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Abstract

This paper proposes a framework for deriving early-warning models with

optimal out-of-sample forecasting properties and applies it to predicting dis-

tress in European banks. The main contributions of the paper are threefold.

First, the paper introduces a conceptual framework to guide the process of

building early-warning models, which highlights and structures the numerous

complex choices that the modeler needs to make. Second, the paper proposes

a flexible modeling solution to the conceptual framework that supports model

selection in real-time. Specifically, our proposed solution is to combine the

loss function approach to evaluate early-warning models with regularized logis-

tic regression and cross-validation to find a model specification with optimal

real-time out-of-sample forecasting properties. Third, the paper illustrates

how the modeling framework can be used in analysis supporting both micro-

and macro-prudential policy by applying it to a large dataset of EU banks

and showing some examples of early-warning model visualizations.

Keywords: Early-warning models; Financial crises; Bank distress; Reg-

ularization; Micro- and macro-prudential analysis
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Non-Technical Summary

The recent global financial crisis highlighted the large costs for societies that the un-

ravelling of macro-financial imbalances can have. The corresponding policy response

in the aftermath of the financial crisis has been to strengthen micro-prudential regu-

lation of financial institutions and provide new macro-prudential mandates and tools

to competent authorities with the aim of dampening financial cycles and making

the financial system more resilient to adverse shocks. A key issue for implementing

macro-prudential policy is to identify the build-up of macro-financial vulnerabilities

with a sufficient lead time so that policy action can still be effective in preventing

severe financial crises. The policy interest in so-called early-warning models has

therefore increased considerably in recent years, especially in the context of guiding

the activation of macro-prudential policy tools (see for example Detken et al. (2014)).

At the same time the academic interest in early-warning models has also increased

considerably recently, as various papers have shown that there indeed seem to be

common patterns in the data that often precede financial crises (see for example

Borio and Lowe (2004) or Reinhart and Rogoff (2008)).

Despite many previous efforts, building an early-warning model is a complex task

that involves numerous assumptions and practical choices that need to be made.

For instance, the purpose of the model, i.e. whether it is used to predict potential

future crises or whether it is used to understand past crises episodes, should guide

several choices that need to be made regarding model complexity, model evaluation

and real-time information lags. Similarly, depending on the ultimate policy use of

a model, be it for instance to try and dampen the financial cycle or to increase

resilience to already existing imbalances, the choice regarding the relevant forecast

horizon would probably need to differ. The complexity of building an early-warning

model is indeed well reflected in the various recent contributions to the early-warning

literature that employ a multitude of econometric methods, prediction horizons,

evaluation approaches and datasets.1

With this background in mind, the paper extends the literature in the following

ways. First, we propose a conceptual framework to guide the building of early-

warning models, highlighting the key assumptions and decisions that need to be

made, and linking them to the various approaches in the existing literature. Second,

we propose a flexible modeling solution to the conceptual early-warning framework

1For some recent contributions to the early-warning literature see for example Borio and
Drehmann (2009), Alessi and Detken (2011), Lo Duca and Peltonen (2013), Behn et al. (2013), Betz
et al. (2014), Alessi and Detken (2014) and Holopainen and Sarlin (2015). A detailed discussion
of the various approaches found in the literature is contained in Section 2.
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that facilitates model selection in real-time for forecasting purposes. Specifically,

our proposed solution is to combine the loss function approach to evaluate early-

warning models with regularized logistic regression and cross-validation to find a

model specification with optimal real-time out-of-sample forecasting properties.2

The third contribution of the paper is to illustrate how the modeling framework can

support both micro- and macro-prudential policy, by applying it to a large dataset of

EU banks with the aim to predict bank distress. We show that a parsimonious model

with only 11 risk drivers has good in-sample and out-of-sample signalling properties

for bank distress events with a lead time of 1-8 quarters, and illustrate how model

output can support policy analysis by providing some examples of early-warning

model visualizations.

This paper therefore adds to the existing literature both from a conceptual and

an empirical point of view. One of the advantages of our bank-level early-warning

model is that it allows for the analysis of the build-up of vulnerabilities at the micro

and the macro level. The model can therefore be used for the analysis of systemic risk

in both the cross-sectional and the time dimension. More specifically, the model can

be used to identify vulnerabilities at a given point in time for systemically important

institutions, as well as the build-up of banking-sector vulnerabilities over time at

the country or regional level. For the analysis of the build-up of vulnerabilities

over time an aggregation method is proposed, while for both the cross-sectional and

time dimension of systemic risk, a decomposition procedure of vulnerabilities into

contributing factors is proposed that adds additional value for policy purposes, as it

allows to identify at a high level in which areas possible vulnerabilities are emerging.

Concrete examples of how model output can be used for risk-identification in the

macro-prudential policy process are provided throughout the paper.

2For work on the evaluation of early-warning models, see Kaminsky et al. (1998), Demirgüç-
Kunt and Detragiache (2000), Alessi and Detken (2011) and Sarlin (2013b). For regularized logistic
regression, we make use of the LASSO (Least Absolute Shrinkage and Selection Operator) approach
introduced by Tibshirani (1996).
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1 Introduction

The recent global financial crisis highlighted the large costs for societies that the un-

ravelling of macro-financial imbalances can have. The corresponding policy response

in the aftermath of the financial crisis has been to strengthen micro-prudential regu-

lation of financial institutions and provide new macro-prudential mandates and tools

to competent authorities with the aim of dampening financial cycles and making

the financial system more resilient to adverse shocks. A key issue for implementing

macro-prudential policy is to identify the build-up of macro-financial vulnerabilities

with a sufficient lead time so that policy action can still be effective in preventing

severe financial crises. The policy interest in so-called early-warning models has

therefore increased considerably in recent years, especially in the context of guiding

the activation of macro-prudential policy tools (see for example Detken et al. (2014)).

At the same time the academic interest in early-warning models has also increased

considerably recently, as various papers have shown that there indeed seem to be

common patterns in the data that often precede financial crises (see for example

Borio and Lowe (2004) or Reinhart and Rogoff (2008)).

Despite many previous efforts, building an early-warning model is a complex task

that involves numerous assumptions and practical choices that need to be made.

For instance, the purpose of the model, i.e. whether it is used to predict potential

future crises or whether it is used to understand past crises episodes, should guide

several choices that need to be made regarding model complexity, model evaluation

and real-time information lags. Similarly, depending on the ultimate policy use of

a model, be it for instance to try and dampen the financial cycle or to increase

resilience to already existing imbalances, the choice regarding the relevant forecast

horizon would probably need to differ. The complexity of building an early-warning

model is indeed well reflected in the various recent contributions to the early-warning

literature that employ a multitude of econometric methods, prediction horizons,

evaluation approaches and datasets.3

With this background in mind, the paper extends the literature in the following

ways. First, we propose a conceptual framework to guide the building of early-

warning models, highlighting the key assumptions and decisions that need to be

made, and linking them to the various approaches in the existing literature. Second,

we propose a flexible modeling solution to the conceptual early-warning framework

3For some recent contributions to the early-warning literature see for example Borio and
Drehmann (2009), Alessi and Detken (2011), Lo Duca and Peltonen (2013), Behn et al. (2013), Betz
et al. (2014), Alessi and Detken (2014) and Holopainen and Sarlin (2015). A detailed discussion
of the various approaches found in the literature is contained in Section 2.
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that facilitates model selection in real-time for forecasting purposes. Specifically,

our proposed solution is to combine the loss function approach to evaluate early-

warning models with regularized logistic regression and cross-validation to find a

model specification with optimal real-time out-of-sample forecasting properties.4

The third contribution of the paper is to illustrate how the modeling framework can

support both micro- and macro-prudential policy, by applying it to a large dataset of

EU banks with the aim to predict bank distress. We show that a parsimonious model

with only 11 risk drivers has good in-sample and out-of-sample signalling properties

for bank distress events with a lead time of 1-8 quarters, and illustrate how model

output can support policy analysis by providing some examples of early-warning

model visualizations.

The remainder of the paper is structured into four parts. Section 2 presents the

conceptual framework for building early-warning models, while Section 3 presents

the proposed modeling solution to the early-warning framework. In Section 4, the

modeling framework is applied to build a model for predicting distress in EU banks.

Finally, Section 5 concludes.

