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Abstract

Using a novel methodology, we offer new evidence that a threshold relationship

exists for Okun’s law. We use a logistic smoothed transition regression (LSTR)

model where possible threshold endogeneity is addressed based on copula the-

ory. We also suggest a new test of the linearity hypothesis against the LSTR

model. A combination of structural and policy-related variables accounts for

changes (rises) in the Okun’s parameter in the US in recent decades. Accordingly,

the unemployment gap is increasingly associated with a smaller output gap.

Whilst the Great Recession accelerated that rise, the bulk of the change occurred

beforehand.

Keywords: unemployment, output, asymmetries, logistic transition, endogeneity,

copula, Monte Carlo, test for linearity.

JEL: C24, C46, E23, E24.
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Non-Technical Summary

Okun’s law (OL) refers to a reduced-form relationship between cyclical unemploy-

ment and output. It addresses the issue of how much a country’s output is “lost”

when unemployment exceeds its natural or trend rate. The relationship provides a

link between the labor and goods market over the business cycle, and is often consid-

ered a key empirical regularity. It is moreover a core part of many macroeconomic

models, where the aggregate supply function is derived from combining OL with the

Phillips curve which further links to policy trade offs. The relationship also bears

implications for macroeconomic policy: it records what rate of growth leads to a re-

duction in unemployment; plus, it demonstrates that the effectiveness of disinflation

policy depends on the responsiveness of unemployment on the rate of output growth.

One common and compelling criticism of the Okun’s relationship in the literature,

though, is the assumption of linearity. Many studies instead suggest that the relation-

ship is characterized by nonlinearities and asymmetries. A nonlinear asymmetric OL

would be an important finding. For instance, it would suggest that the effectiveness

(and required ‘size’) of stabilization policy on the real economy would depend in

which ‘regime’ Okun’s relationship then lies. Any non linearity in the relationship

would also have implications for macroeconomic projections. Moreover, it may affect

other recognised economic relationships such as the price and wage Philips curves.

We use a novel methodology to specifically assess the case for asymmetry. Our

econometric framework is an augmented version of the logistic smooth transition

regression (LSTR) model. The LSTR model nests the linear and standard threshold

specification for “low” and “high” values of its identified regimes. It captures smooth

transition across regimes, which may be more reasonable in macroeconomics (com-

pared to abrupt transitions), due to various adjustment mechanisms and frictions.

Notably, though, we depart from the bulk of the literature in that we do not

consider the threshold variable to be exogenous. Indeed, in as fundamental and

deep-seated a relationship as OL, this is intuitive; if there are asymmetries in OL, then
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it is likely that they should arise from the workings of the economy itself – either from

the operation of booms and busts, or from policy shifts or more persistent structural

changes. In so far as the threshold is endogenous (i.e., contemporaneously correlated

with the disturbance term of the regression), our empirical methodology explicitly

seeks to capture that endogeneity. Failure to do so leads to biased and inconsistent

estimates. To deal with threshold endogeneity, we adjust the mean of the model

conditional on the regimes identified by the threshold variable for the endogenous

effects based on copula approach.

A combination of structural and policy-related variables accounts for changes

(rises) in the Okun’s parameter in the US in recent decades. Accordingly, the unem-

ployment gap is increasingly associated with a smaller output gap. Whilst the Great

Recession accelerated that rise, the bulk of the change occurred beforehand.
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1 Introduction

Okun’s law (OL) refers to a reduced-form relationship between cyclical unemploy-

ment and output (Okun, 1962). It addresses the issue of howmuch a country’s output

is “lost” when unemployment exceeds its natural or trend rate. The relationship pro-

vides a link between the labor and goods market over the business cycle, and is often

considered a key empirical regularity. It is moreover a core part of many macroeco-

nomic models, where the aggregate supply function is derived from combining OL

with the Phillips curve which further links to policy trade offs, Mankiw (2015).

One common and compelling criticism of the Okun’s relationship in the literature,

though, is the assumption of linearity. Many studies instead suggest that the relation-

ship is characterized by nonlinearities and asymmetries (e.g., Virén, 2001; Cuaresma,

2003; Silvapulle et al., 2004).1 A nonlinear asymmetric OL would be an important

finding. For instance, it would suggest that the effectiveness (and required ‘size’) of

stabilization policy on the real economywould depend inwhich ‘regime’ Okun’s rela-

tionship then lies. Any non linearity in the relationship would also have implications

for macroeconomic projections. Moreover, it may affect other recognised economic

relationships such as the price and wage Philips curves.

We use a novel methodology to specifically assess the case for asymmetry. Our

econometric framework is an augmented version of the logistic smooth transition

regression (LSTR) model.2 The LSTR model nests the linear and standard threshold

specification for “low” and “high” values of its identified regimes. It captures smooth

transition across regimes, which may be more reasonable in macroeconomics (com-

pared to abrupt transitions), due to various adjustment mechanisms and frictions.

Notably, though, we depart from the bulk of the literature in that we do not

1 The stability andusefulness ofOLhas also beendiscussed inKnotek (2007) amongst others, andPerman

et al. (2015) provides a meta study. Cuaresma (2003) attributes the instability of this relationship to

threshold effects: the effect of growth on unemployment being more pronounced in recessions than in

expansions.

2 See van Dĳk et al. (2002) for a survey.
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consider the threshold variable to be exogenous.3 Indeed, in as fundamental and

deep-seated a relationship as OL, this is intuitive; if there are asymmetries in OL, then

it is likely that they should arise from the workings of the economy itself – either from

the operation of booms and busts, or from policy shifts or more persistent structural

changes. In so far as the threshold is endogenous (i.e., contemporaneously correlated

with the disturbance term of the regression), our empirical methodology explicitly

seeks to capture that endogeneity. Failure to do so leads to biased and inconsistent

estimates. To deal with threshold endogeneity, we draw on the Christopoulos et al.

(2019) approach by adjusting the mean of the model conditional on the regimes iden-

tified by the threshold variable for the endogenous effects based on copula approach.

Our approach builds up on the work of Kourtellos, Stengos and Tan (2016) (KST),

which include bias correction terms conditional on each regime of the model to ac-

count for the endogeneity. Our approach, however, enables us to relax the assumption

that the threshold variable is normally distributed by relying on copula theory.4 In

addition, we also allow for different variances of the LSTR regression disturbance term

and its correlation structure with the threshold variable across the two regimes. We

thus control for threshold variable endogeneity effects on the parameter estimates of

the LSTRmodel, by including copula based transformations of the threshold variable

truncated at the location parameter value. The marginal distributions of these trans-

formed variables can be estimated based on a non-parametric or density estimation

procedure.

This makes our approach of dealing with threshold endogeneity quite general

and flexible. Indeed, we avoid the problem of availability of instruments (or ‘weak’

instruments), in the case where one would like to estimate the parameters of the

model based on an instrumental variables method (e.g., as first pointed out by Park

3 As Kourtellos, Stengos and Tan (2016) discuss, the assumption of threshold exogeneity undermines

the practical usefulness of threshold regression models, since many plausible threshold variables (their

examples include trade shares, political risk) are very likely to be endogenous to the process under

consideration.

4 See Patton (2006) for a discussion of, and an economic application of, copula methods.

ECB Working Paper Series No 2345 / December 2019 5



and Gupta, 2012). Furthermore, to test for smooth transition effects in the data, we

enhance our approach by suggesting a new likelihood ratio test to detect linearity

against LSTR effects under threshold endogeneity. Both the estimation methodology

of our approach and the power performance of the suggested LR test are evaluated

through a Monte Carlo (MC) study.

The paper is organized as follows. Section 2 provides a basic discussion and

estimation of OL. Section 3 formally introduces the LSTR model. We demonstrate

that, if the threshold variable and disturbance terms in the transition regression

are correlated, then estimates of the threshold will be biased (or inconsistent). We

then present our approach to adjust the model for the endogeneity of the threshold

variables, based on copula theory. The adjusted model is estimated using a two-step

concentrated nonlinear least squares method. The method is assessed in a MC study

in the appendix. We consider the cases that the threshold variable and disturbance

term follow a normal as well as a Student-t distribution. The former allows us to

make comparisons to KST’s approach (as we have adapted it to the LSTR framework).

Generating data from the Student t distribution will show the robustness of the

method to fat tails of threshold variables often met in practice.

Section 4 describes and motivates our new linearity testing procedure to test for

smooth transition threshold effects against linearity under threshold endogeneity.

Section 5 explores threshold choices within the OL framework. We test three broad

categories drawn from the literature, classified as (i) Demand & Cyclical pressures, (ii)

Structural features of the economy, and finally, (iii) Policy & Financial variables.

