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Abstract

This paper provides an overview of stress-testing methodologies in Europe, with a focus on the
advancements made by the European Central Bank’s Financial Stability Committee Working Group on
Stress Testing (WGST). Over a four-year period, the WGST played a pivotal role in refining stress-testing
practices, promoting collaboration among central banks and supervisory authorities and addressing
challenges in the evolving financial landscape. The paper discusses the development and application of
various stress-testing models, including top-down models, macro-micro models and system-wide
models. It highlights the integration of new datasets and model validation efforts as well as the expanded
use of stress-testing methodologies in risk and policy evaluation and in communication. The
collaborative efforts of the WGST have demystified stress-testing methodologies and fostered trust
among stakeholders. The paper concludes by outlining the future agenda for continued improvements in
stress-testing practices.

JEL classification: G21, G28, C58, G01, G18

Keywords: stress testing, prudential policies, uncertainty, macro-financial scenarios, Basel III, COVID-
19 mitigation, impact assessment, lending, economic activity, communication, Working Group on Stress
Testing, financial system model.
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Executive summary 

This paper provides a comprehensive overview of stress-testing methodologies in Europe with a 
focus on the advancements made by the European Central Bank’s (ECB’s) Financial Stability 
Committee Working Group on Stress Testing (WGST). From 2018 to 2022, the WGST played a pivotal 
role in advancing stress-testing practices, promoting collaboration among central banks and supervisory 
authorities, and addressing challenges related to the evolving financial landscape and emerging risks. The 
WGST successfully refined ECB stress-testing methodologies, ultimately enhancing various EU-wide 
stress-testing exercises.  

First, the paper outlines the development and application of various stress-testing models, 
including top-down models, macro-micro models and system-wide models. The top-down models 
focus on credit risk, market risk and profitability, providing insights into default probabilities, revaluation 
losses and income sources. The macro-micro models examine the interactions between macroprudential 
policies, monetary policy changes and financial stability. The system-wide models capture 
interconnectedness among banks and non-banking financial institutions, addressing financial contagion 
and interdependencies. 

The development of the models reflects evolving policy expectations, the emergence of 
opportunities such as new datasets and general efforts to enhance robustness and universality. 
The WGST identified 16 new models that were regularly used in policy processes, of which five replaced 
earlier models contained in the Stress Test Analytics for Macroprudential Purposes in the Euro Area tool 
(STAMP€) (Henry and Kok, 2013; Dees et al., 2017) and 11 covered areas not addressed by the ECB top-
down toolkit before 2018. It improved and further developed five existing models, while two additional 
models were referred for testing at the end of 2022. On the back of model development, the WGST 
integrated 13 new datasets, which included transaction-level data, and started to use large datasets more 
broadly (in more applications). The model development was paired with efforts to improve stress test 
execution and non-model infrastructure, outlier detection and the analysis of new risks, including climate 
and cyber risks. 

Validation efforts have been enhanced, with model performance being compared against banks’ 
forecasts and back-testing against past exercises. The paper emphasises the importance of a 
comprehensive validation framework that combines ex ante and ex post elements, ensuring accuracy and 
reliability.  

Second, the paper outlines the broadened use of stress-testing methodologies in the policy 
process. Stress-testing methods have expanded beyond their initial use in risk assessment, strengthening 
their role in policy evaluation and communication. Within the risk assessment area, the initial main 
application of the ECB benchmark models was to challenge the bottom-up submissions of banks in the 
European Union (EU)-wide supervisory stress test. Most recently, this application was supplemented using 
the same models in fully top-down (without bank participation) exercises, such as various scenario, 
vulnerability and sensitivity analyses for the banking sector. These applications inspired the development 
of models more capable of incorporating high sector-level detail, generating multiple scenarios, and of 
comprehensively assessing tail events and uncertainty. 

Third, the WGST’s collaborative efforts have demystified stress-testing methodologies and 
fostered trust among stakeholders. Through knowledge exchange and shared objectives, the WGST 
has played a significant role in advancing stress-testing practices in Europe, a legacy that will outlast the 
group itself.  

Last, the paper provides insights into the state of stress-testing methodologies in Europe and 
outlines the future agenda for continued improvements in stress-testing practices. 
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1 Introduction 

The global financial crisis highlighted to regulators, among others, the limits of a static 
assessment of bank solvency. The widespread belief that banks were sufficiently capitalised was 
falsified with new waves of financial market turmoil, unwinding second-round effects and finally economic 
recession. Stress testing had up to that point been part of financial institutions’ internal risk management 
practices and shown promise in assessing bank solvency in a forward-looking manner and under realistic 
future crisis scenarios. It was this promise that convinced regulators to adopt it as part of their new toolbox. 
 
The banking sector stress test in 2011, conducted by the European Banking Authority (EBA) in 
cooperation with the European Systemic Risk Board (ESRB) and the European Central Bank (ECB), 
marked the beginning of EU-wide stress testing in the current institutional set-up and facilitated 
the development of dedicated methodologies.1 In 2011 the ECB established a comprehensive 
methodology for designing macro-financial scenarios for the EBA, which in later years was expanded to 
cover stress-testing exercises conducted by the European Securities and Markets Authority (ESMA) and 
the European Insurance and Occupational Pensions Authority (EIOPA). In tandem, the ECB also 
developed a rich set of models to scrutinise the results of the EU-wide banking sector stress test. Finally, 
to support the ESRB in its mission and to deliver on its own macroprudential oversight mandate within the 
framework of the Single Supervisory Mechanism (SSM), the ECB embarked on the development of its 
macro-financial stress-testing toolbox. These experiences were summarised first in Henry and Kok (2013), 
and then in a 2017 e-book on Stress Test Analytics for Macroprudential Purposes in the Euro Area 
(STAMP€) (Dees et al., 2017). 
 
This paper provides a comprehensive overview of the top-down stress-testing methodologies 
developed between 2018 and 2022 by the Working Group on Stress Testing (WGST). The WGST 
was established in 2018 for an initial period of three years (later extended to four years) by the Financial 
Stability Committee and was tasked with advancing top-down stress test modelling that could support and 
complement the information in the bottom-up EU-wide stress-testing exercises. The group identified 16 
new models that were regularly used in policy processes, of which five replaced earlier infrastructures 
(included in STAMP€) and 11 covered areas not addressed by the ECB top-down toolkit before 2018. It 
improved and further developed five existing models, while two additional models were referred for testing 
at the end of 2022. The new models include two comprehensive models for macroprudential stress testing 
of the banking sector, including banks and the real economy, and for system-wide stress testing, 
introducing interactions between banks and other financial institutions. On the back of model development, 
the WGST integrated 13 new datasets and started to use large datasets more broadly (in more 
applications). Lastly, the paper documents the efforts to introduce robust and regular model validation 
practices and takes stock of evolving expectations and policy applications of top-down stress-testing 
methods over the period 2018-22. 
 
The paper targets a potentially broad readership of experts active in the field of stress testing and 
other users of stress-testing methods, including those who use stress test results for policy 
decisions and want to know more about how top-down stress tests are prepared. For stress-testing 
experts, it can serve as an overview of methodologies that can also be applied to their home institutions. 
Other users of stress-testing methods, or experts active in analysing banking and financial systems, can 
gain inspiration and a better intuition regarding the complementarities between stress testing and their 
fields. Finally, the broadest group of “passive” stress test users can not only see the inner workings and 
develop a better understanding of the possibilities and limitations of various methods, but also see multiple 
examples of stress test applications, hopefully demonstrating how such methods can be used to prevent 
and manage future financial stability problems.  
 
  

1 The first Europe-wide banking sector stress test took place two years earlier in 2009 and was coordinated by the Committee of European 
Banking Supervisors (CEBS). For this purpose, the ECB provided the macro-financial scenarios and credit risk benchmark parameters. 
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The mandate of the WGST was to develop operational tools based on stress-testing experience, 
academic research and the analytical frameworks already used by EU central banks and 
supervisory authorities. This included validating and developing further methodologies to support EU-
wide stress-testing exercises as well as the new macroprudential policy mandates of designated or 
competent institutions. It spanned both risk analysis and counterfactual risk and policy impact 
assessments. The mandate served the aim of understanding macro-financial linkages and their effects 
when assessing the system-wide impact of risks, policy measures and regulations. Importantly, it called 
for specific and readily implementable tools, hinting at its hands-on policy-focused profile. 
 
An important part of the WGST’s mandate was to foster cooperation between member institutions 
of the SSM and European System of Central Banks (ESCB). To this end, during its four-year existence, 
the WGST provided a forum for analytical exchange and policy discussion between experts from member 
institutions and a platform for regular and ad hoc data exchange.2 As the first group with such a broad 
composition to specialise in the development of stress-testing models in the European sphere, it 
substantially strengthened networks of modellers working on methods for risk assessment. This latter 
aspect, which is difficult to quantify in this paper, is something that will outlast the WGST’s discontinuation 
in 2022. 
 
The WGST was organised in three work streams, corresponding to the three development 
directions of stress-testing methods (Figure 1). The top-down stress-testing benchmarks work stream 
focused on modelling stress-testing parameters to support top-down stress testing with a constant balance 
sheet assumption. Its main ambition was to provide banks with benchmarks and support the quality 
assurance of bank submissions for bottom-up results provided in the context of EU-wide stress-testing 
exercises. It was further divided into three different sub-streams covering credit risk, market risk and 
profitability.3 The macro-micro interactions work stream focused on banking sector interactions with the 
real economy and worked toward the operationalisation of an effective macroprudential stress-testing 
framework for banks. It concentrated on releasing the constant balance sheet assumption and introducing 
the feedback loop between the banking sector and the real economy. The system-wide stress testing work 
stream was tasked with the development of a framework that extended beyond banks and included other 
sectors of the financial system. Its main aim was to improve the understanding of contagion and 
amplification mechanisms stemming from the interaction of banks with other non-banking financial 
institutions.  
 
Figure 1 
Organisational set-up for the top-down stress-testing benchmarks work stream 

 

Source: ECB.  

The top-down benchmarks work stream delivered a suite of new or revised models and a back-
testing and validation framework, and continuously supported various constant balance sheet 
exercises. The models were enhanced based on more granular information and advanced modelling 
techniques, and their coverage of parameters increased. The benchmarks derived from these models 
were used by banks and by supervisors to scrutinise bottom-up bank submissions in the 2018, 2021 and 
2023 EU-wide stress tests and comprehensive assessments, ensuring sufficient conservativeness and a 

2 This included, for example, regular so-called free-form data collection, where time series of default rate flows and transition rates are collected 
from national authorities. Since 2018, the ECB has carried out four of these data collections, which are used to calibrate the ECB top-down 
models before the launch of each EU-wide stress test. 
3 The top-down stress testing benchmarks work stream’s organisational set-up consisted of approximately 40 colleagues, including ECB staff 
and experts from national authorities, as well as ECB Banking Supervision and the EBA who were acting as observers. 
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level playing field between participating banks.4 They have also become a core element of ECB/SSM 
vulnerability analyses, i.e., top-down (or desktop-based) stress-testing exercises closely following the 
methodology of the EU-wide stress tests (including the constant balance sheet assumption) but relying 
only on top-down model predictions.  

The macro-micro interactions work stream assisted the finalisation of a comprehensive 
macroprudential stress-testing model and its transformation into a workhorse model used flexibly 
for the impact assessment of risks and banking sector-relevant policies and regulations. The core 
modelling framework advanced by the work stream was the ECB banking euro area stress test (BEAST) 
model (Budnik et al., 2023), although it continued supporting the development of other infrastructures at 
member institutions and discussing alternative modelling approaches. The model mechanisms were 
substantially expanded, allowing for banks’ responses to macroeconomic conditions and policy changes 
by adapting their liability structure, voluntary capital buffers and dividend payouts, or defaulted asset write-
off policies; all of which complemented the original dynamic balance sheet elements of loan pricing and 
volumes. The model ultimately accommodated more stress propagation channels, carefully modelling the 
dynamics of bank funding costs, the pass-through of standard and non-standard monetary policy 
instruments (including asset purchases and longer-term liquidity operations) and allowing for non-zero 
asset recovery rates, endogenous revaluation losses and regulatory risk charges. Finally, the model was 
expanded to accommodate more regulatory constraints on liquidity (liquidity coverage ratio, LCR), funding 
(net stable funding ratio, NSFR) and non-performing loan (NPL) coverage (SSM NPL coverage 
expectations), as well as pre-existing capital requirements and buffers, and factored in bail-in requirements 
(minimum requirement for own funds and eligible liabilities, MREL). The work stream oversaw the 
application of the model in the preparation of three ECB macroprudential stress-testing exercises, 
assessments of the macro-financial consequences of Basel III finalisation, NPL coverage expectations, 
coronavirus (COVID-19) bank-oriented policies (including public guarantees and moratoria), liquidity 
implications of the phase-in of central bank digital currencies and initial assessments of the interactions 
between monetary and prudential policies. 

The system-wide stress testing work stream concluded with a dynamic, micro-structural tool for 
carrying out a joint stress test of banks and non-banks. The model considers the interactions between 
banks, investment funds and the insurance sector and features both direct and indirect contagion 
mechanisms. It can be applied to solvency and liquidity stress testing, and during the period of the WGST 
was successfully phased in for policy applications. From 2021 onwards it was also used to investigate the 
amplification of climate risks.  

The analytical work of the WGST built on STAMP€ (Henry et al., 2013; Dees et al., 2017), a rich 
infrastructure of models and the framework for combining them to provide estimates of the 
macroeconomic feedback and contagion effects. STAMP€ was a stress-testing framework put together 
by ECB staff that featured models for the estimation of various bank parameters and supplementary 
macro-financial models for scenario design, supporting macroprudential and system-wide stress testing. 
The former model mapped macro-financial developments into credit risk, market risk and bank profitability. 
These models became the focus of the top-down benchmarks work stream and were further developed 
and tested within the WGST. The two other WGST work streams, macro-micro and system-wide stress 
testing, pushed further the agenda of macroprudential and system-wide stress testing respectively. The 
system-wide stress-testing model in particular leverages both the analytical question and solution (the 
hybrid model structure) of STAMP€. In parallel to the work of the WGST, STAMP€ continued to evolve into 
a comprehensive IT platform for stress testers (Henry and Januário, 2022) that allows for multiple-scenario 
stress tests and can be applied to reverse stress testing (Henry, 2021).  

The report is structured as follows. Section 2 discusses the evolution of stress testing in the European 
Union since 2018 and places the work of the WGST in this context. Section 3 provides an overview of the 
ECB top-down models.5 Section 4 covers the work on macro-micro interactions and macroprudential 
stress testing. Section 5 describes the framework for system-wide stress testing, covering banks and non-
banking financial institutions. The final section concludes and provides an outlook on future developments 
in stress-testing methods. 

4 The predecessors of models maintained or initiated by the WGST had been used to scrutinise the results of the EU-wide stress test since 
2011 (i.e., next to the dates mentioned in the main text, also in 2011, 2014 and 2016).  
5 In comparison with work streams 2 and 3, the top-down models are described in more detail in this report. This is due to the availability of 
other related publications that provide a comprehensive overview of the applied modelling framework in these work streams. 
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2 Stress testing in Europe 

Stress tests evaluate the robustness of financial institutions under adverse economic conditions. 
Financial institutions are complex enterprises with balance sheets that are difficult for the wider public to 
read and understand. Stress tests estimate the solvency and/or liquidity of financial institutions under 
hypothetical unfavourable macro-financial conditions, such as a deep recession or financial market 
disturbances, providing a condensed and relatively easy way to interpret financial resilience.  
 
Stress testing evolved from being part of financial institutions’ internal risk management practices 
to becoming a standard regulatory tool in the wake of the global financial crisis. As a crisis 
prevention instrument, stress tests act as an early warning mechanism, provide new information to 
supervisors and markets (Durrani et al., 2022; Durrani, Ongena and Ponte Marques, 2022) and can 
improve transparency and market discipline (Konietschke et al., 2022b; Georgescu et al., 2017; Kok et al., 
2022). They allow market participants to assess banks’ ability to meet applicable minimum and additional 
capital requirements under adverse scenarios. As a crisis management instrument, they help to regain the 
public’s trust in the financial system. Finally, stress test results contribute to ongoing supervisory dialogue 
in the context of the Supervisory Review and Evaluation Process (SREP). Qualitative outcomes are 
included in the risk governance part of the SREP, thereby influencing the determination of Pillar 2 
requirements (P2R). Quantitative results are used as a key input for Pillar 2 guidance (P2G). 
 
This section first reviews the evolving applications of stress testing in Europe in order to later 
place the deliverables of the WGST in this broader context. ECB stress-testing methodologies have 
evolved jointly with the European regulatory landscape. In 2009 and 2010 the ECB contributed the macro-
financial scenarios and so-called benchmark parameters for several variables reported by banks to the 
first EU-wide stress tests run by the Committee of European Banking Supervisors (CEBA). In 2010 CEBA’s 
oversight responsibility for the banking sector was taken over by the EBA as part of the introduction of the 
European System of Financial Supervision. A dedicated new methodology of designing macro-financial 
scenarios was deployed in 2011, in the first EU-wide stress test run by the EBA. In subsequent years, the 
ECB also started to contribute similar macro-financial scenarios to the regular EIOPA and ESMA stress 
tests of the EU insurance sector and central counterparties respectively.  
 
The progressive development of stress-testing models at the ECB has also been reflected in 
various top-down exercises. The ECB continued to provide benchmark parameters for the 2011-14 EBA 
stress test and, later, the EBA/SSM EU-wide stress test. Additionally, from 2010 it employed its toolkit for 
benchmark parameters to prepare a top-down stress test of the largest European banks (initially 19 banks) 
for the two-year horizon. This top-down stress test featured regularly in the ECB Financial Stability Review. 
The vulnerability analysis, published for the first time in 2020, was conducted in the same tradition as 
earlier top-down stress test, namely by applying a constant balance sheet perspective and additional 
restrictions from the EBA/SSM exercises. However, vulnerability analyses were characterised by far higher 
granularity than the top-down stress test, close to the granularity of the EU-wide stress test. 
 
Since 2016 the ECB has published a stand-alone macroprudential stress test taking account of 
second-round effects. This was developed to support the ESRB and deliver on the ECB’s own 
macroprudential oversight mandate within the European financial system. The advancement of stress-
testing methods has facilitated their broader use in policy assessment and ECB communication.  

2.1 Evolving uses of top-down stress testing 
In recent years, the use of stress-testing methods in the prudential policy process has become 
increasingly frequent and versatile (Budnik, 2022). Applications have included the measurement of 
risks in the financial system, i.e., the traditional remit of stress testing, and newer applications, such as the 
calibration of prudential instruments and communication with the industry, financial market participants 
and the public. These applications have served both microprudential and macroprudential purposes. 
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2.1.1 Risk measurement 

The two main applications of the ECB top-down stress-testing models are to provide benchmarks 
for banks in otherwise bottom-up stress tests and subsequently to challenge banks’ submissions. 
The EBA/SSM (and earlier CEBA and EBA) EU-wide stress tests are conducted in a principally bottom-up 
fashion, while using consistent methodologies, scenarios and key assumptions developed in cooperation 
with the ESRB and the EBA. Their bottom-up design means that banks are asked to provide their own 
projections of balance sheet evolution under a baseline scenario and an adverse scenario. Thereby, banks 
that do not have an internal credit risk stress test model have the option to use the ECB top-down credit 
risk benchmarks. They can also use interest rate margins and dividend income benchmarks, and since 
2023 EU-wide stress tests are obliged to apply the net fee and commission benchmark. These benchmark 
parameters are estimated by ECB staff and are discussed jointly with the EBA, EU competent authorities 
and national central banks. 
 
For banks and risks not applying the ECB benchmarks, the latter make up an integral part of the 
bank submission quality assurance process. The banks results are subject to a comprehensive data 
quality check and are challenged and compared with earlier stress test results in several submission 
cycles. This process ensures maximum comparability and a level playing field between participating banks 
and minimises the incentives to “game” the process. It also guarantees that the overall exercise is 
sufficiently conservative. Within this quality assurance framework, banks’ submissions are compared 
against the ECB benchmark parameters and, if need be, challenged by supervisors.  
 
The intention to challenge bank submissions is illustrated in the outcomes of the 2021 and 2023 
EU/SSM stress tests in Chart 1. The chart contrasts the top-down outcome, integrating where possible 
the ECB benchmarks, with final bank submissions under an adverse scenario. The adverse scenario 
drives the elevated CET1 depletion (green versus other kernels). In each submission (other than green 
kernels), banks move closer to CET1 ratio depletion, as implied by the combination of top-down 
benchmarks and supervisory scrutiny based on peer benchmarking and bank-specific insights. The 
expected effect of challenging bank submissions is greater and more distributed capital depletion in the 
last submission.  
 
Chart 1 
Impact of quality assurance on CET1 ratio from initial to final submission in the 2021 and 2023 EU-wide 
stress tests - adverse scenario 

a) 2021 EU-wide stress tests b) 2023 EU-wide stress tests 
(Kernel distribution; percentages; vertical lines indicate the weighted average 
of banks) 

(Kernel distribution; percentages; vertical lines indicate the weighted average of 
banks) 

 
 

Sources: Participating banks, ECB and ECB calculations. 

 
 
 
 

0

2

4

6

8

10

12

0% 5% 10% 15% 20% 25% 30%

Starting 2020
End horizon final reporting - adverse
End horizon TD impact - adverse

0

2

4

6

8

10

12

0% 5% 10% 15% 20% 25% 30%

Starting 2022
End horizon final reporting - adverse
End horizon TD impact - adverse

ECB Occasional Paper Series No 348 9



Another form of ECB risk assessment is conducted fully in-house, without the involvement of 
banks. These exercises differ in terms of the risks they emphasise and the methodological assumptions 
they use. Table 1 summarises the different in-house stress tests, their policy role and the date they were 
published for the first time. Historically, the first such exercise was a top-down stress test that assessed 
risks to the EU banking system by applying the top-down benchmark model apparatus and the constant 
balance sheet perspective. Otherwise, it relied on a simplified representation of banks’ balance sheets as 
compared with the biannual EU-wide EBA/SSM stress test. More recent constant balance sheet exercises 
that incorporate top-down benchmark models, such as vulnerability and sensitivity analyses, rely on a 
highly granular representation of banks’ balance sheets, close to that of the EU-wide EBA/SSM stress 
tests, and the broadened top-down benchmark models infrastructure. Such top-down stress tests and 
vulnerability and sensitivity analyses have provided timely and tailored feedback on the impact of risks 
which “could not wait” until the next EU-wide stress-testing exercise. 

Table 1  
Overview of naming conventions for various ECB stress-testing exercises 

Type Role Core assumptions First use Modelling framework 

Supervisory (CEBS,6 
EBA and finally 
EBA/SSM) stress test 

Regular, biannual, three-year 
horizon EU-wide exercise  

Constant balance sheet and other 
constraints, e.g., zero cure rates 

Macro-financial scenarios derived 
with the dedicated macro-financial 
framework (since 2011) 

2009 

Top-down benchmark 
analytics (developed 
under WGST work 
stream 1) versus bottom-
up 

Top-down stress test 

Irregular, two-year horizon EU-
wide exercise reflecting 
evolving financial stability risks 
with a reduced granularity 
and/or bank sample compared 
with the supervisory stress test 
(commonly reported in the 
Financial Stability Review) 

Constant balance sheet and other 
constraints as in the EU-wide 
stress test, e.g., zero cure rates 

Macro-financial scenarios derived 
with the framework used in the 
EU-wide stress test 

2010 

Top-down benchmark 
analytics (developed 
under WGST work 
stream 1) 

Macroprudential 
stress test 

Biannual, three-year-horizon 
exercise complementing the 
EU-wide stress test and 
placing the emphasis on the 
adjustments of banks and 
macro-financial feedback loops 

Dynamic balance sheet and 
releasing other constraints present 
in the EU-wide stress test 

Macro-financial scenarios shared 
with the EU-wide stress test 

2016 

Since 2018: BEAST 
model (developed under 
WGST work stream 2); 
previously: STAMP€ 
framework 

Vulnerability analysis 

Three-year-horizon exercise 
substituting for the EU-wide 
stress test in cases of 
emergency and a substantial 
increase in financial stability 
risks (especially between the 
biannual rounds of the EU-
wide stress test)  

Constant balance sheet and other 
constraints as in the EU-wide 
stress test, e.g., zero cure rates 

Macro-financial scenarios derived 
with the framework used in the 
EU-wide stress test 

2020 

Top-down benchmark 
analytics (developed 
under WGST work 
stream 1) 

Scenario analysis 

A macroprudential stress test-
type exercise with varying 
horizons (i) featuring in 
selected Financial Stability 
Reviews and focusing on the 
assessment of risks prevalent 
at the current juncture, or (ii) 
emphasising a group of topical 
risks, e.g., climate  

Dynamic balance sheet and 
releasing other constraints present 
in the EU-wide stress test 

Macro-financial scenarios 
developed within the 
macroprudential stress test 
apparatus 

2020 

Since 2018: BEAST 
model (developed under 
WGST work stream 2); 
previously: STAMP€ 
framework 

Sensitivity analysis Emphasising a selected risk 
factor  

Constant or dynamic balance 
sheet and to a differing degree 
following the EU-wide constraints 

No or very reduced macro-
financial scenarios 

2022 

Top-down benchmark 
analytics and/or BEAST 
model (developed under 
WGST work streams 1 
and 2) 

System-wide stress 
test 

An exercise placing the 
emphasis on the interplay 
between different financial 
sectors and a group of topical 
risks, e.g., climate 

Macro-financial scenarios derived 
with the framework used in the 
EU-wide stress test 

Allowing market prices to adjust 
and defaults to propagate through 
the system 

2022 
ISA model (developed 
under WGST work 
stream 3) 

Source: Authors. 

6 The Committee of European Banking Supervisors (CEBS) was an independent body in charge of advising on and coordinating banking 
regulation and supervision in the EU. 
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The two vulnerability exercises in 2020 and 2022 are an example of a fully top-down constant 
balance sheet stress-testing exercise. Both exercises provided a quantification of the bank solvency 
position in terms of CET1 depletion, conditional on severe scenarios triggered by the COVID-19 pandemic 
and the Russian invasion of Ukraine, respectively (Chart 2). The vulnerability analysis for the COVID-19 
pandemic showed that, under the severe scenario, the overall bank capital shortfall would remain 
contained (CET1 ratio depletion of -5.7 percentage points in 2022).7 The subsequent vulnerability analysis 
for the Russia-Ukraine war concluded with a CET1 ratio depletion of 2.1 percentage points under the 
adverse scenario and 3.6 percentage points under the severely adverse scenario. 8 Based on the unfolding 
risks, both vulnerability analyses showed that the banking sector was sufficiently capitalised to withstand 
the shocks. Additionally, the latter exercise revealed a substantial sectoral concentration of credit risk in 
sectors most exposed to changes in energy prices.  
 
Chart 2 
Vulnerability exercises for the COVID-19 pandemic (panel a) and Russian invasion (panel b): CET1 ratio 
depletion across scenarios 

a) COVID-19 pandemic vulnerability analysis b) Russian invasion vulnerability analysis 
(Percentage points, 2020-22 depletion across scenarios in transitional arrangements) (Percentage points, 2022-24 depletion across scenarios in fully loaded terms) 

 
 

Sources: ECB Banking Supervision website and ECB (2022). 
Note: The CET1 ratio for the vulnerability exercise in the COVID-19 pandemic is presented in transitional arrangements, as defined in Part Ten Title I Transitional 
Provisions of CRR, Article 473a of CRR.  
 
A macroprudential stress test is another type of an in-house exercise that emphasises dynamic 
balance sheet aspects and the real economy-banking sector feedback loop. The ECB 
macroprudential stress test (earlier a macroprudential extension of the EU-wide stress test) has been 
published biannually since 2016 and elaborates on banks’ behaviour under the baseline and adverse 
scenarios of the EU-wide stress test. It acknowledges that banks adjust their balance sheets in response 
to shocks and that these adjustments can feed back into the real economy. Furthermore, since 2018 it 
applies a broad interpretation of a dynamic balance sheet, including endogenous adjustments of asset 
and liability volumes, endogenous write-offs and non-zero recovery rates of defaulted assets. It also 
removes other caps and floors present in the EU-wide exercise.  
 
The ECB macroprudential stress test complements the EBA/SSM EU-wide stress test results along 
three dimensions. First, it provides an alternative metric of bank solvency at any juncture. The dynamic 
balance sheet aspect, where banks adapt their balance sheets to prevailing macro-financial conditions, 
will generally result in an expansion of bank assets under benign (baseline) scenarios and their contraction 
under adverse scenarios. In panel a) of Chart 3, the deviation between the system-wide CET1 ratio results 
in the 2021 macroprudential versus EBA/SSM EU-wide stress test is broken down into the impact of core 
methodological differences between the exercises. Banks’ asset adjustments are reflected in lower CET1 
ratios under a baseline scenario, and higher ratios under an adverse scenario, than when applying the 
constant balance sheet assumption.9 The amplification effects present in the macroprudential assessment, 
including the real economy-banking sector and solvency-funding cost feedback loops, are expected to 
have the largest negative impact on the CET1 results in severe macro-financial conditions. Finally, the 
impact of policies that cannot always be factored in in the constant balance sheet exercises can lead to 
further, generally ambiguous changes in CET1 outcomes.  

7 For more information, please consult: www.bankingsupervision.europa.eu/press/pr/date/2020/html/ssm.pr200728~7df9502348.en.htm. 
8 Please consult: https://www.ecb.europa.eu/pub/financial-stability/fsr/focus/2022/html/ecb.fsrbox202205_06~9aaa17d9e8.en.html.  
9 A dynamic balance sheet affects the solvency rate via two countervailing channels: (i) asset size (denominator effect), and (ii) profitability 
impact (numerator effect). In the case of both deleveraging and asset expansion, and provided that most bank loans have a longer maturity, 
i.e., asset changes fully feed into profitability with a certain lag, the former effect is likely to dominate in the short run.  
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Chart 3 
Bank solvency in the 2021 macroprudential stress test compared with the EBA/SSM EU-wide stress test: 
CET1 ratio at the end of the three-year horizon 

a) Breakdown of the difference 
between the aggregate CET1 results 
(Percentage of risk weighted amounts, end 2022, in 
transitional arrangements) 

Distribution of bank-level CET1 
results (baseline scenario) 
(Percentage of risk weighted amounts, end 2022, in 
transitional arrangements) 

Distribution of bank-level CET1 
results (adverse scenario) 
(Percentage of risk weighted amounts, end 
2022, in transitional arrangements) 

 
Source: Budnik et al. (2021a). 
Notes: The empirical kernel density functions with a bandwidth equal to 3%. The red dashed line represents the CET1 ratio density at the end of 2020. 
 

Greater flexibility of bank adjustments, and the presence of amplification mechanisms, generally 
lead to higher heterogeneity of bank-level results in the macroprudential compared with the EU-
wide stress tests. The results of the two stress tests in baseline (Chart 3, panel b)). and adverse (Chart 
3, panel c)) scenarios are generally positively correlated. However, especially under adverse scenarios, 
the distribution of bank-level CET1 ratio results can become significantly flatter in the macroprudential 
exercise, which can be attributed primarily to the dynamic balance sheet mechanisms. Interestingly, the 
initial bank-level CET1 ratios tend to be a better predictor of the end point of the stress test in the constant 
balance sheet compared with the macroprudential approach. In other words, macroprudential stress 
testing seems to “add” more information to the information already provided by measures of bank 
resilience at a given juncture. 
 
Second, the macroprudential stress test includes additional information relevant from the macro-
financial perspective. The projections of bank lending provide information about banks’ ability to provide 
lending to the real economy in normal conditions and with credit crunch risks under adverse scenarios 
(Chart 4, panel a)). The dynamic balance sheet approach captures changes in banks’ behaviour related 
to policies that are due to be phased out or phased in over the stress test horizon. For instance, at the end 
of 2021, i.e., the starting point of both the EBA/SSM and the macroprudential stress tests in 2022, banks 
still held assets that were covered by either public guarantee or moratoria schemes deployed to contain 
the impact of the COVID-19 pandemic on bank lending (Chart 4, panel b)). The constant balance sheet 
perspective kept these exposures unchanged over the stress horizon, while the macroprudential stress 
test incorporated the expiration of these programs along with their country-specific duration, which meant 
that the corresponding maturing exposures were not replaced.  
 
The ECB macroprudential stress test can provide estimates of uncertainty related to assumptions 
about banks’ behaviours. This can be achieved by repetitively evaluating baseline and adverse 
scenarios with different plausible values of parameters entering estimated banks’ reaction functions.10 
Such uncertainty is illustrated for projected lending volumes in the panels a) and c) of Chart 4.  

10 The supervisory exercise in 2023 (ECB, 2023) also provided an evaluation of uncertainty for the counterparty credit risk (CCR) (Box 4) and 
net interest income (NII) (Box 5) estimates. The difference between both approaches is the breadth of the exercise (the number of parameters 
evaluated) and the source of the information about parameter distributions (empirical estimates based on historical data in the macroprudential 
stress test versus reasonable expert-chosen ranges of parameters in the EBA/SSM stress test). 
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Chart 4 
Additional information in the 2021 macroprudential stress test: loan growth, policy impact and second-
round effects 

a) Annual loan growth to euro
area non-financial private sector

(Percentages) 

b) Impact of COVID-19 mitigation
policies on loan volumes to the
non-financial private sector in the
2021-23 period

(Percentages) 

c) The cumulative growth of GDP
in the 2021-23 period

(Percentages) 

Source: Budnik et al. (2021a). 
Notes: The whiskers depict 90% uncertainty bands around estimates. The cumulative GDP impact without amplification relies on the original macro-financial scenarios 
feeding into the 2021 EU-wide stress test exercise. The results with amplification include the impact of the real economy-banking sector feedback loop.  

Third, by estimating second-round effects, the ECB macroprudential stress test illustrates the 
system-wide consequences of banks’ most likely decisions. A macroprudential stress test 
emphasises the role of coordination failures, whereby individual banks take actions that are optimal from 
their own perspective, such as deleveraging to restore regulatory solvency rates, but can trigger adverse 
amplification mechanisms. The ultimate effect of these decisions on economic activity (Chart 4, panel c)) 
and bank capitalisation levels can thus turn out to be negative. The assessment of macro-financial 
vulnerabilities in macroprudential stress tests can support policy calibration and communication aimed at 
circumventing coordination failures. 

The evolution of ECB stress testing is also reflected in its expansion beyond the assessment of 
“traditional” cyclical risk. An example is the application of ECB stress testing apparatus to the evaluation 
of climate-related risks. The earliest assessment of climate transition risks combined the ECB 
macroprudential stress test and elements of the 2018 climate stress test by De Nederlandsche Bank 
(Vermeulen et al., 2018). Chart 5 recalls the main conclusions of this pilot stress test in terms of deviations 
of system-wide levels of the CET1 ratio and lending to the non-financial private sector from their baseline 
levels in the event of a sharp increase in energy prices (“an abrupt policy response scenario”) and the 
emergence of green technological innovation with a transitory negative impact on brown sectors of the 
economy (“technological innovation shock scenario”). Overall, the pilot climate stress test conveyed the 
reassuring message that even the most disruptive transition to a green economy should have a very 
contained and gradually diminishing negative impact on banking sector solvency and lending. 
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Chart 5 
Effects of the abrupt policy response and asymmetric technological innovation shock scenarios on 
system-wide CET1 ratios (panel a) and loans to the non-financial private sector (panel b) 

a) System-wide CET1 ratios b) Loans to non-financial private sector 
(Percentage points) (Percentages) 

  

Source: ESRB (2020). 
 