2 A conceptual framework for early-warning mod-

eling

The basic principle in early-warning modeling is to distinguish underlying vulnera-

bilities which make crises more probable from potential triggers that cause the actual

materialisation of crises. By analyzing common patterns in the data prior to histor-

ical crisis episodes, it is (to some extent) possible to identify imbalances that could

lead to a crisis given a suitable trigger, i.e. to identify vulnerable states. In contrast,

the exact timing of a trigger leading to the unravelling of imbalances is much more

difficult or even impossible to predict with high precision. Therefore, early-warning

models are generally concerned with identifying vulnerable states prior to financial

crises, which can also be viewed as a standard two-class classification task, where

the key objective is to separate the vulnerable from non-vulnerable states.

Despite being a standard modeling task, the derivation of an early-warning model

requires a large number of underlying modeling choices and free parameters to be

specified. This complexity of choices is well represented in the varying approaches

4For work on the evaluation of early-warning models, see Kaminsky et al. (1998), Demirgüç-
Kunt and Detragiache (2000), Alessi and Detken (2011) and Sarlin (2013b). For regularized logistic
regression, we make use of the LASSO (Least Absolute Shrinkage and Selection Operator) approach
introduced by Tibshirani (1996).
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Figure 1: Overview of the conceptual early-warning framework
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to early-warning modeling that have been employed in the literature to date.5 In

order to structure these complex choices and make the underlying assumptions for

the early-warning model explicit, a conceptual framework is hence called for. Rather

than an all-encompassing guidebook for setting the parameters of an early-warning

exercise, our aim is to illustrate and structure the numerous choices that need to be

made when building early-warning models.

At the highest level, building an early-warning model can be described as a

sequential process that involves three steps: pre-modeling, modeling and post-

modeling. These three steps include decisions on (i) the model aims and objectives,

(ii) the model estimation and evaluation, and (iii) the appropriate representations of

model output. A schematic overview of the the conceptual framework is illustrated

in Figure 1, while the following subsections illustrate each of these steps in more

detail by relating them to the existing literature.

2.1 Pre-modeling: Aim and objective

The starting point for building any type of early-warning model lies in the ultimate

aim and objective the model is supposed to serve. This involves decisions about

whether the model is mainly used for explanatory or forecasting purposes, the desired

prediction horizon, and the relevant entities, risk indicators and event types for

5The various approaches are described in detail in the following subsections.
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building the model.

2.1.1 Modeling purpose

A decisive question when deriving an early-warning model relates to the general

task it is supposed to solve. The main choice in this respect is whether to focus on

explaining the past (ex-post analysis) or on predicting the future (ex-ante analysis).

As pointed out in the famous article by Shmueli (2010), distinguishing between

statistical modeling for causal explanation and for prediction has a large impact on

decisions at each step of the statistical modeling process. Depending on the chosen

purpose, models are to be derived with an entirely different objective function.

For explaining the past, we are mainly concerned with maximizing fit to historical

data (in-sample analysis), whereas models for predictive purposes should optimize

performance on future data (out-of-sample analysis). The fundamental decision on

the modeling purpose therefore impacts many of the other decisions that need to be

made when building an early-warning model. For example, the appropriate modeling

technique (see section 2.2.2), as well as the method for model selection (see Section

2.2.3) and the appropriate evaluation exercise (see Section 2.2.4) should all be heavily

influenced by the decision on whether the purpose of the model is causal analysis or

pure forecasting. Moreover, the desirability of using lagged data to replicate real-

time information availability should depend on whether the modelling purpose is to

explain the past or to use the model to predict future events (in real-time).

2.1.2 Forecast horizon

Early-warning models aim at signaling distress events early on, but the specific

forecast horizon will depend on the application at hand. Even though the forecast

horizon could be treated as a parameter to be optimized (as e.g. in Bussiere and

Fratzscher (2006)), we argue that it ought to be specified as an ex-ante decision to

support the task at hand rather than optimizing the fit to data. While early studies

on currency crises used an 8-quarter horizon (Kaminsky et al., 1998), Lo Duca and

Peltonen (2013) used a 6-quarter horizon in the context of predicting systemic events.

Longer horizons of 5 to 12 quarters (Behn et al., 2013) and even 5 to 16 quarters

(Detken et al., 2014) have been applied in recent contributions focusing on banking

crises. While macro-prudential purposes clearly require long horizons6, there is no

consensus on one correct horizon, which also becomes apparent from the common

6E.g. the CRD IV regulation in the EU specifies a 12-month implementation period for the
Counter-cyclical Capital Buffer
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testing of multiple horizons (e.g., Schudel (2013); Behn et al. (2013); Lainà et al.

(2015)). On the other hand, micro-prudential purposes may require much shorter

forecast horizons, as the risks of concern are more concurrent in nature (e.g., up to

eight quarters ahead as in Gropp et al. (2006) and Betz et al. (2014)).

2.1.3 Events, indicators and sample

Once the modeling purpose and forecast horizon have been specified, the next key

decisions relate to data, which can have a large impact on the modeling outcome.

These relate to the type of distress events that are supposed to be predicted, the

pre-selection of the relevant risk indicators, the choice of relevant entities to include

in the cross-section, as well as the appropriate time sample.

First, it is essential to define the crisis events in a manner that reflects the vul-

nerabilities that we are interested in modeling. For instance, when using a financial

stress index, a key choice is to specify a threshold above which we define periods to

be crisis events (e.g., mean exceedance above three standard deviations in Kamin-

sky et al. (1998) or the 90th country-specific percentile in Lo Duca and Peltonen

(2013)). Moreover, multiple approaches also exist when it comes to defining binary

crisis variables based on rules or expert-judgement (e.g. the BIS initiative (e.g. Bo-

rio and Lowe (2002) and Borio and Drehmann (2009)), the IMF initiative (Laeven

and Valencia, 2012) or the ESCB initiative (Babecky et al., 2012)). Likewise, one

needs to define the type of failure one is concerned with when assessing bank dis-

tress, such as direct failures, state-aid cases and forced mergers as in Betz et al.

(2014) or news-based events as in Poghosyan and Cihák (2011).

Another key decision relates to the pre-selection of potential risk indicators, as

well as relevant observations across entities and over time. This step will affect

the modeling outcome to a large extent, as the potential early-warning indicators

often have varying coverage and as such variable pre-selection can affect the sample

heavily (See for example tables A2 - A3 in Detken et al. (2014) for varying data

availability across different early warning indicators in EU countries). The trade-

off between the number of variables and number of observations descends from the

fact that most multivariate modeling approaches cannot process observations with

missing values. This also highlights the fact that new indicators cannot be included

in some models if their time series dimension is too short. Hence, there is a two-way

feedback process whereby the decisions on indicators and the desired entity and time

coverage should affect each other.
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2.2 Modeling: Estimation and evaluation

Once the aim of the early-warning exercise is defined, the next step is to set-up

an approach for modeling and evaluation. This involves the steps of defining an

evaluation criterion, deciding on a modeling technique, selecting an optimal model

complexity and specification, and setting up an evaluation exercise.

2.2.1 Evaluation criterion

One of the key modeling decisions for any early-warning exercise relates to the mea-

surement of its performance or goodness of fit, independent of whether the objective

is explanatory or predictive. Most approaches to evaluating early-warning models

proposed in the literature are based on the notion that in a two-class classification

problem, a model may conduct Type I errors (miss crisis events) or Type II errors

(issue false alarms). Both types of errors can be assumed to be costly and the vari-

ous evaluation approaches in the literature mainly differ regarding the assumptions

about the relevant trade-off between these types of errors.

The first early-warning models based upon the signaling approach used the noise-

to-signal ratio to evaluate models and set signalling thresholds (Kaminsky et al.,

1998). The noise-to-signal ratio measures the ratio of false alarms to the share of

crises that are correctly predicted. In recent years, methods dating back to signal

detection in World War II, such as the Receiver Operating Characteristics (ROC)

curve and the area under the ROC curve (AUC), have been used to measure classi-

fication performance of early-warning models7 (e.g. Peltonen (2006), Marghescu et

al. (2010); Jorda and Taylor (2011)). While the ROC curve and AUC provide per-

formance measures summarizing all possible signalling thresholds, a recent variation

of this approach limits the relevant parts of the AUC using so-called partial AUCs

(Detken et al., 2014). Moreover, Peltonen (2006) introduced other goodness of fit

measures, such as Cramer’s V, Brier Quadratic Probability Score, and Spiegelhal-

ter’s z-statistic in the early-warning context, which was further extended in a later

overview by Candelon et al. (2012).

An important contribution by Demirgüç-Kunt and Detragiache (2000) was to

introduce a loss function based upon type I and type II errors and preferences be-

tween them, while Alessi and Detken (2011) put forward a further refined usefulness

measure to evaluate the model. This framework was extended by Sarlin (2013b) to

a loss function that does not assume equal class distributions and to incorporate a

7The ROC curve traces out all combinations of true positive and false positive rates that are
associated with all possible signalling thresholds.
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more interpretable relative usefulness measure. Further, in the vein of Drehmann

and Juselius (2014), one might also include other performance-related factors in the

evaluation of early-warning models, such as the timing and stability of signals.

