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Abstract

In carrying out its banking supervision tasks as part of the Single Supervisory
Mechanism (SSM), the European Central Bank (ECB) collects and disseminates
data on significant and less significant institutions. To ensure harmonised
supervisory reporting standards, the data are represented through the European
Banking Authority’s data point model, which defines all the relevant business
concepts and the validation rules. For the purpose of data quality assurance and
assessment, ECB experts may implement additional plausibility checks on the data.
The ECB is constantly seeking ways to improve these plausibility checks in order to
detect suspicious or erroneous values and to provide high-quality data for the SSM.

In this paper we describe a data-driven approach, based on machine learning, for
discovering new plausibility checks. Specifically, the approach makes use of large
amounts of historical data to identify patterns in past observations. The patterns of
interest correspond to latent and potentially non-linear relationships in the data,
which serve as a basis for defining new checks. We show that this approach can be
used to detect relevant patterns and that these patterns are suitable for discovering
anomalies in the data. We also illustrate how such patterns are used by business
experts to refine their data quality framework. We finally provide suggestions for
potential further work that could be carried out to improve technical performance as
well as prediction quality

JEL codes: C18, C63, C81, E58, G28

Keywords: machine learning, quality assurance, validation rules, plausibility checks,
supervisory data
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1

Introduction

In carrying out its banking supervision tasks as part of the Single Supervisory
Mechanism (SSM), the European Central Bank (ECB) makes use of data provided
by national competent authorities (NCAS) to assess the health of financial institutions
within the euro area. Credit institutions report their data in line with the reporting
requirements defined by the European Banking Authority (EBA) through its data
point model (DPM)*. Within the DPM, the EBA defines validation rules to ensure the
correctness, completeness and consistency of data. The ECB has its own system —
the Supervisory Banking data system (SUBA) — for collecting data. SUBA allows
supervisory data to be collected from the NCAs and implements all of the EBA’s
validation rules to assess the data quality. Furthermore, ECB experts can carry out
additional plausibility checks to ensure the quality of the data. To date, such
plausibility checks have been defined according to a knowledge-driven approach,
with business experts using domain-specific knowledge and insights into business
processes at supervised institutions.

A major drawback of relying on experts’ knowledge alone is that it is impossible for a
human expert to assess all of the possible ways in which data points — the variables
in this analysis — might be related. There are around three million variables that may
potentially be reported for every institution and reference period. The possible
combinations of relationships between two or more variables that might need to be
investigated could therefore run into the millions. In this paper, we describe a
complementary approach for discovering new plausibility checks. The novelty of the
approach is that it is data-driven. This means it makes use of large amounts of
historical data to identify patterns in past observations. The patterns of interest
correspond to latent and potentially non-linear relationships in the data.

To identify latent patterns in the data, we train multiple regression models — one
model for each observed data point. The approach is capable to incorporate domain
knowledge to avoid identifying trivial and already known relationships, e.qg.
relationships defined in existing validation rules. The regression model for a specific
data point uses other observed values to make a prediction of what value to expect.
The prediction, which is flexible and error-tolerant, indicates an interval that is
expected to contain the value. By design, the approach also provides insights into
which other observed data points are among the main contributing factors and
explain the expected values. In this way, the models not only provide a “black box”
prediction but allow an analysis of the underlying relationships discovered between
the observed data points. These insights can be used by business experts to
formulate new plausibility checks. In addition, the approach lends itself to providing a
normalised implausibility score for each observation, measuring the degree to which
an observation deviates from its expected value. This normalised score makes it
possible to compare observations for different data points and incorporates
knowledge about the natural variance and noise in the data. By aggregating the

1 See the EBA’s website for information on the DPM data dictionary.
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normalised degree of deviation across all values of an institution (or “entity”), we are
also able to provide a consolidated outlier score for the entire report of an entity,
giving data quality managers a tool for assigning priorities in their assessment of
data received.