One of the later climate risk analyses highlighted the system-wide nature of climate risks. The 
exercise looked at the propagation of climate risk scenarios, with timely and orderly (“net zero”) and 
delayed (“delayed transition”) scenarios against the baseline scenario of no policy adjustment (“current 
policy scenario”) through the lenses of the ECB system-wide stress test. The stress test demonstrated that 
climate risks are likely to trigger pronounced amplification effects in a financial system with interconnected 
banks, insurance companies and investment funds. Chart 6 contrasts the exogenous (first-round) and 
endogenous (second-round) effects of the scenarios on financial system losses related to credit and 
market risk. The system-wide amplification of initial market risk shocks in the net zero 2050 compared with 
the current policy scenario multiplies the initial first-round reduction in relative revaluation losses by over 
five times.  

 
Chart 6  
System asset gains or losses in the net zero (panel a) and delayed transition (panel b) scenarios 
compared with the current policy scenario 
a) Net-zero scenario b) Delayed transition scenario 
(Pcm – per cent mille) (Percentages) 

 
 

Source: ECB/ESRB Project Team on climate risk monitoring (2022). 
Notes: “Default, exogenous” refers to NFC defaults. “Market, exogenous” refers to exogenous market losses both due to the market scenario and due to the price 
drop of exogenously defaulting NFCs issuing securities. “Endogenous” losses are model-driven.  
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2.1.2 Policy assessment and calibration 

The impact assessment of prudential policies deployed to “tame the cycle” is relatively 
straightforward. Similarly to monetary policies, their benefits are commensurate with the change in target 
variables over the impact horizon. A capital buffer that has been increased with a view to defueling house 
price growth, or interest rates that have been increased to undercut inflation, should be judged against the 
resulting actual or projected drop in house or general prices. Assessing the impact of such policies 
commonly involves studying the economy with and without a policy in the absence of extraordinary 
events.11 In other words, such impact assessment boils down to comparing two sets of conditional 
simulations, with and without regulation. 
 
The benefits of resilience-building policies are harder to assess, as they come to the surface only 
in rare adverse circumstances. Assessing the costs of resilience-enhancing policies commonly relies on 
tracking changes in lending or economic activity during their phase-in. However, their benefits call for 
examination of possible but negative future scenarios.  
 
Stress testing adds an important dimension to the impact assessment of pre-emptive policies. 
Figure 2 illustrates the advantage of stress testing for resilience-building policy analysis. Traditional impact 
assessment approaches follow the upper horizontal arrow. Measuring the impact of a policy in normal 
macro-financial conditions (a significant macro-financial event is “off”) boils down to assessing the impact 
on variables of interest of a movement from no policy (policy intervention “off”) to policy (“policy intervention 
“on”). For resilience-building policies, it often corresponds to the costs of policy implementation, as such 
policies tend to be introduced in relatively good times. The value added of stress testing is that it can 
“generate” macro-financial states where pre-emptive policies matter. It is indicated by two arrows pointing 
downwards. The benefit of resilience-building policies is captured by the difference between the outcome 
along with the green arrow (from micro-financial event “off” to “on”) in the presence of a policy against a 
similar outcome along with the grey arrow in its absence. An additional dimension offered by stress testing 
is the bottom horizontal arrow. It can warn about high costs of policy phase-in in disadvantageous times 
(with a significant macro-financial event being a crisis scenario)12 or more exactly measure the advantages 
of “taming the cycle” policies (with a significant macro-financial event being a boom or overheating 
scenario).  
 
Figure 2  
Stress testing in support of policy assessment 

 
Source: ECB authors. 
 
 

11 In fact, most empirical and theory-based (e.g., dynamic stochastic general equilibrium model based) impact assessments of policies operate 
under a silent assumption that the economy remains in its normal state (e.g., around its steady state). 
12 For instance, in the Basel III finalisation impact assessment, this dimension was used to illustrate the disadvantage of phasing in Basel III in 
a crisis and contrast the relatively low costs of its phase-in following the fading of the COVID-19 pandemic.  
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Another property of most stress-testing methods is that they can be applied to multiple scenarios 
that follow different economic narratives. In the ECB vulnerability analysis for the COVID-19 pandemic, 
there were three scenarios (Chart 4): (i) the baseline scenario, which was defined before the coronavirus 
outbreak and provided a benchmark to assess the impact of the pandemic on banks; (ii) the COVID-19 
central scenario, which reflected the most likely scenario to materialise according to the June 2020 
Eurosystem staff macroeconomic projection; and (iii) the COVID-19 severe scenario, which assumed a 
deep recession and slow economic recovery.  
 
The ability to generate multiple scenarios links to the growth-at-risk perspective. With a sufficient 
number of plausible future macro-financial scenarios, it is possible to describe a full distribution of 
macroeconomic or financial outcomes. Fan charts, such as in the left-hand panel of Figure 3, can illustrate 
the level of economic activity with surrounding uncertainty. Moreover, the lower percentiles of the derived 
distributions directly link to growth at risk. Such stress test analyses can describe tail risks or events without 
taking a stance on the most relevant economic narratives.  
 
Figure 3  
Fan charts based on semi-structural models and growth-at-risk measures 

a) GDP forecast Q3 2022 based on the BEAST b) Stylised exposition of the growth-at-risk  
 

 
Source: ECB authors. 

2.1.2.1 Releasable capital buffers 

The approach to balancing the costs and benefits of a countercyclical capital buffer (CCyB) or a 
releasable sectoral systemic risk buffer (sSyRB) is summarised in Figure 4. The assessment shown 
here was conducted upon exiting the COVID-19 recession by applying the ECB macroprudential stress 
test. The phase-in of a releasable buffer was considered in the context of the conditions described in 
available economic forecasts, which for the assessment run in early 2022 was the December 2021 ECB 
staff macroeconomic projections. In Figure 4, this part of the assessment is represented by the stylised 
evolution of euro area GDP growth between the end of 2021 and 2025 in “Baseline scenario: normal 
economic conditions”. The impact of the buffer phase-in on bank lending amounts to policy costs.  
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Figure 4  
Buffer build-up and release under stylised economic conditions 

 

 
Source: ECB authors. 

 
Buffer release is considered at the onset of a hypothetical country-specific recession starting at a 
future point in time. The release of the buffers at the onset of a recession (here at the beginning of 2026) 
would ideally stabilise lending to the real economy. This additional lending amounts to benefits from the 
buffer policy.13  
 
The phase-in of German policies announced in January 2022, namely a CCyB of 0.75% and an 
sSyRB of 2%, were estimated to have a very limited impact on bank lending. The phase-in of buffers 
under forecasted economic conditions translated into an increase in the actual CET1 ratio of 0.3 
percentage points (green bar for the end of 2025 in Chart 7), while imposing practically no credit supply 
constraints. The buffer policy was estimated to lead to only a very minor cumulative reduction of 0.3% in 
lending to the non-financial private sector by the end of 2025 (blue bar for the end of 2025 in Chart 7).  
 
The release of capital buffers at the onset of a subsequent recession was found to support lending 
without compromising the actual solvency of banks. A joint release of the CCyB and sSyRB was 
estimated to lessen the reduction in lending to the non-financial private sector by 0.4 percentage points. 
Cumulative lending to the non-financial private sector at the end of 2028 was found to be 0.1 percentage 
point higher than in the absence of any buffer policies over the entire period (blue bar for the end of 2028 
in Chart 7) and 0.4 percentage points higher than at the end of 2025 (blue bar to the right of Chart 7). The 
analogous boost to lending for corporates during the recession amounted to 0.5 percentage points (yellow 
bar to the right of Chart 7). At the end of the recession, the average CET1 ratio in Germany was estimated 
to be 0.14 percentage points higher than if the buffers had not been built up earlier. 
  

13 In the quoted application, country-specific recessions are designed to be triggered by negative aggregate demand shocks and coupled with 
a general recession in the euro area. The economic crises selected have, on average, a peak decline in annual real GDP growth of around 2.5-
3.0%. 
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Chart 7  
Impact of the phase-in and release of the 0.75% CCyB and 2% sSyRB in Germany 

Deviation from the baseline with 0% CCyB and sSRB at the end of 2025 and 2028 and difference between 
the cumulative deviations from the baseline in 2028 versus 2025.  
(Percentage points) 

 

 
Source: Budnik et al. (2022a). 
Notes: The left-hand and middle bars show the cumulative deviation from the baseline at the end of 2025 and 2028 respectively. Δ 2028-2025 corresponds to the 
differences between the cumulative deviations from the baseline at the end of 2028 versus 2025. i.e., the difference between two earlier bars of the same colour. It 
captures the benefits deriving from the implementation of higher buffers in preceding years and their release during a recession. The benchmark corresponds to a CCyB 
and an sSRB of 0% over the entire period of analysis. 
 
 
 

2.1.2.2 Non-releasable capital instruments and automatic stabilisers 

Non-releasable capital instruments and regulatory limits are expected to contribute to financial 
system resilience even in the absence of their situation-specific adjustment. Over-the-cycle capital 
buffers as well as requirements, caps and floors on certain activities or parameters modify banks’ and 
other financial institutions’ incentives to take on risks. They can become more binding in certain 
circumstances, acting as automatic stabilisers. Though the impact assessment of such instruments can 
follow the same format as that of releasable buffers, their constancy over time reduces the need to specify 
the moment and type of their adjustment. 
 
The benefits of capital regulation can be assessed by looking at the shifts in the tails of 
distributions of variables such as lending or output. The assessment calls for two conditional 
simulations (with and without policies), each of which should cover the full distribution of plausible or 
specific eventualities, such as scenarios portraying economic booms or recessions. The means of the two 
simulations provide information about the expected effect of the regulation. A negative difference between 
the means of economic output, as illustrated by the blue-shaded area in Figure 5, would indicate the 
economic costs. Tails, or lower percentiles such as the 10th percentile of the distribution, provide 
information about the effects of the package in adverse economic conditions. A positive difference between 
the tails of the distributions, represented by the green area in Figure 5, would show the benefits of the 
regulation which stem from improved financial intermediation when the economy is hit by a crisis. 
 
  

ECB Occasional Paper Series No 348 18



Figure 5  
Stylised representation of a growth at risk-based cost-benefit assessment 

 

Source: ECB authors. 
 
The growth-at-risk approach of measuring the benefits of regulation leverages the ability of stress-
testing tools to analyse multiple macro-financial scenarios conditional on policies. This approach 
was successfully implemented within the macroprudential stress test model to analyse the impact of Basel 
III finalisation, or the SSM NPL coverage expectations phased in in 2018. In both instances, the regulation 
was a complex solution set, such as multiple adjustments to risk weights, the introduction of an output 
floor and additional leverage buffers for the Basel III finalisation, and various and time-varying provisioning 
coefficients for NPLs depending on their time in arrears. This brought to the fore yet another advantage of 
stress-testing methods in the service of policy assessment: their ability to accommodate highly complex 
regulatory solutions thanks to their detailed treatment and comprehensive illustration of banks’ balance 
sheets. Chart 8 presents the results of the most recent impact assessment of Basel III finalisation with its 
costs measured as losses in expected euro area GDP (panel a)) and benefits as gains in the 10th percentile 
of growth distributions (panel b)). 
 
Chart 8  
GDP costs and long-term growth-at-risk benefits of the plain vanilla versus three EU approaches to the 
Basel III implementation based on the pre-COVID-19 scenario 
a) Costs in terms of loans to non-financial private 

sector 
(Percentage points; x-axis: years after Basel III introduction) 

b) Benefits in terms of loans to non-financial private 
sector 

(Percentage points; x-axis: years after Basel III introduction) 

 
Source: Budnik et al. (2021c). 
Notes: Impact is measured relative to the regime without Basel III finalisation. In the right-hand panel, the difference is shown between annual euro area GDP growth 
with and without Basel III finalisation in the corresponding 10th percentile of the output distributions. The plain vanilla reform corresponds to the original Basel III 
finalisation package and excludes any EU specificities. The main EU-specific approach considers three additional features: the application of the SME supporting factor 
on top of the Basel SME preferential risk weight treatment, the continuation of existing exemptions regarding the calculation of capital requirements for CVA risk, and 
the exclusion of the bank-specific historical loss component from the calculation of the capital for operational risk (ILM=1). The output floor is implemented as it is under 
the plain vanilla approach. The alternative EU-specific approach builds on the main EU-specific approach but modifies the implementation of the output floor. This option 
assumes that Pillar 2 requirements and the systemic risk buffer (SyRB) apply to unfloored RWAs and not to floored RWAs (as is the case in the plain vanilla and main 
EU-specific approach). The EU parallel stacks approach builds on the main EU-specific approach but implements the output floor such that bank capital requirements 
are defined as the higher of the floored requirements excluding Pillar 2 and SRB and the unfloored requirements including Pillar 2 and the SyRB. 
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2.1.2.3 Temporary policies in times of high uncertainty 

The possibility of designing various macro-financial scenarios can help to assess prudential 
policies taken to weather a crisis. The onset of any crisis or recession introduces high levels of 
uncertainty about how the economy will evolve and how deep and long the adverse event will be. At the 
same time, the impact of policies is likely to depend on the nature of the event. The ex ante effectiveness 
and sufficiency of policies in highly uncertain conditions can be reasonably addressed by analysing policy 
effects under several alternative scenarios. 

The ECB’s macroprudential stress testing was used to address prodigious economic uncertainty 
and assess the effectiveness of policies taken during the COVID-19 pandemic (Budnik et al., 
2022a). Three families of scenarios were selected to address the uncertainty about the duration and depth 
of the COVID-19 pandemic. The three narratives expressed an increasing degree of pessimism about 
economic activity in 2020-22. The first family of scenarios, dubbed a V-shaped recession, predicted a 
sharp contraction in economic activity and a relatively quick recovery (starting as early as the second half 
of 2020). The second family, a U-shaped recession, predicted a slower recovery potentially interrupted by 
a second wave of the COVID-19 pandemic in the second half of 2020. The third family, an L-shaped 
recession, envisaged a prolonged period of lockdown causing severe economic contraction. 

In response to the severe economic shocks triggered by the outbreak of the pandemic, supervisory 
and macroprudential authorities in Europe promptly introduced capital relief measures. This capital 
release package complemented targeted government policies. Generous public guarantee policies were 
put in place across almost all euro area countries to lessen the credit supply constraints for corporates, 
given that losses from guaranteed loans were largely covered by the government. In addition, public 
moratoria were introduced for both the corporate and household sectors, enabling them to postpone debt 
repayments for a certain period. 

The scenario-sensitive impact assessment of the COVID-19 prudential and public guarantee 
mitigation policies revealed that the policies were best tailored to a relatively short-lasting 
recession. Under the V-shaped scenario, the cumulative impact of public guarantees was estimated to 
add around 3.3% to lending to the non-financial private sector in the euro area by the end of 2022. Under 
the L-shaped scenario, this was 2.8% (panel b) of Chart 9). The capital release package introduced by 
supervisory and macroprudential authorities, jointly with profit distribution restrictions and policies 
supporting public moratoria, complemented targeted government policies. This added 2.6% to lending to 
the non-financial private sector in the case of a short-lasting (V-shaped) recession and 2.2% in a deep and 
long-lasting (L-shaped) recession. Jointly, the policies were found to stabilise economic activity measured 
in GDP terms by 0.7% for the least severe scenario and by more than 0.5% for the more severe scenario 
(panel a) of Chart 9). The impact of supervisory and government policies that primarily sought to prevent 
credit supply shortages was found to decrease with the recession severity due to the progressively weaker 
credit demand outlook.  

ECB Occasional Paper Series No 348 20



Chart 9  
Alternative COVID-19 scenarios and cumulative lending impact of mitigation measures 

a) Cumulative impact on euro area GDP growth at the 
end of 2022 relative to the end of 2019 

b) Cumulative impact on euro area lending to the non-
financial private sector at the end of 2022 relative 
to the end of 2019 

(Percentage points) (Percentage points) 

  

Source: Budnik et al. (2021b). 
Notes: The V-shaped recession assumed a sharp contraction in economic activity and a relatively quick recovery (starting as early as the second half of 2020). The U-
shaped recession predicted a slower recovery potentially interrupted by a second wave of the COVID-19 pandemic in the second half of 2020. The L-shaped recession 
envisaged a prolonged period of lockdown causing severe economic contraction. Blue bar in panel b): cumulative impact of all policies jointly. Red bar in panel b): 
supervisory policies. Yellow bar in panel b): national guarantee policies. The green dots in panel b) illustrate the total cumulative impact of all policies on GDP (right-
hand scale). 

2.1.3 Communication 

 
Stress testing can support authorities’ communication with the industry and markets by providing 
a timely assessment of the quality of banks’ assets or their vulnerabilities. The publication of stress 
test results allows market participants to assess banks’ ability to meet applicable minimum and additional 
capital requirements. Thus, the disclosure of bank-level results provides new information to market 
participants (Durrani et al., 2022; Durrani, Ongena and Ponte Marques, 2022), therefore promoting market 
discipline and transparency (Konietschke et al., 2022b; Georgescu et al., 2017; Kok et al., 2022). This 
suggests that stress tests play an important role in improving financial stability and restoring confidence in 
the banking system by mitigating bank opaqueness among market participants and, at the same time, 
building up confidence in the banking system. 
 
The potential of stress testing to serve as a communication tool does not end there. For instance, 
macroprudential stress testing can be used to help financial institutions take the best decisions from a 
system-wide perspective. 
 
During the COVID-19 pandemic, the ECB used macroprudential stress testing in its communication 
to support banks’ use of capital buffers. Model simulations were used to illustrate that when banks 
refrain from dipping into their non-releasable but usable capital buffers, they are more likely to amplify 
credit supply shortages and intensify the downturn. Non-use of capital buffers is a form of coordination 
failure, whereby an individual bank that seeks to maintain solvency above regulatory targets prevents the 
optimal sector-wide use of buffers by all banks in the system. 
 
The model results provided timely reassurance that banks’ use of capital buffers would lead to 
better economic outcomes without negatively affecting their resilience. The analysis depicted in 
Chart 10 determined that using capital buffers to absorb losses and continue lending would lead to an 
increase in cumulative lending to the real economy of between 2% and 3%, and in GDP by more than 
0.5%, over the two-year horizon of the pandemic-induced recession. The resulting positive impact on 
economic activity was estimated to reduce credit losses and protect banks’ profitability. The CET1 ratios 
were projected to remain essentially unaffected due to dividend restrictions on banks. 
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Chart 10 
Buffer use in support of lending and economic activity 

a) Impact on lending as difference in loan volumes in 
2022 

b) Impact on GDP as difference in GDP level in 2022 

(Percentage points) (Percentage points) 

  

Source: Enria (2020). 
Notes: Estimates use the central and severe scenarios from the ECB’s 2020 vulnerability analysis. “Use of released capital and supervisory flexibility” includes use of 
P2G, CET1 capital released with the front loading of P2R changes and released macroprudential buffers. “Use of remaining buffers (incl. CCoB)” comprises the use of 
all capital above P1R and P2R, with MDA restrictions still binding. The analysis takes account of non-buffer elements of the supervisory support packages of 12 and 27 
March 2020, national moratoria and guarantee schemes.   
 
 

2.2 An overview of WGST deliverables and achievements  

The WGST delivered on its mandate of operationalising state-of-the-art methodologies. The work 
stream on top-down benchmarks continued improving and expanding the models used to produce 
benchmarks in the EU-wide stress test exercises. It strengthened the validation of these models and swiftly 
adapted especially credit risk models to new challenges introduced by the COVID-19 pandemic, such as 
the need for sector-level analysis. The work stream on macro-micro interactions finalised the development 
of the core semi-structural BEAST model and supplied new evidence on banks’ lending behaviour, 
benefiting dynamic balance sheet stress testing in more general terms. Finally, the system-wide stress 
testing work stream delivered on its promise to provide a multi-sector financial system model for system-
wide stress testing. 
 
The cooperation and discussions within the working group helped to facilitate its achievements, 
surpassing initial expectations. Table 2 breaks down the activities of each work stream into deliverables, 
i.e., items inherently present in the initial working group mandate, and achievements, i.e., additional items 
that pushed the ECB stress testing beyond initial expectations. The latter included the use of ECB top-
down models to perform stand-alone top-down vulnerability analyses, the intense use of the BEAST model 
for policy analysis (and communication) and initial policy applications of the system-wide stress-testing 
platform.   
 
Table 2 
Overview of main deliverables and achievements of the WGST 

 
Top-down benchmarks Macro-micro interactions System-wide stress test 

Deliverables 

• Improvement and expansion of benchmark 
models for credit, market risk and 
profitability employing new techniques 

• Implementation of a comprehensive validation 
framework 

• Fostering of data exchange and incorporation of 
new datasets, e.g., EMIR, Anacredit 

• Provision of benchmarks for EU-wide stress 
tests 

• Timely response to new challenges, such as the 
need for sector-level analysis (climate risks, 
COVID-19) 

• Further development of a macro-
financial semi-structural model for 
macroprudential stress tests 

• Introduction of multiple-scenario analysis 
and growth-at-risk approaches within the 
model 

• Validation of estimates of main 
behavioural equations in macroprudential 
stress tests 

• Expanded use of dedicated datasets, e.g., 
NPL coverage expectations 

• Development of a 
three-sector model for 
banks, insurance 
companies and 
investment funds with 
an emphasis on direct 
and indirect contagion  
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Top-down benchmarks Macro-micro interactions System-wide stress test 

Achievements 

• Top-down vulnerability analysis in 2020 and later 
analyses in 2022, including interest rate 
sensitivity and impact of Russia-Ukraine war  

• Core position in the EBA centralised approach 
that aims to increase the top-down component of 
the EU-wide stress test 

• Regular macroprudential stress tests 
• Assessment of Basel III finalisation 
• Tailored assessments of prudential (and 

other) policy measures 
• Macroprudential risk assessments, 

including for climate risks and interest rate 
sensitivity 

• System-wide climate 
stress test in 2022  

• Support for the 
implementation of the 
model by other 
institutions 

Source: ECB authors. 
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3 Top-down models 

3.1 Overview of top-down models 
The ECB offers a suite of analytical tools for top-down risk benchmarks developed by ECB staff 
over the past ten years. The ECB top-down modelling framework is essential to assessing banking 
system vulnerabilities and gauging risks to financial stability (Figure 6). The top-down credit risk modelling 
suite concerns the risk of borrower default and includes both loan-loss provisioning and risk-weighted 
asset components, for which banks need to hold capital. The market risk modelling suite is mainly focused 
on the revaluation of losses and affects mostly larger global systemically important institutions given their 
sizeable trading books. On the profitability side, the suite of models looks at different income sources, 
including net interest income (NII), net fee and commission income (NFCI) and dividend income. Overall, 
the focus of the modelling framework is on the variation of banks’ profits and losses and, consequently, 
solvency positions. 
 
Figure 6 
Top-down modelling framework 

 
Source: Adapted from Henry and Kok (2013). 

 
 
The top-down models translate macro-financial scenarios into projected profits and losses and 
capital charges. In the EU-wide stress tests, these projections are primarily used as a benchmark of 
banks’ estimates, while in stand-alone vulnerability exercises, they underlie a comprehensive assessment 
of bank solvency. Table 3 provides a full overview of top-down model applications. 
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Table 3 
Top-down model applications 

  Topic Main outlets Description 

Assessment of 
multiple risks to 

capital  

EU-wide stress-testing exercises 
(CEBS, EBA and finally 

EBA/SSM)   
2009-23 EU-wide stress-testing 

exercises  

Assessment of the resilience of financial institutions 
to adverse market developments as well as 
contribution to overall assessment of systemic risk 
in the EU financial system. The top-down models, 
as the primary challenger, are considered the main 
contributor in such exercises. 

Comprehensive assessment 
stress-testing exercises 

Comprehensive assessment tress-
testing exercises (since 2014) 

Assessment of the resilience of banks’ balance 
sheets entering the Single Supervisory Mechanism. 
Top-down models are used as the main challenger 
against banks’ projections. 

Vulnerability analysis exercises 
COVID-19 vulnerability analysis, 

Russia/Ukraine vulnerability 
analysis (2020, 2022) 

Analysis of the impact on the banking sector based 
on hypothetical scenarios targeting emerging 
vulnerabilities that could be seen as a threat to 
financial stability, e.g., COVID pandemic, 
Russia/Ukraine conflict. 

Interest rate risk sensitivity 
analysis 

VoxEU article on interest rate risk 
sensitivity analysis (2022) 

Assessment of the interest rate risks affecting 
banks’ balance sheets. In particular, assessment of 
how a parallel shift in the euro area yield curve, or 
its steepening, might affect banking sector 
profitability and solvency (Budnik et al. 2022b). 

Scenario impact assessment  Impact assessment for scenarios 
(different ECB outlets, since 2010) 

Assessment of the impact on specific risk areas or 
solvency positions under various scenarios. Typical 
outlets include the Financial Stability Review (ECB, 
2022). 

Selection of 
topical 

assessments and 
publications14 

Sector-level corporate probability 
of default  

VoxEU article on the impact of the 
Russian invasion on firm default 

probabilities (2022) 

Assessment of the heterogeneous impact of the 
war on firms in Europe via the application of 
country-specific macroeconomic shocks with 
heterogeneous sectoral characteristics under two 
tail scenarios to project probabilities of default over 
a three-year horizon (Konietschke et al., 2022a). 

Stress testing of net trading 
income ECB Working Paper Series (2021) 

Introduction of a two-step econometric approach to 
quantify the downside risk of financial shocks to 
banks’ trading revenues (Cappelletti et al., 2021). 

CoVaR approach 
to asset commonality and 

its application to SSM banks 
ECB Working Paper Series (2022) 

Introduction of a new methodology for identifying 
and assessing banking sector 
systemic risk stemming from asset commonality in 
the spirit of CoVaR (Cappelletti et al., 2022). 

Source: ECB authors. 
 
The top-down benchmark models are complemented by a family of tools and infrastructures 
summarised in Table 4. Appendix 8.2 discusses these tools in more detail.   
 
 
 
 
 
  

14 An internal financial stability report on top-down model development and enhancements was also distributed to SSM and ESCB members. 
This was the first interim report on ECB top-down model development across risk areas. 
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Table 4 
Top-down model tools and infrastructure 

Topic ECB internal infrastructure Shared with banks Other 

Credit risk 
 
IFRS9er: a tool quantifying credit risk losses relying on benchmark 
parameters conditional on a macro-financial scenario. 

Path Generator: an ECB Excel-
based tool that replicates the 
methodology of the top-down credit 
risk models and provides the ECB 
credit risk benchmarks to banks.  

Model assessment 
questionnaires: provided by 
banks and including 
supplementary technical 
information on banks’ models. 
The main purpose is to elucidate 
modelling options and explain 
the differences in banks’ 
projections relative to top-down 
projections. 

Profitability NIIer: a tool providing projections for net interest income relying on 
benchmark parameters conditional on a macro-financial scenario.  

 

Market risk 

SHS-G: a tool building upon the database of Securities Holding 
Statistics by Reporting Banking Group (SHS-G) and computing the 
impact of a scenario on bank holdings of equities, fund shares and 
bonds.  
 
EMIR pricing (EPIC): a tool building upon the EMIR derivatives 
database and repricing items in derivative portfolios or providing 
their sensitivities to selected risk factors.  

Source: ECB authors. 

 
The work of the top-down benchmark work stream pursued the medium-term goal of developing a 
robust and consistent modelling framework in the three risk areas. Figure 7 provides an overview of 
the work stream’s activities, which started with technical discussions on areas for model development and 
improvement, based on the lessons learned from earlier EU-wide stress tests and validations of the top-
down models performed by an academic evaluator. This was followed by a prioritisation of model 
improvements. From 2019 onwards, the group focused on the development of both new approaches and 
a model validation framework, with the latter including back-testing and additional in-sample and out-of-
sample validation tests. 
 
Figure 7 
Top-down model development timeline 

 
Source: ECB. 
 
 
The remainder of this section is structured as follows. Subsections 3.2 to 3.4 describe the credit risk 
top-down models, while subsections 3.5 and 3.6 detail the top-down models for profitability and market 
risk, respectively.  

2018-19
Discussion of areas 

for model 
development and 

improvement

2019
Prioritisation of 

model improvements
- Review and implementation 
of model improvements
- Development of a validation 
framework
- FSC Report - Top-down 
stress testing benchmarks

2019-22
Development of new 
approaches (e.g., new 
Bayesian model, quantile 
PD, unsecured LGD, risk 
weights for IRB and STA)

2019-22
Validation of top-

down models
- Implementation of a 
validation framework for top-
down models

2022
Revised top-down 
model framework

1. Occasional paper 
describing the most recent 
model improvements since 
2018 (STAMPE) 
2. Further model 
developments envisaged
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3.2 Credit risk: overview 
The credit risk models encompass the top-down models of IFRS 9 risk parameters (loan losses) 
and of risk exposure amount parameters (Figure 8).15 The IFRS 9 parameters are used to calculate 
impairments (that enter profit and loss) and affect the numerator of the bank capital adequacy ratio.16 The 
regulatory parameters, as prescribed in the Capital Requirements Regulation (CRR)17, are used to 
compute the risk exposure amounts and affect the denominator of the bank capital adequacy ratio.18 
Jointly, they provide the quantification of credit risk losses conditional on a macro-financial scenario. 
 

Figure 8 
High-level overview of top-down credit risk computation  

 

Source: ECB authors.  
 

The main changes to the credit risk methodology introduced by the WGST are compiled in Table 
5.  
 
Table 5 
Top-down credit risk model developments 

1. Top-down IFRS 9 credit risk parameter-related projections: 
 Adaptation of top-down approaches to the IFRS 9 standard, which 

outlines a “three-stage” framework for impairments based on 
changes in credit quality; 

 Adoption of an alternative Bayesian variable selection approach to 
estimate expected default rates at country and portfolio level for EU 
geographies: the Stochastic Search Variable Selection (SVSS) 
model; 

 Implementation of a non-linear panel quantile regression model to 
estimate expected default rates at country and sectoral level for non-
financial corporations; 

 Improvement of the framework based on bridge equations to 
estimate expected default rates for non-EU geographies; 

 Development of an analytical framework to project loss given default 
parameters for loans not collateralised by real estate; 

 Improvement of the framework to account for loss given default 
projections for loans collateralised by real estate, which includes the 
distribution of the “sales ratio” and the respective relation with bank 
starting points; 

 Improvement of the lifetime loss rate projection model by including 
the transition rate from stage 2 to stage 1 (TR2-1) path; 

2. Top-down risk exposure amount credit risk parameter-
related projections 
 
 Development of an econometric top-down set-up for 

portfolios using the standardised approach; 
 Improvement of top-down models for portfolios under the 

internal ratings-based approach for both regulatory 
probabilities of default and loss given default parameters. 

 

Source: ECB. 

15 These two categories of credit risk are reported separately in the EBA templates (CSV_CR_SCEN and CSV_CR_REA). 
16 On 24 July 2014, the International Accounting Standards Board (IASB) issued IFRS 9 incorporating a new expected loss impairment model, 
which was effective from 1 January 2018. It introduced a new methodology for incurred losses, which was replaced with a more forward-looking 
expected loss method. Impairments are also considered in the denominator of the bank solvency ratio via deductions to the exposure at default 
amounts (for loans under the standardised approach).  
17 See https://eur-lex.europa.eu/legal-content/en/TXT/?uri=celex%3A32013R0575. 
18 This is partly considered in the numerator of bank capital adequacy when computing the IRB shortfall. 
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3.3 Credit risk: IFRS 9 parameters 
The ECB benchmarks are estimated using a suite of econometric models and are conditioned on 
the baseline and the adverse macro-financial scenario in stress-testing exercises. The models 
employed combine time series and panel data econometric techniques to capture the relationship between 
macroeconomic variables projected in the scenario and credit risk parameters, including quantile panel 
approaches that account for their non-linear behaviour in the tails. The historical data for default rates (or 
proxies thereof) and IFRS 9 transition probabilities used to calibrate the ECB models are reported by 
national authorities. This ensures that the parameter projections are based on a long time series that 
effectively captures the default dynamics of each country participating in the stress tests. 
 
The projections of IFRS 9 parameters for bank portfolios are defined at country and market 
segment level. The scenario-conditional forward paths for IFRS 9 are derived for all countries covered by 
a macro-financial scenario19 and for the following market segments: real estate-collateralised portfolios 
(mortgages, non-financial corporates), non-real estate-related exposures (consumer credit, non-financial 
corporates, financials) and sovereigns. They account for expected default rates (subsection 3.3.1), 
transition probabilities (3.3.2), loss given default (3.3.3) and lifetime loss rates (3.3.4). 

3.3.1 Expected default rates (or point-in-time probabilities of default)  
A top-down stress test involves estimating scenario-conditional projections, where expected 
default rates (or point-in-time probabilities of default) follow a path under a baseline and a severe 
but plausible scenario for loans located in both EU and non-EU countries (from EU banks with 
cross-border activity). The scenario-conditional shift in the path of the top-down point-in-time probability 
of default is applied in a distance-to-default space to ensure the bank’s starting-point dependency20 
(detailed in Appendix 8.1). The distance to default is implemented to ensure the application of top-down 
parameters, provided at country and portfolio levels, to bank-specific starting points. The quantification of 
distance to default can be empirically ascertained through the application of a power equation derived 
from probabilities of default. For example, Moody’s KMV maps distance to default to probability of default. 
For a detailed explanation, refer to the work of Crosbie and Bohn (2003).21  
 
The selected modelling options to estimate scenario-conditional forward paths for expected 
default rates are presented in the following subsections. The first subsection details the baseline 
specification, while the next subsection introduces a novel model tailored to firms at both country and 
sectoral levels. This model was developed with a focus on sectoral vulnerabilities, given recent events 
such as COVID-19 and the Russian invasion of Ukraine. The last subsection details the model used for 
non-EU geographies. 

3.3.1.1 Bayesian stochastic approach (baseline specification) 
The Bayesian stochastic framework delivers scenario-conditional forward paths for expected 
default rates for 27 EU countries. The framework can efficiently consider a large set of variables 
(reflecting different scenario features) while preserving a parsimonious model specification (in terms of 
number of parameters) that can be robustly estimated with the data at hand (i.e., accounting for 
overparameterisation). The framework relies on country-level historical default rate series from: (i) national 
authorities across EU countries, (ii) the Moody’s Kealhofer, McQuown and Vasicek (KMV) model of default 
rates for financial corporations, and (iii) Kamakura-based indicators of expected default rates for 
sovereigns. 
   

19 As published by the ESRB: Belgium, Bulgaria, Czech Republic, Denmark, Germany, Estonia, Ireland, Greece, Spain, France, Croatia, Italy, 
Cyprus, Latvia, Lithuania, Luxembourg, Hungary, Malta, Netherlands, Austria, Poland, Portugal, Romania, Slovenia, Slovakia, Finland, Sweden, 
United Kingdom, Norway, United States, Japan, Canada, Switzerland, Australia & New Zealand, Turkey, Russia, Emerging Asia, China, India, 
Latin America, Brazil, Mexico, Chile, Rest of the World. 
20 To derive bank-specific point-in-time probabilities of default, top-down parameter paths are attached to bank starting points with a locational 
perspective in a distance-to-default space. Instead of the chosen transformation, alternative options such as a logit, a probit or an inverse normal 
could have been employed. The top-down benchmarks, sourced from a data collection which aggregates information on the banking system at 
a country level, are strategically applied in a distance-to-default space. This approach ensures that the starting points of individual banks are 
duly considered from a country perspective. 
21 Some additional references provide insightful explanations on the concept of the distance-to-default measure and its relation to the probability 
of default, such as Kealhofer (2003), Sun et al. (2012) and Ferry et al. (2012). 
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The new framework for modelling default rates, known as stochastic search variable selection 
(SSVS) as presented in George et al. (2008), operationalises a Bayesian stochastic approach to 
select variables of Figueres and Sarychev (2024). It replaced the earlier Bayesian Model Averaging 
(BMA) model originally proposed by Sala-I-Martin et al. (2004) and known as Bayesian Averaging of 
Classical Estimates (BACE).22,23 The BMA approach estimates a pool of equations for a dependent 
variable and all possible combinations of candidate predictors (e.g., real GDP, unemployment, inflation, 
house prices, interest rates and other macroeconomic variables). Then, the posterior model equation is 
computed as the weighted average of the individual equations with weights reflecting in-sample predictive 
performance. 