2.2.2 Modeling technique

The task of an early-warning model is nothing else than a text book example of

two-class classification, as defined in machine learning (e.g., Ripley (1996), Bishop

(2006)). The literature has applied a range of methods for the task of classifying

between vulnerable and tranquil periods, some of the methods descending from clas-

sical statistics and others from the later strand of machine learning approaches. As

proposed by Holopainen and Sarlin (2015), we can categorize early-warning model-

ing techniques into four subgroups that vary in their complexity.

First, the most common group of modeling techniques relies on the covariance

matrix to estimate model coefficients for belonging to one class, such as linear dis-

criminant analysis and logistic regression (Demirgüc-Kunt and Detragiache, 1998;

Berg and Pattillo, 1999; Schularick and Taylor, 2012; Lo Duca and Peltonen, 2013;

Behn et al., 2013). Second, a large number of methods rely directly on the con-

tingency matrix that classifies observations into true positives, false positives, true

negatives and false negatives, such as signal extraction (Kaminsky et al., 1998; Bo-

rio and Lowe, 2002, 2004; Borio and Drehmann, 2009; Alessi and Detken, 2011),

decision trees or random forests (Alessi and Detken, 2014) and naive Bayes. The

third group includes approaches based upon similarity functions, such as k-nearest

neighbors, while the fourth category includes various other, more complex, ways for

estimating the likelihood of belonging to one class or the other, including Artificial

Neural Networks (e.g. Peltonen (2006); Sarlin (2013a)) and Support Vector Ma-

chines. As Holopainen and Sarlin (2015) discuss in relation to their results from

comparing all above approaches, there is no single best modeling technique. The

modeling technique of choice should be influenced to a large extent by the purpose

that the model is supposed to serve, as set out in Section 2.1.1.

2.2.3 Model selection and complexity

Once a modeling techniques has been chosen, decisions on how the ”best” model

specification should be selected and how complex such an optimal model should be

need to be made. The purpose that the model is supposed to serve, as set out in

Section 2.1.1, should be again a key factor for these decisions. Purely predictive

purposes will mostly require objective model-selection procedures (such as Bayesian
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model averaging or LASSO with cross-validation) and could possibly feature less

explanatory variables that are however robust for real-time out-of-sample predictive

purposes. On the other hand, causal analysis will most likely require more complex

models so as to control for all possible explanatory variables and avoid any omit-

ted variables bias. Hence, the model-selection procedure is also likely to be more

subjective and incorporates more expert judgement.

However, the dividing lines between these approaches are not always clear, and

depending on the policy context for which the model is designed, one may still

have preferences regarding model complexity / interpretability and regarding either

automatic or expert-driven model selection procedures. Hence, in line with the

discussion in Drehmann and Juselius (2014), we treat model complexity and model

selection as a preference related to parsimony and interpretability of the model,

which will always be specific to the context at hand.

2.2.4 Evaluation exercise

Depending on the ultimate purpose of the early-warning model, an evaluation exer-

cise based on in-sample data (for inferential analysis) or out-of-sample data (for pre-

dictive purposes) might be more appropriate. In the latter case various approaches

are conceivable including splitting the sample, recursive out-of-sample evaluations

or cross-validation. For example the approach by Kaminsky et al. (1998) and Borio

and Drehmann (2009) is to split the data into two sub-samples with a specific cut-

off point that usually occurs prior to an important cluster of crisis events. While

the common approach is to use the earlier sample for estimation and the latter for

evaluation, one could in the same vein also estimate models on the later sub-sample

and evaluate on the earlier one (e.g. Behn et al. (2013); Lainà et al. (2015)) or leave

out specific entities from the estimation sample altogether.

The sample can also be randomly split into many sub-samples or so-called folds,

where the model is then repeatedly estimated on all but one fold and predictions are

made for the fold left out. This method is commonly referred to as cross-validation

(e.g., Sarlin (2013a); Holopainen and Sarlin (2015)) and becomes particularly rel-

evant when making use of more complex non-linear function approximators that

may be prone to overfitting the underlying data. Another out-of-sample evaluation

approach is to mimic real-time modeling by performing recursive estimations and

predictions by only using the information set that would have been available at the

time (e.g., Betz et al. (2014)).
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2.3 Post-modeling: Transformation and visualization

Once a suitable early warning model has been specified and estimated, it is of key

importance to decide on how to best analyze, transform, represent and visualize

model output in order to support interpretation and communication of results. This

is particularly important for policy use of early-warning models. Key concerns

ought to be the policy-relevant dimensions to focus on and how model output is to

be visualized.

2.3.1 Policy-relevant dimensions

Generally, we can divide the use of early-warning models according to the cross-

sectional and cyclical dimensions of systemic risk. The cross-sectional dimension

relates to the distribution of vulnerabilities at given a point in time, while the cyclical

dimension relates to the build-up of aggregate risk over time. In the former case we

would be mainly interested in an overall ranking of vulnerable entities at a specific

point in time or the clustering of vulnerabilities within a sub-group of entities,

while in the latter case the evolution of suitable aggregate model output over time

would be of greater interest. Moreover, one might also be concerned with a network

perspective that links the vulnerability of one entity to other interlinked entities for

the cross-sectional dimension of systemic risk (e.g., Peltonen et al. (2015)).

Depending on the granularity of the underlying entity data and the ultimate

policy-use of the model, various aggregations and transformations of model output

are therefore possible, such as over countries or firm-level entities, to support either

the analysis of cross-sectional or cyclical systemic risk. Likewise, when using multi-

variate techniques, a decomposition of vulnerabilities into more granular risk-driver

categories can be useful to better understand the driving factors of vulnerabilities.

2.3.2 Model visualization

Once the relevant dimensions of the model and suitable transformations are decided,

their visualisation constitutes a final, albeit still important step. As reviewed by

Flood et al. (2014) and Sarlin (2014), visualization in general and visual analytics in

particular constitute natural aids for monitoring systemic risk and financial stability.

For example Dattels et al. (2010) disentangle the sources of risk by a mapping of six

composite indices with a spider chart visualization. Similarly, Sarlin and Peltonen

(2013) use a Financial Stability Map that projects the state of financial stability

from high-dimensional indicators to a two-dimensional map.

With more standard graphs, the cross-sectional dimension is natural to visual-
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ize as bar charts, while the cyclical dimension can be represented with time-series

plots of model output. An additional concept to be considered is the uncertainty

in estimated probabilities and thresholds through confidence bands as introduced

by Holopainen and Sarlin (2015). Further, if non-linear models are used, we might

also need specific visualization techniques for interpreting contributing factors. For

instance, Support Vector Machines for supervised learning algorithms and Self-

Organizing Maps for unsupervised learning algorithms require additional means for

representing model output, such as representations of classifier hyperplanes in high-

dimensional data. Moreover, in the vein of the VisRisk platform for visual systemic

risk analytics (Sarlin, 2014), the visualization of early-warning models might also

require interactive means for better accessing the available data and model output.

3 A modeling solution to the early-warning frame-

work

This section provides a flexible modeling solution to the conceptual early-warning

framework described above. In particular, we propose a model selection procedure

based on regularization techniques in combination with cross-validation and the loss

function approach to evaluate early-warning models, that facilitates the selection of

optimal out-of-sample forecasting models in real-time. This modeling solution still

leaves important decisions to the modeler, such as the desired forecast horizon, the

events to predict or the set of possible explanatory variables to consider. However,

the proposed modeling solution provides a number of default choices for key deci-

sions that need to be made when building an early-warning model, as highlighted

in Section 2. For example, the modeling solution is mainly designed for prediction

purposes, the loss function specification by Sarlin (2013b) is used to set signalling

thresholds and evaluate models, the modeling technique and model selection proce-

dure is the logistic LASSO with cross-validation, the evaluation of models is done

through a recursive real-time out-of-sample exercise and an approach to aggregation

and decomposition of model output is put forward. Each of the building blocks of

the modeling solution are described in greater detail in the following subsections.

3.1 The policymaker’s loss function

As set out in Section 2.2.1, an essential part of building an early-warning model

is to decide on an evaluation criterion to measure its performance and to select an

optimal signalling threshold that allows to classify observations into vulnerable and
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Table 1: Contingency matrix for model signals and crises

Crisis No Crisis

Signal True Positive (TP) False Positive (FP)

No Signal False Negative (FN) True Negative (TN)

non-vulnerable states. In what follows, we use the loss function approach proposed

by Sarlin (2013b) in order to set optimal signalling thresholds and measure the

usefulness of a model for a policymaker who is concerned about missing vulnerable

states as well as issuing false alarms about underlying vulnerabilities.