In this paper, we motivate our approach and describe it in detail. We illustrate the
necessary steps in data collection and pre-processing. We describe how to
incorporate prior domain knowledge into the models, which is essential for the
detection of non-trivial relationships. Finally, we present the methods for calculating
the implausibility score at the data point and entity levels and show how such a score
can be used by data quality managers to assign priorities in their work. In a
gualitative evaluation, we demonstrate the effectiveness of the approach and provide
initial evidence on how the approach can be used by quality managers to gain
deeper insights — and eventually also design new business-motivated quality checks.

The rest of the paper is structured as follows. In Section 2, we provide detailed
background information on the collection of supervisory data at the ECB and on the
quality mechanisms that are already in place. We then go on, in Section 3, to look at
related work relevant to our approach. In Section 4, we describe the idea of
modelling the discovery of plausibility checks as a machine learning task, providing
the formal foundation for the implementation we discuss in Section 5. We address
the experimental set-up and evaluation of our approach in Section 6, before
concluding the paper with a summary and a look ahead to future work.
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2.1

Background

After the 2008 financial crisis, the heads of state and government of euro area
countries decided to create an EU banking union to enhance the resilience of banks.
In particular, they announced the creation of the Single Supervisory Mechanism
(SSM), a framework within which ECB Banking Supervision (the supervisory arm of
the ECB) — in collaboration with the national competent authorities (NCAs) — plays a
supervisory role in monitoring the financial stability of the banks in the European
Union (Detken and Nymand-Andersen, 2013). Through this mechanism, the ECB is
responsible for the supervision of euro area banks, as well as banks of EU countries
outside the euro area that have voluntarily decided to participate in the SSM.? The
ECB works closely with the NCAs, performing tasks that differ depending on the role
and significance of the supervised bank. Banks are divided into significant
institutions (Sls) and less significant institutions (LSIs). This distinction is mainly
based on size, economic importance and scope of cross-border activities. Sls are
supervised directly by the ECB through Joint Supervisory Teams (JSTs) comprising
staff of the ECB and of the NCAs. Supervision of LSIs is delegated to the NCAs in
accordance with the principle of proportionality.

The European Commission has instructed the European Banking Authority (EBA) to
define Implementing Technical Standards (ITS)® for the supervisory reporting
requirements. The ITS on Supervisory Reporting provide a consistent, repeatable,
standardised method for information sharing. The ECB collects these data through
the Supervisory Banking data system (SUBA) to support consistent supervision
within the euro area. SUBA provides all relevant information for supervisory
purposes in a central platform. Subsets of the data are disseminated to other
systems, depending on the business needs of the counterparties. For instance, JSTs
supervising Sls only have access to Sl data. Therefore, SUBA allows a complete
overview of supervisory data and represents a good basis for the approach
presented in this paper.

Collection of supervisory data: purpose and process

Supervisory data are submitted by each credit institution to the competent NCA. The
NCA in turn sends these values to the ECB through the SUBA system. The SUBA
platform allows data to be collected, processed, aggregated and disseminated to
several counterparties. Subsets of the data are then disseminated both within the
ECB and to other European institutions such as the EBA and Single Resolution
Board. This chain of reporting is referred to as the “sequential approach”. SUBA
represents the point of the reporting chain where all the information comes together
and is integrated in one place. SUBA thus provides a comprehensive view of the

2 Two non-euro EU countries, Bulgaria and Croatia, joined the SSM at the end of 2020. This study was
conducted before these countries joined the SSM, therefore data of institutions resident in those
countries is not in the scope of this paper.

3 Implementing Technical Standards on Supervisory Reporting.
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data and is the most suitable place in the reporting chain for data-driven analytics
and machine learning.

SUBA data are of interest for several business areas within the ECB. In particular,
ECB Banking Supervision bases its evaluation of banks’ financial health on the data
relating to the Sls and LSIs. Therefore, given the criticality of the SUBA data use
cases, data quality is of utmost importance in SUBA.