Both the phased-out BMA/BACE and new Bayesian models have the ability to account for model 
uncertainty (i.e., variable selection). However, the BMA/BACE framework does not account for issues 
related to data persistency, which means the corresponding projections may lack scenario sensitivity. 
Moreover, in cases where historical data is available only for short samples, the BMA/BACE approach, 
which features flat priors, may fail to provide stable estimates, thus creating a need for “cross-filling” (i.e., 
for countries/portfolios where robust estimates are infeasible, the median coefficients from other 
countries/portfolios are used).  

The SSVS framework improves the scenario sensitivity of expected default rate projections and 
facilitates the estimation of models over rather short samples (often the case for historical default 
rates). It features informative priors, allowing to obtain the entire posterior distribution of the estimated 
model and validates whether restrictions on model parameters are supported by the data. Its specification 
reads as follows: 

𝒀𝒀𝑡𝑡 = 𝑐𝑐 + ∑ 𝚽𝚽𝑦𝑦,𝑖𝑖 𝒀𝒀𝑡𝑡−𝑖𝑖
𝑝𝑝
𝑖𝑖=1 + ∑ 𝚽𝚽𝑥𝑥,𝑖𝑖 𝑿𝑿𝑡𝑡−𝑖𝑖

𝑞𝑞
𝑖𝑖=0 + 𝝐𝝐𝑡𝑡 (1) 

𝝐𝝐𝑡𝑡  ~ 𝑁𝑁(0,  𝜎𝜎2) (2) 

where 𝒀𝒀𝑡𝑡 is the endogenous variable, i.e., country- and portfolio-specific expected default rate, and 𝑿𝑿𝑡𝑡 is 
the vector of exogenous variables containing the macro-financial indicators, 𝑐𝑐 is the constant term and 
𝝐𝝐𝑡𝑡  is the residual with zero mean and 𝜎𝜎2 variance.  

Hierarchical priors for the parameters �𝒄𝒄,𝚽𝚽𝒚𝒚,𝒊𝒊,𝚽𝚽𝒙𝒙,𝒊𝒊,𝝈𝝈𝟐𝟐� governing the dynamics of the model reflect 
a belief in the statistical relevance of each macro-financial factor for the endogenous variable. They 
reflect a prior belief in the non-zero value of individual elements 𝜙𝜙𝑖𝑖 of {𝚽𝚽𝑦𝑦,𝑖𝑖 ,𝚽𝚽𝑥𝑥,𝑖𝑖} and the significance of 
the corresponding variables i.e., 𝜙𝜙𝑖𝑖 = 0 , thus avoiding imposing “preselected restrictions” and considering 
models that are supported by the data. The prior belief 𝜌𝜌𝑖𝑖 that an element 𝜙𝜙𝑖𝑖 of {𝚽𝚽𝑦𝑦,𝑖𝑖 ,𝚽𝚽𝑥𝑥,𝑖𝑖} should be 
included in the model is: 

𝛾𝛾𝑖𝑖 ~ i.  Bernoulli(𝜌𝜌𝑖𝑖) (3) 

where 𝛾𝛾𝑖𝑖 denotes a 0-1 independent Bernoulli 𝜌𝜌𝑖𝑖 ∈ (0,1) random variable. Hence, 𝑃𝑃(𝛾𝛾𝑖𝑖 = 1) = 𝜌𝜌𝑖𝑖 and 
𝑃𝑃(𝛾𝛾𝑖𝑖 = 0) = 1 − 𝜌𝜌𝑖𝑖. Next, each element 𝜙𝜙𝑖𝑖 is assumed to have the following distribution: 

𝜙𝜙𝑖𝑖|𝛾𝛾𝑖𝑖~ (1 − 𝛾𝛾𝑖𝑖) 𝑁𝑁(0, 𝜏𝜏0𝑖𝑖2 ) + 𝛾𝛾𝑖𝑖 𝑁𝑁(0, 𝜏𝜏1𝑖𝑖2 ), with  𝜏𝜏1𝑖𝑖2 ≫ 𝜏𝜏0𝑖𝑖2 (4) 

Thus, the conditional prior distribution for each 𝜙𝜙𝑖𝑖 ∈  {𝚽𝚽𝑦𝑦,𝑖𝑖 ,𝚽𝚽𝑥𝑥,𝑖𝑖} is a mixture of two normal distributions 
with variance hyperparameters {𝜏𝜏0𝑖𝑖2 , 𝜏𝜏1𝑖𝑖2 } and 𝛾𝛾𝑖𝑖 controlling the mixture of variances. Following George et. 
al. (2008), the variance hyperparameters are set at 𝜏𝜏0𝑖𝑖 = 0.1𝜎𝜎�𝜙𝜙𝑖𝑖 and 𝜏𝜏1𝑖𝑖 = 10 𝜎𝜎�𝜙𝜙𝑖𝑖. Finally, the prior on the 
variance 𝜎𝜎2 is: 

𝜎𝜎2~ 𝛤𝛤(𝛼𝛼𝑖𝑖 ,  𝑏𝑏𝑖𝑖)       (5) 

where 𝛤𝛤 denotes the gamma distribution whose shape parameter is 𝛼𝛼𝑖𝑖 and scale parameter is 𝑏𝑏𝑖𝑖. The 
entire posterior distribution of parameters can be obtained via the Gibbs sampler. 

22 See Chapter 4 of Dees et al. (2017). 
23 For more details about the BMA framework for stress testing, see Gross and Población (2015, 2019). 
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The informative specification of the prior hyperparameter 𝝆𝝆𝒊𝒊 accommodates both the risk of model 
overparameterisation and the persistency of the data.24 The prior conveys extra information about the 
persistency of the data, with 𝜌𝜌𝑖𝑖 being split into two blocks: an autoregressive block 𝝆𝝆𝑦𝑦,𝑖𝑖 and an exogenous 
block 𝝆𝝆𝑥𝑥,𝑖𝑖. For the autoregressive block, 𝜌𝜌𝑦𝑦,𝑖𝑖 is set to lower values with a higher decay (discount) for distant 
lags, while for the exogenous block 𝜌𝜌𝑥𝑥,𝑖𝑖 is set to higher values with a lower decay. This implies, for example, 
that 𝜌𝜌𝑦𝑦,1 (corresponding to 𝒀𝒀𝑡𝑡−1) is lower than 𝜌𝜌𝑥𝑥,0 (corresponding to 𝑿𝑿𝑡𝑡), while 𝜌𝜌𝑦𝑦,2 (corresponding to 𝒀𝒀𝑡𝑡−2) 
is lower than 𝜌𝜌𝑦𝑦,1 (corresponding to 𝒀𝒀𝑡𝑡−1) and, at the same time, lower than 𝜌𝜌𝑥𝑥,2 (corresponding to 𝑿𝑿𝑡𝑡−2).25 

Sign restrictions on the long-run multipliers ensure that the impact of scenario variables affects 
the expected default rate projections in an economically sensible way. The sign restrictions 
establishing that the long-run multiplier 𝛩𝛩𝑘𝑘 (corresponding to the predictor 𝑿𝑿𝑡𝑡

𝑘𝑘) should be positive or 
negative are implemented by following the steps:26 

1. Draw a candidate for the model parameters from the conditional posterior distribution and compute the
corresponding long-run multiplier:

∑ 𝜕𝜕𝜕𝜕(𝒀𝒀𝑡𝑡+𝑙𝑙)
𝜕𝜕𝑿𝑿𝑡𝑡𝑘𝑘

=∞
𝑙𝑙=0

𝜙𝜙�𝑥𝑥,0
𝑘𝑘 +⋯+𝜙𝜙�𝑥𝑥,𝑞𝑞

𝑘𝑘

1−𝜙𝜙�𝑦𝑦,1
𝑘𝑘 −⋯−𝜙𝜙�𝑦𝑦,𝑝𝑝

𝑘𝑘 ≡ 𝛩𝛩𝑘𝑘 (6) 

2. Check whether the long-run multiplier 𝛩𝛩𝑘𝑘 meets the sign restrictions and save the successful candidate.
3. If no candidate satisfies the sign restrictions after 10,000 draws, the indicators that do not meet the

sign restrictions are dropped from the equation and the model is re-estimated. This procedure is also
known as Bayesian model selection. Then repeat steps 1 to 3 for the new model equation.

Model validation 
The predictive performance of the SSVS under a stress test scenario is compared against the 
BMA/BACE model. The comparison relies on out-of-sample projections for default rates conditional on 
the baseline and adverse stress test scenarios of 2020 over a three-year period.  

The SSVS model offers estimates that are more scenario-sensitive than the BMA/BACE model, 
especially in cases where the latter struggle to provide scenario-sensitive predictions. Chart 11 
illustrates default rates for consumer credit in a selected country conditional on the scenario of the 2020 
stress-testing exercise.27 Such a scenario features an adverse path for GDP growth (a key driver of default 
rate projections) that significantly deviates from its baseline path, thus exhibiting a large baseline-adverse 
difference in growth of around 6.3% (cumulated across the three-year horizon). Panel a) depicts the 
projections obtained via BMA/BACE, while panel b) shows the projections estimated via SSVS. The 
BMA/BACE model generates projections with low scenario sensitivity (i.e., the difference between baseline 
and adverse projections is rather narrow) and exhibiting large uncertainty (confidence bands around the 
projections are wide and overlap across scenarios). By contrast, the SSVS model generates projections 
that are more responsive to the different scenario dynamics and display lower uncertainty.  

24 The variable selection framework proposed by George et al. (2008) explicitly addresses overparameterisation, but it does not directly account 
for the bias emerging from significantly persistent data such as default rate data (the proxy used to model expected default rates or probabilities 
of default point-in-time). 
25 When using flat priors, the estimated autoregressive component 𝚽𝚽𝑦𝑦,𝑖𝑖 𝒀𝒀𝑡𝑡−𝑖𝑖 tends to dominate the exogenous component 𝚽𝚽𝑥𝑥,𝑖𝑖 𝑿𝑿𝑡𝑡−𝑖𝑖. Accordingly, 
the empirical persistency exhibited by the default rates tends to negatively affect the model’s sensitivity to the scenario’s severity.  
26 Notice that sign restrictions are specified at portfolio level, i.e., for a specific portfolio 𝑗𝑗, the same set of restrictions is imposed for all countries. 
27 The sample length for the historical country-specific default rate varies depending on data availability. In this exercise, the sample length for 
the mortgage default rate is shorter than for consumer credit.  
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Chart 11 
Conditional projections for default rates on consumer credit: comparison of BMA and SSVS estimates 

a) BMA/BACE  
(Percentages) 

b) SSVS  
(Percentages) 

  

  
Source: ECB calculations. 
Notes: The blue solid line depicts the historical default rate for consumer credit, the red solid line shows the projections conditional on the adverse scenario, and the 
yellow solid line depicts the projections conditional on the baseline scenario. The dashed red and yellow lines indicate the 25th and 75th percentiles of the forecast 
distribution. The scenario corresponds to the 2020 stress test scenario. The dashed black vertical line indicates the end of the historical sample for the default rate 
series. The shaded area indicates the scenario period covering the years 2020, 2021 and 2022. The projections outside the scenario period are computed by conditioning 
on the realised observations for the macro-financial indicators.      
 
 
The SVSS model can also generate more stable confidence bands compared with the BMA/BACE 
framework. Chart 12 displays the second example for the mortgage default rate (for another country). In 
this case, the BMA/BACE model struggles to produce stable confidence bands over the projection horizon, 
while the SSVS model generates narrower and stable confidence bands.   
 
Chart 12 
Conditional projections for mortgages: comparison of BMA and SSVS estimates 

a) BMA/BACE  
(Percentages) 

b) SSVS  
(Percentages) 

  
Source: ECB calculations. 
Notes: Panel a) shows the case in which the BMA model fails to provide stable estimates (notice the rather explosive confidence bands) and hence is cross-filled. Panel 
b) shows how the SSVS model is able to provide a stable forecast featuring well-behaved confidence bands. The blue solid line depicts the historical default rate for 
mortgages, the red solid line shows the projections conditional on the adverse scenario, and the yellow solid line depicts the projections conditional on the baseline 
scenario. The dashed red and yellow lines indicate the 25th and 75th percentiles of the forecast distribution. The scenario corresponds to the 2020 stress test scenario. 
The dashed black vertical line indicates the end of the historical sample for the default rate series. The shaded area indicates the scenario period covering the years 
2020, 2021 and 2022. 

Another comparison concerns projections of the probability of default in the SSVS versus the 
BMA/BACE model for countries where both frameworks can deliver robust estimates. Chart 13 
displays the cross-country distribution of the probability of default multiples for the household segment, 
conditional on the baseline scenario (panel a) and on the adverse scenario (panel b). The multiples for 
probabilities of default are computed as the ratio between the annual projected default rate and the 
starting-point default rate. Overall, the SSVS model produces probability of default multiples with a median 
close to the BMA/BACE model but including fewer outliers and, in some cases, introducing a slightly higher 
cross-country dispersion of results. 
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Chart 13 
Cross-country distribution of probability of default multiples 

Source: ECB calculations. 
Notes: The red dots are medians, the boxes represent the 25th-75th interquartile range, and the whiskers depict the minimum and maximum observations. The charts 
compare the projected country-level multiples of probability of default for the 2020 stress test adverse scenario. Probability of default multiples are calculated as the 
ratio of projected probabilities of default for 2020, 2021 and 2022 over the country starting point in 2019 (multiples to T0). Starting-point probabilities of default in 2019 
are identical for both the BMA and SSVS models. 

3.3.1.2 Quantile model for non-financial corporates at sectoral level 

Events such as the COVID-19 pandemic and the Russian invasion of Ukraine highlighted the 
importance of corporate sectoral heterogeneity as regards credit risk. The panel quantile regressions 
outlined in this section rely on granular corporate-level data and introduce heterogeneous default levels 
along with varying degrees of vulnerability of countries and sectors, jointly with potential non-linearities in 
credit risk estimates. The methodology involves two steps: calculating the corporate default variables and 
regressing them on scenario-dependent macroeconomic variables in a panel quantile regression 
framework. 

In the first step, granular firm balance sheet data are used to calculate corporate defaults. The 
granular corporate-level data are taken from Bureau van Dijk’s global industry database Orbis, which 
covers balance sheet variables for around 30 million firms from 2001.28 A corporate default is defined as 
an event where a firm cannot cover its financial expenses with its cashflows29, whereby the latter are a 
function of after-tax profits and depreciation at the end of each year (Gourinchas et al., 2020). Based on 
the number of defaults and non-defaults, the flow default rate FlowDR for sector s in country c at time t is 
calculated as follows: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠,𝑐𝑐,𝑡𝑡 =
∑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑡𝑡𝑠𝑠,𝑐𝑐,𝑡𝑡

∑ 𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑡𝑡𝑠𝑠,𝑐𝑐,𝑡𝑡−1
 (7) 

It equals the ratio of the number of new defaulted companies per country and sector at time t over the total 
number of non-defaulted companies in the respective country and sector pair a year earlier, i.e., at time t-
1.30  

28 Orbis reports corporate balance sheet data. In stress test applications, the data are projected one year ahead to account for long publication 
lags.  
29 More precisely, a firm is marked as defaulted if the difference between its cashflow and financial expenses is negative. This definition focuses 
on firms’ liquidity and profitability based on an income and cost structure that considers operating expenses. This default definition was discussed 
with national central bank participants of the working group and validated against available default measures at granular level, such as 
AnaCredit. 
30 The relative frequency of defaulted firms per sector is used, providing an empirical proxy of a probability of default that is observable via firm 
characteristics until the starting point year (t0). 

a) Mortgages and consumer credit
Baseline (over the three-year horizon)
(Probability of default multiple) 

b) Mortgages and consumer credit
Adverse (over the three-year horizon)
(Probability of default multiple) 
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The relative occurrence of the event of default from a sample of firms approximates the 12-month 
probability of default for each country-sector. The default rates of corporates are calculated separately 
for firms with loans collateralised by real estate and those that do not have loans secured by real estate.31 
The resulting dataset captures heterogeneous default levels and reveals varying degrees of vulnerability 
for different countries and sectors.  

The level of default rate flows is validated with other data sources. The distribution of default rate 
flows is adjusted if the mean deviates significantly from reported country-level data received from national 
authorities. This adjustment is done by anchoring the mean distribution of default rate flows from Orbis to 
the mean level of the country-level data reported by national authorities, which maintains the variation 
from granular data while scaling towards a representative sample. 

In a second step, the corporate default flows at country and sector level are regressed on macro-
financial variables in a panel quantile regression framework (Rios-Avila, 2020; Konietschke et al., 
2024). The dependent variable is the probability of default (𝑃𝑃𝐹𝐹𝑠𝑠,𝑐𝑐,𝑡𝑡), proxied by the flow default rate, for 
sector s (up to NACE2-division breakdown) in country c at time t and separately for loans collateralised 
and not collateralised by real estate. The specification has the following form:  

𝑃𝑃𝐹𝐹𝑠𝑠,𝑐𝑐,𝑡𝑡 =  𝛽𝛽0(𝜏𝜏) + 𝛽𝛽1(𝜏𝜏)𝑍𝑍𝑠𝑠,𝑐𝑐,𝑡𝑡 + 𝛽𝛽2(𝜏𝜏)𝑋𝑋𝑐𝑐,𝑡𝑡 + (𝜏𝜏)𝐶𝐶𝑠𝑠,𝑐𝑐 + 𝜀𝜀𝑠𝑠,𝑐𝑐,𝑡𝑡     (8) 

The estimated coefficients are a function of the evaluated quantile 𝜏𝜏, where 𝜏𝜏 percent of the dependent 
variable’s observations are below the regression line projected from the 𝜏𝜏-indexed coefficients. 𝑍𝑍𝑠𝑠,𝑐𝑐,𝑡𝑡 is the 
annual growth rate of the country c and sector s gross value added32 at time t, while 𝑋𝑋𝑐𝑐,𝑡𝑡 is a vector of 
macro variables for country c at time t, including the unemployment rate, the long-term interest rate 
changes and house price index growth for loans collateralised by real estate.  
For loans not collateralised by real estate, 𝑋𝑋𝑐𝑐,𝑡𝑡 contains the unemployment rate change, the long-term rate, 
the rate spread change and the stock price index growth. 𝐶𝐶𝑠𝑠,𝑐𝑐 represents the country and sector fixed 
effects. Finally, the year 2020 (i.e., the start of COVID-19) is excluded from the estimation sample.  
 
Higher quantiles deliver more conservative estimates under adverse scenarios. Chart 14 depicts the 
model predictions at aggregate level for firms with loans collateralised and firms without loans 
collateralised by real estate portfolios, evaluated at the 50th, 75th and 90th percentiles. Expectedly, the 
estimates at the mean (red line) are very close to the observed flow of default rates (black dashed line). 
The estimates at the 75th and 90th percentiles capture scenario shocks in tails of the distribution.  
 
Chart 14 
Forecasting performance across different quantiles and non-linearity 
a) Probability of default estimates of firms with 

loans collateralised by real estate 
b) Probability of default estimates of firms with loans 

not collateralised by real estate 
(Percentages) (Percentages) 

  

Sources: Orbis, ECB and ECB calculations. 
Notes: The black dashed lines indicate the mean historical sector-level default rate flow from Orbis. The mean has been trimmed at the 95th and 5th percentiles. The 
blue, yellow and orange solid lines represent estimates from the quantile panel regression, with blue as the 50th, yellow as the 75th and orange as the 90th percentiles. 
The solid red line represents the estimates from a standard panel regression. The vertical black line separates observed data and calibrated model estimates (to the 
left of the line) from scenario-conditional model projections (to the right of the line).  

31 The allocation is done based on corporate credit registry data from AnaCredit. For this purpose, a firm’s outstanding credit is identified as real 
estate-backed if more than half of all outstanding loans are collateralised by real estate. 
32 https://ec.europa.eu/competition/mergers/cases/index/nace_all.html. 
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An out-of-sample exercise for the period 2020-22 helps to test the predictive performance of 
models in their current specification. The model is estimated on the sample of data for 2017-19 to build 
projections conditional on the baseline scenario. Chart 15 shows that the quantile model can provide 
expected default rates that are sensitive to economic conditions.  
 
Chart 15 
Conditional projections for corporates across different quantiles 
a) Probability of default estimates of firms with 

loans collateralised by real estate 
b) Probability of default estimates of firms with loans 

not collateralised by real estate 
(Percentages) (Percentages) 

  

Sources: Orbis and ECB calculations. 
Notes: The black dashed lines indicate the mean historical sector-level default rate flow from Orbis. The mean has been trimmed at the 95th and 5th percentiles. The 
solid lines represent estimates from the quantile panel regression, with blue as the 50th and yellow as the 75th. The vertical black line separates observed data (to the 
left of the line) and model projections (to the right of the line). The grey-shaded area represents scenario-conditional estimates for the period 2020-22, based on the 
2020 EU-wide stress test, while the white part of the chart shows estimates that are driven by realised macro variables for 2017-19. 
 

In addition, the model is validated based on the adverse scenario from the 2020 stress test. To this 
end, probability of default multiples from the quantile panel regression are compared with those from the 
previous BMA model. The cross-country distribution displays a similar median and interquartile distribution 
(Chart 16), while the quantile panel distribution maintains the capacity to suit a larger variety of shocks at 
a more granular level.  

Chart 16 
Cross-country distribution of probability of default multiples 
a) Firms with loans collateralised by real estate b) Firms with loans not collateralised by real estate 
(Percentages, adverse scenario, over the three-year horizon) (Percentages, adverse scenario, over the three-year horizon) 

  

Source: ECB calculations. 
Notes: For the adverse scenario, the 75th percentile is used. QPD is the panel quantile regression model at the 75th quantile. The red dots are medians, the boxes 
represent the 25th-75th interquartile range, and the whiskers depict the minimum and maximum observations. The charts compare the projected country-level multiples 
of probability of default for the 2020 stress test adverse scenario. Probability of default multiples are calculated as the ratio of projected probabilities of default for 2020, 
2021 and 2022 over the country starting point in 2019 (multiples to T0). Starting-point probabilities of default in 2019 are identical for both the BMA and QPD models. 
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3.3.1.3 Expected default rates for non-EU geographies  
 
Default rates for non-EU geographies are linked to macroeconomic developments via bridge 
equations. The reason for employing bridge equations is that for the non-EU set of countries and regions 
(as defined under the ESRB scenario), only a reduced set of data and macro-financial scenario variables 
is available. The approach described below aims to capture cross-country heterogeneity for non-EU 
country portfolios, while at the same time ensuring consistency in terms of the scenario’s impact on 
probabilities of default between EU and non-EU geographies.  
 
The panel regressions link default rate changes per portfolio type33 with macroeconomic variables: 
 

∆%𝑃𝑃𝐹𝐹𝑐𝑐,𝑡𝑡
𝑇𝑇𝑇𝑇 𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡𝑑𝑑𝑛𝑛𝑙𝑙𝑖𝑖𝑛𝑛 =  𝛽𝛽1 +  𝛽𝛽2𝐺𝐺𝐹𝐹𝑃𝑃 𝑔𝑔𝐹𝐹𝐹𝐹𝑔𝑔ℎ𝑐𝑐,𝑡𝑡 +  𝛽𝛽3 ∗  ∆𝑈𝑈𝐹𝐹𝑐𝑐,𝑡𝑡 +  𝛽𝛽3 ∆𝐿𝐿𝐿𝐿𝑁𝑁 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐,𝑡𝑡    (9) 

where ∆%𝑃𝑃𝐹𝐹𝑐𝑐,𝑡𝑡
𝑇𝑇𝑇𝑇 𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡𝑑𝑑𝑛𝑛𝑙𝑙𝑖𝑖𝑛𝑛 is the year-on-year change in projected probabilities of default and the subscripts 

𝑐𝑐 and 𝑔𝑔 denote the country and year, respectively. 𝐺𝐺𝐹𝐹𝑃𝑃 𝑔𝑔𝐹𝐹𝐹𝐹𝑔𝑔ℎ𝑐𝑐,𝑡𝑡 is the year-on-year real GDP growth, 
∆𝑈𝑈𝐹𝐹𝑐𝑐,𝑡𝑡 is the year-on-year change in the unemployment rate and ∆𝐿𝐿𝐿𝐿𝑁𝑁 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐,𝑡𝑡 is the year-on-year 
change in the spread of long-term interest rates 𝐿𝐿𝐿𝐿𝑁𝑁  relative to the German Bund.34  
 
The approach ensures a similar degree of scenario severity between EU and non-EU countries. In 
Chart 17, the interquartile range of probability of default multiples is depicted for the adverse scenario of 
the 2021 stress test. The objective of the bridge equations is to account for macroeconomic variables of 
non-EU geographies, while maintaining a comparable level of impact of the scenario on probabilities of 
default between EU and non-EU geographies.  

 

Chart 17 
Comparison of probability of default multiples for EU countries and non-EU countries  
(Probability of default multiple) 

 

Source: ECB calculations.  
Notes: The red dots are medians, and boxes represent the 25th-75th interquartile range. The chart compares the projected country-level multiples of probability of default 
for the 2021 stress test adverse scenario. Probability of default multiples are calculated as the ratio of projected probabilities of default for 2021, 2022 and 2023 over 
the country starting point in 2020 (multiples to T0).  

  

33 Panel regressions are estimated separately for consumer credit, mortgages, financials, non-financial corporates for real estate-related and 
non-real estate-related portfolios. 
34 The macroeconomic variables such as GDP, UR and LTN were found to be sufficient in summarising the overall macroeconomic scenario for 
non-EU countries. 
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3.3.2 Transition probabilities 
 
With the introduction of the IFRS 9 framework, there was a need for a method to project transition 
probabilities over the scenario horizon.35 The transition probabilities follow the EBA methodology for 
the “no cure” assumption constraint, where the cures from stage 3 are set to zero (i.e., 𝐿𝐿𝑃𝑃3→1 and 𝐿𝐿𝑃𝑃3→2 
are zero). The projection of the remaining transition probabilities is derived from the scenario paths for the 
default probability. 

𝐿𝐿𝑃𝑃𝑡𝑡 =  

𝑆𝑆1         𝑆𝑆2         𝑆𝑆3
𝑆𝑆1
𝑆𝑆2
𝑆𝑆3

�
𝐿𝐿𝑃𝑃𝑡𝑡1→1 𝐿𝐿𝑃𝑃𝑡𝑡1→2 𝐿𝐿𝑃𝑃𝑡𝑡1→3

𝐿𝐿𝑃𝑃𝑡𝑡2→1 𝐿𝐿𝑃𝑃𝑡𝑡2→2 𝐿𝐿𝑃𝑃𝑡𝑡2→3
0 0 1

�    (10) 

 
The default probability is decomposed into transition rates to Stage 3 𝑻𝑻𝑷𝑷𝑻𝑻𝟎𝟎+𝒉𝒉𝟏𝟏→𝟑𝟑  and 𝑻𝑻𝑷𝑷𝑻𝑻𝟎𝟎+𝒉𝒉𝟐𝟐→𝟑𝟑  using a 
distance-to-default transformation.36 Accordingly, the scenario paths for 𝐿𝐿𝑃𝑃1→3 and 𝐿𝐿𝑃𝑃2→3 are as follows:  
 

𝜙𝜙−1(𝐿𝐿𝑃𝑃𝑇𝑇0+ℎ1→3 ) − 𝜙𝜙−1(𝐿𝐿𝑃𝑃𝑇𝑇01→3) = 𝜙𝜙−1 (𝑃𝑃𝐹𝐹𝑇𝑇0+ℎ) − 𝜙𝜙−1 (𝑃𝑃𝐹𝐹𝑇𝑇0)          (11) 
𝜙𝜙−1(𝐿𝐿𝑃𝑃𝑇𝑇0+ℎ2→3 ) − 𝜙𝜙−1(𝐿𝐿𝑃𝑃𝑇𝑇02→3) = 𝜙𝜙−1 (𝑃𝑃𝐹𝐹𝑇𝑇0+ℎ) − 𝜙𝜙−1 (𝑃𝑃𝐹𝐹𝑇𝑇0)         (12) 

 
where 𝜙𝜙−1 denotes the standard normal inverse cumulative distribution function. The values for 𝑃𝑃𝐹𝐹𝑇𝑇0, 
𝐿𝐿𝑃𝑃𝑇𝑇01→3 and 𝐿𝐿𝑃𝑃𝑇𝑇02→3 correspond to bank-specific starting points for expected default rates and transition 
probabilities, respectively. The normal inverse transformation ensures that transition probabilities are in 
the [0,1] interval.  
 
The projection of the remaining elements of transition matrices, namely 𝑻𝑻𝑷𝑷𝟏𝟏→𝟐𝟐and 𝑻𝑻𝑷𝑷𝟐𝟐→𝟏𝟏, entails 
the estimation of bridge equations at country and portfolio level. Two equations capture the historical 
relationship between 𝐿𝐿𝑃𝑃1→2 and 𝐿𝐿𝑃𝑃2→1 and 𝐿𝐿𝑃𝑃1→3 and 𝐿𝐿𝑃𝑃2→3, respectively: 

 
𝜙𝜙−1(𝐿𝐿𝑃𝑃𝑡𝑡1→2) = 𝑠𝑠 + 𝑏𝑏 × 𝜙𝜙−1(𝐿𝐿𝑃𝑃𝑡𝑡1→3) + 𝜀𝜀𝑡𝑡            (13) 
𝜙𝜙−1(𝐿𝐿𝑃𝑃𝑡𝑡2→1) = 𝑐𝑐 + 𝑠𝑠 × 𝜙𝜙−1(𝐿𝐿𝑃𝑃𝑡𝑡2→3) + 𝜀𝜀𝑡𝑡              (14) 

 
The coefficients 𝑏𝑏 and 𝑠𝑠 are expected to be positive and negative, respectively. Empirically, higher 
transition rates from stages 1 to 3 are associated with higher transition rates from stages 1 to 2 since both 
correspond to a deterioration of the credit quality. Following the same reasoning, higher transition rates 
from stages 2 to 3 are associated with lower transition rates from stages 2 to 1. In detail, for the projection 
of 𝐿𝐿𝑃𝑃1→2 and 𝐿𝐿𝑃𝑃2→1, bridge equations are estimated for regressions of 𝐿𝐿𝑃𝑃1→2 on 𝐿𝐿𝑃𝑃1→3 series as well as of 
𝐿𝐿𝑃𝑃2→1 on 𝐿𝐿𝑃𝑃2→3. The slopes from these regressions are used to project the respective transition rates 
conditional on the macroeconomic scenario at country and portfolio level. Only model estimates with an 
R2 higher than 10% and a positive (and negative) value for the slope from the 𝐿𝐿𝑃𝑃1→2 vs 𝐿𝐿𝑃𝑃1→3 (and 𝐿𝐿𝑃𝑃2→1 
vs 𝐿𝐿𝑃𝑃2→3) regression, respectively, are retained. The countries and portfolios without retained estimates or 
not providing time series are cross-filled by the EU median. 
 
The distance-to-default transformation below is then used to derive the paths for 𝑻𝑻𝑷𝑷𝑻𝑻𝟎𝟎+𝒉𝒉𝟏𝟏→𝟐𝟐  
and 𝑻𝑻𝑷𝑷𝑻𝑻𝟎𝟎+𝒉𝒉𝟐𝟐→𝟏𝟏 : 
 

𝜙𝜙−1(𝐿𝐿𝑃𝑃𝑇𝑇0+ℎ1→2 ) − 𝜙𝜙−1(𝐿𝐿𝑃𝑃𝑇𝑇01→2) = 𝑏𝑏�𝜙𝜙−1 (𝐿𝐿𝑃𝑃𝑇𝑇0+ℎ1→3 ) − 𝜙𝜙−1 (𝐿𝐿𝑃𝑃𝑇𝑇01→3)�         (15) 
𝜙𝜙−1(𝐿𝐿𝑃𝑃𝑇𝑇0+ℎ2→1 ) − 𝜙𝜙−1(𝐿𝐿𝑃𝑃𝑇𝑇02→1) = 𝑠𝑠(𝜙𝜙−1 (𝐿𝐿𝑃𝑃𝑇𝑇0+ℎ2→3 ) − 𝜙𝜙−1 (𝐿𝐿𝑃𝑃𝑇𝑇02→3)         (16) 

 
Finally, the scenario paths for the transition probabilities 𝐿𝐿𝑃𝑃1→1 and 𝐿𝐿𝑃𝑃2→2 are obtained by difference, 
ensuring that each row of the matrix adds up to 1. 
 