Given this background, Section 6 estimatesOLassessing the selectionof the thresh-

old candidates that indicated nonlinearity in the results of the previous section. These

are mostly to be found in the last two categories. We provide estimates based on the

standard linear approach, and the LSTR model controlling for endogeneity of the

threshold variable based on our suggested approach. We also plot the resulting tran-

sition probabilities alongside the threshold as a visual plausibility test. In Section 7,

we then combine the most relevant threshold candidates into a composite index.
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Section 8 concludes.

2 Okun’s Law

OL refers to an inverse reduced-form business-cycle relationship between the unem-

ployment rate (u) and real output (Y ). The variables may be in (log or level) first

differences (the ‘first-differences’ model) or expressed in terms of trend-deviations

(the ‘gap’ model). These are respectively, given by,

∆yt = β0 + β1∆ut + ηt

where ∆yt = log(Yt)− log(Yt−1), ∆ut = ut − ut−1, and,

yct = β1u
c
t + ηt

where yct = yt − y∗t is the deviation of log real GDP from log potential real GDP

(i.e., the cyclical component of real GDP: yct ). Likewise, uct = ut − u∗t is the deviation

of the unemployment rate from its ‘trend’. Parameter β1 is the Okun coefficient in

each case (expected to be negative reflecting the trade off), and ηt denotes a stochastic

disturbance. The higher is |β1|, the steeper is Okun’s relationship and thus the higher

the output costs of a rise in cyclical unemployment.

The gap form requires us to capture latent trends and is related more to under-

standing business-cycle trade offs. It has the advantage of taking into account the state

of the economy relative to its trend or natural rate. The difference form posits a linear

relationship between the first difference of the log of output and the first difference

of the unemployment rate. The two versions are equivalent if potential growth and

the natural rate of unemployment are constant. Since this is unlikely to hold, the gap

version appears preferable (and, accordingly, is the one we emphasize).5

5 Okun’s relationship may also be augmented by ‘controls’: e.g., factor utilization measures, movements

in hours worked, capital stocks, the labor force etc – i.e., the ‘production function’ approach of Pra-
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To derive the cyclical component of the series, we explored several different filters

common in the literature. In many cases, they gave a relatively similar picture but we

chose the Christiano-Fitzgerald one since, for our series of interest, it identified the

appropriate frequencies relatively well (i.e., when approximating the ideal band-pass

filter over the standard Burns-Mitchell business-cycle frequency of 6 − 32 quarters).

Figure 1 shows both filtered series, the Okun scatter plot, the rolling regression

estimates (based on a rolling window of 75 quarters), over 1950q1-2018q4, plus the

Andrews (1993), and Andrews and Ploberger (1994) F
sup

test statistic searching for a

break in the above coefficient at unknowndate (over thewhole sample). Togetherwith

the rolling regression estimates, this test statistic can indicate if the Okun relationship

is stable and linear relationship, over the sample. If it is not, it can indicate the most

likely date after which a break occurs.

Some basic takeaways of asymmetry are revealed by the plots. For example

negative output gaps are generally deeper and more abrupt than positive ones (see

also Rothman, 1998). The gaps can also be quite changeable: in the first half (or at

least second third) of the sample output volatility far exceeded that of unemployment,

but became closer in the subsequent decades. Finally, looking at the closeness of the

scatter points, we see that the Okun co-movement has been strong at some times

and weak at others (suggesting some deviations from linearity). Rolling regression

analysis, moreover, suggests that the (unconditional) Okun coefficient has been rising

over time. Moreover, that OL may not be stable and linear can also be justified by the

F
sup

test statistic indicating a shift in this coefficient after 2000 (i.e., 2000q4). The 95%

chowny (1993) (see also Gordon, 1984; Freeman, 2001). We choose to work with the simpler form,

since it is the most common representation in the literature (and thus admits easy benchmarking).

Moreover, although the appeal of the (production-function) approach is due to its inclusion of these

additional margins, many of the proposed controls (in cyclical form) such as hours worked are so heav-

ily correlated with unemployment as to potentially dilute any intended structural interpretation of the

parameters. Moreover, the Prachowny derivation is a special case assuming that aggregate production

is Cobb Douglas and that the capital stock and a disembodied technology factor are always at their

long-run levels; these are counter factual in the US aggregate data, see Klump et al. (2007).
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confidence interval of this date is 1998q1:2006q1.6

Indeed, over our sample the economy has undergone several major events: the

productivity slowdown of the early 1970s, the major oil shocks in that decade, and

the “Great Moderation” of reduced macroeconomic volatility from the mid 1980s

onwards (variously attributed to ‘better’ monetary-policy stabilization, structural

change, greater labor flexibility). Regarding the latter, a period of prolonged ex-

pansion may have affected the Okun trade off by enticing more marginal, potentially

more flexible workers into the labor force. Moreover, such enhanced economic pre-

dictability and perceived economic prospects may have encouraged more financial

leverage, as reflected in the build up of public and private debt. Finally, there was also

the financial crisis from the late 2000s onwards (the “Great Recession”), followed in

turn by extraordinary monetary (and to a lesser extent fiscal) policy accommodation.

There were also, though, major shifts in cyclicality patterns from the mid 1980s

onwards, see Fernald andWang (2016): labor productivity turned from pro to counter

cyclical – largely reflecting theweakening pro cyclicality of factor utilization andhence

of raw TFP growth.7 Weakening pro-cyclicality in utilization points to reduced factor

hoarding. This may be due to increased flexibility in the economy, as reflected by the

expansion of female labor participation and perhaps declining labor power; it may

also reflect the decline of manufacturing and manufacturing employment (where

utilization was traditionally a more important margin of adjustment).

Estimates of OL (both variants) are shown in Table 1. Results corroborate those of

the simple scatter plot. They suggest that a unit increase of cyclical unemployment is

associated with a decline of just under 2% in output (in cyclical or difference terms).

Indeed in line with Okun’s original work, most US studies locate the (absolute) coef-

6 The critical values of the F
sup

test statistic are based on Hansen’s (1997) algorithm.

7 To see why, we can decompose labor productivity growth into growth in TFP, capital deepening

and labor quality. Since the latter two are robustly counter-cyclical, the change in labor productivity

essentially comes from the weakening pro cyclicality of raw TFP growth. Indeed in recent decades TFP

growth (net of its ‘pure’ component) has become somuch less pro-cyclical that overall labor productivity

is now judged net counter cyclical.
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Figure 1: Okun Law Variables, Correlations and Stability
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Table 1: Okun Law Coefficients

Parameters ∆yt † yct
‡

β0 0.007
(0.004)

β1 −1.661 −1.815
(0.107) (0.068)

AIC −993.318 −986.366

Notes:

†
First-differences form: ∆yt = β0 + β1∆ut + ηt where ∆yt = log(Yt) − log(Yt−1), and

∆ut = ut − ut−1. Calculations based on year-on-year changes generate similar results. The

raw data are taken from Federal Reserve Bank of St. Louis (FRED): the unemployment Rate

(UNRATE) and Real GDP (GDPC1).
‡
The gap form is given by, yct = β1uct + ηt where yct = yt − y∗t is the deviation of log real

GDP from log potential real GDP (i.e., the cyclical component of real GDP: yct ). Likewise,

uct = ut − u∗t is the deviation of the unemployment rate from its ‘trend’.

Numbers in brackets below the coefficients represent bootstrapped standard errors. AIC
denotes the Akaike Information criterion (for a given model size, the lowest AIC score is

preferred).

ficient in a (1, 3] interval. That the coefficient typically exceeds one in absolute value

(i.e., cyclical output drops by more than the increase in cyclical unemployment) reflects

different adjustment margins that amplify movements in unemployment on output.

For example some fraction of the unemployed may cease job search thus reducing

the labor force, labor productivity may fall (reflecting labor hoarding), hours worked

may fall, and the economy may weaken through the normal Keynesian spending

multiplier.
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3 A LSTR Model with Threshold Endogeneity

A type of structural threshold model that we can employ to investigate threshold ef-

fects is the following two-regime logistic smooth transition regression (LSTR) model:8

yt = x′tβ1(1− g(zt; γ, δ)) + x′tβ2g(zt; γ, δ) + εt, (1)

where yt = yct and xt = (1, uct)′ is a (M × 1) vector of independent variables, with

M = 2, βh = (β1, β2)′ denotes the vector of the slope coefficients of the elements of

vector xt in two distinct regimes, where h = {1, 2} denotes the two regimes “1” and

“2”, and εt ∼ IID(0, σ2
ε) is the disturbance term. Function g(zt; γ, δ) is a continuous

logistic function of the observable variable zt, known as the threshold variable, which

governs the transition between the two regimes:

g(zt; γ, δ) = 1
1 + exp(−γ(zt − δ))

. (2)

The value of δ ∈ R is known as the location or threshold parameter, which defines

the two regimes. Parameter γ > 0, the speed-of-transition parameter, determines the

smoothness of the transition from one regime to the other. When γ → ∞, g(zt; γ, δ)

tends to indicator function I(zt > δ), for all i. In this case, the LSTR model can be

approximated by the standard threshold model and thus, the transmission between

regimes is abrupt: the shift from regime “1” to “2” becomes instantaneous at zt = δ.