All the data are collected in templates (grouped into modules) in accordance with the
technical standards defined by the EBA in order to implement uniform reporting
requirements; this makes data comparable, allowing for more efficient supervisory
activity. The EBA technical standards (formalised by EU Regulation No 680/20144)
reflect the reporting obligations embedded in the Capital Requirements Regulation
(EU Regulation No 575/2013%) and cover reporting of own funds and capital
requirements, reporting of financial information, reporting on large exposures,
reporting on leverage and reporting on liquidity and stable funding. They are
complemented by other specific reporting templates such as asset encumbrance,
forbearance and non-performing exposures. Reporting is carried out under the
common reporting (COREP) and financial reporting (FINREP) frameworks. These
were developed by the Committee of European Banking Supervisors (the
predecessor of the EBA) and cover the following information.

. COREP is the framework for reporting basic regulatory information. It covers six
reporting areas for capital adequacy and capital requirements: capital
adequacy, group solvency/large exposures, credit risk, operational risk, market
risk and liquidity risk.

. FINREP is the financial information reporting framework with which all
European credit institutions must comply. It aims to harmonise the supervisory
reporting requirements across the euro area. The templates that have to be
produced cover: balance sheet and income statement; comprehensive income
and equity; disclosure of financial assets and liabilities; disclosure of
derivatives; and general breakdown of all assets by country and sector.

Templates should be submitted by the reporting entities with a frequency that
depends on the nature of the module itself. Another important feature related to
entities and having an impact on the modules is the scope of prudential reporting,
which clarifies the consolidation of reporting for each entity. Under the Capital
Requirements Regulation, banks are requested to comply with prudential
requirements and provide the associated reporting at the individual (Ind) and/or
consolidated (Con) level. In consolidated reporting, the reported values are an
aggregate which also includes all the subsidiaries (entities owned by the bank).
Some of the entities are required to report at both Ind and Con levels.

4 Commission Implementing Regulation (EU) No 680/2014 of 16 April 2014 laying down implementing
technical standards with regard to supervisory reporting of institutions according to Regulation (EU) No
575/2013 of the European Parliament and of the Council (OJ L 191, 28.6.2014, p. 1).

5 Regulation (EU) No 575/2013 of the European Parliament and of the Council of 26 June 2013 on
prudential requirements for credit institutions and investment firms and amending Regulation (EU) No
648/2012 (OJ L 176, 27.6.2013, p. 1).
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Templates can be accessed by the JSTs in the form of spreadsheet files. These
spreadsheet files are organised into several sheets and follow a consistent structure.
We provide an illustration of this structure below to give a high-level understanding of
how information is ordered in the templates. The first sheet contains a table of
contents, while the second sheet lists the validation rules that the data does not
satisfy, if any. The actual data submitted by the relevant institution are contained in
the subsequent sheets.

Figure 1 illustrates the schematic structure of an example FINREP template as it
appears to a JST member. Following the overview in the table of contents to the left,
the middle sheet illustrates the validation rules. In this illustration we use A, B, C, etc.
to indicate specific reported values. To the right, you can see one of the content
sheets, in this case sheet F_01.01, “Balance Sheet Statement: Assets”, listing the
corresponding values.

Figure 1
Schematic illustration of a FINREP template

F_00.01 Nature of report
F_01.01
F_02.02 Liabilities

Data points represent the business concepts; they are the most detailed information.
A template contains several data points. The value of a data point can be linked to
other data points. The relationships that should hold are represented by validation
rules, which are formulae or expressions that determine whether the value of a given
data point is acceptable with respect to the value of the other data points. In order to
ensure a uniform implementation of the ITS on Supervisory Reporting, the EBA
provides a data point model (DPM) and an XBRL (eXtensible Business Reporting
Language)® taxonomy. The DPM is a dictionary which identifies the content of each
data point. In addition, in combination with the taxonomy, it defines all the business
concepts and relationships, as well as validation rules. Dictionaries of reportable
information are defined by means of XBRL taxonomies. XBRL is the format chosen
by the EBA for reporting supervisory data. Reporting entities send their data through
XBRL files, documents which follow the format defined by the taxonomy. Each data

6 See https://www.xbrl.org/the-standard/what/the-standard-for-reporting/
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2.2

point is uniquely identified by a “context” and a “metric”, which together define the
business concept that is represented by the data point.