𝐿𝐿𝑃𝑃𝑇𝑇0+ℎ1→1 = max(1 − 𝐿𝐿𝑃𝑃𝑇𝑇0+ℎ1→2 − 𝐿𝐿𝑃𝑃𝑇𝑇0+ℎ1→3 , 0)            (17) 
𝐿𝐿𝑃𝑃𝑇𝑇0+ℎ2→2 = max(1 − 𝐿𝐿𝑃𝑃𝑇𝑇0+ℎ2→1 − 𝐿𝐿𝑃𝑃𝑇𝑇0+ℎ2→3 , 0)            (18) 

 
 

35 The transition probabilities are used as input for the top-down lifetime loss rate projections. The baseline marginal transition matrices after 
year three (and until the maturity of the loan) are assumed to remain constant, while the corresponding adverse parameters are set to linearly 
revert to their baseline value over the course of six years. 
36 For a detailed explanation of this transformation, please see Section 3.3.1. 
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For sovereign exposures transition rates, the top-down methodology assumes the values submitted by 
banks, following the relationships below: 
 

0 ≤ 𝐿𝐿𝑃𝑃𝑇𝑇0+ℎ
𝑖𝑖→𝑗𝑗 ≤ 1, ∑ 𝐿𝐿𝑃𝑃𝑇𝑇0+ℎ

𝑖𝑖→𝑗𝑗
𝑗𝑗 = 1,ℎ = 1,2,3, for both baseline and adverse          (19) 

𝐿𝐿𝑃𝑃𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑝𝑝𝑠𝑠𝑑𝑑,𝑇𝑇0+ℎ
2→1 ≤ 𝐿𝐿𝑃𝑃𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑝𝑝𝑠𝑠𝑑𝑑,𝑇𝑇0

2→1 ,ℎ = 1,2,3            (20) 
𝐿𝐿𝑃𝑃𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑝𝑝𝑠𝑠𝑑𝑑,𝑇𝑇0+ℎ

1→2 ≥ 𝐿𝐿𝑃𝑃𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑝𝑝𝑠𝑠𝑑𝑑,𝑇𝑇0
1→2 ,ℎ = 1,2,3            (21) 

𝜕𝜕𝑥𝑥𝑝𝑝𝑆𝑆1×𝑇𝑇𝑇𝑇𝑇𝑇0+ℎ
1→3 +𝜕𝜕𝑥𝑥𝑝𝑝𝑆𝑆2×𝑇𝑇𝑇𝑇𝑇𝑇0+ℎ

2→3

𝜕𝜕𝑥𝑥𝑝𝑝𝑆𝑆1+𝜕𝜕𝑥𝑥𝑝𝑝𝑆𝑆2
= 𝑠𝑠𝑝𝑝𝑔𝑔𝑃𝑃𝐹𝐹𝑇𝑇0+ℎ            (22) 

 

3.3.3 Loss given default of loans  

3.3.3.1 Loans collateralised by real estate 
  
The structural model of loss given default for household and non-financial corporate loans 
collateralised by real estate aligns the value of loan collateral with the evolution of real estate 
prices. Specifically, the value of commercial real estate collateral is aligned with commercial property 
prices and the value of residential real estate with residential property prices. The loss given default is 
modelled as a function of the bank loan-to-value ratio (LTV), the probability of cure and the loss given 
liquidation (LGL), as follows: 

𝐿𝐿𝐺𝐺𝐹𝐹 = ( (1 − Probability of Cure)  ∙  𝐿𝐿𝐺𝐺𝐿𝐿) + 𝐴𝐴𝑠𝑠𝐴𝐴𝐶𝐶𝐹𝐹𝑠𝑠𝑔𝑔𝑠𝑠                                            (23) 

where AdmCosts is a constant reflecting typical administrative costs of real estate transactions. As 
described in STAMP€, LGL can be derived from the LTV and the expected sales ratio (E(SR)), which is 
defined as the ratio between recovery and collateral value. This can be described as LGL =
𝑀𝑀𝐴𝐴𝑋𝑋 � 𝐿𝐿𝑛𝑛𝑑𝑑𝑛𝑛−𝑅𝑅𝑑𝑑𝑐𝑐𝑛𝑛𝑎𝑎𝑑𝑑𝑝𝑝𝑦𝑦 𝑉𝑉𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑

𝐿𝐿𝑛𝑛𝑑𝑑𝑛𝑛
 ,0� ↔ 𝑀𝑀𝐴𝐴𝑋𝑋 � �𝐿𝐿𝑛𝑛𝑑𝑑𝑛𝑛−𝑅𝑅𝑑𝑑𝑐𝑐𝑛𝑛𝑎𝑎𝑑𝑑𝑝𝑝𝑦𝑦 𝑉𝑉𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑

𝐿𝐿𝑛𝑛𝑑𝑑𝑛𝑛
 /𝐶𝐶𝑛𝑛𝑙𝑙𝑙𝑙𝑑𝑑𝑡𝑡𝑑𝑑𝑝𝑝𝑑𝑑𝑙𝑙 𝑉𝑉𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑� , 0� ↔  𝑀𝑀𝐴𝐴𝑋𝑋 �LTV−E(SR)

LTV
, 0�.37  

 
There is a level of uncertainty around the reported collateral value, which may be overvalued, 
deviating from realised market values, due to outdated valuations or adverse market conditions 
leading to declines in real estate prices. Therefore, assuming that the expected sales ratio (E(SR)) is 
normally distributed, and considering the relation above between the recovery value and the LTV, the 
E(SR) can be expressed as follows: 
 

𝐸𝐸(𝑆𝑆𝐹𝐹) = 𝜇𝜇 �𝛷𝛷 �𝐿𝐿𝑇𝑇𝑉𝑉−𝜇𝜇
𝜎𝜎

� − 𝛷𝛷 �−𝜇𝜇
𝜎𝜎
�� + 𝜎𝜎

√2𝜋𝜋
 �𝑠𝑠−

𝜇𝜇2

2𝜎𝜎2  −𝑠𝑠−
(𝐿𝐿𝑇𝑇𝐿𝐿−𝜇𝜇)2

2𝜎𝜎2 � + 𝐿𝐿𝐿𝐿𝐿𝐿 �1 − 𝛷𝛷 �𝐿𝐿𝑇𝑇𝑉𝑉−𝜇𝜇
𝜎𝜎

��  (24) 

 

where LTV denotes the indexed LTV ratio at the point of sale, 𝜇𝜇 represents the mean of the sales ratio 
distribution, 𝜎𝜎 indicates the standard deviation of sales ratio distribution and 𝛷𝛷(.) denotes the cumulative 
probability distribution function of the standard normal distribution. The expected sales ratio is bounded 
between 0 and the LTV. The specification of the sales ratio reflects the uncertainty around bank reported 
collateral values. For instance, as long as the sales ratio varies around its mean even over-collateralised 
loans can generate losses. In this approach, parameter mean (𝜇𝜇) has to be found, to thereby let the LGD 
fit the observed bank starting point loss given default, conditional on the LTV ratio and sales ratio. For this 
purpose, a grid combination of probability of cure (or cure rates), loss given default and LTV parameters, 
derived from previous stress test exercises, are used to find the 𝜇𝜇 and align it with the banks' reported 
starting points. 
 
The LTV ratio forward paths are related to the evolution of real estate prices (𝐻𝐻𝑃𝑃𝑡𝑡), as follows: 
 

 𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡 = 𝐿𝐿𝐿𝐿𝐿𝐿0
𝐻𝐻𝑇𝑇0
𝐻𝐻𝑇𝑇𝑡𝑡

= 𝐿𝐿𝑇𝑇𝑉𝑉0
𝐻𝐻𝑃𝑃𝑡𝑡
𝐻𝐻𝑃𝑃0

= 𝐿𝐿𝑇𝑇𝑉𝑉0
𝐻𝐻𝑃𝑃0+𝐻𝐻𝑃𝑃𝑡𝑡−𝐻𝐻𝑃𝑃0

𝐻𝐻𝑃𝑃0

= 𝐿𝐿𝑇𝑇𝑉𝑉0
1+𝐻𝐻𝑃𝑃𝑡𝑡−𝐻𝐻𝑃𝑃0𝐻𝐻𝑃𝑃0

= 𝐿𝐿𝑇𝑇𝑉𝑉0
1+Δ𝐻𝐻𝑇𝑇

    (25) 

 

 
 

37 The inclusion of the max operator is based on the legal framework in most EU countries, where any surplus from selling collateral beyond the 
defaulted borrower's debt obligation to the bank should be returned to the borrower.  
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The specification allows for relatively higher increases in the loss given default for banks with a 
low starting-point loss given default, as opposed to banks with a high starting-point loss given 
default.38 Chart 18 shows the projected loss given default and respective multiple conditional on a house 
price shock from an adverse stress test scenario under different assumptions for the initial LTV ratio. Panel 
a) of Chart 18 shows the projections with a constant and country39-specific sales ratio as earlier used in 
STAMP€. The projected loss given default under the adverse scenario is independent of the bank’s 
starting-point loss given default. Panel b) shows the projections from the current model with a bank-specific 
sales ratio. The loss given default multiples are lower for banks with high starting points, accounting for 
banks’ heterogeneity. 
 
Chart 18 
Bank-specific calibration of the sales ratio 

a) Loss given default projection  
(constant and country-specific sales ratio)   
(Percentages) 

 

b) Loss given default multiple  
(variable and bank-specific sales ratio) 
(LGD multiple) 

 
Source: ECB calculations. 
Notes: Panel a): Loss given default (LGD) projections under the adverse scenario for a bank-specific and constant sales ratio (SR) for different LTV values of 40% and 
80%. Panel b): LGD multiples are expressed relative to the bank’s starting-point LGD (LGD-adverse/LGD t0) applied to a bank-specific SR for LTV values of 80% and 
40% and a cure rate of 30%. 
 

3.3.3.2 Loans not collateralised by real estate 
 
The approach to modelling the loss given default (or point-in-time loss given default) of exposures 
not collateralised by real estate property considers both country-level and bank-level 
heterogeneity.40 By using bank data from previous stress tests, it is possible to obtain an estimate of the 
scenario sensitivity of loss given default across the three portfolios: credit consumer, non-financial 
corporates for loans not collateralised by real estate and financials. The model has the following form: 

𝐿𝐿𝐺𝐺𝐹𝐹𝑐𝑐,𝑡𝑡
𝑥𝑥→3 = 𝛽𝛽0 +  𝛽𝛽1𝐺𝐺𝐹𝐹𝑃𝑃 𝑔𝑔𝑠𝑠𝐹𝐹𝐹𝐹𝑔𝑔ℎ𝑐𝑐,𝑡𝑡 +  𝛽𝛽2𝛥𝛥𝑈𝑈𝐹𝐹𝑐𝑐,𝑡𝑡                      (26) 

 

where 𝐿𝐿𝐺𝐺𝐹𝐹𝑐𝑐,𝑡𝑡
𝑥𝑥→3 is the loss given default multiple calculated as the ratio of the bank’s projected loss given 

default over its starting-point loss given default (𝐿𝐿𝐿𝐿𝑇𝑇𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠
𝐿𝐿𝐿𝐿𝑇𝑇𝑡𝑡𝑡𝑡

) and x={1,2,3} denotes the losses given default 
(𝐿𝐿𝐺𝐺𝐹𝐹1→3, 𝐿𝐿𝐺𝐺𝐹𝐹2→3 and 𝐿𝐿𝐺𝐺𝐹𝐹3→3). 𝐺𝐺𝐹𝐹𝑃𝑃 𝑔𝑔𝑠𝑠𝐹𝐹𝐹𝐹𝑔𝑔ℎ𝑐𝑐,𝑡𝑡 is the cumulative gross domestic product growth over the 
three years of the scenario, and 𝛥𝛥𝑈𝑈𝐹𝐹𝑐𝑐,𝑡𝑡 is the unemployment rate change over the three years of the 
scenario, while the constant is denoted by 𝛽𝛽0.41 The loss given default sensitivities to economic activity 
and unemployment rate (coefficients  𝛽𝛽1 and 𝛽𝛽2) are aligned with the average estimates obtained from the 
literature (Georgescu, Galow and Ponte Marques, 2024; Bellotti and Crook, 2012; Caselli and Querci, 
2008; Konečný et al., 2017). The scenario-conditional shift in the loss given default is applied in a distance-
to-default space to ensure the bank’s starting-point dependency.42 

38 The relative increase in the loss given default under the adverse scenario is expected to be lower for very high bank loss given default starting 
values compared with the very low bank loss given default starting values. This is because high starting point loss given default values are 
assumed to reflect conservative estimates of collateral values, implying limited scope for further devaluation. 
39 Calculated as the exposure weighted average from stress test exercises reported by banks and aggregated at country level. 
40 The earlier approach to modelling forward paths of loss given default for non-real estate-related exposures involved applying a fixed parameter 
to the T0 bank starting-point loss given default. 
41 Other macroeconomic variables were excluded from the regression analyses since they were not significant. 
42 For a detailed explanation of this transformation, please see Section 3.3.1. 
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The new top-down model provides comparable projected losses given default to three alternative 
approaches. The results from the model are benchmarked against the results derived from the alternative 
approaches in Table 6. The estimated outcome from the ECB model compares well with the stressed, 
downturn and adverse loss given default parameters, and, in line with expectations, the downturn loss 
given default projections are the most conservative. This reflects the provisions of the Basel II framework, 
which requires banks to estimate and use loss given default reflecting downturn conditions, as long as 
these are more conservative than the long-run loss given default average. 
 
Table 6 
Comparison of top-down estimates with other alternative approaches for non-financial corporate loans 
not collateralised by real estate under the adverse scenario* (A-IRB portfolios only) 

Top-down LGD unsecured* LGD stressed cure rate** Downturn LGD (REA)*** LGD 13 adv (SCEN)*** 
31.0% 27.8% 31.9% 29.6% 

Sources: Participating banks and ECB calculations based on data from the 2018 and 2021 stress tests. 
Notes: * For the analysis, the adverse scenario set-up from the 2018 and 2021 stress tests 2018 was employed. ** Projected LGD levels based on the chosen model 
specification. *** The LGD stressed cure rate corresponds to 𝐿𝐿𝐺𝐺𝐹𝐹𝑑𝑑𝑑𝑑𝑎𝑎 = �(1− 𝑃𝑃𝑠𝑠𝐹𝐹𝑏𝑏𝑠𝑠𝑏𝑏𝑝𝑝𝐹𝐹𝑝𝑝𝑔𝑔𝑃𝑃 𝐹𝐹𝑜𝑜 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠) ∗ 𝐿𝐿𝐹𝐹𝑠𝑠𝑠𝑠 − 𝐺𝐺𝑝𝑝𝐺𝐺𝑠𝑠𝐺𝐺 𝐿𝐿𝑝𝑝𝐿𝐿𝑐𝑐𝑝𝑝𝑠𝑠𝑠𝑠𝑔𝑔𝑝𝑝𝐹𝐹𝐺𝐺�. Under this set-up, starting-level losses 
given default and cure rates of past stress test exercises are used to derive a proxy for the loss given liquidation. A stressed loss given default is estimated by scaling 
the cure rate with a factor equal to the inverse of the ratio 𝐿𝐿𝐿𝐿𝑇𝑇𝑑𝑑𝑡𝑡𝑑𝑑𝑠𝑠𝑡𝑡𝑑𝑑𝑑𝑑𝑠𝑠

𝐿𝐿𝐿𝐿𝑇𝑇𝑡𝑡0
 for unsecured non-financial corporate non-real estate-related portfolios under the advanced internal 

ratings-based (A-IRB) regulatory approach. **** Both downturn losses given default and losses given default under the adverse scenario are reported by banks. 

3.3.4 Lifetime loss rates 
 
The IFRS 9 projections of lifetime loss rate parameters are incorporated into the stress horizon 
conditioned on both baseline and adverse scenarios. There are three point-in-time risk parameters 
related to the lifetime loss rate:  

 𝐿𝐿𝐹𝐹𝐿𝐿𝐿𝐿𝑡𝑡1→2 refers to the lifetime expected loss rate of those exposures that start the year in stage 1 
and end it in stage 2; 

 𝐿𝐿𝐹𝐹𝐿𝐿𝐿𝐿𝑡𝑡2→𝑥𝑥 refers to the lifetime expected loss rate for exposures that begin and end the year in 
stage 2 regardless of the stage they end up in eventually during their lifetime (𝐿𝐿𝐹𝐹𝐿𝐿𝐿𝐿𝑡𝑡2→2 includes 
exposures that begin and end the year in stage 2 and remain in stage 2); 

 𝐿𝐿𝐹𝐹𝐿𝐿𝐿𝐿𝑡𝑡3→3 refers to the lifetime expected loss associated with exposures that start the year in stage 
3. Note that due to the “no cure” constraint, stage 3 exposures cannot migrate to another stage.  
 

where the lifetime loss rate for new stage 2 assets (𝐿𝐿𝐹𝐹𝐿𝐿𝐿𝐿𝑡𝑡1→2) is set equal to lifetime losses for existing 
stage 2 assets, i.e., (𝐿𝐿𝐹𝐹𝐿𝐿𝐿𝐿𝑡𝑡2→𝑥𝑥). Accordingly, it is assumed that once an exposure has migrated to stage 2 
it has the same risk characteristics as those exposures which are already in stage 2. The lifetime loss rate 
for stage 3 assets 𝐿𝐿𝐹𝐹𝐿𝐿𝐿𝐿𝑡𝑡3→3, is set equal to 𝐿𝐿𝐺𝐺𝐹𝐹𝑡𝑡3→3 over their lifetime.  
 
The lifetime loss rate parameters rely on the estimates of the expected cumulative loss. The latter 
is calculated according to the following formula: 

𝐸𝐸𝐶𝐶𝐿𝐿(𝑡𝑡+1,𝑀𝑀),12
𝑙𝑙𝑖𝑖𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖𝑙𝑙𝑑𝑑 = ∑ 𝐸𝐸𝐴𝐴𝐹𝐹𝑠𝑠 × (𝐿𝐿𝐺𝐺𝐹𝐹𝑠𝑠2→3 × (𝐸𝐸𝐴𝐴𝐹𝐹𝑠𝑠/100)) × 𝐿𝐿𝑃𝑃𝑠𝑠

2→3 𝑀𝑀𝑑𝑑𝑝𝑝𝑀𝑀𝑖𝑖𝑛𝑛𝑑𝑑𝑙𝑙𝑀𝑀
𝑠𝑠=𝑡𝑡+1         (27) 

where 𝐸𝐸𝐴𝐴𝐹𝐹𝑠𝑠 is the exposure at default at time s, 𝐿𝐿𝐺𝐺𝐹𝐹𝑠𝑠  is the point-in-time loss given default (𝐿𝐿𝐺𝐺𝐹𝐹𝑠𝑠2→3) at 
time s, 𝑀𝑀 is the maturity of the portfolio and 𝑔𝑔 ∈ (1,2,3,4) is the time, as the calculations are repeated for 
different years under the scenario. The term �𝐸𝐸𝐴𝐴𝐹𝐹𝑠𝑠 100� � refers to the decay factor for 𝐿𝐿𝐺𝐺𝐹𝐹𝑠𝑠2→3. 𝐿𝐿𝐺𝐺𝐹𝐹𝑠𝑠2→3 is 
assumed to decay at the same pace as the exposure at default reflecting the fact that the LTV ratio 
decreases in line with the amortisation of the exposure. The last term in the formula (𝐿𝐿𝑃𝑃𝑠𝑠

2→3 𝑀𝑀𝑑𝑑𝑝𝑝𝑀𝑀𝑖𝑖𝑛𝑛𝑑𝑑𝑙𝑙) is the 
marginal, or conditional, probability of migrating to stage 3 (probability of default for stage 2 assets).  

The decay factor assumes that the exposure at default (EAD)43 falls linearly after the initial three-
year scenario. Starting from year 4, the portfolio goes down over its residual lifetime along with the 
normalised formula: 

𝐸𝐸𝐴𝐴𝐹𝐹𝑠𝑠 = �
100 𝑝𝑝𝑜𝑜 𝑠𝑠 ∈ (1,2,3, 4)

𝐸𝐸𝐴𝐴𝐹𝐹𝑠𝑠−1 −
100

𝑀𝑀+(𝑡𝑡−4)
 𝑝𝑝𝑜𝑜 5 ≤ 𝑠𝑠 ≤ 𝑀𝑀                                                                                            (28) 

where 𝐸𝐸𝐴𝐴𝐹𝐹0 = 100 and M refers to the maturity of the exposure. Under the adverse scenario, the reversion 
of 𝐸𝐸𝐴𝐴𝐹𝐹 to baseline is assumed from year 4.  

43 Conservative prepayments are not included in the calculation of exposure at default over time. 

ECB Occasional Paper Series No 348 39



The marginal probability of migrating to stage 3 𝑻𝑻𝑷𝑷𝒔𝒔
𝟐𝟐→𝟑𝟑 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝒊𝒊𝑴𝑴𝑴𝑴𝑴𝑴 is conditional on survival up to the 

reference period. It is defined as: 

𝐿𝐿𝑃𝑃𝑠𝑠
2→3 𝑀𝑀𝑑𝑑𝑝𝑝𝑀𝑀𝑖𝑖𝑛𝑛𝑑𝑑𝑙𝑙 = 𝑃𝑃𝑠𝑠𝐹𝐹𝑏𝑏(𝐹𝐹𝑠𝑠 = 1,  𝐹𝐹𝑘𝑘 = 0;  𝑔𝑔 ≤ 𝑘𝑘 < 𝑠𝑠) = 𝐿𝐿𝑃𝑃𝑠𝑠2→3 ∏ (1 − 𝐿𝐿𝑃𝑃𝑘𝑘2→3𝑠𝑠−1

𝑘𝑘=𝑡𝑡 )�����������
𝑐𝑐𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑑𝑑𝑡𝑡𝑖𝑖𝑎𝑎𝑑𝑑 𝑇𝑇𝑖𝑖𝑇𝑇 𝑠𝑠𝑑𝑑𝑝𝑝𝑎𝑎𝑖𝑖𝑎𝑎𝑑𝑑𝑙𝑙

𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑑𝑑𝑝𝑝𝑖𝑖𝑙𝑙𝑖𝑖𝑡𝑡𝑦𝑦 𝑑𝑑𝑡𝑡 𝑡𝑡𝑖𝑖𝑙𝑙𝑑𝑑 (𝑦𝑦𝑑𝑑𝑑𝑑𝑝𝑝)𝑘𝑘

      (29) 

 

where 𝐿𝐿𝑃𝑃𝑘𝑘2→3 is the incremental (unconditional) probability of migrating to stage 3 as described in Section 
3.3.2, 𝐹𝐹𝑠𝑠 ,  𝐹𝐹𝑘𝑘 are indicator variables taking the values 1 and 0, respectively, in case the loan survived in 
the previous period, and 0 and 1 in case the loan defaulted in the previous period. This implies that annual 
point-in-time expected credit losses are summed up until the residual maturity (M) of the portfolio in 
question. At each point in time, only the share of the portfolio that has not defaulted in previous periods is 
considered for the calculation of the expected losses. 
 
This approach to compute the marginal probability of default (𝑻𝑻𝑷𝑷𝒔𝒔

𝟐𝟐→𝟑𝟑 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝒊𝒊𝑴𝑴𝑴𝑴𝑴𝑴) considers the 
transition from stage 2 to stage 1 along the maturity of the loan.44 It relies on the information on 
transition matrices, with transition rates from stage 2 to stage 3 (𝐿𝐿𝑃𝑃𝑡𝑡2→3) taking into account migration from 
stage 2 to stage 1 in line with the EBA methodology (see transition matrix in equation (10)). More precisely, 
assuming that transition matrices evolve according to a Markov process, the cumulative 𝐿𝐿𝑃𝑃𝑡𝑡2→3 becomes 
𝐿𝐿𝑃𝑃𝑡𝑡𝐶𝐶𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑑𝑑𝑡𝑡𝑖𝑖𝑎𝑎𝑑𝑑 = ∏ 𝐿𝐿𝑃𝑃𝑠𝑠𝑡𝑡

𝑠𝑠=1                                                                                           (30) 
 
The marginal transition rate 𝐿𝐿𝑃𝑃𝑡𝑡

2→3 𝑀𝑀𝑑𝑑𝑝𝑝𝑀𝑀𝑖𝑖𝑛𝑛𝑑𝑑𝑙𝑙 at time t can be obtained from the cumulative transition matrix 
as follows: 
𝐿𝐿𝑃𝑃𝑡𝑡

2→3 𝑀𝑀𝑑𝑑𝑝𝑝𝑀𝑀𝑖𝑖𝑛𝑛𝑑𝑑𝑙𝑙 = 𝐿𝐿𝑃𝑃𝑡𝑡2→3 𝐶𝐶𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑑𝑑𝑡𝑡𝑖𝑖𝑎𝑎𝑑𝑑 − 𝐿𝐿𝑃𝑃𝑡𝑡−12→3 𝐶𝐶𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑑𝑑𝑡𝑡𝑖𝑖𝑎𝑎𝑑𝑑                                                                                           (31) 
Hence, cumulative transition matrices are projected over the lifetime of the loan. From year 4 of the 
adverse scenario, every element of the transition matrix is computed such to ensure its convergence to 
the baseline scenario over a six-year period. 
 
Finally, benchmarks for loss rates are calculated according to the following formula: 

𝐿𝐿𝐹𝐹𝐿𝐿𝐿𝐿𝑡𝑡1→2 =
𝜕𝜕𝐶𝐶𝐿𝐿(𝑡𝑡,𝑀𝑀)

1→2 𝑙𝑙𝑖𝑖𝑙𝑙𝑠𝑠𝑡𝑡𝑖𝑖𝑙𝑙𝑠𝑠

𝜕𝜕𝐸𝐸𝑇𝑇0
              (32) 

𝐿𝐿𝐹𝐹𝐿𝐿𝐿𝐿𝑡𝑡2→2 =
𝜕𝜕𝐶𝐶𝐿𝐿(𝑡𝑡,𝑀𝑀)

2→2 𝑙𝑙𝑖𝑖𝑙𝑙𝑠𝑠𝑡𝑡𝑖𝑖𝑙𝑙𝑠𝑠

𝜕𝜕𝐸𝐸𝑇𝑇0
                           (33) 

 

where 𝐸𝐸𝐴𝐴𝐹𝐹0 = 100. 

3.3.5 Validation framework for impairment models  
An important new element of the ECB top-down credit risk framework is the validation framework, 
including two types of out-of-sample exercises. The forward-looking predictions from top-down models 
that were derived during past EU-wide or euro area-wide stress-testing exercises or, alternatively, in a 
pseudo out-of-sample forecast going back to the same time point, are compared with their actual 
realisations. In the first case, the ability of models to match actual data for credit risk parameters is 
assessed over a three-year period and employing baseline scenarios from past stress-testing exercises. 
In the latter case, it is assessed either employing baseline scenarios from past stress-testing exercises or 
actual realised macro-financial data, depending on data availability for reference variables and the 
intention of the performance test. Looking ahead, the analysis is to be expanded to other credit risk 
variables and categories. 
 
  

44 Allowing for migration between stage 1 and stage 2 for the projection of lifetime rates appears justified from an economic point of view, with 
high-risk exposures migrating back to low-risk status. While the EBA methodology does not allow cures from stage 3 to performing, transitions 
from stage 2 back to stage 1 are explicitly foreseen. 
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Ex post validation: back-testing analysis 
 
The back-testing analysis speaks to the ability of credit risk benchmarks, as considered in past 
stress-testing exercises, to accurately capture future credit risk developments. The back-testing 
looks at annual values of portfolio-level impairments, an aggregate variable summarising the performance 
of all models jointly, and statistics which compare the actual bank credit risk losses from the plainly top-
down assessment. The analysis involves baseline impairment projections from the 2018 EU-wide stress 
test and central scenario impairment projections from the 2020 vulnerability analysis. The projected and 
actual impairments are compared at the end of a reference year and separately for different portfolios. The 
realised impairments of euro area banks for the years 2018, 2019 and 2020 are obtained from the 
implementing technical standards (ITS) on supervisory reporting.45 The impairments reported by banks 
are therefore compared with baseline projections for the most recent years of the scenario (e.g., 2018 
stress test scenario and respective top-down projections are compared with realised impairments in 2018 
and 2019; the 2020 vulnerability analysis is compared with realised outcomes for the same year). This 
comparison in the initial years of the stress test ensures a closer alignment between the baseline scenario 
and the realised macro-financial indicators, as well as the composition of bank balance sheets.46 
 
The outcome of the back-testing analysis points to an overall high degree of concordance between 
top-down impairment projections and their realisations (Chart 19). Realisations in 2018 and 2019 are 
compared with the outcomes of the 2018 stress test, and in 2020 with those of the 2020 vulnerability 
analysis. A simple correlation between past bank-level projections of impairments on exposures to 
households and to non-financial corporations (NFCs) and the actual data is in the range of 92-96% and a 
rank correlation in the range of 90-95% (Table 7). It can therefore be concluded that the top-down models 
capture the relative size of impairment flows within the sample of banks. At the same time, the top-down 
models tend to project somewhat higher impairment flows for household and corporate sub-portfolios. 
This, however, can be largely explained by the fact that the top-down calculations are tailored to the EBA 
methodology, which by construction has a conservative bias (e.g., no cures from stage 3, perfect foresight 
assumption for loss given default and loss rate projections).  
 
Chart 19 
Top-down stock of impairment projections versus banks’ realised stock of impairments 
Projected versus realised impairments 
(EUR millions) 

 

Source: Participating banks, ECB and ECB calculations based on ITS supervisory data for realised impairments and stress test data for projected impairments (2018 
and 2020 stress tests and vulnerability analysis for the pandemic). 
 
  

45 For the purpose of this analysis, is the supervisory data includes banks’ realised impairments at amortised cost from stage 1 to stage 3 (table 
FINREP 04.04.1), which exclude partial or total write-offs. The reported stock of impairments from FINREP is compared with the starting-point 
stock of impairments plus impairment projections from stress tests. 
46 The top-down projections assume a static balance sheet composition; thus, this assumption is more accurate in the initial years of the stress-
testing exercise. 
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Table 7 
Correlation and rank correlation between top-down projections versus banks’ realised impairments 

Source: ECB calculations based on ITS supervisory data for realised impairments and stress test data for projected impairments (2018 and 2022 stress tests and 
vulnerability analysis for the pandemic). 
 
 
Ex ante validation: out-of-sample analysis 
 
The ex ante analysis provides an alternative metric to test the predictive performance of models 
in their current specification. It relies on pseudo out-of-sample projections, where the current model 
specification is estimated (the parameters are updated) based on the data up to a past reference date. 
The projections from the model are then assessed against the actual realisations of the outcome variables. 
This type of analysis is a relevant criterion for phasing in new models or fine-tuning existing set-ups. There 
are two complementary ways to run an ex ante analysis. The first considers projections based on the 
already realised macro-financial variables. The second considers projections based on baseline scenarios 
from past stress tests (similarly to an ex post analysis). While the latter analysis offers a more accurate 
out-of-sample set-up, the former separates forecast errors in a top-down model from those inherited from 
the past baseline scenario.  
 
The performance of the SSVS model is tested in both versions of the ex ante analysis. The first out-
of-sample projections is generated conditional on the realised macro-financial indicators (Chart 20, panel 
a), while the second set of projections is generated conditional on the baseline scenario of 2020 EU-wide 
stress-testing exercise (Chart 20, panel b).  
 
The ex ante test provides evidence to support the adequate forecasting performance of the SSVS 
model. The SSVS projections closely track the realised default rates in the out-of-sample period (panel 
a). As expected, the projections tend to be more accurate when the scenario measurement error is 
excluded from the projections, although the projections conditional on the scenario (hence including its 
measurement error) are still properly capturing the default rate dynamics. 
 
Chart 20 
Conditional projections for mortgages: SSVS estimates  

a) Realised macro-financial data 
(Percentages)  

b) Baseline scenario 
(Percentages) 

 
Source: ECB calculations. 
Notes: The chart shows the forecasts produced via the SSVS model. The blue solid line depicts the historical default rate for mortgages, while the black dotted vertical 
line indicates the end of the sample used for the estimation of the model. The yellow solid line shows the out-of-sample projections conditional on the realised macro-
financial indicators, while the dashed yellow lines indicate the 25th and 75th percentiles of the forecast distribution. The red solid line shows the out-of-sample projections 
conditional on the baseline scenario for the 2020 stress test, while the dashed red lines indicate the 25th and 75th percentiles of the forecast distribution. The shaded 
grey area indicates the out-of-sample projection period.   
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3.4 Credit risk: regulatory parameters 
The top-down risk weight calculations aim to replicate and challenge the risk exposure amounts 
reported by banks for both standardised and internal ratings-based approaches. The top-down 
framework is calibrated to project regulatory parameters with appropriate sensitivity to scenarios, thereby 
considering macroeconomic variables, while still accounting for banks’ specificities by considering bank-
level variables. This is done for the following segments: real estate-collateralised portfolios (mortgages, 
non-financial corporates) and non-real estate-related exposures (consumer credit, non-financial 
corporates, financials). In detail, the ECB estimates the following regulatory parameters: 

 Risk weights for the standardised approach 
 Risk weights for the internal ratings-based approach 

o Probabilities of default 
o Loss given default  

3.4.1 Standardised approach parameters 
The top-down risk exposure amount for the standardised approach is computed as the product 
between the risk weight for a given portfolio and the corresponding exposure at default amount 
(EAD). At the same time, risk exposure amount calculations are distinguished between performing (non-
defaulted) and non-performing (defaulted) exposures. More formally: 
 
 Risk exposure amount of non-defaulted loans (nondef): 𝐹𝐹𝐸𝐸𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡,𝑆𝑆𝑇𝑇𝐸𝐸

= 𝐹𝐹𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑,𝑡𝑡 ∙ 𝐸𝐸𝐴𝐴𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑,𝑡𝑡      (34)     
 Risk exposure amount of defaulted loans (def): 𝐹𝐹𝐸𝐸𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡,𝑆𝑆𝑇𝑇𝐸𝐸

= 𝐹𝐹𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑,𝑡𝑡 ∙ 𝐸𝐸𝐴𝐴𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑,𝑡𝑡                (35) 

3.4.1.1 Risk weights for the standardised approach 

Two regression equations support the derivation of the top-down risk weights under the 
standardised approach. The estimation uses data from previous stress tests (2018 and 2021) and is 
performed through a feasible generalised least squares (FGLS) approach, which allows for asymptotically 
efficient estimates in the presence of autocorrelation (AR(1)) within panels, cross-sectional correlation and 
heteroskedasticity across panels. Both micro and macro indicators were selected as explanatory variables 
for risk weights based on their significance, driven by their influence on the risk weight outcomes.47 The 
equations read: 

�
𝐹𝐹𝑅𝑅𝐺𝐺𝐹𝐹𝐺𝐺𝑠𝑠𝑠𝑠𝑜𝑜𝑆𝑆𝑇𝑇𝐸𝐸,𝑡𝑡3 = 𝛽𝛽0 + 𝛽𝛽1𝐹𝐹𝑅𝑅𝐺𝐺𝐹𝐹𝐺𝐺𝑠𝑠𝑠𝑠𝑜𝑜𝑆𝑆𝑇𝑇𝐸𝐸,𝑡𝑡0 + 𝛽𝛽2∆𝑁𝑁𝑃𝑃𝐸𝐸𝑅𝑅𝜕𝜕𝐸𝐸 + 𝛽𝛽3∆𝐻𝐻𝑃𝑃𝐻𝐻
𝐹𝐹𝑅𝑅𝑠𝑠𝑠𝑠𝑜𝑜𝑆𝑆𝑇𝑇𝐸𝐸,𝑡𝑡3 = 𝛽𝛽0 + 𝛽𝛽1𝐹𝐹𝑅𝑅𝑠𝑠𝑠𝑠𝑜𝑜𝑆𝑆𝑇𝑇𝐸𝐸,𝑡𝑡0 + 𝛽𝛽2∆𝐶𝐶𝐹𝐹𝐺𝐺𝐹𝐹𝑠𝑠𝑔𝑔𝑝𝑝𝐹𝐹𝑆𝑆𝐶𝐶𝜕𝜕𝑆𝑆 + 𝛽𝛽3∆𝑈𝑈𝐹𝐹

                        (36)    

 

where 𝐹𝐹𝑅𝑅𝑆𝑆𝑇𝑇𝐸𝐸, 𝑡𝑡0 is the bank risk weight starting point (t0) for the standardised approach, separately for non-
defaulted and defaulted exposures.48 ∆𝑁𝑁𝑃𝑃𝐸𝐸𝑅𝑅𝜕𝜕𝐸𝐸 is the percentage point difference in the non-performing 
exposure ratio (from the EBA risk exposure amount template)49 and ∆𝐶𝐶𝐹𝐹𝐺𝐺𝐹𝐹𝑠𝑠𝑔𝑔𝑝𝑝𝐹𝐹𝑆𝑆𝐶𝐶𝜕𝜕𝑆𝑆 is the percentage point 
difference in the NPL coverage ratio.50 ∆𝐻𝐻𝑃𝑃𝐻𝐻𝑀𝑀𝐸𝐸𝐶𝐶𝑅𝑅𝑀𝑀 and ∆𝑈𝑈𝐹𝐹𝑀𝑀𝐸𝐸𝐶𝐶𝑅𝑅𝑀𝑀 are the cumulative changes in the 
country-specific house price index and unemployment rate over the three-year horizon of a scenario, 
respectively. The constant is denoted by 𝛽𝛽0.  

