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Abstract

Monitoring economic conditions in real time, or nowcasting, is among the key tasks routinely
performed by economists. Nowcasting entails some key challenges, which also characterise
modern Big Data analytics, often referred to as the three “Vs”: the large number of time
series continuously released (Volume), the complexity of the data covering various sectors of
the economy, published in an asynchronous way and with different frequencies and precision
(Variety), and the need to incorporate new information within minutes of their release (Ve-
locity). In this paper, we explore alternative routes to bring Bayesian Vector Autoregressive
(BVAR) models up to these challenges. We find that BVARs are able to effectively handle
the three Vs and produce, in real time, accurate probabilistic predictions of US economic
activity and, in addition, a meaningful narrative by means of scenario analysis.

JEL Classification: E32, E37, C01, C33, C53.
Keywords: Big Data, Scenario Analysis, Mixed Frequencies, Real Time, Business Cycles,
Forecasting.
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Non-Technical Summary

Policymakers and market participants need to extract timely and accurate signals about the

state of the economy, that is, to “nowcast”, and the economic fallout of the Covid-19 pandemic

has highlighted, once again, the importance of monitoring macroeconomic conditions in real

time. Nowcasting entails some key challenges related to Big Data analytics, which are generally

referred to as the three “Vs”: the large number of time series continuously released (Volume), the

complexity of the data covering various sectors of the economy, published in an asynchronous

way and with different frequencies and precision (Variety), and the need to incorporate new

information within minutes of their release (Velocity). Such challenges have been traditionally

addressed by means of Dynamic Factor Models (DFMs), which exploit the pervasiveness of

business cycle fluctuations to provide a representation of macroeconomic dynamics that is, at

the same time, accurate and parsimonious. Thanks to these features, factor models have been,

so far, the tool of choice for monitoring macroeconomic conditions in real time.

This paper instead presents three approaches to nowcasting based on Bayesian Vector Autore-

gressive (BVAR) models, which can also handle a large set of variables sampled at different

frequencies. It shows that, in a fully real-time setting, the proposed mixed-frequency BVARs

can match the performance of a state-of-the-art DFM, recently developed by the New York

Fed, in nowcasting US GDP growth. Moreover, to showcase the use of mixed-frequency BVAR

models in particularly challenging circumstances, the paper reports a very real-time nowcast of

US GDP for the first quarter of 2020, and also shows how the joint forecast of GDP growth and

PCE inflation for 2020 evolves with the (weekly) arrival of new information.

From a methodological point of view, BVAR models have a more general structure than DFMs,

do not require the data to be made stationary, as in standard DFM applications, and, crucially,

are able to appropriately account for the uncertainty surrounding most of the specification

choices such as, for example, the informativeness of prior distributions. At the same time,

BVARs are already routinely used in central banks and other policy institutions for forecasting

and for building a narrative underlying the economic outlook and its policy implications. The

finding that timely information at different frequencies can also be successfully exploited with

BVARs thus opens up the possibility to also enrich such analyses.

To showcase the ability of mixed-frequency BVAR models to deliver policy-relevant outputs, the

paper presents two additional exercises. First, the generalized impulse response functions to an

exogenous shift in GDP are shown to be qualitatively and quantitatively similar to those from

traditional quarterly VAR models, highlighting that a mixed-frequency BVAR still provides

a reliable account of the transmission mechanism of shocks Second, a counterfactual exercise

tracking the 2008Q4 Fed Funds “shadow rate” shows that mixed-frequency BVARs would have

provided a more timely warning of the Fed Funds rate reaching the effective zero lower bound

than a quarterly model.
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1 Introduction

Vector autoregressions (VARs) gained prominence with Sims (1980) and have been a standard 
tool in macroeconometrics since at least the mid-1990s, due to their ability to capture com-

plex dynamic interrelationships among macroeconomic variables in a relatively parsimonious 
econometric framework. This paper shows that VARs can be also a powerful tool to monitor 
macroeconomic conditions in real time, or nowcasting, while at the same time retaining their 
proficiency in the tasks that they have been routinely used for, namely, structural analysis, 
forecasting and scenario analysis.

Parsing hundreds of economic time series in order to monitor and dissect business cycle dynam-

ics has been one of the central issues in macroeconometrics since at least Burns and Mitchell 
(1946). This was a very early development of what has more recently become known as Big 
Data, a phenomenon that has spread in many disciplines over the last two decades. It is no 
coincidence that the first appearance of the term Big Data in an academic work was by Frank 
Diebold. His discussion, in 2000, of two papers by Reichlin (2003) and Watson (2003), respec-

tively, presenting a new approach to dynamic factor models – titled “‘Big Data’ Dynamic Factor 
Models for Macroeconomic Measurement and Forecasting” – ushered the term Big Data into 
macroeconometrics and further stoked interest in methods apt to deal with growing amounts of 
data.1

Nowcasting – which can be defined as the prediction of the present, the very near future, and the 
very recent past (for a survey see Banbura, Giannone, Modugno, and Reichlin, 2013) – is 
inherently a Big Data problem, as it involves monitoring a multitude of macroeconomic time 
series with different frequencies, different release dates, and various data irregularities. Indeed, 
the three Vs of “volume, velocity and variety,” the defining properties of Big Data, play an 
important role in nowcasting. In terms of volume, not only macroeconomic datasets grew 
exponentially; macroeconometricians have also developed, since early on, methods to deal with 
complex environments in which the number of parameters is large relative to the number of 
observations.2 Moreover, several methods have been proposed for exploiting, efficiently and in 
real time, the velocity of macroeconomic series, i.e. their release at different points in time and 
often with missing data, ragged edges and various other data irregularities. Finally, the data 
used for nowcasting are available at different frequencies, and vary substantially in terms of their 
sources (e.g., hard data versus soft data based on qualitative information such as survey and 
polls) and precision (e.g., revised versus unrevised data). These features relate to the notion of 
variety in Big Data.