On the other hand, when γ → 0, then g(zt; γ, δ) → 1
2 . In this case, the LSTR model

reduces to a linear model, with vector of parameters βββ = 1
2(β1 + β2).

Through transition function g(zt; γ, δ), the slope coefficients of model (1) are time-

varying, depending on the value of zt. One econometric problem often encountered

in practice, though, when estimating model (1) is the endogeneity of the threshold

8 See Teräsvirta (1994). Note that the inclusion of a (potentially regime-specific) intercept in the LSTR

model algebra is for generality.
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variable zt with the disturbance term εt. Let us therefore split the sample of zt across

the two regimes as follows: Z1 = (−∞, δ] andZ2 = (δ,∞), based on a value of location

parameter δ, and assume that the disturbance term εt is distributed differently across

the two regimes, i.e., εh,t ∼ IID(0, σ2
h), h = {1, 2}. Endogeneity between zt and εh,t

means that E(ε1,t|Z1) 6= 0 and E(ε2,t|Z2) 6= 0, which implies that estimates of the

location parameter δ will be biased (or inconsistent). This in turn implies that the

estimates of all slope coefficients of model (1) will also be biased.

There are different estimation methods to tackle this endogeneity problem in

econometrics (Antonakis et al. (2014) offer a survey). The method chosen here

draws on that of Christopoulos et al. (2018) which employs copulas to capture the

dependence between the disturbance term εt and the threshold variable zt.9 This

method allows for the level of dependence between εh,t and zt, as well as the variance

of εh,t to be different across the two regimes. Copulas are functions which can

express joint probability distributions (or densities) of random variables εh,t and zt in

terms of their marginal probability density functions (PDFs) and a copula function

capturing the dependence between εh,t and zt. Based on the copula function, we can

derive a single-correlation structure of εh,t, h = 1, 2, which can be used to control the

endogeneity of zt in model (1). To this end, consider the following definition:

Definition: Let pδ ∈ (0, 1) = P (zt ≤ δ) = Fz(δ), where Fz is the distribution function

of zt. The joint distribution of the pair of random variables (εh,t,zt ∈ Zh), h = {1, 2},

can be written based on copulas as follows:

Fεhz(εh,t, zt|Zh) = Ch
(
Fεh(εh,t), Fz|Zh(zt|Zh)

)
,

where Ch is a bivariate appropriately scaled copula, with Ch : [0, 1]2 → [0, 1], Fεh is

9 Although in their study they considered the simpler TAR model.
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the marginal distribution function of εh,t, and

Fz|Z1(zt|Z1) = Fz(zt)
pδ

if 0 ≤ Fz(z) ≤ pδ

Fz|Z2(zt|Z2) = Fz(zt)−pδ
1−pδ if pδ ≤ Fz(z) ≤ 1,

are the truncated from above and below location parameter value δ distribution

functions of zt, respectively.

From the above definition, it is clear that the truncated joint distribution of the pair

of variables (εh,t,zt), Fεhz(εh,t, zt|Zh), for h = {1, 2}, constitutes a copula Ch on [0, 1]2

with uniformly distributed on [0, 1]margins, sinceFz|Zh(zt|Zh) is appropriately scaled

to integrate to unity. Based on copula theory, the conditional distribution function of

εh,t on zt ∈ Zh can be derived from Ch as follows:

Fεh|z(εh,t|Zh) = ∂

∂Fz|Zh
Ch
(
Fεh(εh,t), Fz|Zh(zt|Zh)

)
, (3)

while the conditional probability density function related to this distribution is given

as,

fεh|z(εh,t|Zh) = ∂2

∂εh∂Fz|Zh
Ch
(
Fεh(εt), Fz|Zh(zt|Zh)

)
(4)

= ch
(
Fεh(εt), Fz|Zh(zt|Zh)

)
fεh(εh,t),

where ch
(
Fεh(εt), Fz|Zh(zt|Zh)

)
= ∂2

∂Fεh∂Fz|Zh
Ch
(
Fεh(εt), Fz|Zh(zt|Zh)

)
is the copula

density function corresponding to Ch and fεh(εt) = ∂
∂εh

Fεh(εt) is the probability

density of εh,t.10 Based on the above relationships for fεh|z(εh,t|Zh) and Fεh|z(εh,t|Zh),

10 Note that the joint probability density corresponding to Fεz(εt, zt|Zh) is given as follows:

fεz(εt, zt|Zh) = ch
(
Fε(εt), Fz|Zh(zt|Zh)

)
fε(εt)fz|Zh(zt|Zh)
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it can be shown that, in the case where Ch is Gaussian and εh,t ∼ N (0, σ2
h), which is

often assumed in regression models, εh,t, has the following single-factor correlation

structure:11

εh,t = ωhz
∗
h,t + V ar(εh,t|z∗h,t)1/2uh,t, h = {1, 2} (5)

where z∗h,t constitutes a transformationof ztwhich is distributedasN (0, 1) anddefined

as,

z∗h,t = Φ−1
(
Fz|Zh(zt|Zh)

)
where Φ−1

is the quantile function of the standard normal distribution. Moreover,

ωh = σhρuh,z∗h

where ρu,z∗ is the Pearson correlation coefficient between εh,t and z∗h,t, uh,t is an

IID(0, 1) disturbance is independent of z∗t and

V ar(εh,t|z∗h,t) = σ2
h(1− ρ2

u,z∗).

Using the above representation of relationship of εh,t enables us to write model

(1) as,

yt =


x′tβ1(1− g (zt; γ, δ)) + ω1z

∗
1,t + e1,t if zt ∈ Z1 : Regime “1”

x′tβ2g(zt; γ, δ) + ω2z
∗
2,t + e2,t if zt ∈ Z2 : Regime “2”

(6)

where eh,t = −ωhz∗h,t + εh,t is a disturbance term with conditional mean E(et|z∗h,t) = 0

and conditional variance V ar(eh,t|z∗h,t) = σ2
ε(1 − ρ2), since E(εh,t|z∗h,t) = ωhz

∗
h,t from

where fz|Z1 (zt|Z1) = fz(zt)
pδ

, −∞ < zt ≤ δ, and fz|Z2 (zt|Z2) = fz(zt)
1−pδ

, with δ < zt ≤ ∞, are the

truncated from above and below pδ probability densities fz(zt).

11 See, for example, Joe (2014), Christopoulos et al. (2018).
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(5). The last, augmented with random variables z∗h,t version of model (1) can be

employed to control for the endogeneity problem of zt. The random variables z∗h,t,

added to the rhs of (6), correct the conditional mean of yt on Zh, for h = {1, 2}, for the

contemporaneous correlation between εh,t and zt (implying E(εh,t|Zh) 6= 0). This is

done, note, withoutmaking any assumption about the distribution of zt. Furthermore,

as already highlighted, it allows the distribution of εh,t and its correlation structure

with zt to change across the two regimes.

3.1 Estimation Aspects and Monte Carlo Results

Model (6) can be employed to estimate the location parameter δ and its remaining

parameters collected invector θ(δ) = (γ,βh, ω1, ω2)′ basedona two-stepnonlinear least

squares (NLLS)method, since thedisturbance termuh,t and, hence, eh,t is independent

of the transformed variable z∗h,t, for h = {1, 2}.

In particular, δ can be estimated, in a first step, by solving the following NLLS

optimization problem:

δ̂ = arg min
δ∈Qz

RSS(δ),

where RSS(δ) =
∑T
t=1 ê

2
h,t, is the residual sum of squares of (6), δ is an interior point

of Qz , since we assume pδ = P (zt ≤ δ) ∈ (0, 1). To estimate δ, note that we require

values of the transformed variables z∗h,t, given by Φ−1
(
Fz|Zh(zt|Zh)

)
. This can be

done based on non-parametric estimates of the marginal distribution Fz|Zh(zt|Zh)

(see Silverman, 1986), or based on the empirical cumulative distribution function,

denoted ECDF. Given the optimal estimate of δ̂, the slope parameters of model (1)

and the speed-of-transition coefficient γ collected in vector θ(δ̂) can be estimated, in

a second step. Following the literature on threshold models (see, e.g., Chan, 1993;

Samia and Chan, 2011), the estimator ẑδ is T -consistent and the estimates of vector

θ(δ̂), which correspond to δ̂, are
√
T asymptotically normal.

As a remark on the above estimation procedure note that, instead of the one

dimensional grid search over δ, we can carry out a two dimensional grid search over δ
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and γ (see, e.g., Leybourn et al., 1986; and Franses and vanDĳk, 2000). This procedure

may mitigate optimization problems in estimating γ, due to the nonlinear nature of

function g(zt; γ, δ). Furthermore, it can have better small sample properties, due to

grid-search process in estimating δ and γ. Given the estimates of δ and γ, then we can

estimate the remaining slope parameters, collected in vector βh, in a second step.