 
  

47 The objective is to capture the relationship between macroeconomic variables/scenarios and both collateral revaluation and rating 
downgrades, as these changes are mirrored in risk weights for the standardised approach. 
48 The main arguments for country-bank level aggregation are the (i) similar behaviour of portfolios as a consequence of the adverse 
macroeconomic scenario evolution and (ii) deterioration in collateral values due to the macroeconomic conditions, which lead to increased risk 
weights. 
49 As sourced from the EBA risk exposure amount template: 𝜕𝜕𝐸𝐸𝑇𝑇(𝑛𝑛𝑛𝑛𝑛𝑛−𝑝𝑝𝑑𝑑𝑝𝑝𝑑𝑑)𝐴𝐴𝑑𝑑𝐴𝐴𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠

(𝜕𝜕𝐸𝐸𝑇𝑇(𝑝𝑝𝑑𝑑𝑝𝑝𝑑𝑑)+𝜕𝜕𝐸𝐸𝑇𝑇(𝑛𝑛𝑛𝑛𝑛𝑛−𝑝𝑝𝑑𝑑𝑝𝑝𝑑𝑑)𝐴𝐴𝑑𝑑𝐴𝐴𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠) − 𝜕𝜕𝐸𝐸𝑇𝑇(𝑛𝑛𝑛𝑛𝑛𝑛−𝑝𝑝𝑑𝑑𝑝𝑝𝑑𝑑)𝐴𝐴𝑐𝑐𝑡𝑡𝑑𝑑𝐴𝐴𝑙𝑙
(𝜕𝜕𝐸𝐸𝑇𝑇(𝑝𝑝𝑑𝑑𝑝𝑝𝑑𝑑)+𝜕𝜕𝐸𝐸𝑇𝑇(𝑛𝑛𝑛𝑛𝑛𝑛−𝑝𝑝𝑑𝑑𝑝𝑝𝑑𝑑)𝐴𝐴𝑐𝑐𝑡𝑡𝑑𝑑𝐴𝐴𝑙𝑙)

. 
50 𝑇𝑇𝑝𝑝𝑛𝑛𝑎𝑎(𝑆𝑆3)𝐴𝐴𝑑𝑑𝐴𝐴𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠,𝐸𝐸𝑡𝑡𝐸𝐸3

𝜕𝜕𝐸𝐸𝑇𝑇(𝑆𝑆3)𝐴𝐴𝑑𝑑𝐴𝐴𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠 ,𝐸𝐸𝑡𝑡𝐸𝐸3
− 𝑇𝑇𝑝𝑝𝑛𝑛𝑎𝑎(𝑆𝑆3)𝐴𝐴𝑑𝑑𝐴𝐴𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠,𝐵𝐵𝑡𝑡𝐸𝐸1

𝜕𝜕𝐸𝐸𝑇𝑇(𝑆𝑆3)𝐴𝐴𝑑𝑑𝐴𝐴𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠,𝐵𝐵𝑡𝑡𝐸𝐸1
. 
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The estimates indicate that an increase in unemployment and a decrease in house prices are 
strongly correlated with an increase in risk weights. In addition, a rise in defaulted exposures and a 
decrease in the coverage ratio under the adverse scenario are significantly related with an increase in risk 
weights, reflecting the deterioration in the credit quality of borrowers and the corresponding higher 
riskiness of the loan portfolio. To validate the stability of these results, the regressions were also estimated 
using an ordinary least squares (OLS) approach with robust standard errors and standard errors clustered 
by bank. Internal results confirm the stability of the FGLS coefficients for both OLS specifications. 
Additionally, to validate further the performance of the regression, Chart 21 depicts the actual risk weights 
plotted against fitted values for both non-defaulted (panel a) and defaulted exposures (panel b). 
 
In the final step, estimated risk weights are subjected to a set of caps and floors. The caps and 
floors ensure adequate conservativeness of the top-down view and remove outliers. The projected risk 
weights are floored to banks’ starting point values, while caps are set at portfolio level51 and informed by 
the CRR.52 
 
Chart 21 
Actual values compared with fitted values for the risk weights of the standardised approach 

a) Risk weights for non-defaulted exposures 
(Decimal) 

 

b) Risk weights for defaulted exposures 
(Decimal) 

 
Source: ECB calculations.  
Note: The chart compares actual and fitted values for the risk weights of the standardised approach for the 2021 stress test adverse scenario. 

3.4.2 Risk exposure amount for internal ratings-based approach  

The top-down risk exposure amount for the internal ratings-based approach is calculated 
according to the provisions of Articles 153 and 154 CRR. For non-defaulted exposures, the top-down 
projected risk exposure amount is calculated by multiplying the increase in risk weights (RW) and 
respective exposure amount (𝑁𝑁𝐹𝐹𝐺𝐺𝐹𝐹𝑠𝑠𝑜𝑜𝐸𝐸𝑁𝑁𝑠𝑠) with the bank starting point value: 
 

𝐹𝐹𝐸𝐸𝐴𝐴𝑡𝑡,𝑆𝑆𝑛𝑛𝑛𝑛𝑇𝑇𝑑𝑑𝑑𝑑,𝐼𝐼𝑅𝑅𝐼𝐼 = 𝑅𝑅𝑊𝑊𝑡𝑡
𝑅𝑅𝑊𝑊0

∙ 𝑆𝑆𝑛𝑛𝑛𝑛𝑇𝑇𝑑𝑑𝑑𝑑𝜕𝜕𝑥𝑥𝑝𝑝𝑡𝑡
𝑆𝑆𝑛𝑛𝑛𝑛𝑇𝑇𝑑𝑑𝑑𝑑𝜕𝜕𝑥𝑥𝑝𝑝0

∙ 𝐹𝐹𝐸𝐸𝐴𝐴𝑡𝑡0,𝑆𝑆𝑛𝑛𝑛𝑛𝑇𝑇𝑑𝑑𝑑𝑑,𝐼𝐼𝑅𝑅𝐼𝐼                               (37) 
 
The risk weight for defaulted exposures in the IRB advanced approach follows Article 153 CRR (𝐹𝐹𝑅𝑅𝑡𝑡 =
𝐴𝐴𝑠𝑠𝑁𝑁(0; 12.5 ∙ �𝐿𝐿𝐺𝐺𝐹𝐹𝑅𝑅𝑑𝑑𝑀𝑀,𝑑𝑑𝑑𝑑𝑑𝑑

𝑇𝑇𝑇𝑇 𝑇𝑇𝑛𝑛𝐷𝐷𝑛𝑛𝑡𝑡𝑑𝑑𝑝𝑝𝑛𝑛 − 𝐸𝐸𝐿𝐿𝐸𝐸𝐸𝐸�), where the best estimate of expected loss for defaulted exposures 
(ELBE) is used in accordance with Article 181(1)(h). 
 

51 The caps for the SME non-defaulted portfolios include the effect of the SME supporting factor. The SME supporting factor is usually applied 
as an adjustment that reduces final calculated risk-weighted exposures, decreasing in turn the implied risk weight. 
52 See https://eur-lex.europa.eu/legal-content/en/TXT/?uri=celex%3A32013R0575. 

R² = 0.8702

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ac
tu

al
 v

al
ue

s

Fitted values

R² = 0.5758

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Ac
tu

al
 v

al
ue

s

Fitted values

ECB Occasional Paper Series No 348 44



3.4.2.1 Risk weights for the internal ratings-based approach 
Projections of the regulatory probability of default and loss given default draw on the provisions 
of the CRR53 and account for bank and country specificities. The regulatory probability of default is 
estimated as the moving average between point-in-time probability of default (as used in the calculation 
of impairments) and the banks’ starting-point value for the regulatory probability of default. The length of 
the moving average time window corresponds to the sensitivity of the regulatory probability of default to 
the point-in-time parameter. The latter is related to the country-specific “probability of default cycle length” 
and is based on the country’s loan workout54 collected from the supervisory targeted review of internal 
models (TRIM).55 More formally, regulatory probabilities of default are estimated as follows: 
 

𝑃𝑃𝐹𝐹𝑅𝑅𝑑𝑑𝑀𝑀,𝑡𝑡
𝑇𝑇𝑇𝑇  = max �1

𝑦𝑦
∑ 𝑃𝑃𝐹𝐹𝑇𝑇𝑖𝑖𝑡𝑡,𝑡𝑡

𝑇𝑇𝑇𝑇𝑡𝑡
𝑖𝑖=1  + �𝑦𝑦−𝑡𝑡

𝑦𝑦
� 𝑃𝑃𝐹𝐹𝑅𝑅𝑑𝑑𝑀𝑀,0

𝐼𝐼𝑑𝑑𝑛𝑛𝑘𝑘 , 1
𝑦𝑦
∑ 𝑃𝑃𝐹𝐹𝑇𝑇𝑖𝑖𝑡𝑡,𝑡𝑡

𝐼𝐼𝑑𝑑𝑛𝑛𝑘𝑘𝑡𝑡
𝑖𝑖=1  + �𝑦𝑦−𝑡𝑡

𝑦𝑦
� 𝑃𝑃𝐹𝐹𝑅𝑅𝑑𝑑𝑀𝑀,0

𝐼𝐼𝑑𝑑𝑛𝑛𝑘𝑘 ,𝑃𝑃𝐹𝐹𝑅𝑅𝑑𝑑𝑀𝑀,𝑡𝑡
𝐼𝐼𝑑𝑑𝑛𝑛𝑘𝑘  �           (38)   

 

where the 𝐿𝐿𝐹𝐹 and Bank subscripts refer to top-down and bank projections, respectively. 𝑃𝑃𝐹𝐹𝑅𝑅𝑑𝑑𝑀𝑀,𝑡𝑡 is the 
regulatory probability of default in year 𝑔𝑔 of the stress test horizon, and 𝑃𝑃𝐹𝐹𝑇𝑇𝑖𝑖𝑡𝑡,𝑡𝑡 is the point-in-time probability 
of default in year 𝑔𝑔 of the stress test horizon. 𝑃𝑃 is the country-specific probability of default cycle length (in 
years) as implied by the supervisory review. 
  
The top-down projections of regulatory loss given default represent a sufficiently conservative 
economic downturn effect.56 They are estimated as the maximum between top-down and bank 
projections. For non-defaulted loans, the specification has the form:  
 

𝐿𝐿𝐺𝐺𝐹𝐹𝑅𝑅𝑑𝑑𝑀𝑀,𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑,𝑡𝑡
𝑇𝑇𝑇𝑇 𝑇𝑇𝑛𝑛𝐷𝐷𝑛𝑛𝑡𝑡𝑑𝑑𝑝𝑝𝑛𝑛 = 𝐴𝐴𝑠𝑠𝑁𝑁�𝑅𝑅𝑑𝑑𝑎𝑎𝑀𝑀�𝐿𝐿𝐺𝐺𝐹𝐹1→3,𝑡𝑡

𝑇𝑇𝑇𝑇 𝑇𝑇𝑖𝑖𝑡𝑡; 𝐿𝐿𝐺𝐺𝐹𝐹2→3,𝑡𝑡
𝑇𝑇𝑇𝑇 𝑇𝑇𝑖𝑖𝑡𝑡�;𝑅𝑅𝑑𝑑𝑎𝑎𝑀𝑀�𝐿𝐿𝐺𝐺𝐹𝐹1→3,𝑡𝑡

𝐼𝐼𝑑𝑑𝑛𝑛𝑘𝑘 𝑇𝑇𝑖𝑖𝑡𝑡; 𝐿𝐿𝐺𝐺𝐹𝐹2→3,𝑡𝑡
𝐼𝐼𝑑𝑑𝑛𝑛𝑘𝑘 𝑇𝑇𝑖𝑖𝑡𝑡�; 𝐿𝐿𝐺𝐺𝐹𝐹𝑅𝑅𝑑𝑑𝑀𝑀,𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑,𝑡𝑡

𝐼𝐼𝑑𝑑𝑛𝑛𝑘𝑘,𝑇𝑇𝑛𝑛𝐷𝐷𝑛𝑛𝑡𝑡𝑑𝑑𝑝𝑝𝑛𝑛�   (39) 
 
For defaulted loans, it is the following: 
 

 𝐿𝐿𝐺𝐺𝐹𝐹𝑅𝑅𝑑𝑑𝑀𝑀,𝑑𝑑𝑑𝑑𝑑𝑑,𝑡𝑡
𝑇𝑇𝑇𝑇 𝑇𝑇𝑛𝑛𝐷𝐷𝑛𝑛𝑡𝑡𝑑𝑑𝑝𝑝𝑛𝑛 = 𝑀𝑀𝑠𝑠𝑁𝑁[𝐿𝐿𝐺𝐺𝐹𝐹3→3,𝑡𝑡

𝑇𝑇𝑇𝑇 𝑇𝑇𝑖𝑖𝑡𝑡 , 𝐿𝐿𝐺𝐺𝐹𝐹3→3,𝑡𝑡
𝐼𝐼𝑑𝑑𝑛𝑛𝑘𝑘 𝑇𝑇𝑖𝑖𝑡𝑡 , 𝐿𝐿𝐺𝐺𝐹𝐹𝑅𝑅𝑑𝑑𝑀𝑀,𝑑𝑑𝑑𝑑𝑑𝑑,𝑡𝑡

𝐼𝐼𝑑𝑑𝑛𝑛𝑘𝑘 𝑇𝑇𝑛𝑛𝐷𝐷𝑛𝑛𝑡𝑡𝑑𝑑𝑝𝑝𝑛𝑛]         (40) 
 
where 𝐿𝐿𝐺𝐺𝐹𝐹𝑅𝑅𝑑𝑑𝑀𝑀,𝑡𝑡

𝐼𝐼𝑑𝑑𝑛𝑛𝑘𝑘,𝑇𝑇𝑛𝑛𝐷𝐷𝑛𝑛𝑡𝑡𝑑𝑑𝑝𝑝𝑛𝑛 is the bank regulatory downturn estimate for the loss given default, 𝑅𝑅𝑑𝑑𝑎𝑎𝑀𝑀 denotes 
an exposure-weighted average across IFRS 9 stages 1 and 2, and 𝐿𝐿𝐺𝐺𝐹𝐹𝑋𝑋→3,𝑡𝑡

𝑇𝑇𝑇𝑇 𝑇𝑇𝑖𝑖𝑡𝑡 and 𝐿𝐿𝐺𝐺𝐹𝐹𝑋𝑋→3,𝑡𝑡
𝐼𝐼𝑑𝑑𝑛𝑛𝑘𝑘 𝑇𝑇𝑖𝑖𝑡𝑡 are the point-

in-time loss given default top-down and bank estimates, respectively. Accordingly, the top-down estimates 
of the regulatory loss given default include the downturn component required by the CRR by taking the 
most conservative value between point-in-time and regulatory parameters, while accounting for country 
and portfolio specificities. The derived top-down benchmarks allow to challenge counterintuitive cases 
where the downturn parameter is lower than the point-in-time parameter in banks’ projections. 
 
The validation of the top-down framework in the internal ratings-based approach shows a high 
comparability overall with bank estimates. To validate the top-down framework, Chart 22 compares the 
top-down risk exposure amount of the internal ratings-based approach with bank submissions, using the 
metrics: 

𝐻𝐻𝐴𝐴𝑠𝑠𝑠𝑠𝑐𝑐𝑔𝑔 𝐶𝐶𝐸𝐸𝐿𝐿1𝑅𝑅𝜕𝜕𝐸𝐸 =  𝐶𝐶𝜕𝜕𝑇𝑇1𝑡𝑡0
𝑅𝑅𝜕𝜕𝐸𝐸𝑡𝑡0

− 𝐶𝐶𝜕𝜕𝑇𝑇1𝑡𝑡0
𝑅𝑅𝜕𝜕𝐸𝐸+∆𝑅𝑅𝜕𝜕𝐸𝐸

                                                           (41)                               
 

where 𝐶𝐶𝐸𝐸𝐿𝐿1 and REA denote the CET1 capital and total risk exposure amount, respectively, of a bank at 
the beginning of the exercise, and ∆𝐹𝐹𝐸𝐸𝐴𝐴 the projected change in the risk exposure amount as a result of 
the macroeconomic scenario. The comparison shows that the top-down framework is equally successful 
as banks’ own projections in accounting for bank-level specificities under the adverse scenario.  
 

53 See Articles 180 181 CRR. 
54 A workout in the context of a financially distressed obligor generally means an attempt by the bank to resolve a defaulted loan, for example 
through restructuring agreements, cures, transfers or judicial measures. To this end, it is considered the amount of losses that is based on the 
cash flows observed between the time of default and the time a resolution may take place (i.e., it is worked out).  
55 See TRIM report: https://www.bankingsupervision.europa.eu/ecb/pub/pdf/ssm.trim_project_report~aa49bb624c.en.pdf. 
56 The Basel framework defines loss given default as a downturn loss given default (Article 181 CRR), i.e., a loss given default referring to a 
crisis period for each jurisdiction. This is estimated by banks as: (1) the maximum loss given default experienced for a portfolio during an 
economic cycle (for long time series), (2) the downturn loss given default calibration based on estimated impact using historical loss data (haircut 
or extrapolation approach); or (3) the long-run average loss given default plus an add-on of 15 percentage points (for short time series). More 
information is available at: 
https://eba.europa.eu/documents/10180/2551996/Final+Report+on+Guidelines+on+LGD+estimates+under+downturn+conditions.pdf.  
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Chart 22 
Top-down and bank risk exposure amount projections in terms of impact on CET1  
(Basis points) 

 
Source: ECB calculations. 
Note: The chart compares top-down and bank risk exposure amount projections for the risk weights of the internal ratings-based approach for the 2021 stress test 
adverse scenario.  
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3.5 Profitability 
Profitability models include the top-down models for net interest income (NII), net fee and 
commission income (NFCI) and dividend income. The evolution of performing exposures net of non-
performing loans (NPLs) is determined by the credit risk models. Projections for all three profitability 
models enter the calculation of banks’ net profits. The main changes in the profitability models compared 
with STAMP€ are compiled in Table 8.  
 
Table 8 
Top-down profitability model developments 

1. Net interest income: additional models for debt securities and 
non-EU countries: 
 New models for debt securities projecting yields conditional on the 

macroeconomic scenario and analogous to the interest rate margin 
rate models at rating class level 

 Added interest rate models for nine non-EU countries  
2. Net interest income: switch from margin models to interest rate 
models 
 Models are now estimated with the interest rate instead of interest 

rate margins as a dependent variable 
 Interest rate margin is derived ex post as the difference between the 

interest rate and the scenario reference rate 

3. Net fee and commission income 
 Model is now estimated with macro variables weighted by 

bank-specific country weights as predictors 
 Dependent variable is now based on FINREP time series 

(the previous version of the model relied on Bankscope 
data) 

 Variables selected by the LARS procedure and that are 
not statistically significant are dropped 

 
4. Dividend income 
 Dynamic panel fixed effect equations modelling dividend 

income as a function of macroeconomic variables 

Source: ECB. 

3.5.1 Net interest income 

Interest income is the main income source of banks. Interest income and expense are determined as 
the product of the interest rate and outstanding amounts. Interest income is driven by the reference rate, 
the margin over the interest rate and the outstanding amounts on interest-bearing assets. Throughout this 
section, the interest rate margin is defined as the spread between the interest rate and the reference rate 
in the same interest rate fixation period. This definition follows the logic of the EBA methodology, according 
to which banks are required to decompose the interest rate into the reference rate and the margin 
component. The NII model focuses on interest rates on loans, debt securities and deposits. 
 
The ultimate output of the NII top-down model is to produce projections of the interest rate margin. 
The current approach focuses on the projection of interest rates,57 which are then translated into interest 
rate margins by deducting the maturity matched reference rates along the scenario horizon. 
 
Modelling of interest rates58 relies on the BMA approach. The projections are performed separately 
for nine portfolios in 28 EU countries and eight non-EU countries. For loans, the portfolios considered on 
the asset side are corporate loans, household mortgages and consumer credit. In addition, the top-down 
models include three debt security portfolios: corporate debt securities, financial institutions and other debt 
securities. The portfolios considered on the liabilities side are corporate sight deposits, household sight 
deposits and term deposits.  
 
The rationale for using the BMA approach is to address model uncertainty. While extensive empirical 
evidence shows that interest rates are driven by macroeconomic variables (Hanzlík and Teplý, 2022; 
Alessandri and Nelson, 2015), the BMA approach is agnostic about the set of variables most relevant for 
predicting interest rates. Additionally, the BMA modelling approach offers the possibility to impose 
restrictions on the sign of selected coefficients for explanatory variables. As a result, equations for which 
the coefficients have an undesired sign receive a weight of zero. These restrictions are informed by 
economic theory and empirical evidence. For example, higher short-term rates and sovereign spreads are 
expected to lead to higher lending rates and implicitly higher margins for loans as banks pass the increase 
in funding costs and country risk to their customers. Similarly, banks are expected to face higher costs on 
deposits as market rates increase. 
 

57 In the earlier approach, the modelling focused directly on interest rate margins. See Dees et al. (2017).  
58 The earlier approach had a disadvantage related to the combination of multicollinearity and restrictions on coefficients. The high correlation 
between the reference rate and the interest rate variables led to an unstable coefficient sign for these variables. As a result, sign restrictions 
imposed in the BMA framework could result in the exclusion of models with desirable statistical properties. 
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The BMA method first defines the model space as all possible combinations of variables and their 
lags. Each equation is estimated as an ARDL model:59 
 

𝛥𝛥𝑝𝑝𝑡𝑡 = 𝛼𝛼 + ∑ 𝜌𝜌𝑞𝑞𝛥𝛥𝑝𝑝𝑡𝑡−𝑞𝑞
𝑄𝑄
𝑞𝑞=1 + ∑ 𝛽𝛽𝑀𝑀𝑋𝑋𝑀𝑀 + ∑ 𝛽𝛽𝑀𝑀1𝑋𝑋𝑀𝑀1,𝑡𝑡−1

𝐿𝐿
𝑀𝑀1=1 … + 𝛾𝛾𝐹𝐹𝑖𝑖,𝑡𝑡 + 𝜉𝜉𝑡𝑡𝐿𝐿

𝑀𝑀=1                         (42) 
 
where 𝑋𝑋 is set of explanatory variables, indexed by g and including changes in long-term and short-term 
interest rates, the spread to the sovereign yield, GDP growth, unemployment, inflation and changes in 
residential property prices. The dummy variables 𝐹𝐹𝑖𝑖,𝑡𝑡 capture the COVID-19 shock and take the value 1 in 
June 2020 and June 2021, and 0 otherwise. Q refers to the maximum lag of the dependent variable, 𝜌𝜌𝑞𝑞 
refers to the autoregressive coefficient at lag q, while 𝛽𝛽𝑀𝑀 and 𝛽𝛽𝑀𝑀1 refer to the coefficient estimates for the 
variable g and its first lag respectively. A model search is performed in a predefined “segment” or subset 
of the model space.60 The parameters defining the size of each segment are the maximum number of 
predictors, their lags as well as the maximum number of autoregressive lags. Within each segment of the 
model space, the BMA method estimates a large set of equations for changes in interest rate and then 
aggregates these equations to a posterior model using the Bayesian criterion as weight.  
 
Interest rate time series for loans and deposits are sourced from the MIR database for EU countries 
and the database of national central banks for non-EU countries. For debt securities, the country-
level corporate bond yields for financial and non-financial companies for different rating classes are used 
instead of interest rates. The macro variables are obtained from Eurostat for EU countries and the World 
Economic Outlook (WEO) database for non-EU countries. 
 
The second step is to translate the projections of interest rates into interest rate margins. Interest 
rate margins equal the projected interest rates minus the maturity-matched61 reference rates along the 
scenario horizon: 

𝑝𝑝𝐴𝐴𝑡𝑡 = 𝑝𝑝𝑡𝑡 − 𝑠𝑠𝑠𝑠𝑜𝑜𝑡𝑡                                                                 (43) 
 
The revamped approach to modelling interest rate margins leads to only slightly lower margin 
projections than the earlier approach, still applied in the 2021 stress test. The panel a) of Chart 23 
compares the projections for loans and deposits under the new approach and the previous one, which 
applied the BMA method directly to interest rate margins.62 Both models are estimated conditional on the 
adverse scenario of the 2021 stress test. The change in specification was motivated by concerns about 
econometric robustness under the margin modelling approach. The lower margins under the new 
approach could indicate that the upward bias in margins resulting from the old model specification has 
decreased. In addition, the in-sample forecasting properties improve, with the root mean square error 
(RMSE) decreasing across all segments, in particular for consumer credit (panel b) of Chart 23). 
 

59 For comparison, the STAMP€ approach assumed the modelling of interest rate margins according to 𝑝𝑝𝑡𝑡 − 𝑠𝑠𝑠𝑠𝑜𝑜𝑡𝑡 = 𝛼𝛼 + ∑ 𝜌𝜌𝑞𝑞𝑝𝑝𝑡𝑡−𝑞𝑞
𝑄𝑄
𝑞𝑞=1 +

∑ 𝜁𝜁𝑞𝑞𝑠𝑠𝑠𝑠𝑜𝑜𝑡𝑡−𝑞𝑞
𝑄𝑄
𝑞𝑞=1 + ∑ 𝛽𝛽𝑀𝑀𝑋𝑋𝑀𝑀 + ∑ 𝛽𝛽𝑀𝑀1𝑋𝑋𝑀𝑀1−1𝐿𝐿

𝑀𝑀1=1 … + 𝜉𝜉𝑡𝑡𝐿𝐿
𝑀𝑀=1 . 

60 This segmentation of the model space is performed in order to ensure that the estimation remains tractable. 
61 The maturity is proxied by the interest rate fixation period. 
62 The earlier approach had a disadvantage related to the combination of multicollinearity and restrictions on coefficients. The high correlation 
between the reference rate and the interest rate variables led to an unstable coefficient sign for these variables. As a result, sign restrictions 
imposed in the BMA framework could result in the exclusion of models with desirable statistical properties. 
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Chart 23 
Comparison of margin projections between the new approach and projections  
a) Change in margins under the adverse scenario b) Root mean square errors of margin projections 
(Percentage points)     (Percentage points)  

 
Sources: 2021 stress test adverse scenario and ECB calculations. 
Notes: Panel a) shows the interest rate spread changes in each year of the adverse scenario reported relative to December 2019 values. L-CORP-TOT refers to margins 
for corporate loans, L-HH-HP to mortgages and L-HH-CC to consumer credit. D-CORP-SI refers to spreads for corporate sight deposits, D-HH-SI to household sight 
deposits and D-TE to total term deposits. The projections under the new approach and old approach (2021 stress test) are conditional on the 2021 stress test adverse 
scenario. The interquartile range refers to the country distribution of margin projections. Panel b) compares the in-sample RMSE. 
 
 
The new modelling approach for net interest margins improves model robustness by reducing the 
impact of sign restrictions. The sign switch ratio in the panel a) of Chart 24 shows the number of 
posterior models in which a particular variable was excluded due to a negative sign divided by the total 
number of posterior models. The blue bars show the sign switch ratio under the old approach (“ST2021”), 
while the yellow bars refer to the new specification. The coefficient sign of the long-term nominal yield 
(LTN) was particularly unstable: it was set at 0 in around 53% of the posterior models due to unmet sign 
restrictions. Furthermore, the coefficients of the LTN spread (S-LTN) and short-term interest rate (STN) 
were set at 0 in 43% and 25% of the posterior models respectively. The sign restrictions are much less 
binding under the revised interest rate model approach: the LTN sign switch ratio drops to 39%, while the 
STN sign switch ratio drops to 15%. Overall, the coefficient sign restrictions have a lower and hardly 
material impact on projections under the new compared with the old approach. 
 
The new approach also translates well in the improved behaviour of the long-run multipliers for 
the explanatory variables.63 Panel b) of Chart 24 shows the long-run multipliers for the interest rate 
variables: the blue bars show the coefficients from the margin model, while the yellow bars show the 
interest rate coefficients under the new approach shown in the interest rate equation (42). Under the old 
approach, both the short-term interest rate (STN) and the reference rate were included as predictors, while 
the latter is omitted under the new approach. The very high STN coefficient of 3.7 under the old approach 
is inflated by the high correlation between the STN and the reference rate. The relevance of 
multicollinearity is confirmed by a drop in the STN coefficient of a similar magnitude when the margin 
equation under the old approach is estimated without the reference rate: on average, the long-run multiplier 
drops from 3.7 in the presence of the reference rate to 0.89 without the reference rate. Under the new 
approach, the coefficient of the short-term interest rate drops to 0.7, consistent with other pass-through 
coefficients reported in the literature.  
 

63 The long-run multiplier for variable g is computed as the ratio between the sum of the coefficients of variable g and its lags divided by the sum 
of the autoregressive coefficients. 

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

New Old New Old New Old New Old New Old New Old

L-CORP-TOT L-HH-HP L-HH-CC D-CORP-SI D-HH-SI D-TE

C
ha

ng
e 

in
 m

ar
gi

ns
 u

nd
er

 t
he

 a
dv

er
se

 s
ce

na
rio

 (p
.p

.)

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.4

0.5

L-CORP-TOT L-HH-HP L-HH-CC D-CORP-SI D-HH-SI D-TE

New Old

ECB Occasional Paper Series No 348 49



Chart 24 
Coefficient sign stability and long-run multipliers 
a) Sign switch ratio     b) Long-run multiplier 
(Percentages)                                                                                                           (Percentage points) 

   
Sources: 2021 stress test adverse scenario and ECB calculations.  
Notes: The numerator of the sign switch ratio for variables is the average number of posterior models in which the variable has a negative sign before the sign restriction 
is applied divided by the total number of models. STN, S-LTN and LTN refer to the short-term interest rate, the sovereign spread and the long-term nominal yield 
respectively. 
 
 

3.5.2 Net fee and commission income 

The contribution of NFCI to revenues for most euro area banks is second only to NII. Furthermore, 
it has gained importance in the low interest rate environment. The top-down model reflects the sensitivity 
of NFCI to changes in macroeconomic conditions and relies on Kok et al. (2019).  
 
The estimation is based on a two-step approach. First, the least angle regression (LARS) algorithm is 
applied to select the most relevant variables for predicting the NFCI ratio (Efron et al., 2004). The second 
step is to use an econometric panel approach to estimate the link between the ratio of NFCI over total 
assets (%) and the macro variables that were selected in the first step.  
 
The LARS-based preselection of explanatory variables in the first step of the approach keeps the 
model relatively sparse and circumvents over-fitting. The initial pool of potential explanatory variables 
includes 14 variables, therein the lagged dependent variable, both contemporaneous and lagged values 
of the Itraxx index, the short-term interest rate, the stock market return and real GDP growth. Of these, the 
LARS algorithm selects five significant variables to include in the estimation step.64  
 
The second estimation step panel introduces a bias-corrected least square dummy variable 
(LSDVC) regression:  

𝑁𝑁𝐹𝐹𝐶𝐶𝐻𝐻𝑖𝑖𝑡𝑡 = 𝛼𝛼0 + ∑ 𝛼𝛼1𝑁𝑁𝐹𝐹𝐶𝐶𝐻𝐻𝑖𝑖𝑡𝑡−1
𝑝𝑝
𝑗𝑗=1 + +∑ ∑ 𝛼𝛼3,𝑘𝑘𝑋𝑋𝑘𝑘,𝑖𝑖𝑡𝑡−𝑗𝑗

4
𝑘𝑘=1

𝑝𝑝
𝑗𝑗=0 + 𝜀𝜀𝑖𝑖𝑡𝑡   (44) 

where 𝑁𝑁𝐹𝐹𝐶𝐶𝐻𝐻𝑖𝑖𝑡𝑡 is the net fee and commission income over total assets (%) for bank I at time t, and 𝑋𝑋𝑡𝑡  is the 
set of macroeconomic variables mentioned above and their lags. NFCI data was obtained from FINREP, 
while macroeconomic variables were obtained from the ECB Statistical Data Warehouse (SDW). Sourcing 
the NFCI from long-term supervisory data (FINREP) marks an improvement over the previous econometric 
model, allowing the sample coverage to be extended. Previously, the model covered a sample of 102 euro 
area banks located in 19 countries. Now, it covers 126 European banks including non-SSM countries. The 
collection of supervisory data across all relevant jurisdictions was coordinated by the EBA.65 The LSDVC 
estimator is more efficient than the generalised method of moments (GMM) estimator and corrects for the 
Nickel bias. The Nickel bias is the bias arising in dynamic fixed effects models due to the correlation 
between the time-invariant fixed effects and the error term.66 Chart 25 shows the change in NFCI in the 
2023 stress test baseline and adverse scenario implied by equation (44).  
 

64 The selection procedure is re-run before each stress test exercise, and the list of variables selected may change. Nevertheless, past 
experience has shown that the LARS outcome is relatively stable and consistently ensures that all relevant variables are included in the 
estimation. 
65 Many improvements to NFCI projection models were undertaken in the context of the EBA’s efforts to introduce more top-down elements in 
the EU-wide stress-testing exercise. A group of experts from different European central banks and supervisory authorities were tasked with 
providing recommendations for the existing framework to be used as a robust model for the projections of individual banks’ NFCI in the regular 
stress-testing exercise. 
66 See Nickel (1981), “Biases in Dynamic Models with Fixed Effects”, Econometrica, Vol. 49, Issue 6, pp. 1417-1426. 
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Chart 25 
Changes in NFCI under the adverse and baseline scenarios 
(Percentages)  

 
Source: ECB calculations. 
Notes: Changes in NFCI relative to December 2022 values under the baseline and adverse scenarios. The scenario refers to the 2023 stress test. NFCI in each year 
of the scenario was derived from the estimation described in equation (44). 
 
 
Importantly, the explanatory variables are derived by weighting country-level macro-financial 
variables with the geographical breakdown of individual bank assets. In the earlier model, bank-level 
NFCI was linked with the macroeconomic variables relevant only to the countries where the bank is 
headquartered. However, the latter did not accurately capture the sensitivity to macroeconomic conditions 
of banking groups with a significant cross-border exposure. In the current version of the model, time-
varying geographic weights are estimated based on the FINREP F20.04 country exposures for the period 
2014-21 and kept constant at 2014 values for the period 20-2013. Geographic weights are kept constant 
along the scenario horizon for the purpose of deriving scenario projections.  
 

3.5.3 Dividend income 

Top-down projections of dividend income are derived on the basis of a bank-level panel regression 
estimated with the LSDVC estimator. The regression explains the dividend income over assets67 as in 
Lintner (1956) and Gross et al. (2021): 

𝐹𝐹𝐻𝐻𝑖𝑖𝑡𝑡 = 𝛼𝛼0 + ∑ 𝛼𝛼1𝐹𝐹𝐻𝐻𝑖𝑖𝑡𝑡−𝑗𝑗
𝑝𝑝
𝑗𝑗=1 + ∑ ∑ 𝛼𝛼3,𝑘𝑘𝑋𝑋𝑘𝑘,𝑖𝑖𝑡𝑡−𝑗𝑗

4
𝑘𝑘=1

𝑝𝑝
𝑗𝑗=0 + 𝜀𝜀𝑖𝑖𝑡𝑡    (45) 

 
where DI denotes dividend income over assets in bank i at time t, which is explained by its lagged value 
and macroeconomic indicators (X), the slope of the yield curve, GDP growth, the change in short-term 
interest rate, inflation and stock market return. Chart 26 shows the percentage change in dividend income 
in the 2023 stress test baseline and adverse scenario, as implied by equation (45). 
 

67 The regression uses the dividends/total assets ratio as a dependent variable rather than the dividends/net income ratio, as total assets are 
more stable than earning flows. 
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Chart 26 
Changes in dividend income under the adverse and baseline scenarios 

   a) Change in dividend income,                           b) Change in dividend income, 
                           baseline scenario            adverse scenario 
                                      (Percentages)                                                          (Percentages)  

 
Source: ECB calculations. 
Notes: Changes in dividend income relative to December 2022 values under the baseline and adverse scenarios. The y-axis shows the number of countries with a 
change in dividend income in each bucket. The scenario refers to the 2023 stress test. Dividend income in each year of the scenario was derived from the estimation 
described in equation (45). 
 
 
The dataset covers 3,386 banks located in euro area countries68 spanning the period 2011-20. 
Banks with fewer than five observations for the dependent variable were removed from the sample. 
Macroeconomic variables are sourced from the ECB SDW database. All variables are winsorised to limit 
the effect of outliers on the estimation results.  
 
 
  

68 However, the information on bank-level dividend income is not available for all jurisdictions. 
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3.6 Market risk 
 
The market risk top-down models produce the stressed impacts related to full revaluation, liquidity 
and model uncertainty, counterparty credit risk (CCR) and net trading income. The top-down models 
are generally adapted to the EU-wide stress-testing methodology and related data collections. They cover 
all positions held at fair value (and related hedges), which are classified into the following accounting 
categories according to IFRS 9: 

 fair value through profit or loss (FVPL); 
 fair value through other comprehensive income (FVOCI); 
 amortised cost positions being part of a hedge accounting relationship (AC). 