To clarify how the business concept is embedded in the definition, we can take a
closer look at one data point that will also be used for normalisation purposes in our
approach. “Total assets” is represented by the XBRL metric XBRL:MET(EBA:mi53)
and the context EBA:BAS(X6)EBA:MCY (x25), where:

. mi53 stands for “Carrying amount” monetary [m] stock [i;

. BAS defines the basic conceptual meaning of a data point and identifies the
framework in which a data point is included, while “x6” indicates more
specifically that the value refers to “Assets”;

. MCY specifies the concept behind the data point reported, while the value “x25”
refers to “Total assets”.

In this paper, the data points will correspond to the variables of a machine learning
model. The observations we use for training a model are the values reported in the
templates which are characterised by the entity ID of the reporting agent and the
reference period.

Quality assurance for supervisory data

As mentioned in the previous section, supervisory data are submitted to the ECB in
XBRL format via the SUBA system. In order to assess the correctness,
completeness and consistency of the data, several checks are performed by means
of the following two types of validation rules.

e  Technical: The first type of automatic checks aims to ensure that the general
format of the XBRL file is correct. For example, checks are made to ensure that
the name of the file follows the naming convention and that the structure of the
file itself is correct. These syntactical checks ensure the formal validity of the
data submitted and that the submission can be processed by the system.

. Business: Once a file has passed the technical checks, it is further assessed to
ensure the quality of the ITS data itself. The checks at this stage are of
semantic nature and are designed to ensure the completeness and consistency
of the data with regard to business logic. Most of these validation rules are
defined by the EBA and implemented through the EBA XBRL taxonomy.
However, the ECB collaborates with NCAs on defining additional plausibility
checks to extend and refine the data quality framework and to improve data
quality across the SSM.

e  The SUBA system is configured to check automatically all ITS modules
received through the trigger of the validation rules. Some further checks for Si
institutions are manually triggered by business experts after receipt of the data.
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This paper aims to provide a further tool to support the development of new checks.
These checks extend the validation rules with the objective of automatically detecting
potential quality issues which might require further investigation.
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Related work

The use of algorithms to detect patterns in data and thus help experts to gain new
insights into the data has a long tradition and lies at the intersection between
statistics, machine learning and data mining. Accordingly, there is a vast field of
literature addressing this task and related topics.

One aspect of our work is the generation of rules based on data observations. Rule
mining has been investigated for decades and in different forms. A common
application is the identification of association rules (Agrawal, Imielinski and Swami,
1993 and Agrawal and Srikant, 1994). Approaches based on association rules
involve looking at items found together in sets, e.g. the contents of shopping
baskets, to identify patterns of items that commonly appear together. Extensions of
these approaches can be used for classification rules (Han, Cai and Cercone, 1992)
or to incorporate elements of explainability and interpretability (Cano, Zafra and
Ventura, 2013). However, in general, these approaches operate on finite sets of
discrete elements, which are different from the mainly numeric data we deal with in
supervisory reporting templates.

A key technique we use for our pattern detection is regression. Many classical
approaches exist for linear regression (Tibshirani, 1996, Hoerl, 1962 and Zou and
Hastie, 2005). Modern regression approaches have the capacity to model more
complex functional relationships in the data and are based on support vector
machines (SVMs) (Drucker et al., 1997), ensemble methods (Breiman, 2001 and
Geurts, Ernst and Wehenkel, 2006) or neural networks (Lathuiliere et al., 2019).