To evaluate the performance of our estimation approach to successfully control for

the endogeneity of threshold variable, we carry out a smallMC study, seeAppendixA.

We consider cases in which the disturbance term εh,t and threshold variable zt are

jointly normally and then Student-t distributed, with different values of the speed-

of-transition parameter γ and sample sizes T . Generating data from the Student’s

t distribution, which allows for tail dependence between uh,t and zt, can show the

robustness of our method to such features in the data.

The results of our MC clearly supports the view that our method can successfully

control for the endogeneity of zt on the estimates of location parameter δ. They also

show that ignoring this endogeneity leads to series biases in the estimates of δ. These

results hold for both the distributions of εh,t and zt considered, meaning that our

method is robust to misspecification of these distributions. For the case that εh,t and

zt are normally distributed, our method compares favorably to that of Kourtellos et al.

(2016) based on the inverse Mills ratios, modified appropriately for the LSTR model

(1). Also, our method is robust to the case that both εh,t and zt follow the Student-t

distributed. Finally, another interesting result of our MC exercise is that our method

can be implemented without any concern for bias or inefficiency of the estimates of δ

in the case where the threshold variable zt is exogenous.

4 A New Test for Linearity Controlling for Threshold Endo-

geneity

Before estimating model (1), or its extended version (6), a critical prior testing proce-

dure is to diagnose if the data supports our threshold model compared to its linear
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specification. To this end, we suggest a suitable testing procedure.

We follow recent work in the literature on threshold or LSTR models (see, e.g.,

Hansen (1996) and KılıÇ, 2016) which is focused on testing H0: β1 = β2 (implying

γ → 0) against Ha: β1 6= β2 (implying γ > 0). As noted by KılıÇ (ibid), compared to

inference procedures testing for the exclusion restrictions on the threshold variable zt

or its product terms with regressors collected in vector xt based on an approximation

of model (1) under H0, our suggested procedure may be proved more powerful for

γ values far away from the γ = 0 neighborhood.12 That is to say where the approx-

imation of (1) is not accurate and depends on the value of the location parameter δ.

Furthermore, in our simulations we found that endogeneity of threshold variable zt

makes the power performance of the inference procedures based on the above ap-

proximation of (1) even worse, due the estimation bias of the slope coefficients of the

auxiliary regression.

More specifically, to carry out a test of H0: β1 = β2 against Ha: β1 6= β2, we rely

on the likelihood ratio (LR) test statistic

LR(γ, δ) = 2(logL(θ(δ))− logL(β))

where logL(θ(δ)) and logL(β) constitute the maximum log-likelihood function of

model (1) under the alternative and null hypotheses, respectively. Note that, in order

to estimate the model under the alternative hypothesis, we will use the auxiliary

regression (6), controlling for the endogeneity of the threshold variable zt. Since

the nuisance parameters δ and γ are not identified under the null, we next suggest a

sup-version of statisticLR(γ,δ) (see Andrews and Ploberger, 1994), defined as follows:

LRsup ≡ sup
(γ,δ)∈Qγ×Qz

LR(γ, δ),

12 The initial literature of tests for linearity against threshold specifications (such as Luukonen et al.,

1998) replaced the transition function by a Taylor series expansion which is estimable under the null:

with the test amounting to testing for the significance of the interaction of the linear regressors with

the polynomial terms. See also Escribano and Jordà (1999), van Dĳk et al. (2002).
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whereQγ denotes a compact subspace on the real line, searching for an optimal value

of γ and Qz is defined as before.13 Since the distribution of LRsup
is non standard

under the null, its critical values can be obtained based on a parametric bootstrap

procedure, generating data under the null hypothesis of linearity (i.e., H0: β1 = β2).

To evaluate the power performance of statisticLRsup
, we carry out aMCexercise in

Appendix B. In this exercise, we also consider the case that we ignore the endogeneity

of threshold variable zt. The results of this exercise indicate thatLR
sup

has satisfactory

power. This is true under alternative copula functions and marginal distributions of

εt and zt considered in the MC exercise. Another interesting finding is that our test

does not lose significant power in the case where zt is exogenous.

5 Data and Threshold Candidates

Which variables might be associated with threshold effects in OL?

So far we have discussed the possibility of (endogenous) threshold variables lead-

ing to threshold effects in Okun’s law, without discussing which would be those

variable(s). We take an agnostic approach; rather than imposing a particular favored

threshold variable, we explore a number of candidates reflecting discussions in the

literature. A common feature to all, consistent with our methodology, is their likely

endogeneity to the Okun trade off.

Indeed, as already noted, OL is a reduced form relationship, its strength reflects

several influences. In that vein, Fernald et al. (2017) and Daly et al. (2018) decompose

Okun’s coefficient emphasizing the different margins and adjustment channels that

firms and households use to respond to different shocks.14 Although these authors do

not explore nonlinearity, their framework is nonetheless suggestive. For instance, la-

bor hoarding (an empirically well-established phenomenon) cushions the unemploy-

13 Note that, in practice, Qγ can be set to Qγ =
[

1
10σz ,

1000
σz

]
, where σz is the standard deviation of the

threshold variable zt, see KılıÇ (2011).

14 To illustrate, respectively, these are the extensive (e.g., labor force participation and migration etc.)

and intensive margins (e.g., hours per worker, factor utilization etc.)
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ment consequences of downturns perceived to be temporary or “small”. However,

a sufficiently large downturn (i.e., in our context, beyond some estimated threshold)

may counter labor hoarding incentives, thus changing the output-unemployment

nexus. To take another example, a deteriorating sovereign debt outlook may, beyond

some point, crowd out activity, impair financial markets and heighten uncertainty,

with implications for labor participation and factor intensity.15 That said, there may

be many feasible threshold candidates rather than merely a sparse outcome, in effect

candidates which may reinforce or counteract one another’s effects.16 Accordingly,

we also examine the performance of a composite indicator.

We classify these in three broad (and not necessarily mutually exclusive) cate-

gories: (i) Demand & Cyclical pressures; (ii) Structural; and (iii) Policy & Financial (see

Table 2).17 The main data source is the Federal Reserve Bank of St. Louis (FRED) and

the BLS (listed are symbol names, plus, where relevant their cyclical equivalent). As

before, the sample spans 1950q1 to 2018q4. In the final column, we show the corre-

sponding LRsup
test statistic and probability values for the null of linearity against

the LSTR specification (performed for the Gaussian copula).

Consider the first category of threshold candidates, Demand & Cyclical. Many

studies suggest Okun’s coefficient moves over the phases of the business cycle, and in

a nonlinear, asymmetric fashion (e.g., Lee, 2000; Harris and Silverstone, 2001; Mayes

and Virén, 2001; Cuaresma, 2003; Silvapulle et al. 2004). Common rationales for this

cyclical asymmetry include: labor hoarding; downward wage rigidity; employment

regulations; cyclical firm growth; non-constant factor substitution (Courtney, 1991)

etc. In line with this business-cycle asymmetry literature, we consider as possible

threshold variables the unemployment and ‘natural’ unemployment rate, the output

15 Reinhart et al. (2012) discuss threshold behaviour in the growth-debt nexus.

16 For an analysis of sparse and dense models, see Giannone et al. (2019).

17 Many of these are quite representative of macro US series commonly used for econometric studies,

and most are included, for instance, in the large dat set of Marcellino et al. (2006) (their economy-wide

variables anyway).
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gap, output, and inflation rates (which similarly reflect cyclical demand pressures).18

Our second category is dubbed Structural. Again this reflects various strands of the

Okun literature as well as more general themes of structural change in the post-war

US economy: namely, that various secular (though not necessarily irreversible) trends

may have imparted an effect on Okun’s coefficient. For example female labor-market

participation has risen, the employment share of manufacturing has declined as has

the labor income share, the economy experienced a ‘Great Moderation’ of reduced

volatility etc. It is not unreasonable to suppose that such changes affect the Okun

trade off.

The final category assesses Policy & Financial variables as threshold candidates in

theOkun specification. We include a variety of interest rates,19 private and public debt

ratios. Policy and financial measures, by affecting the different margins underlying

Okun’s relationship, may thus have an influence on the Okun Law parameters.

Table 2 shows around half the threshold candidates reject linearity (often at or

below 1%). Among the first category, demand or cyclical factors, only inflation and

capacity utilization come to close to significance (at 10%). This finding is interesting

since these have often been the favored candidates of past Okun threshold studies

(e.g., Virén, 2001). This, however, need not imply that cyclical pressures do not

impact Okun law parameters. But it does suggests that downturns may have long

18 Note that dichotomous (Heaviside) threshold variables (of the expansion/contraction variety) which

are often used in such analyses, such as

zt =

{
1 : Expansion if uc < 0, or yc > 0

0 : Contraction otherwise

are not feasible threshold variable types in our framework since they are not continuous.