Let us represent the occurrence of a crisis with a binary state variable Ii,t ∈ {0, 1},
where i refers to a given entity and t to a given time period. Yet, in order to focus

on vulnerabilities prior to crises, we are usually concerned with pre-crisis periods

Ihi,t ∈ {0, 1} when building early-warning models, where h indicates the relevant

forecast horizon to define pre-crisis episodes. The pre-crisis indicator is equal to

one in all of the h time periods up to and including a given crisis event and zero

otherwise. Formally we can represent this as Ihi,t = 1, if Ii,t+s = 1, ∀ 0 ≤ s ≤ h.

Further, let pi,t be a univariate risk driver or an estimated probability of being in

a vulnerable state. In order to be able to classify observations into vulnerable and

non-vulnerable states, pi,t needs to be turned into a binary signal Pi,t ∈ {0, 1} that

equals one if pi,t exceeds a specified threshold τ and zero otherwise. This allows

us to assess the correspondence between Pi,t and Ihi,t using a so-called contingency

matrix, which is displayed in Table 1.

Given a forecast horizon h, a policymaker ought to choose a threshold τ for

probabilities pi,t of a model so as to minimize her loss. In a two-class classification

problem, she can be assumed to be concerned about conducting two types of errors:

issuing false alarms and missing pre-crisis periods. Type I error rates represent

the proportion of missed pre-crisis periods relative to the total number of pre-crisis

periods in the sample (T1(τ) = FN/(TP + FN) ∈ [0, 1]), while type II error rates

represent the proportion of false alarms relative to the number of tranquil periods in

the sample (T2(τ) = FP/(FP+TN) ∈ [0, 1]). We compute the loss of a policymaker

as a weighted average of T1 and T2 according to her relative preferences µ between

missing crises and issuing false alarms. However, as weighting only with relative

preferences does not consider imbalances in class size, and the errors are defined in

relation to the size of each class, we also account for unconditional probabilities of

pre-crisis events (P1 = Pr(Ihi,t = 1)) and tranquil periods (P2 = Pr(Ihi,t = 0)). Thus,
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the policymaker’s loss function can be written as:

L(µ, τ) = µP1T1(τ) + (1− µ)P2T2(τ) (1)

With this definition of the loss function we can compute the usefulness of a given

model and signalling threshold to a policymaker. The policymaker could achieve a

loss of µP1 by never issuing a crisis signal or a loss of (1 − µ)P2 by always issuing

a crisis signal. Thus, the loss equals min[µP1, (1 − µ)P2] when ignoring the model.

The absolute usefulness Ua of a model can therefore be computed by subtracting

the policymaker’s loss when using the model from the loss achieved when the model

is ignored, similar in spirit to Alessi and Detken (2011):

Ua(µ, τ) = min[µP1, (1− µ)P2]− L(µ, τ) (2)

In addition, the relative usefulness Ur of a model can be defined by putting the

absolute usefulness in relation to the maximum available usefulness. It reports Ua

as a percentage of the usefulness that a policymaker would gain with a perfectly

performing model and provides a means for representing usefulness in relative terms

which should be easier to interpret:8

Ur(µ, τ) =
Ua

min[µP1, (1− µ)P2]
(3)

For a given policy preference parameter there will be a corresponding optimal

signalling threshold τ ∗(µ) that is obtained by minimizing the loss function above.

Let the policymaker’s loss evaluated at the optimal signalling threshold be denoted

by L∗(µ). The corresponding maximum possible usefulness measures for a given

model and preference parameter can therefore be denoted as U∗a (µ) and U∗r (µ).

3.2 Logistic LASSO with cross-validation

Once an evaluation criterion has been decided upon, further key decisions that need

to be made when building an early-warning model relate to the choice of modeling

technique and procedure for model selection, as set out in Section 2.2.3. Here we

propose an integrated approach where the chosen modeling technique allows for an

easy implementation of automatized model selection. Specifically, we propose to

8Beyond usefulness measures, it can also be beneficial to compute other performance metrics
such as the Noise-to-Signal ratio or the Area Under the Receiver Operating Characteristics Curve
(AUROC), even if these measures are not used for model selection and evaluation purposes or to
set optimal signalling thresholds.
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use the logistic LASSO method9 as the modeling technique in combination with

cross-validation to set the penalty parameter that determines the complexity of the

model. While the logistic LASSO method allows for a simultaneous variable selec-

tion and classifier estimation, the cross-validation is in effect an automatic model

selection device that helps to build models with optimal out-of-sample forecasting

properties.10 This integrated framework for model selection is described in greater

detail in the following paragraphs.

A common approach to model selection is to tap into regularization methods.

Their particular aim is to prevent overfitting, which is most often accomplished by

penalizing models with extreme parameter values. Instead of an estimation mini-

mizing a loss function E(X, Y ), the most general cases of L1 and L2 regularization

refer to a penalization of the loss function through E(X, Y ) + λ|β|, where β are the

estimated coefficients, | · | is the L1 norm or the squared L2 norm, and λ is a free

parameter specifying the size of penalization. The key difference between L1 and

L2 norms is that the former shrinks variables towards zero, giving sparse estimates.

The size of penalization is commonly specified empirically, such as through AIC,

BIC or cross-validation. For the case of standard linear regression, the approaches

described above would result in Least Absolute Shrinkage and Selection Operator

(LASSO) regression and ridge regression respectively. However, regularization is

also widely used in other approaches, such as artificial neural networks (ANNs) and

support vector machines (SVMs) among many others. For instance, the approach

used in ANNs is most often denoted as weight decay.

Out of the two most common norms, we make use of L1 regularization in order

to produce sparse models, and thus to also use the modeling technique as a simul-

taneous variable selection device. Furthermore, as we are dealing with a two-class

classification problem, we need to make use of binary-choice methods instead of lin-

ear regression. Hence, from the family of regularization techniques we make use of

the logistic LASSO regression (Tibshirani, 1996). An additional argument for using

the LASSO method is that it provides a means for considering interaction terms in

models in a hierarchical manner, which is computationally less costly (Bien et al.,

2013). In our framework, the probability of being in a vulnerable state is modeled

via the following logit model, where x is a vector of risk drivers plus an intercept

and β is a coefficient vector of size q + 1:

9LASSO is the acronym for Least Absolute Shrinkage and Selection Operator (Tibshirani, 1996).
10However, the modeling solution can also be used to understand risk drivers for past crisis

episodes, for example if the optimal penalty parameter for the LASSO is not set via cross-validation,
as described in Section 3.2, but in a way that allows for the inclusion of the most important variables
to explain the data in-sample.
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Pr
(
Ihi,t = 1|Xi,t = xi,t

)
= pi,t =

eβ
′xi,t

1 + eβ′xi,t
(4)

Instead of simply maximizing the usual log likelihood to estimate the parameters

for this model, the logistic LASSO performs the maximization step with an added

penalty term that depends on the coefficient estimates. Formally, the following pe-

nalized negative binomial log-likelihood is minimized, where λ is the LASSO penalty

parameter that determines the complexity of the model:11

min
β∈Rq+1

−

[
1

N · T

N∑
i=1

T∑
t=1

yi,t · (β′xi,t)− log
(

1 + eβ
′xi,t
)]

+ λ ‖β‖1 (5)

A key question is of course how to choose the LASSO penalty parameter in

practice. In effect, each value of the penalty parameter will yield a different model

so that the choice of the penalty parameter boils down to selecting a particular

model specification. Given that our proposed modeling solution focuses on early-

warning models for prediction purposes, the parameter should be chosen so as to

maximize the model’s forecasting performance. In this context, the resampling

method of cross-validation (Stone, 1977) is commonly used in machine learning

to assess the generalization performance of a model on out-of-sample data and to

prevent overfitting on in-sample data. Hence, for model selection purposes and to

obtain an optimal λ we propose to use cross-validation with the relative usefulness

of equation 3 as the relevant performance measure. The scheme that we use is

commonly referred to as K-fold cross-validation and functions as follows:

1. Randomly split the set of observations into K folds of approximately equal

size.

2. For the kth out-of-sample validation fold, fit a model on the remaining K −
1 folds, also called the in-sample data, and compute an optimal signalling

threshold τ ∗−k by maximizing the relative usefulness measure U−kr (µ, τ) on all

but the kth fold.