1Diebold (2012) provides an insightful discussion of the origins of the term Big Data.
2Statisticians also refer to this connotation of Big Data problems as “large p, small n”, as introduced by West

(2002) to describe inference in factor models with many variables (p) and relatively few observations (n). Note
that the notation used in the rest of the paper, borrowed from the practice of macroeconometrics, replaces “large
p, small n” with large n small T .
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Dynamic factor models (DFMs) were among the first and most successful methods for now-

casting. The models were introduced in macroeconomics by Geweke (1977), Sargent and Sims 
(1977) and Engle and Watson (1981), and then extended to high-dimensional time series by 
Stock and Watson (1999), Forni, Hallin, Lippi, and Reichlin (2000), and Doz, Giannone, and 
Reichlin (2012a).3 DFMs exploit the pervasiveness of business cycle fluctuations to provide 
a representation of macroeconomic dynamics that is, at the same time, accurate and parsimo-

nious. Thanks to these features, factor models have been, so far, the tool of choice for monitoring 
macroeconomic conditions in real time, starting from the contribution of Giannone, Reichlin, 
and Small (2008), and are nowadays used extensively by policy institutions and market partic-

ipants (for a survey see Stock and Watson, 2017; Bok, Caratelli, Giannone, Sbordone, and 
Tambalotti, 2018).

VAR models are standard components of the macroeconomist’s toolkit since the pioneering work 
of Sims and have been extensively used for forecasting and policy analysis (for a systematic 
review, see Stock and Watson, 2001; Karlsson, 2013; Kilian and Lütkepohl, 2018), but their use 
for real-time monitoring of economic conditions has not yet been explored. Bayesian shrinkage, 
however, is a powerful alternative to factor models for controlling the high estimation uncertainty 
due to the proliferation of parameters in a high-dimensional setting.

The goal of this paper is to show that Bayesian VARs, originally proposed by Litterman (1979) 
and Doan, Litterman, and Sims (1984) and first used in high-dimensional environments by 
Banbura, Giannone, and Reichlin (2010), can also be used to successfully handle Big Data for 
real-time nowcasting and real-time policy analysis. Bayesian VARs are regularly used in policy 
institutions for forecasting and policy analysis,4 and play an important role as the empirical 
counterpart to the general equilibrium models used for policy analysis. Since it provides the 
ability to monitor the economy in real time within the same framework, nowcasting with BVARs 
opens up the possibility of a richer and timelier narrative through scenario analysis.

BVARs also offer other advantages compared to DFMs. First, factor models generally assume 
away the dynamic heterogeneity present in the data, i.e. they posit that shocks affect all variables 
in a factor model at the same time, without leads or lags.5 BVARs have a more general and 
flexible structure, and capture more accurately the salient features of the data.6 Second, factor 
models generally require the data to be made stationary,7 while VARs can be easily estimated

3For recent surveys, see Stock and Watson (2016); Doz and Fuleky (2019).
4Recent work includes Miranda-Agrippino and Rey (2015); Altavilla et al. (2016); Giannone et al. (2019a);

Angelini et al. (2019); Domit et al. (2019); Del Negro et al. (2020). For a survey of the literature see Koop and
Korobilis (2010); Miranda-Agrippino and Ricco (2018).

5D’Agostino, Giannone, Lenza, and Modugno (2016) and Antolin-Diaz, Drechsel, and Petrella (2017) allow
for some degree of dynamic heterogeneity, but this is not common practice.

6Formally, large BVARs encompass DFMs, in the sense that if the data being analyzed actually have a factor
structure, the Bayesian VAR would capture it, as shown in De Mol et al. (2008), and the bias introduced by the
imposition of priors would disappear asymptotically as the number of variables increases.

7See Barigozzi et al. (2016) for recent advances in the estimation of non-stationary dynamic factor models for
large datasets.
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also on non-stationary data (Sims et al., 1990). Third, in factor models there are many modelling

choices to be made, notably the number of lags, the number of factors and the block structure.

Usually, the uncertainty coming from these choices is not taken into account. In this paper, we

adopt the approach of Giannone, Lenza, and Primiceri (2015) to produce probabilistic forecasts

that reflect all sources of uncertainty, including that coming from the setting of hyperparameters

underlying the prior distributions.

Real-time data, with all their complexities – missing data, mixed frequency and other data

irregularities – can be incorporated easily in a VAR and analyzed efficiently using the Kalman

filter, as shown in Bańbura, Giannone, and Lenza (2015). The challenge is to make inference

on the model’s parameters in the presence of such data irregularities. We investigate three

strategies.

A first avenue entails casting the VAR model in state-space form and modelling the low-frequency

processes as latent, i.e. as if they existed at the higher frequency but were only observed at a

lower frequency. We label this method “SS-BVAR,” where SS stands for “state-space.” The

estimates for the latent processes and the uncertainty surrounding them are obtained by means

of Kalman filtering techniques. A similar approach has been exploited for handling mixed

frequencies, for example, by Zadrozny (1990); Mittnik and Zadrozny (2004); Giannone, Reichlin,

and Simonelli (2009); Mariano and Murasawa (2010); Kuzin, Marcellino, and Schumacher (2011);

Foroni, Guérin, and Marcellino (2015) in a frequentist setting, and by Eraker, Chiu, Foerster,

Kim, and Seoane (2014), Schorfheide and Song (2015), Brave, Butters, and Justiniano (2016)

and Cimadomo and D’Agostino (2016) using Bayesian methods.

An alternative approach to conduct nowcasting with VARs is to estimate the model at the lowest

common data frequency, treating higher-frequency data as multiple lower-frequency variables.

For example, a monthly variable would be treated as three separate quarterly variables, one for

each month of the quarter. We refer to this approach as blocking or stacking, hereafter “B-

BVAR”. Similar methods have been developed for periodic systems in the control engineering

literature (see Bittanti, 1986; Bittanti and Colaneri, 2009; Chen, Anderson, Deistler, and Filler,

2011; Zamani, Chen, Anderson, Deistler, and Filler, 2011), and have been recently applied

in macroeconometrics (e.g., Carriero, Clark, and Marcellino, 2015b; McCracken, Owyang, and

Sekhposyan, 2015; Ghysels, 2016). This approach implies, quite conveniently, that the mixed

frequency VAR model can be estimated and analyzed as a standard VAR, without resorting

to optimal filtering, therefore substantially cutting the computational burden compared to the

methodology described above. Moreover, while it is less parsimonious than the SS-BVAR, the

B-BVAR in principle allows for a more flexible relationship between quarterly and monthly

variables.