19 We also considered the Corporate Bond Credit Spread of Gilchrist and Zakrajšek (2012), and the

National Financial Conditions Index (from the FRB Chicago). But their short sample (available from

1973 and 1971, respectively) precluded their use. Although the credit spreads share similar information

with the interest rates used since, for instance, they reflect similar monetary or fiscal shocks. Likewise,

many variables which might have been of interest, for instance inequality measures, tax burden,

‘economic and policy uncertainty’ metrics etc were excluded since they tend to be of short sample

and/or not available at a quarterly frequency. Further details of these data choices and restrictions are

available on request.
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and persistent effects; they may induce protracted adjustments in Okun margins that

extend well beyond the defined periods of recession.

The second (structural) category, also has some valid threshold candidates. The

rolling volatility measures, indicative of the Great Moderation and perhaps reduced

macroeconomic risk, can reject linearity. The labor share20, manufacturing employ-

ment share, long term unemployed (percentage unemployed for ≥ 27 weeks), and

female participation rates, illustrating important shifts in labor-market features, are

also detected.

Finally, policy and financial measures, yield a number of valid threshold candi-

dates. Both long and short policy rates, the shadow short rate (Wu and Xia, 2016)

as well as debt ratios, reject the linear specification and are thus viable threshold

candidates.

20 Note, the variant of the labor share that we use is the quarterly indexed one provided by FRED

where 2012 = 100. For comparison purposes we annualized this series and compared it to the Share

of Labor Compensation series provided by University of Groningen (also available from FRED), see

supplementary material Figure C.1.
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6 Estimation of the LSTRModel for Okun’s Law

Having presented our empirical methodology to estimate a LSTR model under en-

dogeneity of the threshold variable, and pretested for linearity, we now estimate the

model. To measure directly the magnitude of the shift in the slope coefficient of

unemployment, we estimate an augmented version of (1) with the regressors z∗1 and

z∗2 :

yct = β1u
c
t + β2u

c
t

[
1 + e−γ(zt−δ)

]−1
+ ω1z

∗
1 (I (zt ∈ Z1)) + ω2z

∗
2 (I (zt ∈ Z2)) + et. (7)

This version nests the no-threshold case, β2 = 0, wherein the Okun’s coefficient

is given solely by β1. Otherwise, it is given by β1 in the first regime and βββ = β1 + β2

in the second. Thus, β2 captures the magnitude of the shift of the slope coefficient of

unemployment from the first regime to the second, relative to the first.

Table 3 presents model estimates for two cases: Panel A ignores endogeneity of

the threshold variable and Panel B allows for it. The latter is based on our preferred

estimation approach already presented, including the copula-transformed variables

z∗1,t and z∗2,t into the rhs of (7) with the attendant parameters ω1 and ω2. For bet-

ter small sample estimation properties, we present bootstrapped standard errors (in

parentheses). These are calculated based on a wild parametric bootstrap method

(see Davidson and MacKinnon, 2007). For γ and δ, confidence intervals are shown in

braces, based on that bootstrapmethod. We also present values of information criteria

in order to compare the model with its earlier linear (no-regime) specification.21

6.1 Results

Table 3 shows the estimated β Okun parameters (again mostly within the 1, 3 range),

and the threshold and speed of adjustment parameters, δ and γ respectively. In the

endogenous case, we also show the ω parameters (we scale up by 100 for legibility).

21 Supplementary Table C.1 presents summary statistics of the threshold variables.
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Finally we present theAIC and the sample percentage residing in the second regime,

denoted D222.

To aid interpretation consider the case,

β1 < βββ < 0, (8)

where, to recall βββ = β1 + β2. If condition (8) holds, this implies that a given unem-

ployment gap is associated with a larger output gap in the 1st regime, relative to the

2nd. Accordingly, for a given unemployment gap, we can think of regime “1” with the

larger in absolute magnitude in β as the ‘steeper’ regime, while regime “2” with the

flatter.

For instance, when public debt is below its threshold of around 40% of GDP,

δd = 0.404 in panel B, the output gap is about three times as large as theunemployment

gap (β1 = −3.217). Otherwise, when debt exceeds its threshold, they move around

one-to-one (βββ = −0.974). Consider also female labor force participation. This has

been rising through most of the sample, boosting growth and countering the decline

in male participation. Accordingly, any unemployment falls over this period would

have had a more expansionary effect on cyclical output relative to the period (from

the mid-1990s onwards) when that increase abated and reversed: i.e., β1 = −1.967 vs.

βββ = −1.417. Indeed, several studies have found Okun’s coefficient to be sensitive to

female participation rates (e.g., Lee (2000)).

Results can be supplemented by examining the transition probabilities. Figures

2-3 plot the threshold time series, z, overlaid with threshold scalar δ, and the tran-

sition probabilities g(zt; γ, δ).22 Note we see the graphical analogue of the speed of

adjustment parameter values. The γ estimates are significantly different from zero

but quite heterogeneous in value. The higher is γ the more rapid is the transition

22 The equivalent plots with the NBER recession dates overlaid are provided for reference in supplemen-

tary Figure C.2-Figure C.3.
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between regimes.23 High values, i.e., γ ≥ 10, as in un, prf and il often have volatile

and rapid adjustment transition probabilities. The labor share and the debt ratios

exhibit intermediate transitions, i.e., γ ∈ [1, 10). Finally, the lowest speeds adjustment

speeds, i.e., γ ∈ (0, 1), are given by long-term unemployment, ul, macroeconomic risk,

the short rates, and manufacturing labor share.

Several interesting conclusions can be drawn from the transition probabilities. For

instance, they imply both highly persistent (long lived) and less persistent (temporary)

regime shifts of the OL. In the first category of shifts, we can include economic

volatility and the debt series (whose transition occurs around mid to late 1980s), and

the labor income share, manufacturing employment share and female participation

rates (whose transition occurs in the mid to late 1990s).24

Second, the category of variables that imply short-term shifts of the Okun law

consists of most of the policy/finance threshold variables (such as the interest rates,

and perhaps also with the long term unemployed). These shifts and the transition

probabilities are, like the series themselves, quite volatile with a cyclical (oscillatory)

pattern and they do not impact immediately between the regimes. Regarding interest

rates, the three rates point in the same direction. In the aftermath of the Great

Recession, they identified a regime of substantially less steep Okun coefficients (βββ ≈

−0.8,−0.9). In other words, the unemployment and output gapmirrored one another

almost one to one. The behavior of unemployment at the onset of the Great Recession

is testament to that: unemployment rose more sharply after the financial crisis than

would otherwise have been predicted.25

Firmsmayhave understood early on the severity of theGreat Recession and choose

23 This recalls the distinction made by Bernanke et al. (2005) who discuss ‘slow’ and ’fast-moving’

variables.

24 Regime wise, the natural rate is a little more opaque. The natural rate peaked in the late 1970s and fell

monotonically thereafter (barring the period of the Great Recession). The start of the protracted fall

from 1980s, though, traverses the (bootstrapped) upper confidence interval of the threshold.

25 The rate of unemployment has also fallen more than the law would have predicted since the Great

Recession.
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to engage in less labor hoarding than otherwise (implying rising labor productivity),

andperhaps substituted towardsmore capital-intensiveproduction. Thus, this regime

of more accommodative monetary policy was associated with substantially flatter

Okun’s trade offs. These results would speak to the possible state dependence of

monetary and fiscal policy.26

26 More generally, Auerbach and Gorodnichenko (2012) found that for the US the size of the fiscal

multiplier appeared to be state dependent; thus the state of the economy and policy effectiveness

are innately liked. Moreover there is a growing literature on state dependency in monetary policy,

particularly around the effective lower bound (see Woodford, 2012).
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Table 3: Threshold Okun Law Results

labsh† un prf ul d σyc
t(10)

is is,xw dp il lmanu

Ignoring Endogeneity

β1 -1.246 -0.760 -1.967 -2.194 -2.562 -1.593 -1.413 -1.414 -2.024 -0.876 -0.926

(0.097) (0.206) (0.076) (0.117) (0.251) (0.107) (0.091) (0.091) (0.081) (0.185) (0.165)

β2 -0.714 -1.355 0.519 1.339 1.659 -0.923 -0.651 -0.651 0.575 -1.243 -1.035

(0.122) (0.283) (0.112) (0.277) (0.504) (0.251) (0.147) (0.147) (0.126) (0.256) (0.197)

βββ -1.960 -2.115 -1.448 -0.855 -0.903 -2.516 -2.064 -2.065 -1.449 -2.119 -1.961

δ 107.519 0.050 0.059 26.100 0.625 2.078 4.310 4.340 34.160 0.004 10.562

{107.500,107.8210} {0.0491,0.0591} {0.037,0.591} {16.100,25.200} {0.402,0.932} {1.482,2.062} {4.060,4.460} {4.001,4.560} {34.100,32.200} {0.0025,0.084} {10.157,10.958}