3. Apply the optimal in-sample threshold to the observations contained in the

kth fold and compute its out-of-sample usefulness Uk
r (µ, τ ∗−k).

4. Repeat Steps 1, 2 and 3 for k = 1, 2, ..., K, and collect the out-of-sample

performance measures for all K validation sets as UK
r (µ) = 1

K

∑K
k=1 U

k
r (µ, τ ∗−k).

11The higher the penalty parameter that is applied, the more coefficient estimates will be shrunk
towards zero and the fewer variables will be included in the model.
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This cross-validation exercise is then performed for all possible values of the

LASSO penalty parameter. The optimal penalty parameter is then the one that is as-

sociated with the highest cross-validated out-of-sample relative usefulness. Equipped

with this optimal penalty parameter it is straightforward to estimate the logistic

LASSO model and obtain an automatically selected model specification with opti-

mal out-of-sample forecasting properties.

3.3 Recursive out-of-sample evaluation

While the logistic LASSO in combination with cross-validation helps to select an

optimal forecasting model, we are often also interested in how a model would have

performed in real-time. Hence, an evaluation exercise that accounts for features

of real-time modeling that a policymaker faces in reality is extremely useful. We

therefore follow Betz et al. (2014) in performing a real-time recursive out-of-sample

exercise using in each time period only the information set that would have been

available to a policymaker at the time. Yet, beyond only accounting for the use

of historical data in an expanding-window fashion and publication lags in the data

used, the logistic LASSO method also allows to re-estimate optimal models in each

period. This provides a true real-time exercise, as the model specification can vary

over time and is not fixed ex-ante based on full-sample information.

The early-warning model evaluation exercise can therefore be expressed as a

recursive logistic LASSO regression that makes a prediction in each time period

t = 1, 2, ..., T with an estimation sample that grows in an expanding-window fashion

and functions according to the following steps:

1. Estimate the LASSO model on in-sample data using the information set that

would have been available up to period t− 1.

2. Collect model probabilities p for the in-sample period and compute the use-

fulness for all thresholds τ ∈ [0, 1].

3. Choose the τ ∗ that maximizes in-sample Usefulness, estimate distress proba-

bilities p for the out-of-sample data (period t), apply τ ∗ to the out-of-sample

data and collect the results.

4. Set t = t+1 and recursively re-estimate the model starting from step 1. Repeat

this as long as t ≤ T .

The above algorithm hence estimates a logistic LASSO model with a varying

model specification in each time period t using all available information up to the
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previous period. Then, model probabilities are used to set an optimal threshold

τ ∗ on in-sample data, and provide an estimate of the current vulnerability of each

entity by applying τ ∗ to the estimated probability. This is repeated in a recursive

fashion. Hence, the estimation sample changes as the window length expands and

the out-of-sample data is also treated in a rolling-window fashion (i.e. one period

at a time). These recursive changes in in-sample and out-of-sample data enable not

only to test model performance in real-time use, but allows also models to adapt

over time.

The recursive out-of-sample evaluation exercise with a model specification that

is allowed to change constantly over time is mainly meant to establish that the

proposed early warning model would have worked without using information from

the future. This evaluation exercise is therefore even more challenging than choosing

a model specification based on full-sample information and evaluating this model by

a recursive out-of-sample exercise. For actual policy use of an early warning model,

a constantly changing model specification would probably not be desirable. A re-

estimation of the logit LASSO model at only lower frequencies could therefore be

beneficial in the context of using the proposed early warning framework for policy

purposes.

3.4 Aggregation and decomposition of model output

Once an optimal model has been selected and evaluated it is important to decide

how model output should be best analyzed and presented. This section puts for-

ward two approaches to aggregate and decompose model output with the ultimate

aim of increasing usefulness for policy purposes. First, the distress probability for

each entity is decomposed into the contributions stemming from different risk-driver

categories, in order to help a policymaker to determine which factors are driving the

build-up of vulnerabilities at the entity-level. Second, the distress probabilities are

aggregated across the cross-sectional dimension, which can help a policymaker to

identify the build-up of systemic risk over time at the aggregate level. Examples

of an aggregate may refer to country-level output for micro data or global output

for macro data. Each of these analytical exercises are described in turn from a

conceptual view point.

Given that the logistic function is non-linear in nature, a decomposition of dis-

tress probabilities into contributing factors is not trivial and there does not exist

one unique or ”correct” method for such a transformation. There nevertheless ex-

ists an intuitive way to decompose the probabilities that is similar in spirit to using
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marginal effects at the means of the variables. The proposed probability decom-

position consists of three steps. First, a counterfactual probability for each factor

is computed by assuming that all other factors are at their mean values. Second,

the probability share of each factor is calculated as the ratio of the counterfactual

probability of that factor to the sum of the counterfactual probabilities of all fac-

tors. Third, the probability shares of each factor are multiplied with the distress

probability from the model to arrive at the respective probability contributions. If

we define the logit function f as in equation 4, then the probability contribution of

factor m for entity i at time t can be expressed in the following way:

P c(xmi,t) =
f(xmi,t|x−mi,t = Ei,t(x

−m
i,t ))∑

n f(xni,t|x−ni,t = Ei,t(x
−n
i,t ))

f(xi,t) (6)

For the aggregation of probabilities at the country or regional level, there are

again various possible ways to proceed. Ideally, network connections between entities

and interlinkages through common exposures should be taken into account in the

aggregation procedure. However, due to data limitations, this might not always be a

possible approach. The proposed feasible alternative for the probability aggregation

is therefore to use the size of each entity in relation to the full sample. For instance,

the share of each bank in the total assets of all banks that are part of the country or

region for which the aggregation is desired, or stock-market capitalization if applied

to country-level data. Such an aggregation is easy to implement and makes intuitive

sense as long as we assume that systemic relevance of an entity-level distress event

is increasing in its size. Formally, the distress probability for aggregate j at time t

can be expressed as the weighted average of the distress probabilities of all of the

Nj entities that are located in that aggregate:

ADPj,t =

Nj∑
i=1

f(xi,t)
ai,t∑
k ak,t

(7)

The aim of these approaches for aggregating and decomposing model output is

to support the use of early-warning models for policy purposes. In the remainder of

the paper we illustrate how the entire proposed modeling solution can be applied in

practice.
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4 A micro-macro application to banks

In this section we apply our modeling framework to build an early-warning model

for European banks that can be used to analyze the build-up of vulnerabilities

at the micro (i.e. bank) as well as at the macro level (i.e. country or region).

The overarching aim of the model that we construct is to identify the build-up of

vulnerabilities with a sufficient lead time and in real-time so as to be useful for micro-

and macro-prudential policy purposes. This overarching goal will guide many of the

modeling choices outlined in the conceptual framework of Section 2.

The application is meant to illustrate the usefulness and flexibility of the mod-

eling solution that was put forward in section 3, as well as the need to make the

modeling choices presented in section 2 explicit. For example, it is shown in section

4.5 that the optimal model specification for the application at hand depends on the

policy preferences between type I and type II errors, as well as on the chosen fore-

cast horizon. Different aims and objectives for the final early warning model should

therefore lead to different optimal early warning models. The proposed modeling

solution offers one way of dealing with this multitude of optimal models in a flexible

way through the use of automated model selection techniques. Hence, compared to

existing bank-level early warning models such as Betz et al. (2014) the main contri-

bution of this part of the paper is to illustrate that the set of optimal predictors for

bank distress events depends crucially on the aim and objective of the early warning

model.

4.1 Overview of the dataset

The dataset that we employ for our empirical application of the proposed mod-

eling framework consists of a large unbalanced panel of EU banks covering the

period 1999Q1 - 2014Q4 and is based on publicly available information only. The

three main building blocks of the dataset are i) a collection of bank-level distress

events; ii) a large number of bank-specific variables derived from publicly available

financial statements; iii) various country-level macro-financial indicators and aggre-

gate banking-sector variables. The dataset builds upon and extends the bank-level

dataset described in Betz et al. (2014) by adding recent observations, additional

banks, as well as a larger set of bank-specific and country-level variables. In to-

tal, the dataset covers 625 banks from 27 EU countries, but data availability varies

widely across banks, variables and time periods. The dataset is constructed in a

way to reflect real-time information availability, by applying varying time lags to

all of the variables. The following subsections describe the building blocks of the
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dataset in greater detail.

Distress events

Given that outright bank failures are rare within the EU, we employ a number of

surrogate bank-level events that proxy for bank distress. In total, four types of bank

distress events are considered: i) state aid cases; ii) distressed mergers; iii) defaults;

iv) bankruptcies.