Another relevant field is the general topic of outlier and anomaly detection. Several
surveys provide a good overview of the relevant work and categorise approaches
based on the type of method used (Hodge and Austin, 2004) or on the nature of the
data, the expected outliers and the applications (Chandola, Banerjee and Kumar,
2009). Others investigate recent trends such as deep learning (Chalapathy and
Chawla, 2019). Outlier detection for linear models is a specific sub-problem. There
are approaches which seek to identify outliers for the purpose of excluding them
from the training set for linear regression models (Fischler and Bolles, 1981) and
other approaches making use of regression models to detect outliers (Benatti, 2019)
or to select robust features (Tolvi, 2004).
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4.1

Modelling the discovery of plausibility
checks as a machine learning task

Validation rules ensure the integrity of the data on a business-defined semantic level.
Plausibility checks serve a similar purpose and confirm that a value makes sense in
the context of its observation. They are motivated by and designed on the basis of
experts’ experience, business models and past observations. In this section, we
explain that the discovery of novel plausibility checks can be formulated as a
machine learning task. We also explain how to incorporate prior knowledge into the
task to ensure the novelty of the discoveries and how to eventually serve the
business need of defining rules and implementing quality assurance measures.

Using regression models to discover hidden patterns in
the data

As stated above, plausibility checks consider values in context and confirm whether
an observed value makes sense. Context can come in different forms, such as
temporal context, spatial context or the context of peer groups. The hypothesis
underlying our approach is that context is defined sufficiently well by the entirety of
all information reported for a given reporting agent, a given reporting period and a
given consolidation level. After all, this information provides the basis for the analysis
of the experts when it comes to supervisory tasks.

Hence, let us assume X = (X, X,, X3,--+, X,,) to be the data points of a report we
consider in our analysis. In terms of machine learning models, the data points
correspond to variables. We can then define the context of a variable X; as
consisting of all other variables (X, X5, **, X;_1, X;41,**, X). For a particular
observation ¥ of the variables, this means that the concrete context for an
observation of the value %; is given by the values (%,,%,, **, Xi_1, Xiy1, == » Xn)-

Furthermore, we assume that a plausibility check is based on an interdependence
between the variables. This interdependence might be explicitly known (e.g. because
a variable represents an aggregate of other variables), or it can be implicitly present
in the data and reflect features of the data-generating processes (e.g. the business
model, operational targets or business processes of a supervised institution). It is
these latter, implicit and unknown interdependencies we are interested in. The
motivation for using machine learning is to detect such patterns in the data in a
scalable and automated way and describe them using a formal model.

The vast majority of data collected for supervisory purposes are of a numerical
nature, and we focus on this type of data’. This allows us to formulate the task of

7 The approach can easily be extended to categorical or even textual data, for which corresponding
machine learning models exist.
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finding a plausibility check for variable X; as the task of identifying a function f;,
which describes its dependence on its context:

Xi = filX0, Xo, o Xim1, Xiw, o, X)) + &

where ¢; is an error term to ascribe a certain amount of flexibility or tolerance to the
plausibility check.

Viewing the task in this way, it becomes obvious that looking for plausibility checks
can be formulated as a task of performing a multitude of regression analyses: one for
each variable.

The family of regression models we consider when looking for functions f; defines
the search space of functional dependencies we can identify. For instance, if we
consider only linear regression models, we will only find linear dependencies. If,
instead, we allow for more complex regression models, e.g. polynomial models, we
might identify more complex dependencies. Hence, one of the main parameters for
our approach is the decision on which types of regression models to consider.

It is important to note that we are interested in finding novel and previously unknown
checks for supervisory data. This means that we try to identify novel patterns. At the
same time, the large amount of predefined EBA validation rules corresponds to
already known patterns in the data. Moreover, we can represent these validation
rules as functions. To comply with our claim of detecting novel rules, we need to
make sure we do not rediscover the already known rules using our data-driven
machine learning approach.

To this end, we need to exclude all functional dependencies modelled in the
validation rules from our search space. Formally, if we define E to be the set of
functions representing validation rules (e.g. assume a function ¢, € E with X, =
ex(Xp, X.) = X, + X, to indicate that a variable X, corresponds to the sum of two
other variables X, and X.), then we need to make sure that we do not identify a
function f which is already member of E. Let us referto E as the set of already
known validation functions®.