γ 5.5 303.9 340.0 0.1 3.5 3.3 2.0 2.0 2.9 70.0 0.6

{4.10,7.30} {301.20,307.26} {300.00,341.00} {0.09,0.30} {0.10,4,00} {1.50,5.00} {1.01,3.452} {1.30,3.50} {1.50,3.40} {68.50,71.50} {0.30,2.60}

D222 75.00 83.69 40.94 10.51 34.78 11.79 52.14 51.75 52.04 75.32 80.14

AIC -1006.02 -1004.51 -1002.56 -1002.96 -1000.19 -860.86 -934.79 -934.88 -976.13 -863.40 -1002.91

Controlling for Endogeneity

β1 -1.275 -0.551 -1.967 -3.135 -3.217 -0.660 -0.825 -0.872 -1.992 -0.878 -0.824

(0.124) (0.275) (0.974) (1.544) (1.596) (0.344) (0.389) (0.338) (0.894) (0.170) (0.145)

β2 -0.689 -1.546 0.550 1.915 2.243 -1.991 -1.391 -1.336 0.551 -1.289 -1.134

(0.162) (0.475) (0.278) (1.052) (1.180) (0.866) (0.543) (0.495) (0.279) (0.650) (0.185)

βββ -1.964 -2.097 -1.417 -1.220 -0.974 -2.651 -2.216 -2.208 -1.441 -2.167 -1.958

δ 107.919 0.049 0.569 7.500 0.404 0.012 2.160 2.140 34.730 0.044 10.173

{107.10,107.921} {0.0489,0.0591} {0.369,0.591} {6.500,10.200} {0.402,0.822} {0.010,0.015} {0.160,2.960} {1.010,2.910} {34.700,34.800} {0.035,0.075} {9.657,10.557}

γ 5.1 309.1 340.0 0.1 3.0 0.9 0.4 0.4 2.2 61.7 0.6

{4.60,70.00} {307.50,310.10} {300.00,341.00} {0.09,0.301} {0.100,4.000} {0.872,1.420} {0.10,1.90} {0.10,1.90} {0.9,3.40} {60.0,63,01} {0.30,2.30}

100ω1 0.020 0.080 -0.004 0.300 0.100 0.100 0.070 0.050 -0.010 0.060 0.040

(0.019) (0.043) (0.045) (0.207) (0.043) (0.039) (0.039) (0.026) (0.005) (0.051) (0.031)

100ω2 -1.280 -0.009 1.260 0.200 -0.010 -1.000 -0.700 -0.700 -0.700 -0.900 0.020

(0.676) (0.005) (3.500) (0.168) (0.010) (0.586) (0.330) (0.325) (0.400) (0.473) (0.159)

D222 73.18 89.85 40.94 86.96 90.22 58.96 75.48 75.09 51.67 67.96 80.14

AIC -1018.72 -1003.24 -1000.41 -1008.10 -1000.01 -862.43 -936.05 -936.41 -974.22 -865.16 -1004.67

Notes:
†
Recall that the variant of the labor share that we use is the quarterly indexed one provided by FRED where 2012 = 100.
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Finally, in terms of comparing exogenous-endogenous threshold results, female

labor force participation and employment inmanufacturing are revealed as exogenous

threshold types (ω coefficients in these equations are insignificant). This is perhaps

not so surprising. Increasing trend female labor participation, though doubtless influ-

enced by economic incentives in many ways, is generally regarded more as a cultural

and demographic phenomenon, Bullard (2014). Likewise, the declining employment

and value added share of manufacturing is a long standing trend, reflecting changes

in global trading relations and shifting comparative advantages etc.

7 A Composite Threshold Variable

Our analysis suggests that many of the regime shifts triggered by the threshold vari-

ables examined co-move. This is true for both long-lived and more temporary shifts.

Table 4 corroborates this showing the extent of the correlations among the {0, 1} tran-

sition probabilities across regimes for all z candidates (all cross-correlations turn out

to be significant at 1%). This co-movement can be attributed to common, or related,

sources of information and economic events underlying the threshold variables trig-

gering the threshold effects inOL. Aswe saw, these appearmostly related to structural

and/or financial policy changes.

Accordingly, we now combine these different information sources into a single

common factor and, then, (re-)estimate threshold model (7). The threshold factor

effects considered can summarize and smooth out all the alternative sources of the

OL regime shifts, which are related, and can potentially better describe and account

for the total effects of such shifts over time. Consider theK-dimension column vector

of the significant threshold variables considered, defined as Z = [zj ], j = 1, 2, ...,K.

For notational convenience, we drop time-subscripts from zjt. This then implies that

the PCs, or factors, collected in column vector p, can be written as

Ci = p′iZ, i = 1, 2, ...,K
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Table 4: Correlation of the Transition Probabilities

labsh un prf ul d σ2
y is is,wx dp il lmanu

labsh 1
un 0.84 1
prf −0.57 −0.59 1
ul −0.71 −0.66 −0.49 1
d −0.75 −0.81 0.58 0.74 1
σ2

y 0.54 0.62 −0.68 −0.23 −0.55 1
is 0.66 0.78 −0.42 −0.72 −0.76 0.49 1
is,wx 0.67 0.77 −0.43 −0.74 −0.78 0.47 0.99 1
dp −0.59 −0.63 0.84 0.54 0.71 −0.58 −0.42 −0.41 1
il 0.67 0.82 −0.36 −0.56 −0.73 0.53 0.90 0.91 −0.32 1
lmanu 0.88 0.94 −0.53 −0.75 −0.81 0.50 0.81 0.79 −0.60 0.80 1

Notes: The table presents estimates of the correlation coefficients of the transition probabilities from regime 1 to “2”
for variables zj which trigger significant threshold effects.

where p′i is the i
th
-row of an orthogonal matrix P = [pij ] (normalized, i.e., P ′P = I)

such that P ′ΣzP = Λ = diag[λi], with λ1 ≥ λ2 ≥ ... ≥ λK ≥ 0, where Σz is the

covariance matrix of vector Z and Λ is the matrix of the eigenvalues of Σz , denoted λi,

by the spectral decomposition theorem. Note that the first factor C1 (which, to recall,

accounts for the single largest part of the data variation) corresponds to the largest

eigenvalue λ1. The covariance and correlation loading coefficients between Ci and a

threshold variable zj , j = 1, 2, ..,K, collected in Z, are respectively given by

cov(Ci, zj) = pij
√
λi and ρij = pij

√
λi

σzj

Note, the correlation loading coefficients are net of the effects of differences in the

variances of series zj . The proportion of the variation of the data accounted for

by the first v-PCs is given as ρ2
v =

∑v

i=1 λi∑K

i=1 λi
. To formally examine if the first v PCs

are non trivial (i.e., reflect a systematic pattern of variation of the data providing a

meaningful interpretation of the data) we apply some testing procedures suggested

in the literature (see Peres-Neto et al. (2005)).
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7.1 Results

Table 5 reports estimates of model (7) based on a PC factor as the threshold variable.27

Bootstrap standard errors are in parentheses and confidence intervals in braces. Panel

A is based on standardized deviations of the variables of vector Z from their mean

(i.e., z̃j = zj−µzj
σzj

), while Panel B uses transformation

...
z j = zj−zmin

j

zmax
j −zmin

j
. Both transfor-

mations re-scale the original variables zj to avoid the influence of differences in the

measurement units and quantities of zj ’s.

The PC analysis based on standardized variables z̃j has the following useful prop-

erty. It weights equally the contribution of the variance of each series zj into the

variation Ci, otherwise variables with a larger variance will have larger cov(Ci, zj)

and ρij on the first PC C1 (see, e.g., Timm (2002)). Yet, most of the tests determining

the number of the non-trivial PC rely on standardized data.

The second rescaling method, based on

...
z j , has also two main interesting and

novel features: (1) it also makes results independent of the measurement units; (2)

it provides an indexed-factor between 0 and 1, which may aid interpretability. Note

that, in contrast to standardized variables z̃j ,
...
z j will not have the same variance for all

j. Although the variance of

...
z j will be less than unity, it can differ across j. This is a

useful property of transformation

...
z j , if it is meaningful economically to weight more

the variables of the PC C1 with higher variability. This transformation can achieve

this, without depending on differences in the scale across the original variables zj .

Regarding the AIC, the versions of the threshold model with these two scaled

threshold variables constitute superior specifications of the data compared to those of

Table 3. Results suggest the following. First, the values of theLRsup
validate that there

are significant threshold effects in OL. Second, the coefficients β1 and βββ demonstrate

that there are substantial differences in the OL slope between its two regimes and that

27 To check robustness with respect to the frequency of the data, we re-ran our exercises on annual

data. Results were qualitatively similar. The longer regime has an OL coefficient of around −2 and

−1 otherwise. The estimates are shown in supplementary material Table D.1. The corresponding PCs

and transition functions are plotted in supplementary Figure D.1.
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the speed of transition between regimes is quite high: γ ≈ 10.

