange rate variations for the most recent years.
5 Conclusion

Fig. 15: Comparing the output-weighted HCE deflator elasticity to predictions based on World Bank and BACI data.

Sources: WIOD, TIVA, MRIO, World Bank, BACI and authors’ calculations

5 Conclusion

This paper studies the elasticity of the household consumption expenditure (HCE) deflator to the exchange rate. Our contribution to the literature is fourfold.

First, we analyse the composition and determinants of the HCE deflator elasticity using world input-output tables covering twenty-four years of data, from 1995 to 2019. We use several datasets to ensure the robustness of our results. In line with the existing literature, we find a rather modest output-weighted elasticity of the HCE deflator to the exchange rate of around 0.1 at the world level. The output-weighted elasticity has remained broadly stable over the past two decades. Aggregate figures mask substantial cross-country heterogeneity, reflecting different degrees of openness to trade and differences in foreign product content in domestic consumption. The elasticity is larger for small open economies with higher import content of consumption.

Second, we examine which parts of the consumption basket contribute most to the elasticity of the HCE deflator to the exchange rate. Non-energy industrial goods explain the bulk of the total HCE deflator elasticity. Services also play a significant role, as they represent a substantial share
5 Conclusion

of total consumption.

Third, we analyse the determinants of the HCE deflator elasticity and the role of global value chains in the transmission of an exchange rate appreciation to domestic prices. There is a marked cross-countries heterogeneity. On the whole, direct effects through imported consumption and intermediates entering domestic production explain three-quarters of the transmission of an exchange rate appreciation to domestic prices. By contrast, global value chains participation plays a limited role.

Fourth, we show that a precise assessment of the HCE deflator elasticity to the exchange rate can be extrapolated for recent years, for which good-quality WIOTs are missing. We estimate the HCE deflator elasticity using GDP statistics and trade data on consumption and intermediates and obtain reliable out-of-sample predictions.
References