The approach we take here is to constrain the search space for regression functions
by excluding all functions with the same input space of variables as already known
functions from the validation family. This means that if for a variable X, we know
there is rule e, with input variables X, and X. then we will not look for any
regression model trying to predict X, incorporating X, or X. as input. Hence, X,
and X, are entirely taken out of the search space and the prediction of X, cannot
use any information from either of the variables.

Formally, let in(e,) be the set of variables which are defined as input variables for a
function e, € E, and scope(e;) be the set of variables affected by the validation rule
represented by e,. In the above example of e, defined as X, = X, + X, this
corresponds to in(e,) = {X,, X.} and scope(e,) = {X,}. Then we constrain our

8  Note that the same validation rule might define multiple representations of the same functional
dependency. For instance, our example X, = X,, + X, is equivalentto X, = X, — X, and X, = X, — X..
The set E shall contain all representations.
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4.2

search for regression models to consider as input to the regression only those
variables which are not already part of the input for a validation rule®. Hence, we are
looking for:

Xi=filX:Xe U in(ey) | + &

ex: X;€ scope(ey)

Formulated in a different way: we exclude all variables from the regression analysis
for variable X;, for which we already know that they are part of a functional
dependency according to a validation rule. In this way our approach is forced to find
new dependencies and, as a result, novel rules.

Remark: If the variables constituting a functional dependence stemming from
validation rules are not excluded, our approach will be strongly biased towards
identifying exactly such rules. This can be understood relatively easily as follows.

The EBA validation rules are used to check the quality of the supervisory data
submitted. Hence, the data in the SUBA system will (broadly) comply with these
rules. This means that, for instance, the validation rule X, = X;, + X. will also cause
the observed values of variable X, to be exactly the sum of X, and X.. When
training a regression model on this data, the solution of finding exactly the function
X, = X, + X, willimmediately be an optimal one, as it leads to a minimal error term
for the model on the training data. Hence, the detected rules will conform to the
already known EBA validation rules.

In fact, in an initial stage we applied our method without the exclusion of known
dependencies stemming from the EBA validation rules. As expected, we identified
perfect prediction models for all variables involved in validation rules. This initial
application of the approach was used as a sanity check to verify the correctness of
our implementation.

Obtaining business-oriented checks from the results of a
regression analysis

We mentioned above how we can interpret the task of finding plausibility checks as a
multitude of regression analyses. Correspondingly, the result of our search for new
plausibility checks is a collection of regression models. Considering those regression
models, there are two ways they can support the actual task and business logic, i.e.
to improve data quality assurance based on new rules.

(&) Interpretation of the regression models themselves: The regression
models can provide direct motivation for the introduction of additional
checks. Provided the models come with a sufficient degree of
interpretability, experts can take a look at the functions of the regression
models. This permits business experts to validate the identified functions

9 There might be multiple validation rules affecting the same variable, i.e. with the same scope.
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against their domain expertise and background knowledge. Once they
have made sure that the business logic is sound, the business experts can
define new plausibility checks in SUBA. Effectively the outcome is a
function in the same format as the EBA validation rule specifications. The
advantage of this approach is that it allows for the identification of very
generic rules which have been backed by business logic. In a certain way,
it can be seen as a tool for inspiring and guiding the experts in the
development of domain-driven rule definitions.

(b) Direct identification of implausible values: The regression models can
also be applied directly to detect implausible values. To this end, any
observed variable value can be compared with the value predicted by the
regression model, given the context of all other variables. If the
observation deviates too much from the predicted values, this is a good
indication of an anomaly and might require further investigation. The
advantage of this approach is that it does not necessarily require the
regression models to be interpretable. This means that the search space
for identifying functional relationships between the variables can be larger
and include more complex functions.