For both scaling methods of z, we present estimates of the eigenvalues λi and

the proportion of variation ρ2
v, for v = 1, 2, ...,K, the correlation loading coefficients

ρij for C1 and the model estimates considering C1 as the threshold variable. This

first factor is found to be the only non-trivial factor spanning the data, based on

the Broken-Stick and Auer-Gervini methods determining the number of factors to

retain.28 Further support that C1 can sufficiently summarize the related information

of the data can be obtained by the much higher value estimates of λi forC1, compared

to the remaining PC factors reported in the table. The ρ2
v=1 estimates indicate that C1

explains roughly 70% of the data variability, while the estimates of ρij imply that all

variables zj contribute to the sample variation of C1 and are substantially correlated

with it. The estimates of ρij for the indexed-factor C1 (see Panel B), which weights

more the series zj with the higher variation indicate that, among all variables zj , those

having the higher correlation and contribution to the variation ofC1 are the following:

lmanu, un, d, dp and prf (cells marked in gray).

Figure 4 demonstrates that both scaling methods provide smooth and broadly

consistent patterns of movements of factor C1 and the accompanying transition prob-

abilities. In fact, they indicate that there essentially exists only one regime transition

from a steeper to a flatter OL. The steeper slope lasts until the end of 80s (early 90s),

with high probability (almost 90%). After this, there is a tendency to move to a flat-

ter Okun relationship, which is noticeably more likely after the financial crisis. The

threshold is less precisely estimated under the first scaling method, although the fact

that the transition to a flatter OL traverses the upper confidence limit for δ is also

interesting and informative.

Third, the positive sign of the estimates of loading coefficients ρ1j , indicate that

important sources of the steeper OL relationship (more likely in 70s and 80s) are the

28 These methods are found to work satisfactorily in a number of simulation studies (see Peres-Neto et al

(2005), for a survey). The Broken-Stick test statistic compares the variance of factors Ci with the values

expected from the broken-stick distribution, while the Auer-Gervini method is Bayesian and relies on

the model selection criterion (see Auer and Gervini (2008)).
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higher levels of labor income share, manufacturing employment share, the natural

rate of unemployment and interest rates. On the other hand, important sources of

occurrence of a more flat Okun relationship and a transition to such a regime are

the following: the further increase of the public and private debts since 90’s and

middle 80’s, respectively, the decline of policy interest rates, especially after 2000, and

the slight positive trend of long run unemployment since the 80s (plus female labor

participation).

These can be justified by the negative sign of the estimates of ρ1j . These results

hold for both re-scaling methods. They are also consistent with our earlier estimates

of Table 3. This means that the threshold factor C1 can efficiently summarize the

sources of the OL relationship threshold effects examined, over time. This factor

may be thus prove a useful policy tool in indicating possible shifts in the relationship

between unemployment and economic activity and taking appropriate actions to

offset adverse effects of such shifts.

Finally, regarding the issue of endogeneity of factor C1, results demonstrate that

ignoring this leads to different estimates of the parameters of the threshold model,

especially the βs and γ. The estimates of γ and their standards errors imply that

this issue is important, especially in regime “2”, where λ2 is clearly different than

zero at 5% (or less). Further support for estimating dealing with the endogeneity of

factor C1 can be obtained by the values of AIC reported in the table. These show

that the versions of the model controlling for the endogeneity of C1 fit better the data,

compared to those that do not.
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Figure 4: Transition Probability (Principal Components)
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Notes: This figure graphically presents estimates of the factor C1 against the transition probability of the model

using C1 as the threshold variable. This is done for the two methods scaling the data. The first is based on stan-

dardized variables z̃j =
zj−µzj
σzj

, while the second is based on

...

z j =
zj−zmin

j

zmax
j
−zmin

j

, scaling zj in the interval [0, 1]. As

before, the series in blue is the PC, and in red dashed we have the transition probabilities. See also notes to Figure 1.

8 Conclusions

Okun’s law is a building block of many macro-econometric models and often con-

sidered an empirical regularity. We examined the possibility of asymmetries in that

relationship. Specifically, we considered a nonlinear, smooth transition regression

model, exploring a variety of candidate threshold variables. Our paper makes two

main contributions. The first is methodological, the second is empirical.

In terms of methodology, our work has two distinct components:
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(a) We allow for endogeneity in the threshold variable using copulas to cap-

ture the dependence between the disturbance term and the threshold

variable in the context of a LSTRmodel. The copula approach admits nor-

mal and non-normal dependencies, thus adding an additional flexibility

in modelling the endogeneity.

(b) We suggest a new testing procedure to test for smooth transition threshold

effects against linearity under endogeneity of the threshold variable.

Both the copula based approach and the linearity testing procedure suggested are

evaluated throughout a MC study.

Regarding empirics, which is our second main contribution, we establish that

threshold effects can be detected in Okun’s relationship. We find a combination of

structural andpolicy-related variables accounts for changes in theOkun’s law trade off

in recent decades. This conclusion is bolstered by combing these threshold candidates

into a single factor. We found regime-like behavior with Okun’s coefficient rising (or

flattening) over time: from around ≤ −2 over the 1960s-1980s, then a slow transition

to a value around ≥ −1. Thus the unemployment gap is increasingly associated with

a smaller output gap. Moreover, whilst the Great Recession accelerated that rise,

interestingly, the bulk of the change occurred beforehand. This, in turn, corroborates

our finding that both structural and non structural factors were at play. Of our can-

didates, special emphasis lies with manufacturing employment, female participation,

the natural rate of unemployment and the private and public debt series.

The work done here, moreover, could be extended. An interesting controversy

in the literature is whether OL holds outside the US and in particular for countries

characterized by less flexible labor and product markets. More generally, though,

our endogenous threshold LSTR model could prove useful for additional applica-

tions such as in studies of growth, trade and finance where threshold models have

often been used to analyze asymmetries (albeit in a more restrictive form than that

considered here) and may thus yield new or more robust insights.
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APPENDICES

A Monte Carlo

In this section, we present the data generating processes (DGP) and results of the

Monte Carlo (MC) exercise touched upon in the main text. Our first exercise exam-

ines the performance of the estimation method suggested to estimate the location

parameter δ accurately and the ability of our method to successfully control for the

endogeneity of threshold variable zit in the LSTR model. The second exercise (in

Appendix B) evaluates the power performance of test statistic LRsup
.

The DGP that we consider to estimate δ is as follows:
1

yt = (β11+β12x2t+β13x3t)(1−g(zt; γ, δ))+(β21+β22x2t+β23x3t)g(zt; γ, δ)+εt, (A.1)

where x2t ∼ IIDN (0, 1) and x3t ∼ IIDN (0, 1) are exogenous, i.e., E(εt|x2t) =
E(εt|x3t) = 0, and the values of the slope coefficients across the two regimes of

the model are given as follows:

Regime 1: β11 = 0.5, β12 = 2 , β13 = 1,

Regime 2: β21 = −0.7, β22 = {1.5, 3.0} , β23 = 0.

These values imply quite small differences in the slope coefficients of model (A.1)

across its two regimes, which are difficult to detect. They are chosen to highlight the

ability of our method to lead to accurate estimates of δ even for very small in size

shifts of the slope coefficients of the model.

For the regression error term εt and threshold variable zt of the above mentioned

DGP, we consider the normal and the Student-t distribution, with four degrees of

freedom. Using data from the Student’s t distribution will show if our method, based

on the transformations of the quantile function of the standard normal distribution

, i.e., Φ−1
, can be proved robust to a misspecification of the true distributions of εh,t

and zt, like the Student’s t often assumed in econometrics. For reasons of space,

we present results for the cases that the distribution of εt, and correlation structure

between εh,t and zt do not change across the two regimes of the model. For zt,

1

Both the DGP and the values of its parameters considered in our simulation analysis are close to those

considered in the simulation studies of, for instance, Lundbergh, Teräsvirta and van Dĳk (2003).
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we assume zt ∼ IID(zµ, 1), with zµ = 3.0, while, for the correlation coefficient

between εh,t and zt, we consider the following set of values: ρεz = {0.0, 0.55, 0.75}, for
h = {1, 2}. The structure of the threshold variable is given as follows:

zt = δ + cεzvt + ζt (A.2)

where εt ∼ tDF=4 and ζt ∼ tDF=4, for all t. The value of coefficient cεz is chosen to

control for the degree of correlation between εit and zit

The threshold value δ is set to the 25% percentile (1
st
quantile) of the distribution

of zt. We also examined threshold values at the 75% percentile (3
rd

quantile) of this

distribution, but the MC results do not change qualitatively. The values of the speed

of adjustment considered are set to γ = {1.5, 3.5}. These values reflect the cases that
the transition between the two regimes is low and high, respectively. Following other

studies, we treat the above values of γ as known in our analysis, reflecting that our

interest is focused on the estimation bias of δ. Sincewe are focused on the performance

of our method to control for the endogeneity of zt on the estimates of δ, we do not

report results for the remaining parameters of the model, i.e., ω1, ω2 for reasons of

space.