 
The projections of market risk use dedicated higher-frequency stress test scenarios. The calibration 
of an adverse market risk scenario links to the general macro-financial scenario but features two 
specificities: 

 Instantaneous shocks: market risk shocks are instantaneous and materialise in the first quarter 
of the first year of the projected horizon;  

 Large set of risk factors: many financial variables are included in the scenario, providing high 
granularity (e.g., a high number of tenors for government bond spreads) and additional 
information (e.g., inflation, corporate bond spread, volatilities, etc.).69 

 
Risk factors included in an adverse market scenario cover interest rate, credit spreads, equity, foreign 
exchange, inflation, commodities and funds. 
 
Aside from the top-down models directly used during stress-testing exercises, the market risk 
infrastructure includes additional tools to compute gains and losses stemming from assets held 
at fair value. Specifically, the SHS-G and EPIC tools compute bank-level sensitivities to different risk 
factors for security and derivative holdings, respectively and independently from stress test data (Appendix 
8.2.5 and 8.2.6). Finally, the infrastructure includes a new quantile model on net trading income. 
 
The output of the market risk models contributes to the overall capital depletion via profit and loss 
and the capital account (Figure 9). 
 
Figure 9 
High-level overview of top-down market risk computation 

 
Source: ECB authors.  
  
In recent years, model development focused on expanding the coverage of market risk categories 
and increasing the accuracy of earlier models. The new models were developed to project the stressed 
impact on liquidity and model uncertainty reserves and to forecast net trading income and client revenues. 
For pre-existing models, the modelling efforts included increasing the scope and accuracy of the full 
revaluation model and fine-tuning the CCR model. For an overview of modelling activities, see Table 9. 
 

69 As a reference, consider the 2023 EU-wide stress test market risk scenario.  
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The main changes to the market risk methodology compared with STAMP€ are compiled in Table 9.  
 
Table 9 
Top-down market risk model developments 

1. Full revaluation: 
 Extended to include non-linear sensitivities and additional (with 

respect to the stress test scenario) risk factor impacts reported since 
the 2021 EU-wide stress test (building on the granularity of first-order 
and second-order sensitivities reported in the EU-wide stress test), 
and project risk impact for other than held-for-trading assets; 

2. Liquidity and model uncertainty: 
 A new top-down model (replacing the STAMP€ set-up where the 

liquidity reserve was a function of the derivative fair value) that relies 
on the information collected from commercial data providers (e.g., 
Bloomberg and Reuters) on bid-ask spreads for relevant risk factors 
at the most granular level.  

 The approach takes into consideration the riskiness of the portfolio 
and incorporates the detailed information provided in other parts of 
the market risk templates, i.e., the split between L1, L2 and L3 
assets and the sensitivities as reported by banks in EBA/SSM stress 
test templates. 

3. Counterparty credit risk (CCR): 
 The model computes CCR for the two most vulnerable 

counterparties (of the ten largest counterparties reported 
by banks) by controlling for credit ratings and including 
counterparty fixed effects that capture counterparties’ 
specificities and credit mitigation mechanisms. 70  

4. Net trading income (NTI): 
 The model focuses on the client revenues component of 

NTI and leverages on banks’ submissions in previous 
stress tests. It is based on a dynamic panel model that 
controls for banks’ trading activity.  

 An additional NTI top-down benchmark projects total 
adverse NTI and represents a second layer of analysis for 
the stress-testing exercise. 

 
 

Source: ECB. 
 
In the EBA methodology, banks are divided into two categories: comprehensive approach (CA) 
and trading exemption (TE). TE banks are exempt from reporting the full revaluation impact for items 
held with a trading intent and their related hedges. CA banks have no trading exemption and are required 
to project client revenues and the full revaluation impact for items held for trading.  
 

3.6.1 Full revaluation 

The top-down full revaluation model estimates adjusted gains and losses due to market stress 
impact on assets booked at full or partial fair value. The revaluation of fair value assets makes up 
the main contribution to market risk losses in most stress-testing exercises. The model computes the 
impacts for the first year of the adverse forecast horizon71 for each bank and item72.  
 
The recent extensions of the model acknowledge the non-linear nature of banks’ fair value 
portfolios and capture the impacts of risk factors not reported in the EU-wide stress test templates. 
Since 2021, the model has included second-order sensitivities and additional risk factors, consisting of 
three computation parts: 
 

1. first-order approximation (FOA) gains and losses derived on the basis of delta73 sensitivities; 
2. second-order approximation (SOA) including the impact from gamma74 and vega75sensitivities 

and providing an estimate of total gains and losses; 
3. adjusted gains and losses considering additional risk factors and additional gamma and vega 

sensitivities (not included in 1 or 2 above).  
 
  

70 STAMP€ modelled the bank-level top CCR exposure via the interaction of derivative notionals and scenario shocks. It then derived the 
provision for the default of the two most vulnerable counterparties via expert judgement on the relation between the largest CCR exposure and 
the two most vulnerable ones. 
71 In accordance with the prescribed EBA methodology, the shock applied to the full revaluation of fair value items is realised within the first year 
of the stress test. 
72 Portfolio items are classified according to balance sheet side, IFRS 9 standards for financial holdings, hedged/hedging role, FINREP 
classification of financial holdings, derivative holdings specificity (linear or optional), long or short positions. 
73 Delta sensitivity represents the change in the derivative value given a change in the derivative’s underlying. 
74 Gamma sensitivity represents the change in the option’s delta given a change in the derivative’s underlying. 
75 Vega sensitivity represents the sensitivity of the value of an option with respect to the underlying’s volatility.  
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The linear FOA of the change in a bank’s holdings value is computed as: 

      𝐹𝐹𝐹𝐹𝐴𝐴𝑖𝑖𝑡𝑡𝑑𝑑𝑙𝑙 = ∑ 𝐹𝐹𝑠𝑠𝐹𝐹𝑔𝑔𝑠𝑠 𝑖𝑖𝑡𝑡𝑑𝑑𝑙𝑙(𝑗𝑗) × 𝑆𝑆ℎ𝐹𝐹𝑐𝑐𝑘𝑘(𝑗𝑗)𝑗𝑗 ,∀𝑗𝑗 ∈ 𝐽𝐽    (46) 

where J is the full set of risk factors reported in the scenario, and delta is the change in the value of the 
portfolio (𝑝𝑝𝑔𝑔𝑠𝑠𝐴𝐴) following a unit change in risk factor (j) and is reported by the bank. 𝑆𝑆ℎ𝐹𝐹𝑐𝑐𝑘𝑘(𝑗𝑗) for the risk 
factor (𝑗𝑗) is derived from the market risk stress test scenario. The risk factors reported in the scenario 
cover different categories (i.e., interest rates, equity, foreign exchange, commodity, inflation, credit 
spreads, etc.), different regions (i.e., euro area, North America, Asia), different geographies (i.e., Ireland, 
Italy, USA, Japan) and different risk factor specificities (i.e., different tenors for interest rates). 
 
Total impact is calculated as the SOA for CA banks. The latter is represented by the sum of the FOA 
and the shock sensitivities captured by gamma and vega parameters: 
𝑆𝑆𝐹𝐹𝐴𝐴𝑖𝑖𝑡𝑡𝑑𝑑𝑙𝑙 = 
𝐹𝐹𝐹𝐹𝐴𝐴𝑖𝑖𝑡𝑡𝑑𝑑𝑙𝑙 + ∑ 𝐿𝐿𝑠𝑠𝑔𝑔𝑠𝑠𝑖𝑖𝑡𝑡𝑑𝑑𝑙𝑙(𝑗𝑗) × 𝐿𝐿𝐹𝐹𝐹𝐹𝑠𝑠𝑔𝑔𝑝𝑝𝐹𝐹𝑝𝑝𝑔𝑔𝑃𝑃_𝑆𝑆ℎ𝐹𝐹𝑐𝑐𝑘𝑘𝑖𝑖𝑡𝑡𝑑𝑑𝑙𝑙(𝑗𝑗 

𝑗𝑗 ) + ∑ 0.5 × 𝐺𝐺𝑠𝑠𝐴𝐴𝐴𝐴𝑠𝑠𝑖𝑖𝑡𝑡𝑑𝑑𝑙𝑙(𝑗𝑗) × 𝐺𝐺𝑠𝑠𝐴𝐴𝐴𝐴𝑠𝑠_𝑆𝑆ℎ𝐹𝐹𝑐𝑐𝑘𝑘𝑖𝑖𝑡𝑡𝑑𝑑𝑙𝑙(j)2 
𝑗𝑗  (47) 

where 𝐺𝐺𝑠𝑠𝐴𝐴𝐴𝐴𝑠𝑠𝑖𝑖𝑡𝑡𝑑𝑑𝑙𝑙(𝑗𝑗) is the second-order sensitivity and 𝐿𝐿𝑠𝑠𝑔𝑔𝑠𝑠𝑖𝑖𝑡𝑡𝑑𝑑𝑙𝑙(𝑗𝑗) is the first-order sensitivity to volatility. 
They are reported by banks with a lower level of granularity than delta sensitivities, for the two categories 
interest rates and equity and for the two regions European Union and United States76. Moreover, CA banks 
can also report additional gamma and vega sensitivities that can be included in the total impact 
computation. SOA is not computed for TE banks as they are not required to report gamma and vega 
sensitivities. 
 
While the vega shocks are provided in the scenario, the gamma shock is computed for the relevant items 
and geographies as a weighted average of more granular market risk scenario shocks, where the weights 
are the absolute values of the delta sensitivities: 

𝐺𝐺𝑠𝑠𝐴𝐴𝐴𝐴𝑠𝑠_𝑆𝑆ℎ𝐹𝐹𝑐𝑐𝑘𝑘𝑖𝑖𝑡𝑡𝑑𝑑𝑙𝑙(𝑗𝑗) = �∑ ∑ 𝑆𝑆ℎ𝑛𝑛𝑐𝑐𝑘𝑘�𝑗𝑗𝑔𝑔,𝑠𝑠�
∑ ∑ �𝑇𝑇𝑑𝑑𝑙𝑙𝑡𝑡𝑑𝑑 𝑖𝑖𝑡𝑡𝑠𝑠𝑙𝑙�𝑗𝑗𝑔𝑔,𝑠𝑠��𝑔𝑔𝑠𝑠

�𝐹𝐹𝑠𝑠𝐹𝐹𝑔𝑔𝑠𝑠 𝑖𝑖𝑡𝑡𝑑𝑑𝑙𝑙�𝑗𝑗𝑀𝑀,𝑠𝑠��𝑀𝑀
 
𝑠𝑠 �         (48) 

where 𝐹𝐹𝑠𝑠𝐹𝐹𝑔𝑔𝑠𝑠 𝑖𝑖𝑡𝑡𝑑𝑑𝑙𝑙�𝑗𝑗𝑀𝑀,𝑠𝑠� considers all the item-specific deltas for interest rates or equity and the geographies 
(g) within the European Union or United States, and interest rate tenors (s). Given that the current portfolio 
composition for each specific instrument is not known, the weighting scheme is an approximation used to 
compute the relevant shock (for instance, a delta of an option not only depends on the notional but also 
on the comparison between the spot price and strike price). 
 
The linear first-order gains and losses include impacts stemming from additional risk factors 
reported by banks.77 Banks report impacts from two types of additional risk factors: (i) more granular risk 
factors than those included in the scenario, e.g., different types of oil as part of the oil risk factor; and (ii) 
risk factors not included in the scenario, e.g., correlation risk. Both can have a material impact on bank-
level full revaluation results.78 
 
The final top-down revaluation impact is therefore computed as follows: 
 

𝐹𝐹𝑠𝑠𝐺𝐺𝑠𝑠𝐹𝐹𝑐𝑐𝑠𝑠𝑔𝑔𝑝𝑝𝐹𝐹𝐺𝐺 𝑝𝑝𝐴𝐴𝑠𝑠𝑠𝑠𝑐𝑐𝑔𝑔𝑖𝑖𝑡𝑡𝑑𝑑𝑙𝑙 =  𝐴𝐴𝐹𝐹𝐹𝐹𝑖𝑖𝑡𝑡𝑑𝑑𝑙𝑙 +  𝑆𝑆𝐹𝐹𝐴𝐴𝐼𝐼𝑡𝑡𝑑𝑑𝑙𝑙                             (49) 
 

where 𝐴𝐴𝐹𝐹𝐹𝐹𝑖𝑖𝑡𝑡𝑑𝑑𝑙𝑙 represents the reported additional impacts for a specific item.  
 
The top-down model is effectively able to capture the idiosyncrasies of banks’ full revaluation 
impacts. Chart 27 presents the results for the 2021 stress-testing exercise, comparing the top-down 
model results (y-axis) and banks’ bottom-up projections (x-axis) by bank approach (CA/TE). To allow for 
peer comparison, impacts are presented in terms of basis points of the risk exposure amount. The chart 
shows a high degree of correlation between the two sets of results. 
 
  

76 Only comprehensive approach (CA) banks are subject to this reporting requirement. 
77 Additional risk factor impacts are reported separately so that there is no double counting. 
78 An example of additional risk factors reported during the 2021 EBA stress test was the emerging market sovereign “Colombia 5 Years 
Sovereign CDS”. 
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Chart 27 
Top-down and bank impacts on CET1 ratio from full revaluation 

(Basis points) 

 
Sources: 2021 stress test and ECB calculations. 
Notes: X-axis: bank results; y-axis: top-down results; risk exposure amount (bps). Results are reported by bank approach: comprehensive approach (CA) and trading 
exemption (TE). 
 
For the 2023 stress test, a new template on leveraged finance for full revaluation has been included 
in the data collection for a limited sample of banks.79 Leveraged finance has become a relevant topic 
from a supervisory perspective following a prolonged period of low interest rates. The scope of this new 
template is to focus specifically on items in the underwriting pipeline, and its structure is similar to the main 
full revaluation template.80 The leveraged finance underwriting pipeline is a subset of the fair value items 
revalued in the full revaluation template. Although, gains and losses on these items are already included 
in equation (49), the additional template facilitates gain and loss projections at a more granular level.  

3.6.2 Market liquidity and model uncertainty reserve 

Market liquidity affects the cost of transforming assets into cash. One measure of market liquidity is 
the bid/ask spread, i.e., the difference between the highest bid price and the lowest ask price of an asset. 
This spread measures the variable transaction cost added to fixed transaction costs such as fees.  
 
The top-down model of market risk reserves estimates the impact of an exogenous widening in 
the bid-ask spread on fair value and prudential reserves for all items within the market risk scope.81 
In terms of accounting adjustments (i.e., fair value adjustments, IFRS 13), the widened bid-ask spread 
concerns only the fair value adjustment for liquidity, model risk and market price uncertainty. For prudential 
adjustments (additional valuation adjustment, Article 105 CRR and EBA/RTS/2014/06), calculations 
consider only the adjustments related to market price uncertainty, close-out cost and model risk. Other 
valuation adjustments defined in Article 105 CRR (unearned credit spreads, early termination, investing 
and funding cost, operational risks and future administrative costs) are not covered.82 

 
The top-down model computes the impact of a bid-ask spread liquidity shock for all fair value 
levels (L1, L2, L3) and of a model uncertainty shock for L2 and L3 instruments. The model uncertainty 
shock to L2 and L3 instruments is additive to the liquidity shock. The fair value level-based shocks are as 
follows: 

                                              𝑆𝑆ℎ𝐹𝐹𝑐𝑐𝑘𝑘𝑙𝑙 = �
𝑋𝑋 %               𝑝𝑝𝑜𝑜 𝐹𝐹 = 𝐿𝐿1
𝑋𝑋% + 𝑌𝑌%    𝑝𝑝𝑜𝑜 𝐹𝐹 = 𝐿𝐿2
𝑋𝑋% + 𝑍𝑍%     𝑝𝑝𝑜𝑜 𝐹𝐹 = 𝐿𝐿3

                      (50) 

 
where 𝐹𝐹 ranges across exposure levels (i.e., L1, L2 and L3), X represents the market liquidity shock, while 
Y and Z represent the model uncertainty shocks for L2 and L3 respectively. All shocks are derived from the 
relevant bid-ask spreads. 
 

79 Banks were selected according to the relevance of leverage finance in their business activities.  
80 The key differences from the main full revaluation template are that (i) banks are not required to report sensitivities to equity and funds, and 
(ii) banks are not required to report additional gamma and vega sensitivities.  
81 See EBA methodological note 2023 stress test (Par. 289). 
82 See EBA methodological note 2023 stress test (Par. 290). 

y = 1.0772x + 1.5457
R² = 0.8465

-250

-200

-150

-100

-50

0

-250 -200 -150 -100 -50 0

FullReval CA FullReval TE Linear (FR)

ECB Occasional Paper Series No 348 56



To consistently challenge the stress test impact on liquidity reserves submitted by banks, the 
top-down model is developed starting from the following formula:83 
 

Impact_stressed_Reserve𝑙𝑙𝑖𝑖𝑡𝑡𝑑𝑑𝑙𝑙 = ∑ 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (Bid − Ask)𝑗𝑗,𝑙𝑙 × 𝑆𝑆ℎ𝐹𝐹𝑐𝑐𝑘𝑘𝑙𝑙 × 𝐸𝐸𝑁𝑁𝑠𝑠𝐹𝐹𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑗𝑗,𝑙𝑙
𝑖𝑖𝑡𝑡𝑑𝑑𝑙𝑙

𝑗𝑗𝑗𝑗𝑅𝑅𝑖𝑖𝑠𝑠𝑘𝑘 𝐹𝐹𝑑𝑑𝑐𝑐𝑡𝑡𝑛𝑛𝑝𝑝𝑠𝑠      (51) 

where item ranges across held-for-trading, mandatory or optional FVPL, and FVOCI portfolios. It is 
assumed that the relevant exposure can be broken down by risk factors84 𝑗𝑗, which have different 
sensitivities. The relevant risk factor categories (classified according to their FINREP class) include debt 
instruments, interest rates, equity, credit and foreign exchange.85 A bid-ask spread 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (Bid − Ask)𝑗𝑗,𝑙𝑙 is 
assessed within each of the categories (e.g., equity) and for the most relevant risk factors j (e.g., German 
stocks), using market data. 
 
Market quotes are used to obtain the portfolio bid-ask as the product of risk factor bid-ask 
multiplied by the risk factor sensitivity: 
 

                   𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(Bid − Ask)𝑗𝑗,𝑙𝑙 = ∑ ∑ �𝐼𝐼𝑖𝑖𝑑𝑑−𝐸𝐸𝑠𝑠𝑘𝑘
2

�
𝑗𝑗

× 𝑆𝑆𝑠𝑠𝐺𝐺𝑠𝑠𝑝𝑝𝑔𝑔𝑝𝑝𝐺𝐺𝑝𝑝𝑔𝑔𝑃𝑃𝑗𝑗        𝑗𝑗𝑗𝑗𝑅𝑅𝑖𝑖𝑠𝑠𝑘𝑘𝑑𝑑𝑑𝑑𝑐𝑐𝑡𝑡𝑛𝑛𝑝𝑝𝑠𝑠𝑙𝑙𝑗𝑗𝐹𝐹𝑉𝑉𝑙𝑙𝑑𝑑𝑎𝑎𝑑𝑑𝑙𝑙          (52) 

 
where sensitivity is the change in one unit of exposure given a 1% change in the risk factor.86 The 
sensitivity for fixed income instruments is the duration (first-order sensitivity) sourced from market data. 
The risk factor-specific bid-ask is obtained from market prices and applied to interest rate, credit, equity 
and exchange rate portfolios. 
 
The exposure value for each risk factor is estimated in a few steps. The first step is the estimation of 
the share exposed to each risk factor (𝑆𝑆ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝐼𝐼𝑡𝑡𝑑𝑑𝑙𝑙) for each accounting portfolio item in scope (i.e., held for 
trading, mandatory or optional FVPL, FVOCI). Risk factor delta sensitivities provided by the bank and 
described in the previous section are used to imply a risk factor share for each portfolio item. The relevant 
delta(s) can be deduced depending on the breakdown of the FINREP accounting items (e.g., equity, 
interest rate, etc.). For example, for those portfolio rows related to debt instruments, the delta(s) associated 
with interest rate swap rate shocks are divided by the associated duration to compute the exposure value 
for each risk factor. The 𝑆𝑆ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝐼𝐼𝑡𝑡𝑑𝑑𝑙𝑙 is the relative weight of each risk factor in each accounting portfolio 
item.  
 
The next step concerns the calculation of weights of L1, L2 and L3. These are calculated using 
portfolio notional amounts submitted in the full revaluation template and computed for each item in the full 
revaluation template as: 

   𝑅𝑅𝑠𝑠𝑝𝑝𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐼𝐼𝑡𝑡𝑑𝑑𝑙𝑙= 𝑆𝑆𝑛𝑛𝑡𝑡𝑖𝑖𝑛𝑛𝑛𝑛𝑑𝑑𝑙𝑙_𝜕𝜕𝑥𝑥𝑝𝑝𝑛𝑛𝑠𝑠𝑑𝑑𝑝𝑝𝑑𝑑𝑙𝑙
𝐼𝐼𝑡𝑡𝑠𝑠𝑙𝑙

𝑆𝑆𝑛𝑛𝑡𝑡𝑖𝑖𝑛𝑛𝑛𝑛𝑑𝑑𝑙𝑙_𝜕𝜕𝑥𝑥𝑝𝑝𝑛𝑛𝑠𝑠𝑑𝑑𝑝𝑝𝑑𝑑𝑇𝑇𝑡𝑡𝑡𝑡
𝐼𝐼𝑡𝑡𝑠𝑠𝑙𝑙                       (53) 

 
The final step is the estimation of bank-specific total exposure (𝑬𝑬𝒙𝒙𝑬𝑬𝑬𝑬𝒔𝒔𝑬𝑬𝑴𝑴𝑬𝑬_𝑻𝑻𝑬𝑬𝑻𝑻𝑰𝑰𝑻𝑻𝑬𝑬𝑰𝑰) for each 
accounting item in monetary value. It considers risk factor exposure and portfolio composition. 
Following the EBA methodology, the exposure amount to be considered for bonds is the nominal value. 
For exchange-traded derivatives, interest rate swaps and foreign exchange swaps, it is the notional value 
of the instrument, while for equities, the fair value is used.87 Once the overall exposure for each accounting 
item is determined, the risk factor-specific and liquidity level-specific exposures are calculated: 
 

                                      𝐸𝐸𝑁𝑁𝑠𝑠𝐹𝐹𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑗𝑗,𝑙𝑙
𝐼𝐼𝑡𝑡𝑑𝑑𝑙𝑙 = 𝐸𝐸𝑁𝑁𝑠𝑠𝐹𝐹𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠_𝐿𝐿𝐹𝐹𝑔𝑔𝐼𝐼𝑡𝑡𝑑𝑑𝑙𝑙 × 𝑅𝑅𝑠𝑠𝑝𝑝𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐼𝐼𝑡𝑡𝑑𝑑𝑙𝑙 × 𝑆𝑆ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝐼𝐼𝑡𝑡𝑑𝑑𝑙𝑙                    (54) 

 
Overall, the approach reflects the risk composition of banks’ portfolios in terms of types of assets, risk 
drivers and complexity of derivatives (i.e., L1, L2, L3).  
 
 

83 Following the EBA methodology as described in Box 15. 
84 The risk factors considered reflect those reported in the market risk scenario. 
85 The “commodity” risk factor category is not considered because of its very low exposure. 
86 The top-down model employed during the 2018 stress tests was based on a fixed elasticity of stressed reserves combined with liquidity shocks 
for different types of assets. The framework did not reflect the composition of the portfolio across different asset classes and different types of 
assets (i.e., L1, L2 and L3). This represented a substantial shortcoming of the model, which the new model tries to solve using the information 
provided by banks in the full revaluation template and with market data. 
87 Notional and fair value amounts are sourced from the full revaluation template for the relevant accounting portfolio items.  
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Chart 28 displays the top-down model fit with respect to banks’ final projections in the 2021 stress 
test. The R-squared value is approximately 67%. The comparison with banks’ projections reveals that the 
top-down model is a good fit for most banks in the sample. For a small number of banks, the top-down 
model projection is slightly more conservative, mainly for banks applying the comprehensive approach. In 
these cases, it highlights areas where a deeper dive into bank projections might be warranted. 
   
Chart 28 
Top-down and bank impacts on CET1 ratio from liquidity and model uncertainty reserves 
(Basis points) 

 

Sources: 2021 stress test and ECB calculations.  
Notes: X-axis: bank results; y-axis: top-down results. Results are reported by bank approach: comprehensive approach (CA) and trading exemption (TE). 

3.6.3 Counterparty credit risk 

Counterparty credit risk (CCR), as defined in Article 272 CRR, reflects the risk that a counterparty 
defaults before the final settlement of a transaction. The top-down methodology follows the EBA 
methodological note, where CCR provisions are computed for the default of the two most vulnerable 
counterparties among the ten largest ones in terms of stressed CCR exposures. A loss will occur if the 
value of the bank exposure to the defaulting counterparty is positive. 
 
The methodology follows two steps. First, an empirical regression model projects the stressed CCR 
exposure net of stressed collateral. Second, the provisions related to the two most vulnerable 
counterparties are calculated given the bank’s submitted losses given default and credit valuation 
adjustments (CVAs).  
 
The stressed CCR exposure is projected using a cross-sectional non-linear regression. The 
stressed CCR is regressed on the initial CCR level and other relevant variables leveraging on the data 
submitted by banks in the EU-wide stress tests in 2016, 2018 and 2021, FINREP and market data: 
𝑆𝑆𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖,𝑘𝑘,𝑡𝑡 = 𝛼𝛼0 + 𝛼𝛼1𝐻𝐻𝐺𝐺𝑝𝑝𝑔𝑔𝑝𝑝𝑠𝑠𝐹𝐹𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖,𝑘𝑘,𝑡𝑡 + 𝛼𝛼2Initial𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖,𝑘𝑘,𝑡𝑡

2 + ∑ 𝛽𝛽𝑙𝑙 𝑁𝑁𝐹𝐹𝐿𝐿𝑖𝑖,𝑇𝑇𝑙𝑙 × 𝑆𝑆𝐻𝐻𝐹𝐹𝐶𝐶𝑆𝑆𝑡𝑡𝑙𝑙𝑙𝑙∈𝜃𝜃 + 𝛾𝛾1𝐻𝐻𝐺𝐺𝑘𝑘,𝑇𝑇 +
                                       𝛾𝛾2𝐿𝐿𝑝𝑝𝑠𝑠𝑠𝑠𝑖𝑖,𝑇𝑇 + 𝛾𝛾3𝐶𝐶𝐴𝐴𝑖𝑖,𝑇𝑇 +  𝛾𝛾4𝑁𝑁𝐹𝐹𝐿𝐿𝑖𝑖,𝑇𝑇𝐼𝐼𝑅𝑅 × 𝑃𝑃𝐹𝐹𝑠𝑠𝑝𝑝𝑔𝑔𝑝𝑝𝐺𝐺𝑠𝑠 𝐻𝐻𝐹𝐹 𝑠𝑠ℎ𝐹𝐹𝑐𝑐𝑘𝑘 𝑠𝑠𝑐𝑐𝐴𝐴𝐴𝐴𝑃𝑃𝑡𝑡 + 𝛾𝛾5𝐻𝐻𝐺𝐺𝑝𝑝𝑔𝑔𝑝𝑝𝑠𝑠𝐹𝐹𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖,𝑘𝑘,𝑡𝑡 ×
                                           𝐿𝐿𝑝𝑝𝑠𝑠𝑠𝑠𝑖𝑖, + 𝜀𝜀𝑖𝑖,𝑘𝑘,𝑡𝑡                                                                                                          (55) 
where the subscripts 𝑝𝑝, 𝑘𝑘, 𝑔𝑔, 𝐿𝐿 and l stand for bank (𝑝𝑝), counterparty (𝑘𝑘), scenario (𝑔𝑔), stress test wave (𝐿𝐿) 
and FINREP asset class category (l), respectively. 𝐻𝐻𝐺𝐺𝑝𝑝𝑔𝑔𝑝𝑝𝑠𝑠𝐹𝐹𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖 is the initial CCR exposure before the 
application of adverse scenario shocks in each of the EU-wide stress tests. 𝑁𝑁𝐹𝐹𝐿𝐿 is the vector of the 
notional amounts of derivatives reported by asset class 𝜃𝜃 = {𝐸𝐸𝐿𝐿𝑐𝑐𝑝𝑝𝑔𝑔𝑃𝑃, 88 𝐹𝐹𝑋𝑋,  𝐶𝐶𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝑠𝑠𝑝𝑝𝑔𝑔𝑝𝑝𝑠𝑠𝑠𝑠,  𝐻𝐻𝐺𝐺𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔 𝐹𝐹𝑠𝑠𝑔𝑔𝑠𝑠𝑠𝑠,  𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑔𝑔}. 
𝑆𝑆𝐻𝐻𝐹𝐹𝐶𝐶𝑆𝑆 is the vector of scenario shocks. Shocks are common across banks and counterparties, and they 
vary under adverse scenarios (2016, 2018, 2021), while notional derivatives vary among banks and stress 
tests. 𝐶𝐶𝐴𝐴 dummy is equal to 1 when a bank follows the comprehensive approach and 0 otherwise. IG 
dummy is equal to 1 for those counterparties belonging to the credit quality steps 1 and 2. Tier89 dummy 
captures the size of the bank, and 𝐻𝐻𝐺𝐺𝑝𝑝𝑔𝑔𝑝𝑝𝑠𝑠𝐹𝐹𝐶𝐶𝐶𝐶𝑅𝑅 × 𝐿𝐿𝑝𝑝𝑠𝑠𝑠𝑠 is the interaction between the initial CCR and the 
bank’s tier, which adjusts for the non-linear effect of larger banks. 𝑃𝑃𝐹𝐹𝑠𝑠𝑝𝑝𝑔𝑔𝑝𝑝𝐺𝐺𝑠𝑠 𝐻𝐻𝐹𝐹 𝑠𝑠ℎ𝐹𝐹𝑐𝑐𝑘𝑘 𝑠𝑠𝑐𝑐𝐴𝐴𝐴𝐴𝑃𝑃 takes the 
value of 1 if a positive interest rate shock for is envisaged for bank 𝑝𝑝; it is introduced to adjust for the non-
linear effect of negative interest rates in two of the scenarios.  

88 The shock to equity is the only one that differs from country to country. 
89 Tiering classifies banks according to their total assets compared with the overall sample. 
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Stressed CCR exposure is first dependent on the initial CCR exposure. A squared term is introduced to 
account for the non-linear relationship between stressed CCR exposure and initial exposure. A positive 
coefficient suggests that as the initial CCR exposure grows, the marginal effect results in a larger stressed 
exposure. Dummies are included in the regression to account for the credit quality of the counterparty, 
which in turn affects the CCR provision. Bank-specific dummies are also included to account for the type 
of bank (comprehensive approach or trading exemption) and for the size of the bank, with larger, market 
risk-focused banks generally having a higher stressed exposure. Negative shocks to interest rates have a 
more pronounced effect on stressed CCR exposure, so an interest rate dummy interacted with the notional 
amount is included to account for this asymmetry. 
  
The regression is estimated with the pooled OLS approach. This estimator was chosen from three 
tested alternatives (pooled OLS, Ridge and LARS regression) on the basis of its best out-of-sample 
forecasting performance measured by RMSE. The sets for training and testing data were randomly 
identified, ensuring that the proportions were 70% training data and 30% testing data.  

The regression relies mainly on the final bank submissions and risk factor shocks from past stress 
tests. Since 2016, the EBA methodology has required the assumed default of two of the bank’s weakest 
counterparties. As such, the model projects the stressed CCR exposure for each counterparty and can be 
extended to any number of counterparties reported by the bank. The information on derivative notionals 
broken down by asset class (end of 2015, end of 2017, end of 2020) is sourced from FINREP. The ECB 
ratings database provides information on raw ratings data from four rating agencies, namely Fitch, 
Moody’s, Standard & Poor’s and Dominion Bond Rating. The market risk scenario differs across stress 
tests and is accounted for in the regression model. 
 
The model performs well, especially for the largest banks. Chart 29 shows the comparison between 
top-down and bottom-up stressed CCR exposures (net of stressed collateral) for the ten largest 
counterparties in the 2016, 2018 and 2021 stress tests. The model has an R-squared value of 65.07%.  
 
Chart 29 
CCR model performance 

(EUR millions) 

 

Sources: 2016, 2018 and 2021 stress tests, and ECB calculations. 
Notes: The stressed CCR exposure is net of stressed collateral (after application of the market risk shock).  
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3.6.4 Net trading income and client revenues 
A large share of banks’ net operating income in the euro area arises from non-interest income 
and therein net trading income (NTI).90 More precisely, NTI stands for “gains or (-) losses on financial 
assets and liabilities held for trading and trading financial assets and trading financial liabilities”91. Given 
the nature of financial markets, trading income can also be a relatively volatile income source for banks. 
As a result, it is an important component of market risk during stress-testing exercises. 
 
The top-down infrastructure includes two different models related to NTI. The first model focuses on the 
client revenues component of NTI, while the second models total NTI via a quantile approach. The two 
models are complementary in nature. In the EU-wide stress test, the client revenue model is used to 
challenge banks’ client revenues projections, a subcomponent of NTI. It follows a panel regression 
approach and projects a conditional mean. Conversely, the quantile model empirically estimates and 
forecasts the full NTI distribution conditional on an adverse scenario. It can therefore be used at a more 
aggregate level to assess the likelihood of the overall NTI impact in the stress test, especially when the 
projection is far from the median. In addition, the quantile model is estimated on supervisory data reported 
quarterly, which allows the model to be used outside of the EU-wide stress test to estimate expected losses 
and tail risk measures under adverse scenarios. 

3.6.4.1 Client revenues model 
Client revenues (𝑪𝑪𝑴𝑴𝒊𝒊𝑬𝑬𝑴𝑴𝑻𝑻𝑪𝑪𝑬𝑬𝑪𝑪) include income that banks generate as intermediaries in 
transactions performed on behalf of their clients. They include (i) a retained portion of or a mark-
up on the bid-ask spread, generated from market making or trading activities on behalf of external clients; 
(ii) prime service revenues; and (iii) underwriting fees charged by the bank on a debt underwriting or a 
debt issuance by a corporate client booked in the trading book.92 For the first year of the stress test horizon, 
client revenues affect banks’ profits and losses as a component of NTI. NTI and client revenues are related 
according to the following equation: 

𝑁𝑁𝐿𝐿𝐻𝐻 (𝐴𝐴𝑠𝑠𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑌𝑌1 = 
𝐶𝐶𝐹𝐹𝑝𝑝𝑠𝑠𝐺𝐺𝑔𝑔𝐹𝐹𝑠𝑠𝐺𝐺(𝑠𝑠𝑜𝑜𝑔𝑔𝑠𝑠𝑠𝑠 𝑐𝑐𝑠𝑠𝑠𝑠),𝑌𝑌1 − ∆𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺𝑠𝑠𝐿𝐿𝑝𝑝𝐿𝐿𝑐𝑐𝑝𝑝𝑠𝑠𝑝𝑝𝑔𝑔𝑃𝑃(𝐻𝐻𝐹𝐹𝐿𝐿)𝑇𝑇𝑛𝑛𝑡𝑡,𝑌𝑌1 − ∆𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺𝑠𝑠𝐶𝐶𝐿𝐿𝐴𝐴𝑇𝑇𝑛𝑛𝑡𝑡,𝑌𝑌1 −
                           𝑃𝑃&𝐿𝐿𝐹𝐹𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝐺𝐺𝑠𝑠𝐹𝐹(𝐻𝐻𝐹𝐹𝐿𝐿&𝐸𝐸𝑐𝑐𝐹𝐹𝐺𝐺𝐹𝐹𝐴𝐴𝑝𝑝𝑐𝑐 ℎ𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝑠𝑠)𝑇𝑇𝑛𝑛𝑡𝑡,𝑌𝑌1                                                         (56) 

where 𝐶𝐶𝐹𝐹𝑝𝑝𝑠𝑠𝐺𝐺𝑔𝑔𝐹𝐹𝑠𝑠𝐺𝐺(𝑠𝑠𝑜𝑜𝑔𝑔𝑠𝑠𝑠𝑠 𝑐𝑐𝑠𝑠𝑠𝑠) is described in equation (58), ∆𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺𝑠𝑠𝐿𝐿𝑝𝑝𝐿𝐿𝑐𝑐𝑝𝑝𝑠𝑠𝑝𝑝𝑔𝑔𝑃𝑃(𝐻𝐻𝐹𝐹𝐿𝐿)𝑇𝑇𝑛𝑛𝑡𝑡 is the impact from 
fair value and prudential reserves on held-for-trading items, ∆𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺𝑠𝑠𝐶𝐶𝐿𝐿𝐴𝐴𝑇𝑇𝑛𝑛𝑡𝑡 is the impact from CVA 
reserves (net of eligible CVA hedges) and 𝑃𝑃&𝐿𝐿𝐹𝐹𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝐺𝐺𝑠𝑠𝐹𝐹(𝐻𝐻𝐹𝐹𝐿𝐿&𝐸𝐸𝑐𝑐𝐹𝐹𝐺𝐺𝐹𝐹𝐴𝐴𝑝𝑝𝑐𝑐 ℎ𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝑠𝑠)𝑇𝑇𝑛𝑛𝑡𝑡 is the impact 
stemming from the revaluation of items held for trading and economic hedges. From the second year of 
the stress test horizon onward, the only component of adverse NTI is the 𝐶𝐶𝐹𝐹𝑝𝑝𝑠𝑠𝐺𝐺𝑔𝑔𝐹𝐹𝑠𝑠𝐺𝐺(𝑠𝑠𝑜𝑜𝑔𝑔𝑠𝑠𝑠𝑠 𝑐𝑐𝑠𝑠𝑠𝑠); the 
remaining components of the right-hand side of equation (56) are assumed null.  
 