In this paper we investigate both approaches for making use of the learned
regression models. In particular, we introduce a normalised way of measuring
deviations from the predictions which allows for a harmonised assessment, even for
variables with very different value ranges.
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5

5.1

Implementation

In this section we go into the details of the implementation of our approach. We
illustrate how we prepared, filtered and transformed data from SUBA to render it
suitable for our analysis, how we technically incorporated prior knowledge on
existing validation rules and how we built our regression models using different
machine learning techniques.

Data preparation

For the purpose of this study we focus on FINREP, as this framework contains clear
relationships among the data points. In addition, the framework was changed at the
end of 2018 to comply with IFRS 9 standards introducing new concepts and
templates, so it is a good candidate for checking the effectiveness of the model in
identifying new patterns. FINREP modules are reported on a quarterly basis, and we
considered all available consolidation levels, both Ind and Con.

The selection of templates!® was driven on the one hand by the presence of several
validation rules for these templates, which served as prior knowledge to be
considered in the process, and on the other hand by the suspected potential for
latent relationships to be discovered?®.

Data are stored in SUBA as a list of key-value pairs (data point, value). This
representation is optimal for sparse data. However, most machine learning
frameworks need data to be represented as a matrix. To match this requirement, we
reformatted the data into a matrix. In this new matrix, each column corresponds to a
data point and each row to an observation for an entity at a given reference period.

Given the initial sparsity of the data, many of the values in the matrix are empty, as
they were not reported or not used. We handled the missing data applying the
following, business-motivated guidelines.

. Fill missing data with zeros for templates that have been reported for a specific
entity and reference period (we know that a template has been reported for an
entity and a reference period if there are data for at least one of the data points
defined in this template). This corresponds to the business interpretation in a
case where the value is assumed to be reported but also assumed to be zero.

. Leave missing data empty for those variables for which this template has not
been reported. In this case we assume that the entity did not have to report the

10 FINREP templates containing information on breakdown of financial assets and non-performing
exposures.

1 As a first assessment, we verified that the model actually detects the trivial validation rules. In a second
phase we excluded the already known relationships to gain new insights. In this paper, we focus on the
detection of new insights.
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template, and the data are intentionally missing (which is a different signal than
a value of zero).

According to this treatment of missing values, we investigated whether there were
sufficient data for a systematic analysis. Chart 1 depicts how many observations
were reported for entities at different reference periods in the templates considered.
We noticed that one template (F_07.01) was reported on far fewer occasions: this
template comprises breakdowns of financial assets subject to impairment and is not
required to be reported by some less significant institutions. As we expect novel
plausibility checks to appear mainly across templates, we decided to exclude the
variables from this template for this analysis. Keeping F_07.01 in this analysis would
have limited our analysis to far fewer observations.

Chart 1
Amount of entities per reported period for which specific template data are available
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After this first preparatory step, we were left with 2,619 variables to consider.
However, due to the sparse nature of the reported data, very few variables have data
all the time. This lack of data can be problematic when trying to use machine
learning to automatically learn relationships. To overcome this obstacle, we took the
following two decisions.

e  We considered only those data points that contained data for at least 5% of the
observations. In this way the initial list of 2,619 variables was reduced further to
942 usable data points.

¢  When training the machine learning models for variable X; (e.g. X; =
fi(Xy, -, Xi_1, Xiy1, -+, X)) wWe considered only the observations for which
values for X; were actually reported. In practice this corresponded to excluding
the prediction of missing values from the models.

The next step in the pre-processing pipeline is data normalisation. In machine
learning, data are usually normalised so that each attribute is in a common and
predefined range (e.g. [0, 1]) or of similar scale (e.g. by standardising its values).
Otherwise, optimisation techniques, such as gradient descent, or distance-based
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methods (e.g. clustering) might give higher importance to the variables with higher
magnitude?’?.