Appendix A: WIOD Sectors

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>Crop and animal production, hunting and related service activities</td>
</tr>
<tr>
<td>A02</td>
<td>Forestry and logging</td>
</tr>
<tr>
<td>A03</td>
<td>Fishing and aquaculture</td>
</tr>
<tr>
<td>B</td>
<td>Mining and quarrying</td>
</tr>
<tr>
<td>C10-C12</td>
<td>Manufacture of food products, beverages and tobacco products</td>
</tr>
<tr>
<td>C13-C15</td>
<td>Manufacture of textiles, wearing apparel and leather products</td>
</tr>
<tr>
<td>C16</td>
<td>Manufacture of wood and of products of wood and cork, except furniture; articles of straw and plaiting materials</td>
</tr>
<tr>
<td>C17</td>
<td>Manufacture of paper and paper products</td>
</tr>
<tr>
<td>C18</td>
<td>Printing and reproduction of recorded media</td>
</tr>
<tr>
<td>C19</td>
<td>Manufacture of coke and refined petroleum products</td>
</tr>
<tr>
<td>C20</td>
<td>Manufacture of chemicals and chemical products</td>
</tr>
<tr>
<td>C21</td>
<td>Manufacture of basic pharmaceutical products and pharmaceutical preparations</td>
</tr>
<tr>
<td>C22</td>
<td>Manufacture of rubber and plastic products</td>
</tr>
<tr>
<td>C23</td>
<td>Manufacture of other non-metallic mineral products</td>
</tr>
<tr>
<td>C24</td>
<td>Manufacture of basic metals</td>
</tr>
<tr>
<td>C25</td>
<td>Manufacture of fabricated metal products, except machinery and equipment</td>
</tr>
<tr>
<td>C26</td>
<td>Manufacture of computer, electronic and optical products</td>
</tr>
<tr>
<td>C27</td>
<td>Manufacture of electrical equipment</td>
</tr>
<tr>
<td>C28</td>
<td>Manufacture of machinery and equipment n.e.c.</td>
</tr>
<tr>
<td>C29</td>
<td>Manufacture of motor vehicles, trailers and semi-trailers</td>
</tr>
<tr>
<td>C30</td>
<td>Manufacture of other transport equipment</td>
</tr>
<tr>
<td>C31-C32</td>
<td>Manufacture of furniture; other manufacturing</td>
</tr>
<tr>
<td>C33</td>
<td>Repair and installation of machinery and equipment</td>
</tr>
<tr>
<td>D35</td>
<td>Electricity, gas, steam and air conditioning supply</td>
</tr>
<tr>
<td>E36</td>
<td>Water collection, treatment and supply</td>
</tr>
<tr>
<td>E37-E39</td>
<td>Sewerage and other waste management services</td>
</tr>
<tr>
<td>F</td>
<td>Construction</td>
</tr>
<tr>
<td>G45</td>
<td>Wholesale and retail trade and repair of motor vehicles and motorcycles</td>
</tr>
<tr>
<td>G46</td>
<td>Wholesale trade, except of motor vehicles and motorcycles</td>
</tr>
<tr>
<td>G47</td>
<td>Retail trade, except of motor vehicles and motorcycles</td>
</tr>
<tr>
<td>H49</td>
<td>Land transport and transport via pipelines</td>
</tr>
<tr>
<td>H50</td>
<td>Water transport</td>
</tr>
<tr>
<td>H51</td>
<td>Air transport</td>
</tr>
<tr>
<td>H52</td>
<td>Warehousing and support activities for transportation</td>
</tr>
<tr>
<td>H53</td>
<td>Postal and courier activities</td>
</tr>
<tr>
<td>I</td>
<td>Accommodation and food service activities</td>
</tr>
<tr>
<td>J58</td>
<td>Publishing activities</td>
</tr>
<tr>
<td>J59-J60</td>
<td>Motion picture, video and television programme production; programming and broadcasting activities</td>
</tr>
<tr>
<td>J61</td>
<td>Telecommunications</td>
</tr>
<tr>
<td>J62-J63</td>
<td>Computer programming, consultancy; information service activities</td>
</tr>
<tr>
<td>K64</td>
<td>Financial service activities, except insurance and pension funding</td>
</tr>
<tr>
<td>K65</td>
<td>Insurance, reinsurance and pension funding, except compulsory social security</td>
</tr>
<tr>
<td>K66</td>
<td>Activities auxiliary to financial services and insurance activities</td>
</tr>
<tr>
<td>L68</td>
<td>Real estate activities</td>
</tr>
<tr>
<td>M69-M70</td>
<td>Legal and accounting activities</td>
</tr>
<tr>
<td>M71</td>
<td>Architectural and engineering activities; technical testing and analysis</td>
</tr>
<tr>
<td>M72</td>
<td>Scientific research and development</td>
</tr>
<tr>
<td>M73</td>
<td>Advertising and market research</td>
</tr>
<tr>
<td>M74-M75</td>
<td>Other professional, scientific and technical activities; veterinary activities</td>
</tr>
<tr>
<td>N</td>
<td>Administrative and support service activities</td>
</tr>
<tr>
<td>O84</td>
<td>Public administration and defence; compulsory social security</td>
</tr>
<tr>
<td>P85</td>
<td>Education</td>
</tr>
<tr>
<td>Q</td>
<td>Human health and social work activities</td>
</tr>
<tr>
<td>R-S</td>
<td>Other service activities</td>
</tr>
<tr>
<td>T</td>
<td>Activities of households as employers; producing activities of households for own use</td>
</tr>
<tr>
<td>U</td>
<td>Activities of extraterritorial organizations and bodies</td>
</tr>
</tbody>
</table>

Table 1: WIOD sectors
Appendix B: Estimating the HCE deflator elasticity using the shares of imported consumption and imported intermediates in domestic consumption

As a complement to section 4.2, Figures 1 and 2 for TIVA rev. 3 and Figures 3 and 4 for TIVA rev. 4 show that using the share of imported final consumption goods and services and the share of imported intermediate goods in domestic final consumption provides a good prediction of the elasticity of the HCE deflator to the exchange rate.