The third approach finds a suitable high frequency representation of the traditional models

routinely used for policy purposes, i.e. those estimated on balanced quarterly datasets. The
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method – labelled “cube root”, hereafter “CR-BVAR” – was first discussed in Giannone, Monti,

and Reichlin (2016) in the context of a DSGE model, and involves estimating the model at a lower

frequency (quarterly) and then mapping it into a corresponding model at a higher frequency

(monthly). The appeal of this method is that it efficiently exploits the insight from the real-time

data flow even in the context of the existing VAR models that most policy institutions have been

developing and maintaining over the last decades.

We evaluate the three approaches in the context of a real-time exercise, based on the US data

which would have been available to an econometrician in each week from the beginning of

2005 to the end of the first quarter of 2018. The dataset comprises eighteen variables: a first

block includes some key macro variables used in most structural macroeconomic models, such

as GDP, consumption, investment, labour market variables and factor prices. The dataset also

features other macro and financial variables (e.g., industrial production, housing starts, loans

and uncertainty indices) that are monitored closely by professional and institutional forecasters

and are important for their information content and the timeliness of their release.

We assess the three approaches primarily on their ability to produce accurate real-time nowcasts

for the US GDP. The results indicate that these tools are valid nowcasting devices. Indeed, all

three BVAR approaches produce forecasts that are highly correlated with and as accurate as

the New York Fed Staff Nowcasts (see Bok et al., 2018). We also find that the nowcasts of the

mixed-frequency approaches are uniformly superior to those of a standard quarterly VAR. This

suggests that the mixed-frequency techniques are particularly efficient in seeing through the

volatility of high frequency information and extracting the news content of the latter, despite

the fact that the mixed-frequency models, with the exception of the CR-BVAR model, are less

parsimonious than quarterly VARs.

The real-time nowcasting accuracy of the models should already speak in favour of their use-

fulness for policy analysis. To gain further insight into the ability of such models to capture

the complex dynamic interactions among macroeconomic variables, we propose three additional

policy exercises. First, we report a very real-time nowcast and a joint forecast of GDP growth

and PCE inflation for 2020 – all based on the latest available information for the weeks just be-

fore and entering the current Covid-19 crisis period. Second, we show that our mixed-frequency

models can be used to trace out the transmission mechanisms of shocks to the US economy, by

looking at the generalized impulse response functions in response to an exogenous shift in GDP.

Finally, we report a counterfactual exercise aimed at tracking the 2008Q4 Fed Funds “shadow

rate”.

The remainder of paper is organised as follows. Section 2 describes the three different mixed-

frequency BVAR approaches, Section 3 discusses the dataset and the nowcasting results, Section

4 presents the three policy applications. Finally, Section 5 concludes.
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2 Methodology

We present three alternative methods for dealing with mixed-frequency data in a BVAR setting,

and provide details about their implementation in the context of our empirical application. The

choices regarding the specification and prior distributions are consistent across the models, to

the extent possible. In particular, throughout the paper, we maintain the view that the selection

of prior distributions is surrounded by uncertainty and, hence, we treat the hyperparameters

characterizing the informativeness of the prior distributions as random variables, as in Giannone,

Lenza, and Primiceri (2015).

2.1 SS-BVAR: Low-Frequency Variables as Latent Processes

This model assumes that quarterly variables are monthly variables, with missing observations

in the first two months of the quarter. The VAR is defined at monthly frequency, and Kalman

filtering techniques are employed to estimate the latent monthly processes. More in detail, we

assume that the (log-)levels of our N variables (collected in the N -dimensional vector Xtm) are

described by the following monthly vector autoregressive process (with p = 17) lags8:

Xtm = A0 +A1Xtm + ...+ApXtm−p + etm , (1)

where Ap is the N × N matrix collecting the coefficients associated with the p-th lag and etm

is a Normally-distributed multivariate white noise process, with covariance matrix Σ. For what

concerns the prior distributions, we choose them in the class of natural conjugate priors (as for

the other two VAR approaches) and, more specifically, we use the Normal-Inverse Wishart prior.

To parameterise the prior distributions, we proceed as follows.

For Σ, the covariance matrix of the residuals, we use an inverse Wishart with scale parameter

given by a diagonal matrix Ψ and d = N+2 degrees of freedom, which is the minimum number of

degrees of freedom that guarantees the existence of the prior mean of Σ (equal to Ψ
(d−N−1) = Ψ).

As it is customary in the BVAR literature, the diagonal of Ψ is set equal to the variances of

the residuals of estimated autoregressive processes for each variable. For the constant A0 term,

we use a flat prior. For the autoregressive coefficients (A1, . . . , Ap), we combine the Minnesota

prior, as originally proposed by Litterman (1979), with a sum-of-coefficients prior proposed by

Doan, Litterman, and Sims (1984) which is intended to limit the explanatory power of the

VAR’s deterministic component. As regards the Minnesota prior, conditional on the covariance

matrix of the residuals, the prior distribution of the autoregressive coefficients is Normal with

the following means and variances:

817 monthly lags ensure full consistency with the information sets of the B-BVAR and CR-BVAR models,
which are estimated with 5 lags of quarterly data.
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E(A1) = IN , E(A2) = ... = E(Ap) = 0N,N , (2)

Cov[(As)ij , (Ar)hm|Σ] = λ2 Σih

s2Ψii
if m = j and r = s, zero otherwise. (3)

i.e. it is centered on the random walk model for all the variables. The key hyperparameter is

λ, which controls the scale of all the prior variances and covariances, and effectively determines

the overall tightness of the prior. For λ = 0 the posterior equals the prior and the data do not

influence the estimates. If λ→∞, on the other hand, posterior expectations coincide with the

Ordinary Least Squares (OLS) estimates. The factor 1
s2

is the rate at which the prior variance

decreases with increasing lag length9 and Σii
Ψjj

accounts for the different scale and variability

of the data. The “sum-of coefficients” prior instead postulates that the sum of the coefficients

associated with the own lags of each variable in the VAR equals one, while the sum of the

coefficients associated with the lags of the other variables equals zero. This prior is imposed by

means of ”dummy observations” and the intensity by which it is enforced is described by the

parameter µ.