State aid cases are defined to comprise direct capital injections, asset protection

measures and loans/guarantees other than guaranteed bank bonds. Distress events

based on state aid cases are defined to last from the announcement date up to the

implementation date of a given measure. The underlying data for state aid cases

is taken from the European Commission and complemented with information from

national authorities and market sources (Reuters and Bloomberg).

A distressed merger is defined to occur if either the target bank had a negative

coverage ratio within the year prior to the merger or if the acquiring bank received

state aid within one year after the merger.12 Distressed mergers are defined to last

from the date when the coverage ratio turned negative (within one year prior to

the merger) up to the merger date in the former case and from the merger date to

the date that state aid was received in the latter case. Information on mergers and

coverage ratios is obtained from Bloomberg, while state aid cases are defined and

sourced as described in the previous paragraph.

Finally, defaults on financial obligations are taken from annual compendiums of

defaults by Moody’s and Fitch, while bankruptcies are obtained from Bankscope

(See Betz et al. (2014) for a more detailed discussion of the definition of distress

events). Figure 2 shows the numbers of banks by country that had at least one

distress event and how distress events are distributed across the various subcategories

of events.

Risk drivers

A large set of around 175 potential bank-specific risk drivers was collected and con-

structed based on publicly available financial statements that are obtained through

Bloomberg. The set of indicators covers all categories of the CAMELS framework

and is based on quarterly financial statements whenever available and annual finan-

cial statements otherwise. In order to replicate a real-time information structure

12The coverage ratio is defined as the ratio of total capital and reserves for non-performing assets
minus non-performing assets to total assets.
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Figure 2: Distributions of banks by country and distress events by type
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Notes: The distribution of banks across EU countries and the distribution of distress events across
different types are for the data underlying the optimal model that is presented in Section 4.3 and
that is estimated on the entire sample of available data and not restricted to the common sample
that feeds into the logit LASSO.

quarterly financial statements data is lagged by two quarters, while annual financial

statements data for a given year is used from the second quarter of the following

year onwards.

Given that the environment in which a bank operates will affect its vulnerability

to a large extent, a number of country-level banking-sector and macro-financial

indicators were also collected and constructed from various sources such as the ECB

Balance Sheet Items (BSI) Statistics, Eurostat National Accounts, ECB Statistical

Data Warehouse (SDW), and the European Commission Macroeconomic Imbalances

Procedure (MIP) Scoreboard. All market data related variables such as government

bond yields or stock prices are lagged by one quarter, as are all of the banking sector

indicators, while macro and macro-financial indicators such as GDP, house prices or

the MIP variables are lagged by two quarters.

4.2 Choice of key parameters

The conceptual framework that was outlined in Section 2 highlighted the key choices

that need to be made when building an early-warning model. The modeling frame-

work that we proposed in Section 3 already provides some of the key choices by

default, whereas others still need to be decided. For example, the chosen modeling

technique is logistic LASSO, the evaluation metric is the relative usefulness measure

based on the loss function specification by Sarlin (2013b) and the evaluation exercise

is chosen to be recursive out-of-sample. However, the proposed modeling framework

still leaves many choices to the model developer, such as the policy preference pa-
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rameter, the forecasting horizon, the complexity of the model, and the data and

sample pre-selection.

For the application at hand a preference parameter of µ = 0.9 is chosen due

to the fact that missing bank distress events should be considerably more costly to

society than issuing false alarms about banks being vulnerable. While lower values

of µ could also be conceivable, assigning a considerably higher weight to Type I

errors than Type II errors is standard in the bank early warning literature (See e.g.

Betz et al. (2014)). Moreover, in section 4.5 we show how the optimal model changes

when the preference parameter is set to µ = 0.8. A forecast horizon of 1-8 quarters

prior to bank distress events is chosen for our application so as to have a model that

identifies the build-up of vulnerabilities with a sufficient lead time. All bank distress

events and the subsequent four quarters are excluded from the estimation in order

to account for a possible crisis and post-crisis bias as highlighted by Bussiere and

Fratzscher (2006). The recursive evaluation exercise for the model is chosen to start

in 2006Q1 in order to gauge how the model would have performed in predicting the

global financial crisis.

As the aim for the model is to provide good forecasts in real-time, we opt for a

model with low complexity and optimal out-of-sample performance by choosing the

shrinkage parameter for the logit LASSO that minimizes the cross-validated loss of

the policymaker. The cross-validation is performed on 10 folds. Given that data

availability varies considerably across the different bank-specific indicators, variable

pre-selection for the logit LASSO is of key importance as it will determine the

common sample on which the cross-validation is performed. There is a clear trade-

off between considering as many potential risk drivers as possible and having a large

sample of banks and quarters to feed into the logit LASSO. For our application

we opt for having at least 5,000 bank-quarter observations in the common sample.

The relevant bank-specific variables for the LASSO are chosen recursively by always

adding the variable that reduces the common sample by the fewest observations.

This leaves us with 176 bank-specific variables and 232 banks.13

4.3 Model specification and performance

Based on the chosen bank sample and key parameters described above, the optimal

cross-validated logit LASSO penalty parameter translates into a model with eleven

13Data availability for some indicator categories is highly constrained, which unfortunately limits
the number of possible risk drivers that can be included in the model. For example, no variable
related to non-performing loans can be included in the model given extremely limited data avail-
ability.
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Figure 3: Illustration of the cross-validation for the LASSO
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risk drivers. This is illustrated in Figure 3 which shows that there is a u-shaped

relationship between the out-of-sample cross-validated policymaker’s loss and the

LASSO penalty parameter or equivalently model complexity. Both, very simple

and very complex models have worse out-of-sample performance than medium-sized

models with a handful of risk drivers. The final logistic LASSO model with the op-

timal cross-validated penalty parameter contains three bank-specific, four banking-

sector and four macro-financial variables. The corresponding logit model estimates

for the LASSO sample and the full sample of available observations are displayed in

Table 2 including coefficient standard errors and significance levels, which are not

available for LASSO models.14

The optimally chosen bank-specific variables are the ratio of tangible equity to

total assets, the ratio of interest expenses to total liabilities and the NPL reserves

to total assets ratio. All three variables have highly significant coefficients and

signs that are in line with intuition. A lower leverage ratio increases a bank’s

vulnerability, as do higher interest rates on liabilities as well as higher reserves

in relation to the bank’s balance sheet size. Interestingly, a simple leverage ratio

appears to be a better indicator to gauge a bank’s vulnerability than a risk-weighted

capital adequacy measure. Regarding the reserves to assets measure, there is an

intuitive explanation for its inclusion in the model. Given that no indicators related

to non-performing loans were included in the LASSO sample due to data limitations,

reserves probably simply proxy for non-performing loans, which would also explain

the positive coefficient sign.

The four banking-sector indicators that are chosen by the LASSO are the ratio of

financial assets to GDP, the loan-to-deposit ratio (1-year change), the mortgages to

loans ratio (1-year change) and the ratio of issued debt securities to total liabilities

(1-year change). While the first two chosen banking-sector variables are estimated to

increase the vulnerability of a bank, the latter two variables are estimated to decrease

a bank’s vulnerability over a two-year horizon. The fact that a larger banking

sector relative to the size of the economy and a larger increase in the loan-to-deposit

ratio raise banks’ vulnerabilities appears in line with basic economic intuition. In

contrast, the fact that an increase in the share of mortgages and an increase in

market-based funding reduce banks’ vulnerabilities could seem counterintuitive at

first sight. However, given that the prediction horizon is chosen to be one to eight

14Given that the final model includes only eleven variables, the full sample of available obser-
vations is almost twice as large as the common sample used for the LASSO to select the relevant
variables for the model. Although there are some differences in the magnitudes and significance
levels of the estimated coefficients between the two samples, all estimated coefficients have the
same sign across the two samples.
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quarters and house prices and housing related activity are known to peak well in

advance of financial crises (See e.g. Schudel (2013)) the negative coefficient on the

mortgage share can easily be rationalised. In addition, the share of market-based

funding can also be expected to decrease as potential problems in the banking-sector

become more and more apparent, so that a negative estimated coefficient can indeed

make sense given the prediction horizon.
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Table 2: Estimated coefficients for the optimal model as of 2014Q4

(1) (2)
Variable Full sample Lasso sample

Intercept -3.039*** -3.111***
(0.153) (0.217)

Bank-specific variables

Tangible equity / Total assets, lag 2 -0.306*** -0.296***
(0.0445) (0.0669)

Interest expenses / Total liabilities, lag 2 0.127** 0.256***
(0.0541) (0.0890)

Reserves for NPLs / Total assets, lag 2 0.165*** 0.349***
(0.0593) (0.0956)