However, there is yet another reason to normalise data: to overcome certain aspects
of sparsity in the feature space. According to Bengio, Courville and Vincent (2013) a
good representation of data is insensitive to small variations in the values and
exhibits a spatial coherence. If data observations are represented in a dense way,
i.e. close to each other, the machine learning models learned from this data tend to
be more representative and generalise better. In the era of big data, this is usually
not a concern, as big data typically implies dense data. In our case, due to a change
in the accounting framework, we only had data from three reporting periods to hand,
namely the first, second and third quarters of 2019. Involving data from previous
periods would have incorporated a systematic bias into the data for those values
which were affected by the change in accounting standards. Due to this limited
amount of data, we preferred to include normalisation techniques that contribute to a
denser representation.

We considered the following approaches for normalisation:

e Total assets: This normalisation divides every variable by the total assets
reported for the corresponding entity. The main advantage is that itis a
business rule (intuitive in this domain) in which each variable is expressed as
percentage of total assets. The disadvantage is that it leads to numerical
precision issues (e.g. many variables are very close to 0 in the normalised
space). This in turns makes it almost impossible for machine learning models to
make use of close-to-zero values.

. Million: The million normalisation divides every variable by 1 million. This
normalisation solves the numerical stability problem of total assets
normalisation, as typically the values are neither too small nor too big. However,
the representation is still sparse when we take into account the amount of data
available.

¢ Quantised: The quantised normalisation transforms each variable in a quantile
in the interval [0, 99]. The quantisation is performed by assigning an equal
number of values to each quantile for each variable. This normalisation
preserves the order of observations, in the sense that higher (lower) values in
the original space correspond to higher (lower) quantiles. It also has the
advantage that it is robust against outliers and anomalies in the data. Extremely
high or low values are grouped together with other values and represented by
the corresponding quantile. Hence, the absolute values of anomalies have no
impact on the regression models. The quantised normalisation also solves
numerical precision issues from the total assets normalisation. And finally, it
makes it easy to compare the performance of machine learning models in
predicting variables of very different scales, as the error can be expressed in a
100-quantile scale. The disadvantage is that the machine learning models will

2. Not every machine learning technique requires data to be normalised. For instance, tree-based
techniques, such as random forests or extremely randomised trees, also work well on non-normalised
data.
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5.2

provide predictions in the quantile space, which is harder to interpret from a
business perspective. To overcome this limitation, we can transform this
prediction back into the range of values in the original space. One aspect to
consider is that the quantised normalisation performs a non-linear
transformation on each variable in the data. Overall, this corresponds to a non-
trivial transformation of the analysed data and might obscure some simple
linear relationships in the data. This effect needs to be taken into account when
selecting suitable regression methods (cf. Section 5.3).

Table 1 summarises the advantages and disadvantages of each normalisation
technique.

We will report only on the results making use of quantised normalisation, as its
advantages are very relevant to this problem, while its disadvantages can be easily
overcome in practice by providing an approximate inverse transformation.

Table 1
Overview of advantages and disadvantages of the normalisation techniques
considered

Normalisations Advantages Disadvantages
Total assets Business rule (% total assets) Numerical precision
Million Solves numerical precision Sparse representation
Quantised Solves numerical precision Prediction in quantised space

Easy to compare predictability

Robustness to anomalies

Handling prior knowledge

Since in this project we are looking at the possibility of finding novel relationships
that are useful for performing plausibility checks, we need to handle prior knowledge
and prevent machine learning models from exploiting the already known
relationships. As described in Section 4.1, our solution is to exclude the variables
modelled in prior knowledge from the input that the machine learning models can
use. This forces the machine learning models to learn alternative and non-trivial
relationships not covered by prior knowledge.

For example, given the known rule a = b + c, neither the variable b nor the variable
¢ must be considered as an input variable to predict a. We use the following
notation to denote which variables must not be considered as input variables:
exclude[a] = {b, c}. Note that it is not important to keep track of the type of
relationship between the variables (e.g. an addition in this example). Therefore, the
prior knowledge of any rule can be simplified and formulated as a ~ b, and a ~ ¢
with the meaning that a depends on b and c.

Note that this also implies that b depends on a and c. Th