Summing up, the setting of these priors depends on the hyperparameters λ and µ, which reflect

the informativeness of the prior distribution for the model’s coefficients. As in Giannone, Lenza,

and Primiceri (2015), we treat the two hyperparameters as random variables and we draw them

from their posterior distributions, adapting the estimation algorithm developed in Giannone,

Lenza, and Primiceri (2015) to the case in which there are missing data. Schorfheide and Song

(2015) and Brave et al. (2016) resort to empirical Bayes methods to optimally select the prior

hyperparameters, as in Carriero et al. (2015a). For the hyperparameters, we choose the same

rather diffuse priors described in Giannone, Lenza, and Primiceri (2015).

Tackling the issue of missing data due to irregular data releases and mixed frequencies is straight-

forward using Markov Chain Monte Carlo methods. We interpolate quarterly data using splines

to obtain a preliminary complete monthly dataset, which we use to specify the prior variance Ψ

and the initial conditions. The latter are assumed to be Normally-distributed with mean equal

to the first p months in the complete dataset, and with variance equal to zero or equal to the

prior variance Ψii depending on whether the data is observed or estimated. Starting with the

parameters set at their prior mean, we iterate the following steps: Using the simulation smoother

of Durbin and Koopman (2001), we draw the complete monthly dataset (i.e. including draws

of the latent missing values) conditional on the model parameters A’s and Σ; then, using the

posterior sampler of Giannone, Lenza, and Primiceri (2015), we draw the hyperparameters µ

and λ conditional on the complete monthly dataset, and finally, we draw the model parameters

conditional on the hyperparameters and the complete monthly dataset.

9As it is standard in the BVAR literature, we set the parameter governing this decay, s, to 2.
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2.2 B-BVAR: Blocking or Stacking

The idea behind blocking is to align all frequencies to the lowest sampling frequency by defining

the higher frequency (monthly) variables as multiple lower frequency (quarterly) variables. We

therefore specify the VAR at quarterly frequency and define the monthly variables as three

separate series, one for each month of the quarter. For example, let xtm with tm = 1, 2, 3... be

a monthly variable. We derive from it three quarterly variables by treating data from the first,

second and third months of the quarter, respectively, as three individual series:

xqtq ≡ [xtm−2 xtm−1 xtm ] ≡
[
xtq−2/3 xtq−1/3 xtq

]
where tq = 1, 2, 3... These three series can now simply be stacked in a VAR(p) with other

quarterly variables ytq . Let Ytq =
[
ytq xqtq

]
and:

Ytq = A0 +A1Ytq−1 +A2Ytq−2 + · · ·+ApYtq−p + εtq , (4)

where ε i.i.dN (0,Σ). Ytq is a vector of size N = Q+ 3M , where Q is the number of quarterly

variables and M is the number of monthly variables in our system. In the empirical application,

we set the number of quarterly lags to p = 5.

The system can then be readily estimated with Bayesian methods. We adopt a Normal-Inverse-

Wishart prior for the coefficients of the VAR centred around a random walk model. The prior

for Σ is an Inverse Wishart with scale Ψ and d = N + 2 degrees of freedom. Conditional on

Σ, the prior distribution of the autoregressive coefficients is Normal with the same means and

variances reported in equations (2) and (3). The use of Bayesian shrinkage allows us to handle

large systems. Classical inference, as in Ghysels (2016), is not appropriate in this context due

to the high number of free parameters.

Following Giannone, Lenza, and Primiceri (2015), we treat the parameter λ, which controls the

tightness of the prior distribution for the model’s coefficients, as a random variable and draw

it from its posterior distribution, and set the parameter that determines how fast the prior

variance decreases with increasing lag length, s, to 2. We also set the diagonal elements of Ψ

to the variances of the residuals of estimated autoregressive processes for each variable, in line

with the treatment of priors in the previous subsection. As for the SS-BVAR, we also implement

the “sum-of-coefficients” prior with dummy observations and treat the hyperparameter µ as a

random variable, drawing it from its posterior distribution. Moreover, we also add the “dummy-

initial-observation” prior advocated by Sims (1993) to ensure that the prior is consistent with

cointegration. The parameter governing the tightness of this prior is simply set to 1.

Given the model parameters, the weekly nowcasts can be viewed as forecasts conditional on

different information sets. We compute these using the Kalman filtering techniques described

ECB Working Paper Series No 2453 / August 2020 9



in Bańbura, Giannone, and Lenza (2015) and based on Durbin and Koopman (2001).10

2.3 CR-BVAR: Cube Root

This section shows how to obtain a monthly specification for a V AR(p) defined and estimated

at quarterly frequency, reflecting and expanding the results previously derived for DSGE models

by Giannone, Monti, and Reichlin (2016).

The idea is that all variables exist at higher frequency, but some are only sampled at quar-

terly frequency, so we only have observations for these variables in March, June, September or

December. Let us define tm as the time in months and denote by ytm = (y1,tm , ..., yn,tm)′ the

vector of (possibly latent) monthly counterparts to the variables that enter the quarterly model.

We transform all variables to correspond to a quarterly quantity when observed at end of the

quarter, i.e. when tm corresponds to March, June, September or December, following Giannone,

Reichlin, and Small (2008).

Consistent with our definition of the monthly variables, the vector Ytm =
(
y′tm , . . . , y

′
tm−3p+3

)′
corresponds to its quarterly model-based concept Ytq when observed in the last month of each

quarter, where tq = tm/3 for tm = 3, 6, 9, . . .

Consider a VAR model of order p > 1:

ytq = A1ytq−1 +A2ytq−2 + · · ·+Apytq−p + εtq , (5)

where tq is time in quarters, y is an n-dimensional vector of observable variables and εtq ∼
N (0,Σε). This model can be rewritten in companion form as

Ytq = ΦYtq−1 + νtq , (6)

with Ytq = (y′tq , ..., y
′
tq−p+1)′, ν ∼ N (0,Ω) and

Φ =


A1 A2 · · · Ap

In 0n · · · 0n

0n
. . . · · · 0n

0n · · · In 0n

 Ω =


Σε 0n · · · 0n

0n · · · . . . 0n

0n 0n · · · 0n

 .