Figure 1: Comparing τ_{HC} and $E_1HC_{imp} + E_2HC_{dom}$ (TIVA rev. 3)

Sources: TIVA rev. 3 and authors’ calculations
Figure 2: Evolution of α, β and R^2 (TIVA rev. 3)

Sources: TIVA rev. 3 and authors’ calculations

Figure 3: Comparison between $\gamma_{i,HC}^{i,HC}$ and $E1.HC_{i,imp}^{i,imp} + E2.HC_{i,dom}^{i,dom}$ (TIVA rev. 4)

Sources: TIVA rev. 4 and authors’ calculations
Figure 4: Evolution of α, β and R^2 (TIVA rev. 4)

Sources: TIVA rev. 4 and authors’ calculations
Appendix C: Extrapolating the HCE deflator elasticity using household consumption, intermediate consumption and trade statistics

Section 4.2 shows that the sum of the share of imported goods in household consumption and the share of imported inputs in household consumption of domestic goods \((E1.HC + E2.HC)\) is a good predictor of the HCE deflator elasticity to the exchange rate. However, these data \((E1.HC \text{ and } E2.HC)\) are not up-to-date for a large number of countries, as they are not routinely computed by national statistical institutes. Section 4.3 shows that trade and GDP data are a good predictor of the HCE deflator elasticity. In this appendix, we perform an intermediate exercise. As in section 4.3, we identify consumption and intermediary goods imports using the CEPII BACI database and the BEC classification. In contrast to section 4.3, we relate these imports to household consumption and intermediate consumption instead of the GDP. While the World Bank provides regular estimates for household consumption, estimates for intermediate consumptions are lacking. Eurostat provides estimates for intermediate consumption for European countries. Combining these three data sources (BACI, World Bank and Eurostat), we compute the share of imported consumption goods in household consumption and the share of imported inputs in all inputs.

We then run a panel regression with country fixed-effects, assuming that the coefficients are constant over time and explain within-country variations. To take into account year-specific effects, we add two year-specific variables, i.e. the GDP-weighted mean of each variable of interest (see equation 1).

\[
\begin{align*}
\frac{\Delta e_{i,t}}{e_{i,t}} &= \alpha + \beta_1 \frac{\text{imported consumption goods, } i}{\text{household consumption, } i} \\
&+ \beta_2 \left(\frac{\text{imported intermediate goods, } i}{\text{intermediate consumption, } i} \cdot \frac{\text{domestic consumption goods, } i}{\text{household consumption, } i} \right) \\
&+ \beta_3 \frac{\text{Total imported consumption goods}}{\text{Total household consumption}} \\
&+ \beta_4 \left(\frac{\text{Total imported intermediate goods}}{\text{Total intermediate consumption}} \cdot \frac{\text{Total domestic consumption goods}}{\text{Total household consumption}} \right) \\
&+ f e_{i} + \epsilon_{i,t}
\end{align*}
\]

(1)

We run the panel regressions for the period 2000 to 2008 and estimate out-of-sample elasticities for each country \(i\) for 2014. The outcome is close to the elasticity computed with WIOD for 2014, despite a slight downward bias (see Figure 5).
Figure 5: Comparing the HCE deflator elasticity in 2014 (WIOD) and the prediction from a panel regression on the 2000-2008 period with fixed effects.
Appendix D: Comparing the impact of a change in prices with that of an exchange rate variation

In this appendix, we use the two-country and one-good case to illustrate the difference between a change in prices and an exchange rate variation.