In line with the EBA methodology, client revenues after caps are computed as follows: 
𝐶𝐶𝐹𝐹𝑝𝑝𝑠𝑠𝐺𝐺𝑔𝑔𝐹𝐹𝑠𝑠𝐺𝐺(after cap)𝑌𝑌1 =   

�   
NTI(Baseline)𝑌𝑌1                                                                                                 𝑝𝑝𝑜𝑜 NTI(Baseline) < 0

𝑀𝑀𝑝𝑝𝐺𝐺�𝐶𝐶𝐹𝐹𝑝𝑝𝑠𝑠𝐺𝐺𝑔𝑔𝐹𝐹𝑠𝑠𝐺𝐺𝑝𝑝𝑝𝑝𝑛𝑛𝑗𝑗𝑑𝑑𝑐𝑐𝑡𝑡𝑑𝑑𝑑𝑑 ,𝑌𝑌1, 0.75 × 𝐶𝐶𝐹𝐹𝑝𝑝𝑠𝑠𝐺𝐺𝑔𝑔𝐹𝐹𝑠𝑠𝐺𝐺𝑌𝑌0, 0.75 × NTI(Baseline) �    𝑝𝑝𝑜𝑜 NTI(Baseline) ≥ 0          (57) 

where NTI(Baseline) is computed as an average of historical NTI and 𝐶𝐶𝐹𝐹𝑝𝑝𝑠𝑠𝐺𝐺𝑔𝑔𝐹𝐹𝑠𝑠𝐺𝐺𝑝𝑝𝑝𝑝𝑛𝑛𝑗𝑗𝑑𝑑𝑐𝑐𝑡𝑡𝑑𝑑𝑑𝑑 ,𝑌𝑌1 is the projected 
client revenues reported by the bank before the methodological cap applies93. 
 
  

90 In the recent 2021 EU-wide stress-testing exercise, the year 1 impact from gains and losses from financial assets held for trading accounted 
for 50 basis points (of the risk exposure amount) across all banks and 75 basis points across global systemically important banks in 2021. The 
total market risk impact was 102 basis points at the end of the exercise. 
91 Please note that this is the definition used in the 2021 EBA methodological note. The definition changed for the 2023 stress test, but the 2021 
definition is used for the purpose of this report. 
92 See paragraph 228 of the EBA 2021 methodological note. 
93 On the contrary, TE banks do not have to project client revenues and are therefore computed with a haircut applied to the baseline NTI (if the 
latter is positive).  
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The top-down model estimates client revenues on a quarterly basis and aggregates them to 
compute the client revenues before caps (𝑪𝑪𝑴𝑴𝒊𝒊𝑬𝑬𝑴𝑴𝑻𝑻𝑪𝑪𝑬𝑬𝑪𝑪𝑬𝑬𝑴𝑴𝑬𝑬𝒑𝒑𝑬𝑬𝒄𝒄𝑻𝑻𝑬𝑬𝒑𝒑) in the first year of the stress test 
horizon. The regression model reads as follows: 
 
𝐶𝐶𝐹𝐹𝑝𝑝𝑠𝑠𝐺𝐺𝑔𝑔𝐹𝐹𝑠𝑠𝐺𝐺𝑖𝑖,𝑡𝑡 = 
             𝛽𝛽0 + 𝛽𝛽1 𝐶𝐶𝐹𝐹𝑝𝑝𝑠𝑠𝐺𝐺𝑔𝑔𝐹𝐹𝑠𝑠𝐺𝐺𝑡𝑡−1 + 𝛽𝛽2 𝐶𝐶𝐹𝐹𝑝𝑝𝑠𝑠𝐺𝐺𝑔𝑔𝐹𝐹𝑠𝑠𝐺𝐺𝑡𝑡−2 + ∑ 𝛼𝛼𝑙𝑙  𝑁𝑁𝐹𝐹𝐿𝐿𝑖𝑖,𝑙𝑙, 𝑡𝑡−1𝑙𝑙∈𝜃𝜃 + ∑ 𝛾𝛾𝑙𝑙 𝑆𝑆𝐻𝐻𝐹𝐹𝐶𝐶𝑆𝑆𝑙𝑙 ∙ 𝑁𝑁𝐹𝐹𝐿𝐿𝑖𝑖,𝑙𝑙,𝑡𝑡−1 𝑙𝑙∈𝜃𝜃 +
𝐹𝐹𝑈𝑈𝑀𝑀𝑀𝑀𝑌𝑌 + 𝜀𝜀𝑖𝑖,𝑡𝑡                         (58) 
 
where the subscripts  𝑝𝑝, 𝑔𝑔 and 𝐹𝐹 stand for bank (𝑝𝑝), quarter (𝑔𝑔) and FINREP asset class category (𝐹𝐹) 
respectively. 𝐶𝐶𝐹𝐹𝑝𝑝𝑠𝑠𝐺𝐺𝑔𝑔𝐹𝐹𝑠𝑠𝐺𝐺 represents banks’ reported historical client revenues from the fourth quarter of 2015 
to the fourth quarter of 2020 on a quarterly basis, and 𝑁𝑁𝐹𝐹𝐿𝐿 is the variable representing the notional value 
of derivative exposures (reported by categories 𝜃𝜃 = {𝐸𝐸𝐿𝐿𝑐𝑐𝑝𝑝𝑔𝑔𝑃𝑃,  𝐹𝐹𝑋𝑋,  𝐶𝐶𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝑠𝑠𝑝𝑝𝑔𝑔𝑝𝑝𝑠𝑠𝑠𝑠,  𝐻𝐻𝐺𝐺𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔 𝐹𝐹𝑠𝑠𝑔𝑔𝑠𝑠𝑠𝑠,  𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑔𝑔}94), which 
should capture the different weights of asset classes/risk factors and is expressed in millions. 𝑆𝑆𝐻𝐻𝐹𝐹𝐶𝐶𝑆𝑆 is 
the variable representing the change in the risk factor included in the market risk scenario. 𝐹𝐹𝑈𝑈𝑀𝑀𝑀𝑀𝑌𝑌 is a 
variable defined using k-means as a clustering algorithm to cluster banks according to two variables: 
average client revenues and average total notional amounts in derivatives. This allows the fixed effect 
associated with each bank to be captured.  
 
The model is estimated using the pooled OLS approach. The estimator was chosen from three 
alternatives (pooled OLS, panel OLS with fixed effects and panel OLS with random effects) applied to a 
sample of banks with the comprehensive approach and for which average client revenues were different 
from zero, using the lowest RMSE as a selection criterion. 

 
From the second quarter of the first year of the stress test horizon, top-down projections are 
estimated under the assumptions of a constant balance sheet and zero shocks in line with 
EBA methodology. For this purpose, a second lag was added to the 𝐶𝐶𝐹𝐹𝑝𝑝𝑠𝑠𝐺𝐺𝑔𝑔𝐹𝐹𝑠𝑠𝐺𝐺 variable to avoid having 
constant estimates beyond the first quarter.  
 
Chart 30 
Client revenues model performance 
(EUR millions) 

  

Sources: 2018 and 2021 stress tests, and ECB calculations. 
Note: Stressed client revenues reported by banks (x-axis) versus stressed client revenues computed via the TD model (y-axis). 
 
The model reliably captures the dynamics of stressed client revenues. Chart 30 shows an R-
squared value equal to 92.2%. The model is also unbiased, since it has residuals that are randomly 
scattered around zero. 

94 Variables are chosen to be broadly representative of the risk factor. For interest rates, the five-year euro area swap is selected. The shock to 
equity differs at country level, depending on the domicile of the bank and the country-relevant equity index. The global oil index is used as a 
proxy for the commodity shocks. The EUR/USD is used for foreign exchange and the five-year overall iTRAXX index for the credit shock.  
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3.6.4.2 Net trading income: quantile approach 

A quantile regression approach can be used to project the NTI distribution under stress. This 
methodology, as detailed in Cappelletti et al. (2021), forecasts the entire distribution rather than only a 
mean impact. The quantile approach allows for the measuring of risk metrics such as tail loss estimates 
and their corresponding probabilities. This methodology is complementary to the approach presented in 
the previous sections and takes a holistic view of NTI.  
 
The model can be used to challenge banks’ NTI projections at an aggregate level and evaluate the 
likelihood of the impact, especially when the projection is far from the median. The volatile nature 
of trading income can lead to increased downside tail risk, i.e., the risk that a bank experiences an extreme 
trading loss. Extreme returns cause “fatter” tails than a normal distribution would predict. Interlinkages 
between financial risk factors and trading income indicate that financial crisis and adverse market shocks 
can produce left tail events, which could have a damaging impact on the trading portfolio. 
 
The quantile model can identify where shocks have asymmetric effects on NTI, especially in the 
tails of the distribution, examples of which are shown in Chart 31. Chart 31 shows the coefficients across 
the net trading income over total assets (NTI/TA) distribution for three of the independent financial 
variables included in the quantile regression: changes in credit spread, stock returns and changes in the 
EuroStoxx volatility index. In each case, the sensitivity of NTI/TA changes across the percentiles of the 
distribution. The negative coefficients in the lower quantiles suggest that when NTI/TA is low (in the left tail 
of the distribution), the widening credit spread and increased volatility can intensify losses. The quantile 
coefficients for the equity index show that lower percentiles of the NTI/TA distribution are highly sensitive 
to changes in equity prices, intuitively implying that negative equity returns have a negative impact on 
NTI/TA.  
 
Chart 31 
Quantile regression coefficients for the 10th, 30th, 50th, 70th and 90th percentiles of the NTI/TA distribution 

a) Equity returns

 

b) Changes in credit spread

 

c) Changes in EuroStoxx volatility 
index

 

Source: Cappelletti et al., 2021. 
Notes: The 10th, 30th, 50th, 70th and 90th percentiles are displayed on the x-axis. The y-axis shows the quantile regression coefficients for each independent financial 
variable. 
 
 
The relationship between NTI/TA and macro-financial risk factors is captured by a fixed effects 
quantile dynamic regression model. The macro-financial factors are restricted to those provided in 
previous EU-wide stress test scenarios and are broken down into interest rate, credit spread, equity, 
commodity, foreign exchange and volatility. The model is estimated semi-parametrically using the method 
of moments technique proposed by Machado and Santos Silva (2019) and following Covas, Rump and 
Zakrajšek (2014). The bank-level data are collected from FINREP and COREP supervisory reporting, while 
risk factor data are sourced from market data providers.  
 
  

0

2

4

6

8

10

0.1 0.3 0.5 0.7 0.9
-3

-2

-1

0

1

2

0.1 0.3 0.5 0.7 0.9 -2.4

-1.6

-0.8

0.0

0.8

0.1 0.3 0.5 0.7 0.9

ECB Occasional Paper Series No 348 62



The conditional quantiles are estimated for quantiles ranging from the 10th to 90th percentiles with 
10 percentage point increments.  

  𝑁𝑁𝐿𝐿𝐻𝐻/𝐿𝐿𝐴𝐴𝑖𝑖,𝑡𝑡+1 =  𝛼𝛼𝑖𝑖 + 𝑋𝑋𝑖𝑖,𝑡𝑡′ 𝛽𝛽 + �𝛿𝛿𝑖𝑖 + 𝑋𝑋𝑖𝑖,𝑡𝑡′ 𝛾𝛾�𝑈𝑈𝑖𝑖,𝑡𝑡       (59) 
 
The quantile 𝜏𝜏 is given as 

 𝑄𝑄𝑁𝑁𝐿𝐿𝐻𝐻/𝐿𝐿𝐴𝐴𝑖𝑖,𝑡𝑡+1�𝜏𝜏�𝑋𝑋𝑖𝑖,𝑡𝑡� = �𝛼𝛼𝑖𝑖 + 𝛿𝛿𝑖𝑖𝐿𝐿(𝜏𝜏)� + 𝑋𝑋𝑖𝑖,𝑡𝑡,
′ �𝛽𝛽 + 𝛾𝛾𝐿𝐿(𝜏𝜏)�            (60) 

 
where i indexes banks in the sample and t the time period. 𝑁𝑁𝐿𝐿𝐻𝐻/𝐿𝐿𝐴𝐴𝑖𝑖,𝑡𝑡+1 is net trading income over total 
assets, 𝑋𝑋𝑖𝑖,𝑡𝑡′  is a set of explanatory risk factors and bank-specific controls, (𝛼𝛼𝑖𝑖 ,𝛽𝛽, 𝛿𝛿𝑖𝑖 , 𝛾𝛾) are unknown 
coefficients and 𝑈𝑈𝑖𝑖,𝑡𝑡 is an unobserved random variable independent of 𝑋𝑋. 𝛼𝛼𝑖𝑖 + 𝛿𝛿𝑖𝑖𝐿𝐿(𝜏𝜏) is the quantile-𝜏𝜏 fixed 
effect for individual 𝑝𝑝, and 𝛽𝛽 + 𝛾𝛾𝐿𝐿(𝜏𝜏) is the quantile-𝜏𝜏 slope. Included in 𝑋𝑋𝑖𝑖,𝑡𝑡′  are bank-specific controls, risk-
weighted assets over total assets and equity over total assets, together with a time dummy. On estimation, 
a strong and asymmetric impact of the risk factors on the tails of the NTI/TA distribution is found. 
 
The model is used to compute the one-year impact for the sample of CA banks in the 2021 stress 
test. The sum of the four-quarter projections is calculated using shocks provided in the market risk 
scenario and compared with the final projections provided by banks. Forecasting the entire distribution 
gives a range of plausible impacts. Chart 32 below shows that most bank impacts projected in 2021 lie 
close to the top-down projected median and all fall within the distribution.  
 
Chart 32 
Adverse projected net trading income over total assets for comprehensive approach banks 

(Basis points) 

 
Sources: 2021 stress test, supervisory data, market data and ECB calculations. 
Notes: The box represents the 30th and 70th percentiles, while the minimum and the maximum are the 10th and 90th percentiles. Bank values are represented by the 
blue dots. 
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4 Macro-micro interactions and macroprudential 
stress testing 

The macro-micro work stream focused on enhancing the effectiveness of macroprudential stress 
testing. It pushed this agenda forward on three fronts. First, it adopted the ECB BEAST model as its 
primary operational framework. Over the course of several years, the work stream diligently evaluated the 
model’s properties and identified any shortcomings. This led to tangible advancements in the model’s 
mechanisms, leveraging national expertise and datasets. Furthermore, the model served as a reference 
point for discussing emerging challenges in macroprudential stress testing, facilitating the establishment 
of a wish list and the formulation of best practices for various modelling solutions. 

Second, the work stream served as a hub for macroprudential stress testing modellers from 
member institutions, actively monitoring the evolution of macroprudential stress testing within the 
policy process. To this end, it fostered knowledge exchange and cross-pollination of ideas among 
European institutions invested in developing robust macroprudential stress-testing frameworks. 
Concurrently, the work stream explored the applications of macroprudential stress testing in assessing 
central bank vulnerability, policy evaluation and communication. 

Third, the work stream undertook several analytical investigations involving its members and 
engaged in discussion on a wide range of analytical works relevant for macroprudential stress 
testing. These analytical endeavours encompassed various topics, including bank lending decisions, the 
interplay between solvency and funding, and the modelling of exceptional macro-financial events like the 
COVID-19 pandemic. 

The analytical work revolved around annually updated priority areas, as illustrated in Figure 10. 
Members collectively established these priority areas, drawing inspiration from the BEAST model structure 
and addressing challenges arising from economic developments such as the COVID-19 crisis. These 
priority areas were categorised into those focusing on modelling aggregate macro-financial dynamics 
(macro priorities), those focusing on bank behaviour (micro priorities) and studies dedicated to 
understanding the functioning of feedback loops. The priority areas served as the basis for conducting 
dedicated investigations or engaging in in-depth discussions on members’ works within the work stream 
forum. 

Figure 10 
Macro-micro interactions timeline 

Source: ECB.  
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The structure of this section is as follows. Subsection 4.1 provides an overview of the uses and role of 
macroprudential stress testing, highlighting the main ECB stress-testing exercises conducted in the past 
five years. Subsections 4.2 and 4.3 succinctly present the BEAST model and two of the amplification 
mechanisms that the work stream focused on (real economy feedback loop and funding/solvency 
feedback loop). Subsection 4.4 gives an overview of the four conducted pilot exercises, while subsections 
4.5 and 4.6 discuss each of them in more detail, with more emphasis put on the COVID-19 dummies and 
treatment of shock periods, and the modelling of lending dynamics with a one-equation approach. 

4.1 Uses and role of macroprudential stress testing 
 
The primary objective of macroprudential stress testing is to provide a framework for assessing 
the resilience of the banking system. Macroprudential stress testing aims to determine whether the 
banking system can withstand shocks and whether there is a risk of amplification. Unlike standard 
microprudential stress tests that focus on individual banks, macroprudential stress tests examine the 
banking sector as a whole and assess the system’s ability to handle stress without disrupting credit flow 
to the real economy. 
 
A complementary goal of macroprudential stress testing is to enhance the understanding and 
measurement of systemic risk. It offers insights into the economic rationale behind observed and 
projected developments in both the banking system and the real economy. To achieve this, 
macroprudential stress testing must consider various specific features, such as the endogeneity of risk, 
the potential for systemic risk amplification through feedback loops affecting the real economy or contagion 
within the financial sector, non-linearities and strategic decision-making processes. 
 
Furthermore, macroprudential stress testing can be used for ex ante impact assessments of 
macroprudential policies and other regulatory interventions. This is possible because 
macroprudential stress-testing models encompass the relevant transmission channels. For example, 
these models should capture banks’ reactions to changing capital requirements and the systemic risk 
transmission channels that macroprudential policies aim to address. By incorporating elements like 
coordination failures between banks and banks’ behavioural responses to shocks (such as de-risking or 
deleveraging), macroprudential stress testing allows for the evaluation of the necessity and impact of 
regulatory interventions, such as the calibration of countercyclical capital buffers. 
 
Table 10 provides a summary of the macroprudential stress-testing exercises conducted within 
the ECB’s macroprudential modelling framework over the past four years. The introduction of the 
new model framework, BEAST, occurred alongside the 2018 EU-wide stress-testing exercise. This 
exercise utilised a dynamic balance sheet perspective and incorporated the real economy-banking sector 
feedback loop. Subsequently, macroprudential stress-testing exercises were conducted in 2021 and 2022 
using the BEAST model. The BEAST model has also been employed for regular banking sector analysis 
under adverse and baseline scenarios as part of the Financial Stability Review. In 2021, amidst the COVID-
19 pandemic, the macroprudential stress test considered the implementation of various supervisory and 
government mitigation policies. This acknowledgement of the exceptional circumstances allowed for a 
comprehensive assessment of the resilience and stability of the banking sector in the face of the pandemic 
and the measures put in place to mitigate its impact. More recently, the macroprudential stress-testing 
framework has also been utilised to examine the interactions between monetary policy changes and 
financial stability. Specifically, a growth-at-risk and inflation-at-risk approach has been employed to 
forecast potential risks and their impact on the banking sector over a one-to-three-year period. 
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Table 10 
Applications of macroprudential stress tests conducted through the lens of the BEAST model 
 Main stress test policy exercises Description Sources 

2018 Macroprudential stress test 
Prepared on the back of the 2018 EU-wide stress test, 
employing the dynamic balance sheet perspective and 
introducing the real economy-banking sector feedback loop. 

Published as Budnik 
et al. (2019) and 
Budnik (2019) 

2019 
Baseline and adverse scenario 

analysis in the Financial Stability 
Review 

A stand-alone scenario analysis employing September 2020 
ECB staff projections as a baseline and native adverse scenario 
selection methods to reflect conjectural risks. 

Published as ECB 
(2019) 

2020 Macroprudential stress test 
Prepared on the back of the 2020 SSM vulnerability analysis 
and enriched with the solvency-funding costs feedback loop, 
taking account of COVID-19 mitigation policies and NPL 
coverage expectations. 

Published in Budnik 
et al. (2021a) 

2020 
Pilot macroprudential climate 

stress 
test 

The first ECB approach to model the impact of climate transition 
policies on the banking sector. 

Published in ESRB 
(2020); see also 
Budnik et al. (2022a) 

2021 Macroprudential stress test 
Prepared on the back of the 2021 EU-wide stress test, with 
improved modelling of non-standard monetary policy 
transmission mechanisms. 

Published as Budnik 
et al. (2022a); see 
also Budnik and 
Groß (2021) 

2022 Baseline and adverse scenario 
analysis 

A stand-alone adverse scenario analysis employing June 2022 
ECB staff projections and native scenario selection methods to 
reflect risks stemming from the Russian invasion on Ukraine. 

 

 
Regular assessment of the macro 

at risk to support the monetary 
policy process 

Quarterly evaluation of the one-to-three-year-ahead growth-at-
risk and inflation-at-risk forecasts to assess changes in financial 
stability. 

 

2022 Interest rate sensitivity analysis 
Assessment of the impact on the banking sector of the two 
interest rate scenarios, implying a parallel shift of the euro area 
yield curve or its steepening. 

Published as Budnik 
et al. (2022b) 

Source: ECB.  
 
To meet the expectations of an effective macroprudential stress test, the underlying modelling 
framework should fulfil several prerequisites. First, it should provide a comprehensive assessment of 
the stability of the entire banking sector, rather than focusing solely on individual institutions. Further, it 
should allow banks to adjust their balance sheet in line with the economic scenario, since such 
mechanisms play an important role in amplifying systemic risk. Thus, the model should explicitly 
incorporate the behavioural reactions of banks, including potential non-linearities. Furthermore, the 
framework should incorporate selected mechanisms that contribute to the build-up or propagation of 
systemic risks. This may involve capturing feedback loops between the banking sector and the real 
economy or interactions among banks. 
 
The work stream also discussed other operational requirements for macroprudential stress 
testing. Building a new macroprudential stress-testing framework involves addressing trade-offs between 
the desire for consistency, micro-foundations and data fit and capturing relevant details (sufficient level of 
granularity), while maintaining a manageable level of complexity. Second, to ease effective communication 
of the macroprudential stress test, a model should be able to provide an economic narrative. The 
communication of a macroprudential stress test can become a potent policy tool, and modelling 
frameworks that can provide such a narrative behind the results are often favoured by policymakers and 
practitioners. 

4.2 The BEAST model 
 
The BEAST model is a comprehensive semi-structural model designed to assess the resilience of 
the euro area banking system from a macroprudential perspective. It combines the dynamics of 
approximately 90 major euro area banks with the economies of 19 euro area countries. The BEAST model 
employs a semi-structural approach, integrating empirical and structural elements within a single system. 
 
The model provides a detailed representation of both sides of banks’ balance sheets and their 
profit and loss accounts to accurately capture the diversity among banks. On the asset side, the 
model distinguishes between different loan portfolios, equity exposures and securitised portfolios. It also 
incorporates the three IFRS 9 asset impairment stages and tracks risk weight developments. The liability 
side of the balance sheet captures equity dynamics as well as the dynamics of wholesale and retail 
funding. For each bank, the model breaks down profitability and solvency dynamics, considering the 
impact of credit, market and operational risks, NII and dividend payouts. 
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A significant portion of the model consists of equations that translate scenarios into the impact 
on banks’ balance sheets and profitability. These equations are derived from microdata-based bank 
sensitivities, which assess the effect of macro-financial variables on flows between the three IFRS 9 asset 
impairment stages, loss given default and loss rate parameters, risk weights, revaluation losses, funding 
costs and NFCI. These equations share similarities with the top-down models described in Section 3. 
 
Additional bank-level equations within the model capture banks’ behavioural responses (Figure 
11). Banks adjust their lending volumes, loan pricing, profit distribution policies and liability structure in 
response to changes in general economic conditions, considering their own financial situation. Their 
lending decisions are influenced by their capital targets, which are determined by regulatory capital 
requirements and buffers. Other factors affecting lending, dividend distributions and loan pricing include 
asset quality, profitability and funding structures. Banks follow a pecking order in their funding composition, 
tapping retail and institutional deposits first, followed by the wholesale market. On the wholesale market, 
they can either secure funding by posting collateral at a rate close to the risk-free rate or issue unsecured 
debt with an additional credit spread. The model’s bank-level equations, capturing both parameter 
sensitivities and behavioural responses, are derived empirically based on different bank-level or 
transaction-level datasets. 
 
Figure 11  
Schematic illustration of the macro-micro BEAST model 

 
Source: Budnik et al. (2020). 

The macroeconomic module of the BEAST model captures the dynamics of each euro area 
economy, taking into account trade spillovers among them. The model estimates the dynamics of 
individual euro area economies using a structural panel vector autoregressive model with Bayesian 
methods. Long-run priors are introduced to stabilise the long-term dynamics of the system, aligning them 
with long-run trends across the 19 euro area economies. Additionally, there is a block of cross-country 
trade spillovers that link import volumes to foreign demand variables and export prices to foreign price 
variables. This configuration allows for a reduced-form multi-country set-up, providing a description of the 
real economy. 
 
The BEAST model integrates all macro-financial and bank-level equations and solves them as one 
system. This approach ensures internal consistency and enables simultaneous feedback mechanisms. 
Moreover, the model can generate confidence forecasts of macroeconomic and banking sector conditions. 
Its semi-structural design allows for the incorporation of various sources of information available during 
the forecast-building process. This includes the most recent macroeconomic data as well as detailed 
information on banks’ balance sheets and profit and loss accounts. The model can also incorporate 
forward-looking information, such as ECB staff macroeconomic projections of macro-financial variables 
for up to three years and information about upcoming macroprudential and supervisory policies. 
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4.2.1 The banking sector-real economy and solvency-liquidity feedback loops 

The BEAST model incorporates two macro-financial amplification mechanisms, with a particular 
focus on the feedback loop between the banking sector and the real economy. Figure 12 illustrates 
the steps involved in both feedback loops. Regarding the banking sector-real economy feedback loop, 
macroeconomic shocks initially affect the real economy, leading to changes in economic conditions. These 
changes, in turn, affect the quality of bank assets and credit demand conditions. Based on the adjustments 
to their balance sheets, banks have the ability to rebalance their assets, modify prices and adjust liabilities. 

The central element of the banking sector-real economy feedback loop lies in the actions taken by 
banks to rebuild their capital levels. In normal economic conditions, banks typically align their credit 
volumes and interest rates with changes in aggregate credit demand. However, in adverse economic 
conditions, banks strive to restore their capital levels, and factors influencing credit supply become more 
significant. In these cases, negative credit supply shocks can emerge, exacerbating the initial macro-
financial shocks and further worsening the economic outlook. The banking sector and the real economy 
continuously interact with each other, although they are discussed separately for clarity. The model 
incorporates this feedback loop by aggregating the non-linear elements of bank credit supply responses, 
representing excessive deleveraging, and translating them into a credit supply shock that affects the euro 
area economies.  

Figure 12 
Schematic illustration of BEAST’s main amplification mechanisms: the real economy-banking sector and 
solvency-liquidity feedback loops 

Source: Budnik et al. (2021a).  

Another amplification mechanism in the BEAST model is the funding-solvency feedback loop. 
When a bank experiences a negative shock to profitability, its solvency position becomes weaker. Higher 
levels of leverage make the institution more susceptible to default risk, resulting in an increase in its credit 
spread on unsecured funding. As unsecured wholesale funding becomes more expensive, it raises the 
bank’s interest expenses. This, in turn, has an adverse impact on the bank’s capital by eroding its NII. 
Additionally, the bank passes on a portion of the increased funding cost to its borrowers, resulting in 
reduced demand for new lending and further squeezing the bank’s income base (Schmitz et al., 2017). 
Particularly under adverse macroeconomic scenarios, where risk margins are elevated across the board, 
this funding-solvency feedback loop can have a substantial impact on the financial outcomes of banks. 
Overall, the funding-solvency feedback loop highlights how the interplay between funding costs, 
profitability and solvency can create a reinforcing cycle that affects the stability and performance of banks, 
especially in challenging economic conditions. 
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4.2.2 Stochastic simulations 

An important step in the evolution of the model was its extension to stochastic simulations. This 
extension allows for the exploration of scenario uncertainty by looking at alternative futures of the macro-
financial environment and of the banking sector and selectively assessing developments in the tails of 
distributions. The stochastic simulations also facilitate the assessment of parameter uncertainty, 
encompassing both macro-financial and banking aspects, while providing ranges of uncertainty for model 
results to account for potential limitations in the empirical identification of various model equations. 

Scenario uncertainty is captured by repeatedly drawing values from the distributions of macro-
financial shocks. These distributions are identified during the estimation process of the macro-financial 
block and stored for future reference. Using Monte Carlo draws, values are selected from each shock 
distribution, considering the covariance structure between them, to generate multiple macro-financial 
scenarios. The model offers two approaches for shock selection: parametrised multi-normal distributions 
and bootstrapping methods based on residuals from the macro-financial block. 

Parameter uncertainty is assessed by performing parallel repetitive draws from the distributions 
of model parameters. Similar to macro-financial shocks, these parameter distributions are identified and 
stored alongside the mean estimates during the estimation process. Parameter draws are conducted 
separately for the macro-financial block and the banking block. In the former, the draws account for the 
covariance structure among parameters describing the dynamics of each individual euro area country, 
while in the latter, they consider the covariance structure of parameters within the same model equation, 
such as bank lending or interest rate equations. 

Stochastic simulations offer great versatility and can be applied to various scenarios. They can be 
employed around predetermined scenarios, while additional functions like pruning help to focus on 
economically viable simulations. Pruning involves examining simulated paths at each time point during the 
simulation and removing unstable ones. Stochastic scenario selection procedures enable the choice of 
simulation families with shared economic narratives, such as economic booms or recessions, housing 
market trends or market liquidity pressures.  

4.2.3 The role of frictions in modelling the banking sector 

The model incorporates two feedback loops involving the banking sector, the zero lower bound 
condition for money market interest rates and other non-linearities in the banking block. These 
elements contribute to the richness of the model’s mechanics. To understand their relative roles in 
generating model dynamics, stochastic simulations are conducted, comparing the resulting distributions 
of variables of interest with different frictions selectively included or excluded. Specifically, the analysis 
focuses on the real economy-banking sector feedback loop, the solvency-liquidity feedback loop and the 
zero lower bound condition. Close to or at the zero lower bound, the propagation of different shocks, 
including monetary policy, in the macro-financial system can be substantially affected (Brunnermeier and 
Koby, 2018; Eggertsson et al., 2019; Darracq Pariès et al., 2023). For instance, the transmission of market 
interest rates to bank deposit rates and therefore to banks’ funding costs can be significantly hampered.  

The role of different frictions and other non-linearities in the model can be assessed by model 
stochastic simulations. The benchmark simulations include only non-linearities related to economic 
reasonability, for example the impossibility of issuing negative new loans and regulatory limits, such as the 
non-linear formulas for risk weights and gradually tightening maximum distributable amount restrictions. 
Panel a) of Chart 33 depicts the distribution of average annual lending growth over the eight-year horizon 
in benchmark simulations. The distribution exhibits subtle positive skewness and somewhat shorter tails 
compared with a normal distribution. 
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The feedback loop between the real economy and the banking sector shifts the distribution to the 
left and increases its variance. The skewness of the distribution turns subtly negative. The addition of 
the funding-solvency feedback loop has a moderate and intuitive impact on the average annual lending 
distribution. It further increases its variance, restores the skewness to its initial positive position and 
thickens the tails. Lastly, the inclusion of the zero lower bound restriction subtly increases the mean and 
reduces the variance of the distribution. The variance of the distribution remains significantly higher than 
in the benchmark case, while its tails become even thinner than in the benchmark. Overall, it is the real 
economy-banking sector feedback loop that has the most substantial effect on lending dynamics. 

Chart 33 
Growth of average annual euro area lending to the non-financial private sector and the CET1 capital ratio 
in an eight-year-ahead model solution 

a) Lending – annual average growth 2022-2030

(Percentages) 

b) Aggregate CET1 ratio – distribution at the end of
the horizon (Q4 2023)
(Percentages of risk weighted amounts) 

Source: ECB calculations. 
Notes: Benchmark: results from the model version without additional frictions, i.e., no real economy-financial sector feedback loop, no solvency-
funding feedback loop and no zero lower bound. Only_FDL: results from the model version with real economy-financial sector feedback loop 
only. FUNSOLV: results from the model version with the real economy-financial sector feedback loop and solvency-funding feedback loop. 
Full_Default: model version with all three frictions included. 

The real economy-banking sector feedback loop also has a significant impact on the distribution 
of the solvency rate. Panel b) of Chart 33 presents the average euro area CET1 rate at the end of the 
eight-year simulation horizon. The benchmark CET1 ratio distribution is relatively strongly and 
symmetrically centred around its mean, which reflects strong bank solvency rates still boosted by policies 
implemented during the COVID-19 pandemic. However, the introduction of the real economy-banking 
sector feedback loop shifts the mean of the distribution to the left, brings about a clear negative skewness, 
sharply increases the variance and thickens the tails of the distribution. Other frictions have a much less 
pronounced impact on the solvency distribution. The funding-solvency feedback loop amplifies the effects 
of the real economy-banking sector feedback loop, while the zero lower bound slightly narrows the CET1 
ratio distribution. Overall, tracking the changes in solvency distributions confirms the role of macro-
financial frictions in amplifying scenario adversity and speaks to the ability of a macroprudential stress-
testing model to provide more conservative estimates of solvency while accounting for these frictions. 
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4.3 Towards the workhorse model 
 
BEAST originated as the first semi-structural macroprudential stress-testing model for the euro 
area banking sector. Its objectives were twofold. First, to establish a new ECB framework for 
macroprudential stress testing that emphasised the feedback loop between the real economy and the 
banking sector while acknowledging the heterogeneity of banks. Second, to explore the extent to which a 
semi-structural set-up can support assessments of financial stability, leveraging its demonstrated 
advantages in inflation forecasting. In both endeavours it followed earlier works by Kitamura et al. (2014) 
for Japan and Krznar and Matteson (2017) for Brazil, and preceded that of Catalán and Hoffmaister (2020) 
for Indonesia. All of these authors developed practical semi-structural policy models for stress testing a 
country’s banking system. The major difference between their approaches and BEAST was the latter’s far 
richer level of granularity and its acknowledgement of banks’ international activities. The initial application 
of BEAST to macroprudential stress testing occurred only six months after its development began, which 
demonstrated its ability to deliver on its fundamental promise. The first macroprudential stress test in 2018 
provided estimates of the amplification that would have occurred under an adverse scenario and delved 
deeper into the heterogeneous lending and solvency dynamics across banks. 
 