Model (6) can be rewritten in terms of monthly quantities as

Ytm = Φ Ytm−3 + νtm (7)

10The Kalman filter handles the jagged edges in a reduced-form VAR. A special case is the model by McCracken,
Owyang, and Sekhposyan (2015), which required a recursive identification structure with the variables ordered
according to the time in which the data are released by the statistical office.
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when tm corresponds to the last month of a quarter.

Assume that the monthly counterpart of model (6) can be written in state-space form as11

Ytm = ΦmYtm−1 + νm,tm , (8)

with νm ∼ N (0,Ωm) and

Φm =


Φm11 Φm12 . . . Φm1p

Φm21
. . .

...

Φmp1 Φmpp

 Ωm =


Σεm 0n · · · 0n

0n · · · . . . 0n

0n 0n · · · 0n

 .

Also assume that Φm is real and stable.

The first n rows of system (8) correspond to a restricted monthly V AR of the following form:

ytm = Φm11ytm−1 + Φm12ytm−4 + · · ·+ Φm1pytm−3p+2 + εm,tm , (9)

The restriction is that current (monthly) values only depend on one month within each lagged

quarter. On the other hand, the remaining rows impose restrictions on how the (possibly latent)

lagged monthly states are updated each month with the arrival of new information.
ytm−3

...

ytm−3p+3

 =


Φm21ytm−1 + Φm22ytm−4 + · · ·+ Φm2pytm−3p+2

...

Φmp1ytm−1 + Φmp2ytm−4 + · · ·+ Φmppytm−3p+2

 (10)

One interesting feature of the relationships in (10) is that the lagged states on the left-hand

side also depend on future states on the right-hand side. Intuitively, this happens because our

assumptions require the states of the monthly model to match those of the quarterly one at the

end of each quarter, and thus all latent states within a quarter need to be updated with the

arrival of new information. Indeed, iteration implies that

Ytm = Φ3
m Ytm−3 + νm,tm + Φmνm,tm−1 + Φ2

mνm,tm−2, (11)

which together with our previous assumptions entails the following relationships between the

11If the variables considered are stocks, the formulation (8) implies no approximation, because selecting a higher
frequency just means sampling at a different frequency. If instead the variables considered are flows, then our
definition of the monthly variables as an average over the quarter implies that we are introducing a non-invertible
moving average in the growth rates. Therefore modeling this monthly concept as autoregressive introduces some
mis-specification. Doz, Giannone, and Reichlin (2012b) show the effect of such mis-specification to be small.
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quarterly model (7) and the monthly model (8):

Φm = Φ
1
3 (12)

νtm = νm,tm + Φmνm,tm−1 + Φ2
mνm,tm−2. (13)

From (12) it is clear that an essential part of finding such mapping is finding the cube root of

Φ, which raises the issue of multiple solutions. If the autoregressive matrix of the transition

equation is diagonalizable,12 i.e if there exist a diagonal matrix D and an invertible matrix

V such that Φ = V DV −1, then the cube root of Φ can be obtained as Φ = V D
1
3V −1, where

D
1
3 is a diagonal matrix containing the cube roots of the elements of D. The real elements

of D, which are associated with real-valued eigenvectors, have a unique real cube root, which

is the only one that gives rise to real values when combined with its associated eigenvector.

Complex conjugate eigenvalues instead have three complex cube roots. When combined with

their associated eigenvector, these still return a real-valued vector. Thus, if k is the number of

complex conjugate couples of eigenvalues in D, then there will be 3k real-valued cube roots for

Φ. We follow the procedure proposed in Giannone, Monti, and Reichlin (2016) to select among

these alternative cube roots of Φ: in the case of real eigenvalues, simply select their real cube

root; in the case of complex conjugate couples, choose the cube root which is characterized by the

least oscillatory behaviour, i.e. the cube root with the smallest argument. We can also evaluate

the likelihood of solutions using the Kalman filter and pick the one with the highest likelihood,

though this is more computationally intensive. In the cases we have tried it, it corresponds to the

one with the roots with the smallest argument, as in Giannone, Monti, and Reichlin (2016).13

Equation (13) implies that the monthly covariance matrix Σεm , and therefore Ωm, can be recov-

ered from

vec (Σεm) = (I +A⊗A)−1 vec (Σε) . (14)

with A =
[
Φ2
m11 − Φm11 (

∑p
i=2 Φmi1)

−1 (∑p
i=2 Φ2

mi1

)]
. The solution of (14) can become compu-

tationally costly as the number of variables increases, as it involves the inversion of an n2 × n2

matrix. However, it can be greatly simplified by noting that as long as A is diagonalizable,

so that A = PΛP−1 , the properties of the Kronecker product imply that the inverse can be

computed as

(I +A⊗A)−1 = (P ⊗ P ) (I + Λ⊗ Λ)−1 (P−1 ⊗ P−1
)
,

which is much more appealing, since (I + Λ⊗ Λ) is diagonal and thus its inverse is trivial to

compute directly.

In summary, to obtain the CR-BVAR the first step is to estimate a quarterly V AR (p) model.14

12For the non-diagonalizable case, see the discussion in Giannone, Monti, and Reichlin (2016)
13Anderson, Deistler, Felsenstein, and Koelbl (2016) show g-identifiability when (enough) high frequency data

is available.
14For our empirical exercise, we assume the same lag length and priors that we have assumed for the B-BVAR.
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Table 1: Data and timing of releases
Variable Frequency Publication timing Delay (days) Transformation FRED id
Economic Policy Uncertainty Index m 1st bus. day of the month 3 level USEPUINDXM
Purchasing Managers’ Index m 1st bus. day of the month 3 level NAPMa

Employment m 1st Friday of the month 7 log-level PAYEMS
Unemployment rate m 1st Friday of the month 7 level UNRATE
Avg. weekly hours m 1st Friday of the month 7 log-level AWHNONAG
Industrial production m middle of the month 17 log-level INDPRO
CPI inflation m middle of the month 18 log-level CPIAUSL
Loans m 3rd week of the month 26 log-level BUSLOANS
Housing starts m 3rd week of the month 27 log-level HOUST
Real GDP q last week of the month 28 log-level GDPC1
Business investment q last week of the month 28 log-level FPI
GDP deflator q last week of the month 28 log-level GDPDEF
Compensation per hour q last week of the month 28 log-level COMPNFB
Private consumption m last week of the month 30 log-level PCE
PCE price index m last week of the month 30 log-level PCEPI
Real Disp.Personal Income m last week of the month 30 log-level DSPIC96
Fed funds rate m last week of the month 0 level FEDFUNDS
Credit spread m last week of the month 0 level BAA10YM

aNow on Haver Analytics

Note: Data series are ordered based on the release timing within the calendar month. The (indicative) delay of
each release in the fourth column is relative to the end of the reference period and based on the 2017 calendar.