We consider sample sizes of T = {50, 250} observations and carry out 1, 000
iterations. For all iterations, we calculate the bias and the root mean square error of

the estimator of δ. In Table A.1, we present average values of the above metrics, over

all iterations, denoted as BIAS and RMSE, respectively. The table presents different

sets of results. Panel A presents results ignoring the problem of the threshold variable

endogeneity in the estimation. Panel B controls for this problem, based on ourmethod

by including in the rhs of (A.1) the bias correction terms z∗h,t, h = {1, 2}.
Panel C presents results for the case that Kourtellos’s et al. (2016) approach for

thresholdmodels, appropriately modified for the LSTRmodel, is employed to control

for the endogeneity problem of zt. This approach adjusts equation (A.1) by estimating

the expectation terms E(εt|zt ≤ δ) and E(εt|zt > δ), capturing the bias of zt across

the two regimes of the model, based on the inverse Mills ratio terms assuming that

both εt and zt are normally distributed. To calculate these ratios, we assume that

zt ∼ IIDN (zµ, 1) has the following single factor presentation:

zt = zµ + 0.95ζt + ezt, (A.3)

where ζt ∼ IIDN (0, 0.5) and ezt ∼ IIDN (0, 0.5) and zµ = 3.0. Finally, Panel D
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presents results for the case that our method is applied to the case that εh,t and zt are

jointly Student-t distributed.

Results lead to several interesting conclusions. First, they indicate that ignoring the

endogeneity of threshold variable zt causes serious biases in the estimates of threshold

parameter δ. Specifically, it tends to overestimate the true value of δ. Moreover, as

expected, the bias of δ is substantial inmagnitudewhen the correlation between zt and

εt is high, i.e., 0.75. The magnitude of the bias also depends on the different values of

γ considered. The bias is bigger, the smaller value of γ considered, i.e. γ = 1.5, than
γ = 3.5, and it remains even if T increases.

A second conclusion is that our method can successfully control for the endo-

geneity problem of the threshold variable. The method can substantially reduce the

estimation bias of δ. This is true even if the sample size is small (i.e., T = 50). As

expected, the bias of δ reduces as the sample increases (i.e., T = 250). The bias also

reduces, when γ increases (i.e., the LSTRmodel approaches the TAR, where the shifts

of the model are faster across the two regimes). Similar conclusions to the above also

hold for the RMSE. These results are also robust to the different distribution of εh,t

and zt considered, namely the Student’s t. This is clearer for the case of the larger

size of T = 250. Note that, for the case that both εh,t and zt are normally distributed,

the performance of our method successfully compares to that of KST. Actually, our

method seems to have better small sample (i.e., T = 50) performance relative to KST.

Finally, the results indicate that the estimation of the augmented regressionmodel,

which controls for the endogeneity of the threshold variable, leads to unbiased esti-

mates of δ even if there is no threshold variable endogeneity (i.e., ρεz = 0). This result
is more clear cut for the cases that T is large.
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B Power of the Test Statistic LRsup

We present values of the power performance of statistic LRsup
for the LSTR model

(A.1), employed in our previous MC exercise, where the threshold parameter value

δ is set at its 3rd quantile. For reasons of space, we do not report results for the case

that δ is at the 1st quantile and we consider only the case of β22 = 1.5. The remaining

slope parameters are set as in the previous MC exercise. We also consider the same

simulation scenarios with that exercise for ρεz = {0.0, 0.55, 0.75} and T = {50, 250}.
To calculate the power of the test statistic, we need first to obtain its distribution

under the null hypothesisH0: β1 = β2 = β and obtain its critical value, corresponding

to the 95
th
-quantile of its simulated distribution. To this end, for each iteration we

generate the error term εt ∼ IID(0, 1) and threshold variable zt ∼ IID(3, 1) from

a joint distribution of them, while x2t and x3t are generated as x2t ∼IID N (0, 1) and

x3t ∼IIDN (0, 1), respectively. Given these generated series, we then generate series yt

under null hypothesis based on model yt = x′tβ + εt , where β1 + β2 = 1
2(β1 + β2); β1

and β2 are defined as in the previous exercise.

Based on the generated series yt, next we estimate model (A.1) under both the

null and alternative hypotheses and, then, we calculate the test statistic LRsup
, over

all possible values of γ and δ, based on 1, 000 iterations. In so doing, note that we trim

out the top and bottom 10 percentiles of the distribution of δ, while for γ we rely on

the set of values Qγ =
[

1
10σz ,

100
σz

]
.
2
Also, under the alternative hypothesis, the model

is adjusted by the bias correction terms z∗h,t, h = {1, 2} to control for the endogeneity of

the threshold variable.

Given the critical values of LRsup
, at the 5% level, the power of the test, which rep-

resents rejection frequencies of the above null hypothesis, is calculated by generating

data under the alternative hypothesis the alternative hypothesisHa: β1 6= β2, namely

model ( A.1). The remaining steps of the MC exercise are as above. For each iteration,

the error term εt, the variables x2t and x3t, and the threshold variable zt are generated

as before, while in estimating δ we trim out the top and bottom 10 percentiles of its

distribution, while for γ we rely on the set of values Qγ =
[

1
10σz ,

100
σz

]
. To see if the

power of the test depends on ignoring the issue of the endogeneity of the threshold

variable zt, we also present results for the case that model (A.1) is not adjusted by the

terms z∗h,t, h = {1, 2} to calculate statistic LRsup
.

The results of the power of the test are reported in Table B.1. These indicate that

2

We found that extension of Qγ to include higher values of γ does not affect our simulation results.
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the power of the test statistic LRsup
is high and close to unity for all the cases of γ

and ρεz considered. They also indicate that ignoring the endogeneity of the threshold

variable leads to a version of the test statistic which has less power. However, this

is more clear for the case that γ = 3.5. Another interesting result is that the power

performance does not depend on the adjustment ofmodel (1) for possible endogeneity

of threshold variable (see model (6)) when ρεz = 0. This result was expected. Unless

there is a serious degrees of freedom problem, it means that augmentation of this

auxiliary regression by the transformed variables z∗ht does not affect the power of

statistic LRsup
and, hence, it can be safely implemented, in practice, for all possible

values of the correlation coefficient ρεz . The above results are robust to the different

values of γ and T considered.

Table B.1: Power of test statistic LRsup
with β22 = 1.5

No Controlling For

Endogeneity Endogeneity

cεz γ = 1.5

0.00 0.910 0.926 0.896 0.936

0.55 0.837 0.886 0.870 0.934

0.75 0.781 0.826 0.868 0.925

cεz γ = 3.5

0.00 0.852 0.893 0.827 0.896

0.55 0.766 0.833 0.812 0.896

0.75 0.687 0.762 0.804 0.895

T 50 250 50 250

Notes: The table presents the power of test statistic

LRsup ≡ sup
(γ,δ)∈Qγ×Qz

LR(γ, δ)

under the alternative hypothesisHa: β(1) 6= β(2)
, at the 5% nominal size, for model (A.1). The critical values of the

test statistic are simulated under the null H0: β(2) = β(2)
, for alternative N and T . We use the parameter values

from Appendix A but concentrate on the β22 = 1.5 case.
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C Additional Material

C.1 Additional Figures

Figure C.1: Comparisons of FRED Labor Income Share Series

Nonfarm Business Sector: Labor Share (PRS85006173)

Share of Labour Compensation in GDP at Current National Prices (LABSHPUSA156NRUG)
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C.2 Additional Tables

Table C.1: Summary Statistics of Thresholds

Variable Obs Mean Median Std. Dev. Min Max δ

labsh 276 109.294 110.502 4.524 98.150 117.495 107.919

ul 276 0.161 0.141 0.090 0.033 0.452 0.075

un 276 0.055 0.055 0.005 0.046 0.062 0.049

prf 276 0.501 0.537 0.092 0.333 0.601 0.569

d 276 0.581 0.572 0.212 0.306 1.053 0.440

dp 269 0.353 0.356 0.071 0.221 0.467 0.347

is 258 4.824 4.560 3.609 0.070 19.100 2.160

is,wx 258 4.679 4.560 3.826 −2.890 19.100 2.140

il 236 0.061 0.058 0.029 0.016 0.153 0.044

σyc
t(10)

237 0.014 0.013 0.004 0.008 0.023 0.020

D Annual Data Analysis

In this Section of the Appendix, we provide estimates of themodel with a single factor

of the threshold variables based on annual frequency of the data.

ECB Working Paper Series No 2345 / December 2019 52



Figure D.1: Transition Probability (Annual Frequency of the Data)
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Notes: See also notes to Figure 4.
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