Banking-sector variables

Financial assets / GDP, lag 2 0.000769 0.00295***
(0.000600) (0.00111)

Loans / Deposits (1-year change), lag 1 0.00911 0.0151
(0.00611) (0.0106)

Mortgages / Loans (1-year change), lag 1 -0.413*** -0.261*
(0.0851) (0.135)

Issued debt / Total liabilities (1-year change), lag 1 -0.153** -0.136*
(0.0628) (0.0800)

Macro-financial variables

Total credit / GDP (3-year change), lag 2 0.0166*** 0.0171**
(0.00635) (0.00846)

House price gap (lambda = 1,600), lag 2 -0.0458*** -0.0526**
(0.0172) (0.0265)

MIP International Investment Position, lag 2 -0.0104*** -0.00695
(0.00372) (0.00574)

10-year yield (1-year change), lag 1 0.340*** 0.402*
(0.102) (0.221)

Observations 8,195 4,293
Total number of banks 384 232
Number of SBGs 106 69
Number of LCBGs 23 20
Number of distressed banks 124 81
Number of pre-distress events 803 385
Pseudo R2 0.239 0.260
AUROC 0.847 0.850

Notes: Coefficient estimates refer to the logit model with the same specification as the logit LASSO
model. Robust standard errors are in parentheses. Stars indicate the level of significance: *** p <
0.01, ** p < 0.05, * p < 0.10. SBGs refers to significant banking groups and LCBGs refers to large
and complex banking groups.
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Finally, the four optimally chosen macro-financial variables are the credit to GDP

ratio (3-year change), the house price gap (real-time HP-filtered with λ = 1, 600),

the MIP international investment position and the 10-year government bond yield

(1-year change). All four estimated coefficients are statistically significant at the 1 %

level for the full sample estimation and the coefficient signs are in line with economic

intuition, taking into account the fact that house prices peak well in advance of

financial crises. The 3-year change in the credit to GDP ratio and the annual

change in the 10-year government bond yield both increase banks’ vulnerabilities,

while the house-price-gap and the international investment position decrease banks’

vulnerabilities over a two-year prediction horizon.

Table 3: In-sample and out-of-sample performance for the optimal model

In-sample Out-of-sample Out-of-sample
Constant specification Changing specification

Signaling threshold 0.083
AUROC 0.847
Relative usefulness 0.533 0.346 0.184
Noise-2-Signal ratio 0.352 0.320 0.505

Type I Error rate 0.167 0.310 0.235
Type II Error rate 0.293 0.221 0.386
Conditional pre-distress probability 0.236 0.326 0.251
Unconditional pre-distress probability 0.098 0.134 0.169
Probability difference 0.138 0.192 0.082

True positives 0.082 0.093 0.111
False positives 0.264 0.191 0.330
True negatives 0.638 0.674 0.525
False negatives 0.016 0.042 0.034

Notes: In-sample performance is computed for the logit model with the same specification as the logit LASSO model on the full
sample of available data. The out-of-sample performance measures are for a recursive exercise starting in 2006Q1, where in each
quarter predictions are made based on a model and signalling threshold that are estimated with data up to the previous quarter.
The first out-of-sample exercise assumes a constant model specification across time in line with the model presented in Table 2.
The second out-of-sample exercise applies the optimal cross-validated LASSO penalty parameter at each point in time to allow
for a changing model specification in real-time. True positives, false positives, true negatives, and false negatives are expressed as
a share of the total number of observations.

In order to assess how well the optimal parsimonious model explains and predicts

the data, Table 3 displays a number of performance measures for the full data

sample and for two different recursive out-of-sample prediction exercise starting in

2006Q1. Starting with the in-sample fit of the model, we see that the parsimonious

model seems to explain the data reasonably well. The AUROC15, a measure of

the global signalling performance of the model independent of policy preferences,

is fairly high at 0.847. In addition, the relative usefulness for a policymaker with

µ = 0.9, is around 53 %, indicating that the model could have considerable benefit

15AUROC stands for the Area Under the Receiver Operating Characteristics Curve. A perfect
indicator has an AUROC of 1, while an uninformative indicator has an AUROC of 0.5.
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for a policymaker who is relatively concerned about bank failures. In terms of

more tangible numbers, the model only fails to signal less than 17 % of pre-distress

events, while less than one third of calm periods are incorrectly classified as pre-

distress events. The early warning performance is comparable to other state-of-the

art bank early warning models (see e.g. Betz et al. (2014)), but based on a more

parsimonious set of explanatory variables that were chosen based on objective model

selection criteria (LASSO with cross-validation).

In terms of the out-of-sample performance, the final LASSO model specification

also attains a fairly high relative usefulness of 34.6 % which is associated with

31 % of missed pre-distress events and 22.1 % of false distress alarms. Hence, the

conditional out-of-sample distress probability is fairly high at almost 33 % compared

to an unconditional distress probability of 13.4 %.16 The out-of-sample performance

of the recursive LASSO with a changing model specification at each point in time,

as described in Section 3.3, is somewhat lower with a relative usefulness of 18.4

%. However, this is not surprising given that the changing model specifications are

chosen solely based on the information set that was available at the time. Given that

there are hardly any bank distress events in the dataset before 2008, the positive

usefulness that the model yields can be interpreted as an encouraging sign that the

proposed method works out-of-sample.

In summary, the parsimonious optimal early-warning model contains all rele-

vant risk-driver categories, displays coefficient signs that are in line with economic

reasoning and has good in-sample and out-of-sample signalling properties.

4.4 Model output for micro-macro analysis

One of the advantages of our bank-level early-warning model is that it allows for

the analysis of the build-up of vulnerabilities at the micro and the macro level. The

model can therefore be used for the analysis of systemic risk in both the cross-

sectional and the time dimension. More specifically, the model can be used to

identify systemically important banks that are vulnerable at a given point in time,

as well as the build-up of banking-sector vulnerabilities over time at the country

or regional level. For the analysis of the build-up of vulnerabilities over time the

aggregation method proposed in Section 3.4 is particularly useful, while for both

the cross-sectional and time dimension of systemic risk, the decomposition of vul-

nerabilities into contributing factors adds additional value for policy purposes, as it

allows to identify at a high level in which areas possible vulnerabilities are emerging.

16The conditional distress probability is defined as the share of true pre-distress events whenever
the model issued a signal.
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Concrete examples of how model output can be used for risk-identification in the

macro-prudential policy process are given below.

Starting with the cross-sectional dimension of systemic risk, the model can be

used to display possible vulnerabilities for systemically important institutions either

at a given point in time or how vulnerabilities have developed over a certain period

of time. Beginning with the latter case, Figure 4 provides a number of bank-specific

examples of recursive out-of-sample predictions from the optimal model. These

examples qualitatively illustrate that the model performs generally well in signalling

vulnerable banks early on, while inevitably also showing that the model misses some

vulnerable states and issues a few false alarms. More specifically, the examples

illustrate that the model can capture reasonably well bank vulnerability differences

both within a country and across countries.

Moving to a snapshot view of cross-sectional systemic risk, Figure 5 shows a

bar chart of the most vulnerable significant institutions in the euro area that are

identified by the optimal model in 2014Q2. The model predictions for 2014Q2 are

based on public bank financial statement data as of end-2013, and therefore make

for a meaningful comparison to the results of the Comprehensive Assessment (CA)

that were published by the Single Supervisory Mechanism (SSM) at the end of

October 2014. The model signals nine banks in 2014Q2 that subsequently ”failed”

the CA. Moreover, seven CA ”failures” are below the signalling threshold in 2014Q2

but among the 20 most vulnerable banks.17 Interestingly, the model also signals

Espirito Santo Financial Group, which failed in summer 2014, as one of the most

vulnerable banks in 2014Q2 (with using bank-specific information until 2013Q4).

These results underscore the potential usefulness of the proposed model to identify

vulnerable systemically important banks.