Given estimates of the parameters of the quarterly model (6), Φ and Ω, we define a monthly

model (8) with parameters Φm and Ωm, which can be recovered from equations (12) and (14). 
Finally, we compute the distributions of forecasts conditional on the real-time data flow, ex-

ploiting the Kalman filtering methods proposed by Bańbura, Giannone, and Lenza (2015) and

based on the simulation smoother of Durbin and Koopman (2001).

3 Nowcasting

The mixed-frequency BVARs discussed in Section 2 can be used to nowcast the economy, tak-

ing advantage of the real-time information flow, while still accounting for all the sources of

uncertainty inherent in producing the forecast. We compare the different methods outlined in
Section 2 by assessing their performance in a fully real-time nowcasting exercise. In particular,

we compare the models’ point nowcasts of US real GDP growth with the the New York Fed Staff

Nowcasts (see Bok et al., 2018) and with selected quarterly benchmarks, and we also discuss the

properties of their nowcast densities.

3.1 Data

The models are estimated on key macro variables (real GDP, real consumption, real investment,

the GDP deflator), labour market indicators (a measure of real wage inflation based on com-

pensation per employee, employment, the unemployment rate), financial market variables (the

policy rate, the spread between the annualized Moody’s Seasoned Baa corporate bond yield

and the 10-Year Treasury note yield at constant maturity), real indicators (such as industrial

production, house starts, etc...), price data (CPI and PCE price indices), a credit variables

(business loans), a measure of uncertainty (Baker, Bloom, and Davis (2016)’s economic policy 
un-
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Figure 1: Nowcasting performance per week of the quarter
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(b) Average logarithmic score

Note: The left panel compares the accuracy of point forecasts across models – measured by their Root Mean
Squared Errors – while the right panel compares the accuracy of density forecasts – measured by their Average
Logarithmic Scores – as more information becomes available in each week of the quarter. The forecast evaluation
sample is 2005-2018Q1.

certainty index) and the manufacturing Purchasing Managers’ Index (PMI). GDP, investment,

the GDP deflator and compensation per employee are available at a quarterly frequency only,

while the other variables are available at monthly frequency, or higher (in which case, we take

their monthly averages). Table 1 reports all the variables used, their frequency, their publication

lag, whether they enter the model in levels or log-levels, and their FRED id. We reconstruct

real-time weekly vintages of data that replicate the exact data availability as of each Friday

between the beginning of 2005 and the first quarter of 2018, the same convention used for the

weekly updates of the New York Fed Staff Nowcasts. in each vintage, all variables are available

since 1986m10.

The variables enter the different models in log-levels, except the PMI and those already defined

in terms of (annualized) rates, such as the unemployment rate, which enter in levels.15 To

obtain real quantities, investment and compensation per employee are deflated with the GDP

deflator, while consumption is deflated with its own price index. For the sake of parameterizing

the Minnesota prior, the uncertainty indicator and the PMI are assumed to be stationary and

hence the coefficient on their first lag is centered around zero rather than unity.

3.2 Nowcasting Performance

We start by comparing the point nowcasting performance of the BVARs, the New York Fed Staff

Nowcasts and two quarterly benchmarks over the sample period which ranges from the beginning

15As discussed in Section 2.3, for the CR-BVAR monthly variables are transformed so as to correspond to a
quarterly quantity when observed in the final month of each quarter before taking logs (see Giannone et al., 2008)
With our data, that means taking 3-months moving averages of all monthly variables.
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of 2005 to the first quarter of 2018. Figure 1a reports, for every week in the quarter,16 the root

mean square errors (RMSEs) for the point nowcasts of real GDP produced by the New York Fed

Staff (NY Fed DFM), a BVAR only using quarterly versions of our data (Q-BVAR),17 a simple

AR(2) for real GDP (AR-2), and the three approaches for mixed-frequency BVARs described in

Section 2, which are labelled B-BVAR, CR-BVAR and SS-BVAR, respectively. For the DFM,

we take the historical nowcasts available on the NY Fed website, while, for all other models, we

take as point forecasts the medians of the respective predictive densities at the nowcast horizon.

The mixed-frequency BVARs have RMSEs that are comparable to the DFM and display the

usual reduction in RMSE as the quarter progresses and more information becomes available. The

SS-BVAR presents a kink in week 5, due to a loss of accuracy in two specific episodes, namely

2009Q1 and 2009Q2. The informational advantage that comes from being able to process higher-

frequency information is evident when comparing the behaviour of the three mixed frequency

BVARs to the quarterly benchmarks: while at the beginning of the quarter the performances of

the Q-BVAR and the AR-2 are comparable to those of all other models, by the middle of the

second month, the quarterly models are clearly lagging behind, with the Q-BVAR only catching

up to a certain extent in week 14, when, at the close of the quarter, financial variables and the

PMI and uncertainty indices for the full quarter become available.

In order to assess the ability of the models to characterize the uncertainty surrounding the GDP

nowcasts18, we compute the average log predictive scores for the nowcasts at the end of each

week of the quarter (Figure 1b). The average log predictive score is a common scoring rule, used

to evaluate the quality of probabilistic forecasts given a set of outcomes, and is defined as:

Sh(M) =
1

Nh

T−h∑
t=R

ln p (yt+h|y1:t,M) , (15)

where h is the forecast horizon, R is the beginning of the forecast evaluation period, T is the latest

period for which data are available, Nh is the number of forecast origins, and p (yt+h|y1:t,M)

is the predictive density from model M estimated at time t and evaluated at the actual data

outturn.