Effect of a change in prices based on value added contents

Using the notations of the paper, we have in the two-country and one-good case:

\[A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \]

\[I - A = \begin{pmatrix} 1 - a_{11} & -a_{12} \\ -a_{21} & 1 - a_{22} \end{pmatrix} \]

\[(I - A)^{-1} = \frac{1}{(1-a_{11})(1-a_{22})-a_{21}a_{12}} \begin{pmatrix} 1-a_{22} & a_{12} \\ a_{21} & 1-a_{11} \end{pmatrix} = z \cdot \begin{pmatrix} 1-a_{22} & a_{12} \\ a_{21} & 1-a_{11} \end{pmatrix} \]

\[(I - A)^{-1}d = \begin{pmatrix} u \\ v \end{pmatrix} \]

Country 1 demand shares = \[d = \begin{pmatrix} 1-f \\ f \end{pmatrix} \]

\[(I - A)^{-1}d = \begin{pmatrix} u - uf + vf \\ w - wf + xf \end{pmatrix} \]

When a change \(e \) occurs in the prices of country 2, we have the following initial vector:

\[C = (0, e) \]. In the first instance, this has an impact on prices \(CA \), and then \(CA^2 \), etc. Hence, the total effect of the change in prices \(S \) is:

\[S = C + CA + CA^2 + \cdots = C(I - A)^{-1} = \begin{pmatrix} cw \\ cx \end{pmatrix} \]

To measure the impact on the household consumption expenditure deflator, we compute a weighted sum of these effects:

\[\tilde{s} = e.c.[(1-f)w + xf] = e.\frac{(1-f)a_{21} + f(1-a_{11})}{(1-a_{11})(1-a_{22})-a_{21}a_{12}} \]

(2)
If each nation’s production only uses national inputs, we have:

\[s = c \cdot \frac{f}{1 - a_{2,2}} \]

Impact of an exchange rate variation

Using the notations in the paper, we have:

\[C = \left(\frac{-c_k}{1 + c_k}, 0 \right) = (0, -c) \]
\[C_b = (c, 0) \]
\[\hat{C}_b = \left(\frac{c_k}{1 + c_k}, 0 \right) = (c, 0) \]
\[B = \begin{pmatrix} 0 & a_{1,2} \\ 0 & 0 \end{pmatrix} \]
\[\hat{B} = \begin{pmatrix} 0 & 0 \\ a_{2,1} & 0 \end{pmatrix} \]

Hence:

\[S = (0, c) + [(0, -c.a_{1,2}) + (c.a_{2,1}, 0)] \cdot \begin{pmatrix} u \\ v \\ w \\ x \end{pmatrix} \]
\[= (0, c) + (c.a_{2,1}, -c.a_{1,2}) \cdot \begin{pmatrix} u \\ v \\ w \\ x \end{pmatrix} \]
\[= (0, c) + (u.c.a_{2,1} - w.c.a_{1,2}, v.c.a_{2,1} - x.c.a_{1,2}) \]
\[= (u.c.a_{2,1} - w.c.a_{1,2}, c + v.c.a_{2,1} - x.c.a_{1,2}) \]
and

\[
\tilde{s} = (u.c.a_{2,1} - w.c.a_{1,2}, c + v.c.a_{2,1} - x.c.a_{1,2}) \cdot \begin{pmatrix} 1 - f \\ f \end{pmatrix}
\]

\[
\tilde{s} = c[f(1 + v.a_{2,1} - x.a_{1,2}) + (1 - f)(u.a_{2,1} - w.a_{1,2})]
\]

If each nation’s production only uses national inputs, we have:

\[
\tilde{s} = c.f
\]

This confirms that the impact of an exchange rate variation differs from that of a change in prices.
Appendix E: Transmission channels of an exchange rate variation in the two-country, one-sector case

As a reminder from the paper, where s_i^{HC} corresponds to the impact of an exchange rate variation on consumer prices:

$$s_i^{HC} = S_i^{HC} = E_1.HC_i + E_2.HC_i + E_3.HC_i + E_4.HC_i$$

$$= E_1.HC_{i,imp} + E_2.HC_{i,dom} + E_3.HC_{i,imp} + E_4.HC_i$$

(3)

and

$$S_i = S_i^{HC} = C_i + \left(\hat{C}_i.B_i + C_i.\bar{B}_i \right) \cdot (I - A)^{-1}$$

(4)

When the domestic currency appreciates, E_1 and E_2 reduce country i’s consumer prices, whereas E_3 increases them. E_1 and E_2 are easy to compute with national input-output matrices, whereas world input-output matrices are needed for computing E_3 and E_4.