For the analysis of the build-up of systemic risk over time, the evolution of the

aggregate vulnerability for banks in the euro area can be useful, which is illustrated

in Figure 6(a). In addition, the evolution of the aggregate vulnerability for banks in

a given country is illustrated in Figure 6(b)-(f) for Germany, Austria, Italy, Spain

and Ireland. Even though the proposed aggregation method has some shortcomings,

as it disregards interconnectedness and possible non-linear effects of size on systemic

importance as highlighted in Section 3.4, the aggregated micro-level vulnerabilities

seem to provide a fairly good approximation of the build-up of systemic risk at the

aggregate levels. For the euro area as a whole the model starts to signal vulnerable

states starting in 2006Q2 and stops signalling in 2013Q2. For the given country ex-

17It should be noted that for six out of the 25 banks that ”failed” the CA the model cannot issue
any signal due to a lack of data. In total, sufficient data to perform model predictions is available
for 72 banks out of the 130 banks that are directly supervised by the SSM.
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Figure 4: Examples of recursive out-of-sample predictions for the optimal model
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Notes: The banks are chosen to illustrate the method and no policy conclusions should be drawn
from the examples. The recursive out-of-sample exercise is performed for the logit model with the
same specification as the optimal logit LASSO model. In each quarter predictions are made based
on a model and signalling threshold that are estimated with data up to the previous quarter. The
signalling thresholds are derived for a policy preference parameter of µ = 0.9. The grey areas in the
charts indicate pre-distress periods that span 1-8 quarters prior to bank distress events (black bars)
as defined in Section 4.
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Figure 5: Most vulnerable banks in 2014Q2 for the optimal model
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Notes: The output is chosen to illustrate the method and no policy conclusions should be drawn from
the examples. The figure displays the 20 most vulnerable significant SSM banks in 2014Q2 based on
the predictions of the logit model with the same specification as the logit LASSO model estimated
on the full sample of available data. The signalling threshold is derived for a policy preference
parameter of µ = 0.9. The coloured bars illustrate the risk factor decomposition (bank-specific,
banking-sector and macro-financial) as defined in Section 3.4.
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amples, it can be seen that the model captures different magnitudes of vulnerabilities

across countries as well as different driving factors that are important.

Figure 6: Aggregate vulnerability for selected countries for the optimal model
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(e) Spain
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(f) Ireland
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Notes: The countries are chosen to illustrate the method and no policy conclusions should be
drawn. Aggregation is done for the logit model with the same specification as the logit LASSO
model estimated on the full sample of available data. The coloured areas illustrate the risk factor
decomposition (bank-specific, banking-sector and macro-financial) as defined in Section 3.4. The
signalling threshold is derived for a policy preference parameter of µ = 0.9.
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4.5 Illustration of the flexibility of the modeling solution

The previous subsections have highlighted how the proposed modeling solution can

be used to obtain an optimal early warning model specification for a given set of

pre-modeling choices. However, the optimal early warning model will always depend

on the specific aim it is to serve. As will be illustrated below, the proposed modeling

solution is one possible way to deal with this multitude of context-specific optimal

early warning models in a flexible way. The robustness exercises presented below

also illustrate the importance of making the pre-modeling and modeling choices

presented in section 2 explicit, as they will influence the optimal early warning

model specification in a meaningful way.

Table 4 illustrates how the optimal cross-validated LASSO shrinkage parameter

and therefore the optimal model complexity and specification changes when the

forecast horizon, policy preference parameter and variable pre-selection are changed.

Specifically, a shorter forecast horizon (1-4 quarters), a longer forecast horizon (1-

12 quarters), a lower preference for not missing bank distress events (µ = 0.8)

and a smaller set of pre-selected variables (i.e. a larger requirement on the sample

size of 10,000 observations) compared to the benchmark model are tested. In the

benchmark specification a forecast horizon of 1-8 quarters before distress events, a

preference parameter of µ = 0.9 and a recursive variable pre-selection procedure

that resulted in 5,000 observations were used.

Table 4 clearly shows that the optimal early warning model specification changes,

when some key modeling choices are altered. For example, a shorter prediction hori-

zon leads to a more complex model (15 variables) to be selected by the LASSO with

cross-validation than in the baseline (11 variables), while a longer prediction horizon

leads to a less complex model (8 variables). For our example, a lower preference for

not missing distress events also leads to a less complex model with 7 variables, as

does the case when one pre-selects fewer variables in order to cover a larger bank

sample over time. Table 4 also illustrates that for the shorter prediction horizon

of 1-4 quarters, more bank-specific variables get selected as relevant predictors for

bank distress. These examples illustrate the need to be explicit about the modeling

choices that are made, as set out in section 2, because these modeling choices will

influence what type of early warning model is optimal. One benefit of our proposed

modeling solution from section 3 is that it allows to derive an optimal early warning

model for a given set of such choices in a straightforward way.
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Table 4: Optimal model specifications for different early warning choices

(1) (2) (3) (4) (5)
Variable Baseline Different Different Different Different

specification horizon (shorter) horizon (longer) preferences pre-selection

Intercept -3.111*** -3.928*** -2.528*** -2.906*** -3.144***

Bank-specific variables

Tangible equity / Total assets, lag 2 -0.296*** -0.286*** -0.183 -0.227***
Interest expenses / Total liabilities, lag 2 0.256*** 0.226*** 0.216*** 0.213** 0.075*
Reserves for NPLs / Total assets, lag 2 0.349*** 0.267**
Non-operating losses / Net revenue, lag 2 0.001
Other income / Net revenue (1-year change), lag 2 0.016**
Common equity / Total assets, lag 2 -0.064 -0.235***

Banking-sector variables

Financial assets / GDP, lag 2 0.003*** 0.0004 0.001 0.003***
Loans / Deposits (1-year change), lag 1 0.015 0.01
Mortgages / Loans (1-year change), lag 1 -0.261* -0.308* -0.472***
Issued debt / Total liabilities (1-year change), lag 1 -0.136* -0.160
Financial liabilities / GDP, lag 2 0.002
Total assets / GDP, lag 2 0.012*

Macro-financial variables

Total credit / GDP (3-year change), lag 2 0.017** 0.019* 0.019* 0.021***
House price gap (lambda = 1,600), lag 2 -0.053** -0.093*** -0.084*** -0.039**
MIP International Investment Position, lag 2 -0.007 -0.009*
10-year yield (1-year change), lag 1 0.402* 0.201* 0.566*** 0.534** 0.412***
Stock prices (1-quarter growth), lag 1 -0.013*
Stock prices (4-quarter growth), lag 1 -0.009**
MIP Private sector debt, lag 2 0.003
Total credit / GDP, lag 2 -0.002
MIP Current account balance, lag 2 -0.061***

Preference parameter 0.9 0.9 0.9 0.8 0.9
Pre-crisis period 1 - 8 1 - 4 1 - 12 1 - 8 1 - 8
Variable pre-selection 5,000 5,000 5,000 5,000 10,000
LASSO penalty parameter 0.029 0.013 0.037 0.035 0.024
Number of variables 11 15 8 7 7

Pseudo R2 0.260 0.270 0.209 0.211 0.194
AUROC 0.850 0.874 0.810 0.831 0.820
Signalling Threshold 8.906 7.704 9.500 19.30 8.299
Relative Usefulness 0.515 0.467 0.422 0.281 0.442

Notes: Coefficient estimates refer to the logit model with the same specification as the optimal logit LASSO model estimated on the pre-selected sample for the cross-
validation. Stars indicate the level of significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

As the examples provided above have illustrated, building an early warning model

is a complex task with several choices that need to be made. Most importantly,

decisions about the specific purpose of the early warning model should influence its

optimal specification in a meaningful way. This highlights the need for a conceptual

framework as presented in section 1 to guide the model building process and to

make certain modeling choices explicit rather than implicit. Based on these explicit

modeling choices, the proposed modeling solution presented in section 3 provides

one possible way to easily obtain a model specification that suits the specific early

warning purpose at hand.

5 Conclusion

The large economic costs brought about by severe financial crises have again become

apparent in recent years. In order to avoid or at least mitigate the impact of future
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financial crises it is necessary to gain a deeper understanding of the driving factors

that cause such crisis episodes and to devise models that help to identify the build-

up of financial imbalances and systemic risk early on. The work on early-warning

models has therefore gained prominence in recent years, both in the academic and

policy sphere. However, the numerous complex choices that are involved in building

such models and the various approaches that have been employed in the literature

call for a structured modeling approach.

This paper has put forward a general-purpose framework for deriving early-

warning models and has applied it to predicting distress in European banks. The

paper therefore contributes to the existing literature in three main ways. First,

the paper has introduced a conceptual framework to guide the process of building

early-warning models, which highlights and structures the numerous complex choices

that the modeler needs to make. Second, the paper has provided a flexible modeling

solution to the conceptual framework that supports model selection in real-time.

Specifically, our proposed solution combines the loss function approach to evalu-

ate early-warning models with regularized logistic regression and cross-validation to

find a model specification with optimal real-time out-of-sample forecasting proper-

ties. Finally, the paper has illustrated how the modeling framework can be used

in analysis supporting both micro- and macro-prudential policy by applying it to

a large dataset of EU banks and showing some examples of early-warning model

visualizations.
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