The improvements in log scores with the arrival of new information throughout the quarter

mainly mirror the fall in the RMSEs, although the average variances of the nowcast predictive

densities also tend to become somewhat smaller throughout the quarter. As for point forecasts,

16Week 1 indicates the first week of a quarter, i.e. the one that contains the first Friday of that quarter;
week 14 is the 14th week since the beginning of a quarter, and corresponds to Week 1 of the following quarter,
i.e. contains its first Friday. So for example, the data vintage as of 7 January 2005 corresponds to week 1 of
the 2005Q1 nowcast, while 1 April 2005 corresponds to both week 14 of the 2005Q1 nowcast and week 1 of the
2005Q2 nowcast.

17The Q-BVAR corresponds to the first step needed to obtain the CR-BVAR, see Section 2.3.
18Historical density nowcasts for the NY Fed’s DFM are not publicly available, so the model is omitted from

this comparison.
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the density forecasts of the mixed-frequency BVARs perform similarly, while those of the Q-

BVAR are only ’competitive’ at the beginning and then again at the close of the quarter.

4 Policy Analysis

In this section, we present three policy exercises. First, we report the joint forecast of the annual

growth rate of real GDP and of annual PCE inflation based on the latest available information,

which relates to the current Covid-19 crisis. Second, we show that mixed frequency BVAR

models can be used for structural analysis, just like their quarterly counterparts and, as an

example, we present the generalized impulse response functions to a GDP shock. Finally, we

illustrate a counterfactual exercise aimed at forecasting the 2008Q4 Fed Fund rate in real time,

a common practice in central banks to define ”benchmark” paths for their policy rates.

4.1 The Current Conjuncture: The Covid-19 Crisis

The Covid-19 pandemic has triggered a dramatic contraction in economic activity worldwide,

and has also strongly impacted the U.S. economy. It seems therefore natural to apply the

methods discussed in this paper to the current conjuncture, using the latest available (monthly)

information.

The top panel of Figure 2 reports the distributions of the nowcasts for real GDP in Q1 2020

produced by the blocked BVAR model (B-BVAR) at the end of weeks 1 through 18 of 2020, with

the other models’ point nowcasts shown as lines, while the bottom panel relates the changes in

the point B-BVAR nowcast to various categories of data releases. As can be seen, all nowcasts

dropped considerably once March data started to become available in early April, and continued

to deteriorate with the weekly data flow; the uncertainty around the B-BVAR nowcast also

increased. Nevertheless, the preliminary GDP release on 29 April still surprised to the downside,

although it fell within the range of plausible outcomes.

VARs also allow us to analyse the joint densities of two or more variables and how they evolve

as more information becomes available over time. Figure 3 plots the joint distribution of the

B-BVAR forecasts of annual real GDP growth and PCE inflation at different dates in the first

quarter of 2020, together with their marginals. This figure describes how information about the

economic fallout from the Covid-19 crisis is reflected in the forecasts for these two variables,

both in terms of location and dispersion. Indeed, our latest forecast (as of 22 May 2020) is much

more pessimistic than those made in January and even early April, and points to a median real

GDP contraction of about 5.3% this year, while the bulk of the predictive distribution for PCE

inflation is in negative territory. The uncertainty surrounding the 22-May 2020 forecast is also

much larger compared to the two earlier forecasts.
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Figure 2: Nowcast for real GDP growth in Q1 2020
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Note: The top panel shows the probability distribution of B-BVAR nowcasts in each week from the beginning of
2020 until the preliminary relase of Q1 GDP on 29 April, the median nowcasts from the CR-BVAR and SS-BVAR,
as well as the NY Fed’s DFM nowcast. The fan chart bands cover 99% of the support around the median: the
darkest shade of blue corresponds to the median, while lighter shades represent percentiles increasingly removed
from it. The bottom panel imputes weekly changes in the B-BVAR’s (point) nowcast to existing data revisions
and new data releases, grouped by type of variable.

4.2 Impulse response Functions

Mixed-frequency BVARs can also be used to identify shocks and investigate their transmission

mechanism, thus retaining one of the most appealing features of VAR models, with the added

benefit that the analysis can potentially be also carried out at a monthly frequency.

For illustrative purposes, we present a generalized impulse response function to a one standard

deviation GDP shock (Figure 4), but other setups in terms of more elaborate identification

schemes or shocks occurring in different months of the quarter, can be easily accommodated

within all three models. Generalized impulse response functions to GDP are equivalent to a

perturbation of the forecast error of GDP in a recursively identified VAR with GDP ordered

first. These are the responses to the linear combination of structural shocks that have have been

the main historical drivers of innovations in GDP fluctuations (see, e.g., Pesaran and Shin, 1998;

Bańbura, Giannone, and Lenza, 2015).19

19The generalized impulse response functions yield results that are very similar to the responses to a typical
business cycle shock, defined as the linear combination of structural shocks that have have been the main historical
drivers of innovations of GDP variation at business cycle frequencies (see Giannone, Lenza, and Reichlin, 2019a;
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Figure 3: Evolution of the joint distribution of the forecasts for GDP growth and PCE inflation
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Note: The scatter plot shows draws from the B-BVAR’s joint predictive densities for annual GDP growth and
PCE inflation in 2020 in three different weekly vintages. The two plots along the axes show kernel-smoothed
estimates of the marginal predictive densities for the two variables in the same three vintages. Annual growth
rates are computed from the underlying projections in log levels for the corresponding variables.

Figure 4 reports the 68% credible intervals for the stacked B-BVAR model and shows the median

responses for the other two mixed-frequency approaches.20 All models produce broadly similar

IRFs, though the ones from the SS-BVAR are at times out of the B-BVAR’s credible intervals.

Consistently with the related VAR literature, a shock to GDP triggers a positive reaction of

consumption, investment, and compensation per hour, while the unemployment rate decreases

for about 12 quarters after the shock. The shock is inflationary, as reflected by the positive

reactions of the GDP deflator, CPI and PCE price indices, suggesting that demand shocks are

important driver of GDP in the US, and this is accompanied by a tightening of the Federal Funds

rate for about three years, which reflects the systematic component of US monetary policy. As

concerns other variables, there is a short-lived positive spike in the PMI index, business loans

increase rather persistently after the shock, while the BAA spread and the uncertainty index

drops, but only for a few quarters.