Unexpectedly, $E_3.HC + E_4.HC$ does not vary much with the openness rate of the economy (see Figure 12 of the main text).

Let us focus on the two-country, one-sector economy:

$$E_1 = C = (0, -c)$$

$$E_2 = C.\bar{B}_i = (0, -c). \begin{pmatrix} 0 & 0 \\ a_{2,1} & 0 \end{pmatrix} = (-c.a_{2,1}, 0)$$

$$E_3 = (c, 0). \begin{pmatrix} 0 & a_{1,2} \\ 0 & 0 \end{pmatrix} = (0, c.a_{1,2})$$
\[
E_1.HC = (0, -c) \begin{pmatrix} 1 - f \\ f \end{pmatrix} = -f.c
\]

\[
E_2.HC = (-c.a_{2,1}, 0) \begin{pmatrix} 1 - f \\ f \end{pmatrix} = -c.a_{2,1} \cdot (1 - f)
\]

\[
E_3.HC = (0, c.a_{1,2}) \begin{pmatrix} 1 - f \\ f \end{pmatrix} = f.c.a_{1,2}
\]

We do not lose any generality by normalising the shock \(c\) to 1.

And:

\[
\bar{s} - E_1.HC - E_2.HC = \left(\begin{array}{c} -a_{1,1}^2 - a_{1,2}a_{2,2} + (s_{11} - s_{12})s_{11} - (a_{1,1}a_{2,1} - a_{1,2}a_{2,2} - s_{11} - s_{12})(s_{11} - s_{12}) \\ a_{1,2}a_{2,1} - (s_{11} - s_{12})(s_{11} - s_{12}) \end{array} \right)
\]

(5)

We assume that:

\[
a_{1,1} = \frac{1}{2} \text{ and } a_{1,1} + a_{2,1} = a.
\]

So \(s_{1,1} = (1 - f)a\) and \(a_{2,1} = fa\).

Then:

\[
\bar{s} - E_1.HC - E_2.HC = \left(\begin{array}{c} -a_{1,1}^2 + a_{1,2}a_{2,2} - s_{11}^2 + (a_{1,1} + a_{1,2})f + (a_{1,1}a_{2,1} - a_{1,2}a_{2,2} - s_{11} - s_{12})(s_{11} - s_{12}) \\ a_{1,2}a_{2,1} - (s_{11} - s_{12})(s_{11} - s_{12}) \end{array} \right)
\]

(6)

The derivative of this according to \(f\) is:

\[
\left(\begin{array}{c} ((a_{1,1} + a_{1,2})(s_{11}^2 - s_{11}^2) + (a_{1,1} + a_{1,2})(f^2 + (a_{1,1}a_{2,1} - a_{1,2}a_{2,2} - s_{11} - s_{12})(s_{11} - s_{12})) \\ (a_{1,1} + a_{1,2})(s_{11}^2 - s_{11}^2) + (a_{1,1} + a_{1,2})(f^2 + (a_{1,1}a_{2,1} - a_{1,2}a_{2,2} - s_{11} - s_{12})(s_{11} - s_{12})) \end{array} \right)
\]

The sign of this expression is difficult to study. We hence move to a numerical application.

Based on WIOD 2014, we compute the ratio between value added and production, which corresponds to: \(\text{egen total} = \text{rowtotal}(\text{vAUS1-vROW})\) and then \((161-74)/161=0.54\).
To simplify, we assume that the ratio is equal to 0.5.

\[a_{1,1} + a_{1,2} = a_{2,1} + a_{2,2} = 0.5 \]

\[\frac{a_{1,2}}{a_{1,1} + a_{1,2}} = f \]

\[a_{2,1} = 0.48 \]

\[a_{2,2} = 0.02 \]

In that case:

\[\bar{s} - E1.HC - E2.HC = \frac{-0.15 f^3 + 0.25 f^2 - 0.1 f}{0.01 f - 0.05 f} \]

Which yields Figures 6 and 7.

![Graph](image)

Figure 6: \(\bar{s} - E1.HC - E2.HC \) as a function of the openness rate

Actual openness rates in the sample vary between 0.15 and 0.50. In that range, the relationship between the openness rate and the residual is not monotonous (see Figure 6).

Figure 7 confirms that, in that numerical exercise, the total effect is dominated by the direct effect through imported consumption goods and, to a lesser extent, the effect on domestic
consumption goods through imported inputs. The other effects are approximately additive if the openness rate ranges from 0.15 to 0.50.

Figure 7: E1.HC, E2.HC, E3.HC, E4.HC and the "residual" ($\bar{s} - E1.HC - E2.HC$) as a function of the openness rate
Online Appendix F: MRIO data quality issues

Figure 8 shows that the HCE deflator elasticity extrapolated from WIOD, World Bank and BACI data for the period 2015-2019 is close to the elasticity obtained with MRIO in 2016-2017. By contrast, the elasticity estimated using MRIO is much higher in 2018 and 2019. This discrepancy likely reflects data quality issues in MRIO. Figure 9 shows that the HCE deflator elasticity estimated using MRIO increased by more than 20% for India and China between 2017 and 2018. For China, the increase reaches 100%, which is not plausible. Such a sharp increase was not observed between 2016 and 2017. Computations with WIOD confirm that such sharp increases were not observed in the past and are thus unlikely (see Figure 10). Looking more closely at MRIO, we observe large shifts in the consumption of services in China in 2018. Chinese households’ consumption of Chinese education services increased by 43% between 2017 and 2018, whereas the consumption of Chinese transport services decreased by 43% over the same period. Such large and unlikely shifts suggest data quality issues in MRIO for 2018.

Figure 8: Comparing the output-weighed HCE deflator elasticity to predictions based on World Bank and BACI data.

Sources: WIOD, TIVA, MRIO, World Bank, BACI and authors’ calculations
Figure 9: Comparing country-specific HCE deflator elasticities computed using MRIO in 2016, 2017 and 2018.

Sources: MRIO and authors’ calculations

Figure 10: Comparing country-specific HCE deflator elasticities computed using WIOD in 2012, 2013 and 2014.

Sources: WIOD and authors’ calculations
Acknowledgements

We thank Marion Cochard, Pavel Diev, Hubert Escalíth, Guillaume Gaulier, Yannick Kalantzis, Guy Levy-Rueff, Sébastien Miroudot, Jean-François Ouvrard, François de Soyrès and an anonymous referee for comments and suggestions, as well as participants at Banque de France seminars. Any remaining errors are ours. All programs are available at https://github.com/gdaudin/OFCE_CommerceVA. Data and results are available upon request.

Hadrien Camatte
Banque de France, Paris, France; email: hadrien.camatte@banque-france.fr

Guillaume Daudin
Université Paris-Dauphine-PSL, Paris, France; email: guillaume.daudin@dauphine.psl.eu

Violaine Faubert
Banque de France, Paris, France; European Central Bank, Frankfurt am Main, Germany; email: violaine.faubert@banque-france.fr, violaine.faubert@ecb.europa.eu

Antoine Lalliard
Banque de France, Paris, France; email: antoine.lalliard@banque-france.fr

Christine Rifflart
Sciences Po, Observatoire français des conjonctures économiques, Paris, France; email: christine.rifflart@sciencespo.fr