4.3 The Real-Time Evolution of the 2008Q4 Fed Funds Rate

In this subsection, we use our mixed frequency VAR framework to estimate the level of the

Fed Funds rate compatible with US economic conditions. We focus on the level of the Fed

Funds rate, a measure of the US monetary policy stance, in the fourth quarter of 2008 because

Angeletos, Collard, and Dellas, 2020). The similarity between the two approaches was recently documented also
by Del Negro, Lenza, Primiceri, and Tambalotti (2020).

20The CR-BVAR and SS-BVAR responses have been scaled to match the B-BVAR’s impact real GDP response.
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that was the first quarter in which the actual Fed Funds rate hit the zero lower bound due to

the intensification of the 2007-2009 global financial crisis. Specifically, we seek to answer the

question at which point, in the course of 2008, a VAR analysis would have revealed that the Fed

Funds rate was going to head decisively toward or even below zero. The estimation is carried

out for each weekly data vintage of 2008 available in our real-time database. Central banks

routinely look at counterfactual interest rate paths, such as the one we derive in this exercise,

as a benchmark to gauge whether their policy rates and the closely related short-term money

market rates are at reasonable levels, given the prevailing and expected economic conditions.21

Traditionally, the analysis of benchmark counterfactual rates has been based on the Taylor rule

framework(see Taylor, 1993), which relates the level of the short-term interest rate to inflation

and a measure of real economic activity (for recent examples, see Bernanke, 2015; Nechio, 2011;

Hartmann and Smets, 2018). At the same time, in their monetary policy briefings, central banks

rely on many different sources of information, so that the assessment of economic conditions can

be well-characterised as a Big Data problem (see, for example, Giannone et al., 2005; Bernanke

et al., 2005). Our VAR models are well equipped to capture this idea, given that they include a

relatively large amount of information. Moreover, their ability to deal with mixed-frequency data

and, hence, to account in a more timely fashion for incoming information potentially relevant

for the setting of the Fed Funds rate, allows the assessment of the benchmark policy rate to be

based on the latest news on US economic conditions.

The counterfactual path of the short-term interest rate estimates we derive for 2008Q4 is one

that would be compatible with the developments in the US economy and the historical monetary

policy rule implicit in our VAR estimates, which may be thought as a generalization of the Taylor

rule. To derive this path, we assume that the data on the Fed Funds rate for 2008Q4 are missing

also when, over the course of the fourth quarter of 2008, such data started to become available (at

monthly frequency). Figure 5 reports the level of the counterfactual Fed Funds rate for 2008Q4,

conditional on the information available at the time of the analysis (over the 52 weeks in 2008,

dates reported on the horizontal axis) and the historical regularities captured by our VAR. The

results are cast in terms of a heatmap, whereby the areas with higher probability density are

characterized by a lighter colour. For the sake of brevity, the heatmap results refer to the B-

BVAR, but the SS-BVAR and CR-BVAR results are very similar. As a term of comparison,

we also report the median estimates of the counterfactual Fed Funds rate from the Q-BVAR

described in the section on nowcasting results.

The mixed frequency VAR leads to a more timely assessment of the deterioration of economic

conditions in the US economy and, consequently, suggests that the level of the Fed Funds rate

would head toward very low levels much earlier than the quarterly VAR. Eventually, both models

21Since the zero lower bound has been reached in many countries, these exercises have taken a different twist,
whereby a very negative counterfactual policy rate is taken as an indication that additional accommodation by
means of non-conventional policy tools may be warranted (for example Giannone et al., 2019b).
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Figure 5: Counterfactual Fed Funds Rate

Note: Horizontal axis: data vintages used to compute the forecast of the 2008Q4 Fed Funds rate (52 weeks). 
Vertical axis: value of the (counterfactual) Fed Funds rate in percentage points. Areas with high probability 
density in the heatmap are characterized by lighter colours, according to the convention defined in the colorbar 
next to the plot. The red dashed line is the median of the Q-BVAR counterfactual Fed Funds rate estimated with 
the same vintages.

suggest that the Fed Funds rate would be constrained by the zero lower bound. The timeliness 
of the mixed frequency VAR is also reflected in a higher volatility of the assessment of the 
counterfactual policy rate. But since the analysis of its nowcasting performance has shown 
that the model does a good job at distilling news from noise as more and more high-frequency 
information is incorporated in the assessment, this volatility should not simply be viewed as 
noise, but rather as an inherent feature of the real-time information flow.

5 Conclusions

This paper has shown that BVARs can be successfully used to handle Big Data – i.e., a large 
set of macroeconomic time series with different frequencies, staggered release dates, and various 
other irregularities – for real-time nowcasting.

BVARs are more tractable and have several other advantages compared to competing nowcasting 
methods, most notably Dynamic Factor Models. For example, they have a more general structure 
and do not assume that shocks affect all variables in the model at the same time, they require less 
modelling choices (e.g., related to the number of lags, the block-structure, etc.), and they do not 
require the data to be made stationary.

We present three strategies for dealing with mixed-frequency in the context of VARs: first, a 
model – labelled “state-space BVAR” – which assumes that all variables are high-frequency 
time series, but that some of them are observed only every quarter. Second, we adopt the 
methodology known as “blocking”, which allows to treat higher-frequency data as multiple 
lower-frequency variables. Third, we use the estimates of a standard low-frequency VAR to
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update a higher-frequency model. We refer to this latter approach as “cube-root BVAR”.

Based on a sample of real-time data from the beginning of 2005 to the end of the first quarter of

2018, we show how these models would have nowcasted U.S. GDP growth. Moreover, we discuss

the advantages and drawbacks of each of these approaches.

Our results suggest that these models have a nowcasting performance similar to the New York

Fed’s Dynamic Factor Model, and display a clear improvement in forecast accuracy as the quarter

progresses and more information becomes available. Finally, we show that mixed-frequency

BVARs are also powerful tools for policy analysis, and can be used to evaluate the dynamic

impact of shocks and to construct scenarios, which increases their appeal as operational tools in

central banks and international organisations.
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