About a year after its inception, the concept of expanding BEAST and gradually developing it into 
a workhorse model started to take shape (Figure 13). The notion of a workhorse model was borrowed 
from the practices of forecasting and monetary policy departments in central banks. It refers to a model 
that is extensively applied beyond its primary purpose of inflation forecasting to policy simulations, impact 
assessments and scenario analyses. The path towards establishing BEAST as a workhorse model 
involved iterative adjustments and its application to various analytical problems. 
 
The next step in the model’s development involved its application to cost-benefit assessments of 
regulatory and prudential policies. Evaluating the impact of policies generally entailed conducting 
stochastic simulations using the model. This approach allowed outcomes to be studied in the tails of the 
distributions, capturing at-risk measures and extracting the resilience-building effects of policies. 
Additionally, stochastic simulations facilitated the design of multiple counterfactual scenarios, such as 
prospective future recessions where capital buffers would be released. 
 
Figure 13 
Evolution of BEAST towards a workhorse model 

 
Source: ECB authors. 
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Various scenario and sensitivity analyses played a crucial role in validating and expanding the 
model mechanisms of BEAST. For instance, the interest rate sensitivity analysis conducted in 2021 led 
to further improvements in modelling the pass-through of interest rates into banks’ balance sheets from 
the extension of the market risk block. The assessments integrated into the ECB Financial Stability Review 
helped identify both the strengths and limitations of BEAST as a model for forecasting bank profitability, 
enabling benchmarking against numerous other models and the forecasts of individual banks. 
 
The experiences gained from policy and scenario analysis facilitated the application of BEAST to 
novel problem areas, such as measuring macroprudential policy stance or assessing the impact 
of monetary policy on financial stability. While these are still evolving challenges, BEAST, with its 
detailed banking block, capacity to capture the effects of multiple prudential, regulatory and macro-
financial policies, and stochastic set-up, has proven to be a powerful tool for assessing the dynamic impact 
of policies on the tails of distributions or examining specific financial stability risks like fragmentation and 
their relationship to implemented policies. 
 
BEAST serves as a prime example of a model that evolved in response to dynamic and diverse 
policy requirements. This evolution resulted in a framework that is highly flexible and adaptable while 
retaining its original semi-structural set-up with individual banks. From a practical standpoint, BEAST’s 
broad range of applications has justified the investments made in its maintenance and updates, which are 
substantial given the scale of the model. 
 

4.4 Other macroprudential stress-testing frameworks  
The work stream witnessed and discussed the evolution of alternative macroprudential stress-
testing models. Most models follow the modular approach, where existing stand-alone top-down stress-
testing models are put together with a macroeconomic infrastructure and solved sequentially. Almost all 
macroprudential models summarised in Table 11 account for selected dynamic balance sheet aspects and 
can be applied to the study of bank deleveraging in tandem with their solvency and profitability 
developments. At the same time, acknowledging the feedback between the banking sector and the real 
economy is the ambition of only one of the models (Banca d’Italia).  
 
Table 11 
Summary of progress on national models95 

Institution Name Aim Overview and model assumptions 

Banco de 
Portugal 

Model for the 
Assessment of 
Profitability and 

Solvency 
(MAPS) 

Top-down approach 
to assess the 

profitability and 
solvency of the 
largest banking 

groups over a three-
year horizon. 

The model projects the main items of the balance sheet and profit and loss statement 
and the regulatory capital of each banking group, in line with macroeconomic 
projections.  
 
Bank credit and deposit volumes evolve in line with the scenario considered, although 
the model does not account for potential feedback effects between the banking sector 
and the real economy. 

Banque de 
France 

Stress Testing 
Tool Resources 

for Micro and 
Macroprudential 

analysis 
(STORM²) 

A set of models is 
integrated into a 

unique and coherent 
framework in order 

to analyse bank 
resilience both on 

microprudential and 
macroprudential 

levels. 

STORM is composed of a set of econometric and accounting equations that allow for the 
projection of capital ratios conditional on different macroeconomic scenarios. 
Two macroeconomic models complement this core block:  

- a semi-structural model called ALIENOR (Couaillier et al., 2019) is used to 
generate the adverse scenarios. 

- a macroeconomic general equilibrium model inspired by Gerali et al. (2010) 
and estimated on French data (Bennani et al., 2017) is used to assess the 
impact of possible macroprudential activations calibrated on the basis of the 
results of the solvency block of STORM² (e.g., shortfalls in terms of CET1 
ratios). 

Deutsche 
Bundesbank  

Tool to monitor 
potential 

deleveraging in the 
banking system and 

its implication for 
financial stability. 

The tool brings together results from sectoral stress tests relevant for the banking 
system – for example, in the real estate market, financial markets and the corporate 
sector (Barasinska et al., 2019; Falter et al., 2021; Memmel and Roling, 2021). It also 
considers the potential impact of credit substitution, i.e., unused lending capacities of 
sufficiently capitalised banks after the realisation of second-round effects. The tool 
provides a range of possible outcomes regarding deleveraging. 
 
To explicate the importance of macroprudential buffers, the tool allows for two 
alternative assumptions, the use or non-use of macroprudential buffers, in the 
specification of bank lending to non-financial corporations. 

95 The table covers models that were discussed during the work of the Working Group on Stress Testing.  
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Institution Name Aim Overview and model assumptions 

Banca 
d’Italia 

‘Macro’ stress 
testing 

framework 
(MSTF) 

The MSTF aims to 
capture the 

feedback effects 
between the banking 
sector and the real 

economy. 

The macro model serves two purposes: 
- capture the feedback effects between the banking sector and the real economy 
- derive internally consistent projections for variables that are not part of the original
scenario

The top-down model (TDST) follows a modular approach. It relies on a combination of 
different blocks to estimate the impact of a change in macroeconomic conditions on the 
balance sheets and profitability of Italian banks. It involves three types of risks: credit, 
market (including sovereign) and interest income.  

The model incorporates two important assumptions: balance sheet items are supposed 
to remain constant, and a floor is applied to risk-weighted assets. 

Banca 
Naƫională a 
României

Macroprudential 
stress testing 

framework 

The stress-testing framework is comprised of six main modules – credit risk, new loans, 
interest rate margins, fees and commissions (estimated through BMA), market risk and 
operational risk, as well as an external satellite model of interbank contagion. 

The approach is based on realistic assumptions: a dynamic balance sheet hypothesis 
(according to which banks adapt their lending volumes depending on the 
macroeconomic changes), upcoming changes in regulations (e.g., CRR quick fix 
transitional arrangements) and robust estimation of risk parameters. 

Source: ECB.  

4.5 Pilot exercises and other focus areas 
An important part of the work stream’s activities was cross-country analyses of high relevance for 
macroprudential stress testing. The areas of these analyses were identified jointly by the members and 
can be subdivided into works focusing on the macro-financial (macro) and bank-level (micro) analyses. 
Table 12 summarises these pilot exercises, their motivation, methodology applied and main findings.  

To model aggregate macro-financial dynamics, two pilot exercises were carried out. The first 
focused on a distinct dynamic of lending to private households and to NFCs, which can affect the 
identification of credit supply shocks. The second related to the challenges of modelling the exceptional 
magnitude of shocks amid the COVID-19 pandemic. 

The other two pilot exercises revolved around improving the identification of bank lending 
equations by employing national datasets. In the BEAST model, the identification of bank-level loan 
volume equations relies on relatively small datasets, and as a result the model makes strong assumptions 
while combining loan demand and supply factors.96 These data limitations can be overcome by using 
granular national datasets that reflect a longer history of lending by banking institutions. Furthermore, this 
analysis fulfils a number of member institutions’ pressing analytical needs.97 The first, referred to as the 
one-equation approach, was inspired by the corresponding equations in BEAST. However, both loan 
demand and supply factors were included in the same estimation step.98  

96 Equations of bank lending volumes in BEAST are estimated in two stages. In the first stage, one estimates the impact of credit demand factors 
on lending volumes while controlling for the credit supply side. In the second stage, one estimates the impact of credit supply factors while 
controlling for credit demand trends. The resulting equation explaining the overall lending dynamics in BEAST puts together the parameters and 
explanatory variables from the two stages after dropping the cross-referencing control variables. 
97 Although precluded from a multi-country panel study due to confidentiality reasons, work stream members were able to include all relevant 
supply and demand factors within the same model estimation. 
98 This is not possible with the historical samples available to the ECB due to the short horizon of consolidated bank-level reporting information. 
To overcome data shortages, the process of estimating lending dynamics in BEAST separates the impact of credit demand and credit supply 
factors into two equations. The demand-side equation is later reinterpreted as an autoregressive component and the supply-side equation as a 
medium-run relationship. 
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Table 12  
Summary of exercises 

Level Exercise Goal/motivation Methodology Conclusions/findings 

Macro 

Splitting of 
household 
and 
corporate 
lending 
information 
in SVAR 

How can the 
distinction between 
lending to 
households and 
NFCs affect the 
properties of 
identified credit 
supply shocks? 

Single-country structural VARs for selected euro area 
countries (Italy, Germany, France) with main macro-
financial variables (real GDP, HICP, Euribor) and 
different measures of lending volumes and interest 
rates to the non-financial private sector. The structural 
credit supply shocks in each VAR were identified with 
zero and sign restrictions. 

Comparison of impulse response functions between 
SVARs with (i) overall lending volumes and interest 
rates to the non-financial private sector, (ii) household 
lending volumes and interest rates, (iii) corporate 
lending volumes and interest rates to a credit supply 
shock defined on any of the credit definitions. 

The responses to a credit supply shock 
defined for overall and disaggregated 
lending (household and corporate 
lending separately) are similar both in 
shape and magnitude. 

Accordingly, there is no strong 
evidence of potential benefits from the 
inclusion of disaggregated information 
on households’ and NFCs’ lending 
compared with the aggregate (as 
relates to the transmission of credit 
supply shocks). 

Macro 
Factoring in 
of COVID-19 
episode in 
SVARs 

How should the data 
from the pandemic 
period be treated in 
estimates of 
dynamic models?  

Single-country structural VARs99 for selected euro area 
countries (France, Germany, Italy, Spain) with six 
quarterly macro-financial variables (real GDP, HICP, 
Euribor, long-term interest rate, bank loan volumes to 
the private non-financial sector, spread of bank loan 
rate to the private non-financial sector over Euribor). A 
structural credit spread shock identified recursively with 
the credit spread ordered last.100  

Two different approaches to tackle the COVID-19 
episode: (i) homoscedastic Bayesian VAR models 
where COVID-19 observations identified as outliers (by 
inspecting the multivariate regression residuals) are 
dummied out, (ii) Lenza and Primiceri (2022) model 
using a BVAR with stochastic volatility. The VAR 
estimation was expanded with three stochastic 
parameters affecting the volatility of the shocks arriving 
between Q1 2020 and Q3 2020.  
Comparison of impulse responses (i) between the 
model estimated on the data up to Q4 2019, (ii) by 
including COVID-19 data without treatment, (iii) by 
including dummied out COVID-19 data, (iv) and 
applying the Lenza and Primiceri (2020) treatment of 
COVID-19. 

The empirical identification using 
unaltered data from the COVID-19 
period is not useful for macroprudential 
analysis. VAR models that include data 
gathered throughout the COVID-19 
crisis and apply no special treatment to 
these data points produce very 
different inference about an identified 
structural credit spread shock. 

The two approaches, dummying out 
and stochastic volatility, deliver 
structural inferences that are 
comparable to models estimated only 
on pre-COVID-19 data. 

Micro 

Loan volume 
equations 
with loan 
demand and 
supply 
factors 

Simultaneously 
accounting for loan 
demand and supply 
factors while 
modelling bank loan 
volumes 

Univariate bank-level panel equations of lending 
volumes (log differences), separately for consumer, 
mortgage and corporate lending for several EU 
banking sectors (Greece, Lithuania, Croatia, Italy, 
Slovenia, Ireland and Poland). The right-hand variables 
included loan demand business cycle factors (real 
GDP, house prices) and bank-specific loan supply 
factors (profitability, capital adequacy, pricing policy, 
ownership, NPL clean up strategy). 

The country models were estimated twice: with and 
without applying dynamic homogeneity conditions. 

Common patterns of significant inertia 
in lending volumes across countries. 
Heterogenous outcomes regarding the 
significance of different loan supply 
factors, including the impact of bank 
capitalisation. Furthermore, importance 
of country-specific factors in capturing 
loan dynamics, e.g., NPL policies in 
Greece, bank ownership in Croatia. 

In most of the cases, the results of the 
version with dynamic homogeneity 
were close to the results of the 
unconstrained regressions. 

Micro 

Modelling of 
lending 
dynamics 
with one-
equation 
approach 

Modelling of 
simultaneous loan 
volume and pricing 
decisions of banks 

Two-equation panel system of equations with 
mortgage loan volumes and interest rate margins (over 
SWAP rates) as left-hand variables (building on 
Behrendt, 2016). Exogenous variables included a rich 
selection of loan demand and supply factors. Estimates 
were conducted for two euro area banking sectors 
(Austrian and Belgian). 

Estimators (OLS/FE, 2SLS and 3SLS) successively 
applied and the last of them chosen as the benchmark.  

The simultaneous equations approach 
yielded economically meaningful 
results.  
Higher funding costs and higher cost of 
equity (CoE) feed into the price of 
loans. The gross margin is an 
important explanatory variable of loan 
volumes.  
The following variables turned out to 
be other significant determinants of 
higher new mortgage lending: lower 
credit standards, the size of the bank, 
the size of the bank’s management 
buffer above capital requirements (for 
AT: the Tier 1 ratio), the non-bank loan 
concentration (in % TA), lower 
systemic risks.  

Source: ECB.  

99 The analysis relies on homoscedastic Bayesian VAR models with a Minnesota-style prior as in Bańbura, Giannone and Reichlin (2010). The 
number of lags of the endogenous variables included in the VAR (one to four lags) and the choice of the prior tightness hyperparameter 
(lambda=0.1, 0.2… 1) are set by maximising the marginal data density.  
100 This ordering implies that all variables other than the spread are assumed to react to the spread shock only after the initial period. 
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The first pilot exercise explored the implications of potentially different lending dynamics for 
household and non-financial corporates across the business and financial cycles (see also Table 
13). In the BEAST model, the identification of credit supply shocks and the feedback loop between the 
banking sector and the economy relies on an aggregate measure of country-level bank lending to the non-
financial private sector. Separating the two lending sectors could potentially bring to light important cross-
sector and cross-country differences in the transmission of credit supply shocks, which would then 
propagate into the working of the feedback loop. However, the evaluation based on country-level structural 
Bayesian vector autoregression (VAR) models did not show significant differences in model responses to 
credit supply shocks defined for overall and sector-specific lending. The responses obtained from the 
estimation of models with overall lending to the non-financial private sector and those with household or 
corporate lending turned out similar in both shape and magnitude. Accordingly, potential benefits from the 
inclusion of disaggregated information on lending to households and NFCs were not evident.  
 
The other macro-financial pilot study focused on capturing the effect of the COVID-19 period in 
structural VAR models. The COVID-19 pandemic resulted in an unprecedented downturn in euro area 
economies triggered by a combination of extreme demand and supply shocks. The magnitude of COVID-
19 shocks posed the question whether the data from the pandemic period should be treated as 
conventional observations or as outliers distorting the parameter estimates. The existing data history 
included only a few economic crises with little resemblance to the pandemic. The scoping analysis by work 
stream members confirmed that VAR models that included data gathered throughout the COVID-19 crisis 
and applied no special treatment to these data points produced very different inference about an identified 
structural credit spread shock. 
 
The pilot exercise involved estimating simple structural Bayesian VARs with alternative 
approaches to factoring in COVID-19 information. The first approach quantified how unusual the 
COVID-19 observations were and dummied out those identified as outliers in the VAR estimation. The 
identification of outlier observations was informed by inspecting the multivariate regression residuals. The 
second approach followed Lenza and Primiceri (2020) and introduced stochastic volatility for shocks 
occurring between the first and third quarters of 2023. The two approaches that were considered to 
address this issue proved to be almost equally successful. VAR models that included data gathered 
throughout the COVID-19 crisis and applied no special treatment to these data points produced very 
different inference about an identified structural credit spread shock. However, either dummying out 
observations identified as outliers or ex ante allowing for shock volatility to be inflated throughout the 
pandemic delivered structural inferences that were comparable to models estimated only on pre-COVID-
19 data. 
 
The third pilot exercise involved estimating bank-level loan volume equations acknowledging both 
loan demand and supply factors. The determinants of loan volumes were tested separately for 
consumer, mortgage and corporate loans. The country estimates revealed some common patterns but 
also a relatively high cross-country heterogeneity. Among common patterns, a high degree of inertia in 
lending volumes was consistently found in all country studies. Autoregressive terms were in all cases 
positive and significant, and highest for household mortgage lending. Banks’ capitalisation, which has a 
strong and significant impact in the BEAST loan supply equation, had a positive (though not significant) 
impact on lending in Greece and Italy. However, in Lithuania there was the unexpected result that capital 
surplus has an imprint on lending. This reflected the fact that in the Lithuanian banking system lending 
decisions in most cases were not affected by low capital buffers. After the global financial crisis, the 
Lithuanian banking sector became well-capitalised. NPL policies proved to be an important factor in 
explaining loan volume dynamics in Greece, while domestic or foreign bank ownership turned out to be 
relevant for the dynamics of Croatian loans. Altogether, the exercise revealed the need to know and 
recognise challenges of individual banking sectors along with their history.  
 
The final pilot examined the simultaneity of lending volumes and price decisions within the same 
empirical system. The model captured the impact of loan demand and supply on equilibrium volumes 
and interest rates. The simultaneous equations approach yielded economically encouraging results. The 
loan interest rate turned out to be an important explanatory variable of the demand for loan volumes. 
Higher funding costs and the cost of equity had a positive impact on the price of loans and a negative 
impact on loan demand. New mortgage lending depended positively on lower credit standards, the size of 
the bank, the size of the bank’s management buffer above capital requirements, the non-bank loan 
concentration and lower systemic risks. 
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All pilot exercises translated into adaptations of the BEAST model. The conclusions from the first 
pilot exercise supported the identification of credit supply shocks based on the dynamics of lending to the 
non-financial private sector. The other macro pilot exercise led to the inclusion of the COVID-19 episode 
in the estimates underlying the model macro block. The two micro pilots inspired the improvement of bank 
lending equations.  
 
Table 13  
Summary of exercises  

Level Exercise BEAST adaptation 

Macro 
Splitting of corporate and 
household lending 
information in SVAR 

Continued joint treatment of lending to non-financial private sector (without 
distinguishing between household and corporate lending) in the macro block. 

Macro COVID-19 dummies and 
treatment of shock periods 

Inclusion of COVID-19 episode in estimates of the macro block, applying the 
identification of outlier periods and the dummying-out method as in the pilot exercise.  

Micro One-system approach for 
loan volume dynamics 

Inclusion of the leverage ratio (next to the risk-weighted bank capital ratio) in bank 
lending volume equations. 

Micro 
Modelling of lending 
dynamics with one-equation 
approach 

Inclusion of (lagged) bank-level interest rates in the bank-level lending volume 
equations (to control for the simultaneity of volume and pricing decisions). Adapted 
specification of loan interest rate equations with more emphasis on the role of the 
average cost of funding and bank leverage.  

Source: ECB.  

4.6 Other focus areas  
 
Not all analyses relevant for macroprudential stress testing could be translated into pilot exercises 
involving coordinated efforts by multiple work stream members. However, the work stream continued 
discussing them, usually drawing on works conducted in member institutions. Table 14 summarises some 
of these activities. In terms of modelling macro-financial dynamics, the topics of interest included capturing 
structural changes in the banking sector leading to the increasing role of market-based finance and 
growing holdings of corporate bonds by banks, and modelling non-linearities. A focus area that resulted in 
changes to the BEAST core modelling platform was multiple experiments with structural shock 
identification.  
 
Regarding the dynamics of the banking sector, a relatively high proportion of the discussions 
resulted in gradual changes in BEAST. Examples of focus areas which ultimately translated into tailored 
adaptations of the model were the relevance of relative risk weights for the substitution of loans between 
sectors and the importance of bank funding structure and costs. The recognition of the latter in particular 
resulted in the far-reaching revision of bank liability structure in the model, the introduction of regulatory 
limits on liquidity and the feedback loop between solvency and liquidity. Less direct inspirations concerned 
the importance of the costs of equity, NPL management and capital thresholds for bank deleveraging 
incentives. All of these considerations were incorporated in BEAST, though not in the full scope initially 
postulated (and tested). 
 
Table 14  
Summary of other priority areas 

Level Exercise Goal/motivation Activities/methodologies considered Conclusions/findings 

Macro 
A broader (than 
lending) 
definition of 
bank credit 

An investment project can 
be funded via a bank loan 
or via a bond purchased 
by a bank. The definition 
of bank lending could 
therefore be expanded 
beyond loans to bonds, 
promissory notes and 
other legal forms of 
exposure. 

Discussions of analytical works on the relevance of 
market-based credit to non-financial corporates, the 
substitution and transmission of shocks to market-
based financing versus loans, and supply and demand 
factors driving corporate bond issuance.  
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Level Exercise Goal/motivation Activities/methodologies considered Conclusions/findings 

Macro 

Identification of 
structural 
shocks by 
different 
combinations of 
zero and sign 
restrictions 

Assessment of the 
robustness of the 
structural shock 
identification strategy in 
BEAST and other 
models. 

The analytical works focused on the identification of 
two shocks in particular: credit supply and standard 
monetary policy. The baseline identification strategy 
for both shocks was extended to consider additional 
zero and sign restrictions while maintaining the same 
set of endogenous variables. For instance, for 
standard monetary policy shocks these were (i) 
positive restriction on equity prices on impact, (ii) 
positive restriction on bank loans on impact, (iii) zero 
restrictions on import volumes and export prices on 
impact, and (iv) positive restrictions on inflation (HICP) 
(Uhlig, 2005) and/or real GDP (Christiano et al., 1996) 
on impact. 

Moderate revisions of the 
identification strategy for 
selected structural shocks in 
BEAST.  

Macro 
Non-linear 
specification of 
the macro block 

Non-linear specification 
could help to generate 
state dependent 
dynamics in crisis times. 

The work stream discussed two alternative 
approaches to modelling macro-financial non-
linearities: local projection methods in VAR models 
with non-linearities related to vulnerabilities (smooth 
transition switching model implemented in Banque de 
France’s STORM) and stochastic volatility. The latter 
approach was tested directly in BEAST with terms 
related to risk indicators. 

The non-linear specifications, 
though highly relevant in 
capturing asymmetries in 
business and financial cycles, 
can – at times – compromise the 
stability of models.  

Micro 

Impact of 
changes in 
relative risk 
weights on 
lending 
decisions of 
banks 

Banks may substitute 
lending in response to 
changes in relative risk 
weights between sectors. 

The loan supply reaction function of banks in the 
BEAST model was extended by adding portfolio-
average relative risk weight information. Additionally, 
the relative risk weights per sector were interacted 
with an indicator variable for a capital shortfall 
realisation to capture the non-linear substitution from 
high-risk weight sectors to less capital-intensive 
sectors. 

Relative risk weights significantly 
enter the loan supply equations 
for household sectors and are 
associated with a negative sign, 
indicating that sectors with 
higher relative risk weights 
experience a reduction in bank 
loan supply, further amplified by 
capital shortfalls. 

Micro 

Varying 
definition of 
regulatory 
capital 
thresholds 
relevant for 
deleveraging  

The initial BEAST 
definition of threshold 
capital requirements does 
not distinguish between 
hard requirements and 
buffers. However, the 
lending reaction of banks 
can be different for 
different capital 
thresholds.  

Testing the hypothesis based on the data proved 
challenging due to the scarcity of data on events 
where banks cut into their hard capital requirements. 
However, the BEAST capital thresholds were revised 
to map the hypothesis on an ex ante basis.  
 

The revision of the BEAST 
capital thresholds resulted in (i) 
banks cutting into their voluntary 
capital buffers (but not into their 
regulatory capital buffers), 
limiting their profit distribution; (ii) 
banks cutting into their 
regulatory capital buffers but not 
into hard requirements, enter a 
non-linear path of deleveraging; 
and (iii) banks cutting into their 
hard requirements, stopping new 
lending. 

Micro Equity financing  

BEAST assumes that 
equity financing is 
costless for banks, while 
evidence suggests that 
equity financing can be 
costlier than debt 
financing.  

The topic was addressed by: (i) revising studies 
measuring cost of equity (CoE) and its relevance for 
lending, and (ii) including a measure of CoE in BEAST 
and re-testing the model properties. In the first step, 
CoE was introduced in BEAST as an endogenous 
variable and a function of – inter alia – dividend 
distributions. In the second step an investigation was 
conducted into how CoE affects banks’ loan supply, 
lending rates and dividend payout adjustments.  

Including CoE in bank lending 
equations in BEAST revealed no 
significant impact on model 
properties.  
 
However, to account for CoE 
considerations in bank lending, 
the lending rates equations were 
augmented with a measure of 
bank leverage, which entered 
them with a negative sign (i.e., 
the higher the bank equity, the 
higher the interest rates). 

Micro 

Consistency 
between asset 
and liability side 
in the BEAST 
model101 

Bank funding can 
significantly affect bank 
lending. 

The modelling of banks’ liability side in BEAST was 
substantially revised and extended. While the volume 
of bank liabilities still largely follows the evolution of 
assets, the supply and cost of different funding 
sources as well as liquidity considerations added in 
the model can meaningfully affect funding structure. 
With a lag, funding structure affects the size and 
composition of assets. 

Banks behaviourally adjust the 
duration and collateralisation of 
wholesale funding in response to 
relative prices for different types 
of wholesale funding, the supply 
of unencumbered assets, and 
regulatory compliance with the 
LCR and the NSFR in the model. 

Micro  

Liquidity 
measures and 
constraints like 
the LCR and 
NSFR 

The LCR and NSFR put 
additional constraints on 
banks’ asset and liability 
management. 

LCR and NSFR measures were added to the model, 
relying on newly available supervisory information. 
Additionally, the model was extended with information 
about encumbrance and available collateral liquidity 
subcategories to enable endogenous modelling of the 
liquidity ratios introduced by the regulator. 

LCR and NSFR were introduced 
in the liquidity management 
module characterising a bank’s 
funding mix across the different 
categories of wholesale funding. 

101 The focus area was described on the basis of the initial BEAST model version, where the liability side was modelled in a simplified fashion 
and – as inherited from the EBA stress test templates – there was no full consistency between asset and liability size and structure.  
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Level Exercise Goal/motivation Activities/methodologies considered Conclusions/findings 

Micro  Management of 
defaulted assets 

NPL management plays a 
significant role in many 
euro area jurisdictions. 

This focus area translated into two streams of work: (i) 
a discussion of the implications of NPL management 
on banks’ lending behaviour (on the back of the pilot 
exercise on lending for Greek banks), also including 
asset sales; and (ii) changes in the BEAST model 
aiming to introduce endogenous write-offs and the 
mechanisms of coverage expectations from the NPL 
guidance. 

The limited availability of data on 
different NPL management 
approaches restricted changes 
in the BEAST model to the 
introduction of endogenous 
write-offs and regulatory 
recommendations (excluding 
NPL sales).  

Source: ECB.  
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5 System-wide stress testing covering banks and 
non-banking financial institutions 

The system-wide stress testing work stream focused on developing models of interactions among 
banks and non-banking financial institutions, with a particular emphasis on financial contagion. 
The work stream acknowledged that during the global financial crisis, interconnectedness and the network 
topology played pivotal roles in the propagation of contagion within the financial system.102 Moreover, the 
growing role of non-banking financial institutions in financing the economy underscored the need for 
stress-testing approaches that consider interdependencies between sectors in the financial system (Hałaj 
and Henry, 2017; Aymanns et al., 2018; Hałaj, 2018; Farmer et al., 2020).103 
 
At the heart of the work stream’s framework was the “Interconnected System-wide stress test 
Analytics” (ISA) model. ISA was designed to monitor the effects of interconnectedness within the 
financial system, drawing on firm-level data. The framework integrates several large granular financial 
databases, input from ECB top-down stress-testing models as well as expertise and input from members, 
EIOPA experts and academics. A year-by-year timeline of its development is shown in Figure 14.  
 
The development of ISA involved two stages. In a first stage up until 2021, development focused on a 
prototype model capturing the interactions between banks and investment funds. These works relied on 
methodologies developed by Montagna and Kok (2016), Covi et al. (2019), Montagna et al. (2020) and 
Fukker and Kok (2021) as well as the investment fund stress-testing model developed by Gourdel et al. 
(2019). The final version of the prototype ISA model was first published in a 2021 ECB working paper and 
then also in Sydow et al. (2024). In 2021 and 2022 the work concentrated on incorporating the insurance 
sector refining existing model mechanisms, as in Fukker et al. (2022). 

 
Figure 14 
ISA development timeline 

 

  
Source: ECB. 
 
ISA’s features, mechanisms and applications are described in the following subsections. These 
subsections first provide a high-level overview of the framework. They then cover ISA’s data, structure, 
purpose, main mechanics, features and, lastly, applications.  

102 See Franch et al. (2024) for a study on the temporal evolution of financial contagion in a network consisting of the banking, shadow 
banking and insurance sectors of 18 advanced economies. 
103 Despite these interconnections, the supervision of the financial sector is divided among different European Supervisory Authorities (ESAs), 
which include the EBA, EIOPA, ESMA and the SSM. System-wide stress-testing tools are still in their infancy. 

Conceptual 
framework (2019)

•All financial sectors
•High-level description

Initial operational 
framework (2020)

•Banks and funds
•Based on data
•Detailed mechanisms
•Full set-up for results 
production

•Application of tool for 
different policy questions

Augmented op. 
framework (2021)

•Insurance sector 
added to the framework

•Improved data consistency
•New detailed mechanisms
•Application of tool for 
different policy questions

Model refinement 
(2022)

•Complete and document liability-
side modelling for insurers

•Bug fixes
•Data cleaning
•Application of tool for different 
policy applications
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5.1 Interconnected System-wide stress test Analytics (ISA) model 
ISA is a dynamic, micro-structural model for system-wide stress testing covering several financial 
sectors. At its core, the model attempts to provide a holistic view of the entire system’s dynamics by 
capturing both first-round and second-round effects arising from direct and indirect exposures, and their 
interactions. To achieve this, the framework relies on three main mechanisms of contagion, each 
accounting for a different class of risk: credit, liquidity and market. More specifically, the model features 
liquidity and solvency interaction, a dynamic balance sheet, an advanced integration of regulatory 
constraints and endogenous market price formation.104  
 
The model consists of relatively independent modules. This modular approach is aligned with the 
objective of maximising the utilisation of existing ECB models and enhances the framework’s adaptability. 
The modular approach accommodates a diverse array of initial shocks and scenarios and facilitates the 
incorporation or removal of additional sectors, countries, risks, behavioural rules and time periods.  
 
The model includes granular firm-level data for euro area banks and investment funds, and 
country-level aggregated data for insurance companies. The use of granular datasets allows the 
balance sheets of banks, insurers and funds to be replicated to include security holdings, fund holdings 
and loan portfolios at counterparty or aggregate level. A representation of these loan portfolios and security 
holdings is shown in Figure 15. This network allows for the study of interconnections among the three 
financial sectors via their holdings of investment fund shares, securities issued by banks and insurers or 
loans to the three sectors. The modelling of the financial system at a granular entity-by-entity level for 
banks and investment funds and a sector-entity level for insurance companies relies on the system’s multi-
layer network structure reconstructed from regulatory reporting data and ISIN-level security holding 
information. The granular approach allows for a detailed depiction of the interaction between different 
layers and channels of the financial system. Moreover, the network effects play a crucial role in amplifying 
or absorbing the impact of systemic events.  
 
Figure 15 
ISA’s exposure networks: loans (left-hand panel) and security holdings (right-hand panel) 

  
Source: ECB. 
Notes: In the left-hand panel, an edge represents a loan from a bank to another entity in each sector. In the right-hand panel, an edge shows that a bank, a fund or an 
insurer holds assets issued by another entity in a given sector. “Credit institutions” refer to sector-specific exposures based on the information covered in the FINREP 
reporting templates, while “banks” represent individual institutions.  
 
  

104 Most importantly, ISA is a readily implementable tool that can be shared with Financial Stability Committee members possessing comparable 
data, ensuring consistent cross-country applications. 
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The main purpose of ISA is to assess the impact of adverse macro-financial scenarios on the three 
modelled sectors, starting from its individual financial entities. Its key features include the possibility 
of disentangling different sources of risk and their contribution as well as the possibility of capturing 
distributional effects through stochastic mechanisms. Figure 16 provides an overview of the main 
mechanisms included in ISA.105 
 
Figure 16 
Model dynamics: ISA framework for banks, funds and insurers 

   
Source: ECB. 
Note: See also Sydow et al. (2024). 
 
The addition of the insurance sector involved the integration of models and mechanisms 
pertaining to the insurance sector along with the inclusion of this sector’s balance sheet data.106 
The insurance sector is represented by 18 country-level euro area company aggregates, which are 
connected to the other two sectors – banks and funds – through the securities they hold. The insurance 
sector draws upon a combination of aggregated balance sheet information, which includes Solvency II 
data collated at country level and combined with highly granular security holdings statistics. Insurance 
corporations are constrained by their solvency capital requirements (no liquidity constraints are 
considered) and engage in asset fire sales if these requirements are breached. 
 
A further refinement of existing model mechanisms is the introduction of a granular price-at-risk 
measure instead of the average market price impact. This enhancement permits the assessment of 
tail risks associated with potential market price fluctuations under varying severity scenarios. Overlapping 
portfolios and investments by financial institutions in common assets may expose these institutions to 
distinct amplification characteristics contingent upon scenario severity and market price sensitivity. 
System-level losses under a scenario at the tail of market sensitivity can be three times larger than those 
incurred under the same scenario but utilising average market price sensitivity (price impact parameters).  
 
The system of banks, insurers and funds is initially shocked following existing practices in sector-
level stress-testing exercises conditional on a set of macro-financial variables. These initial shocks 
can then trigger endogenous reactions by all covered sectors. The initial set of shocks can consist of 
redemptions by investment funds and increased probabilities of default for NFCs, combined with stochastic 
NFC defaults as well as an instantaneous stock and a bond market shock. After initial losses from these 
changes in our system, the following endogenous, model-driven reactions may activate: (i) short-term 
funding withdrawal within the banking system, (ii) reduced access of solvent but illiquid banks to short-
term funding in the interbank market, (iii) redemptions from investment funds driven by liquidity needs, and 
(iv) fire sales of marketable securities at discounted prices.107  

105 A forthcoming ECB working paper titled “Banks and non-banks contagion: liquidity and solvency risk assessed using a network of granular 
bilateral exposure data” (see Sydow et al. 2024) presents several additional features implemented in ISA. Figure 16 shows in a green box the 
latest additions to the model. 
106 See Section 3.6.1 “Interconnectedness and amplification effects following a severe climate risk shock scenario through a system-wide 
perspective” in ECB/ESRB Project Team on climate risk monitoring report (2022). 
107 All these reactions are generally found to lead to additional sizeable losses within the financial system, which are not captured by stress tests 
that adhere to the common assumption of a static balance sheet. Applying a COVID-19 shock scenario developed for the ECB’s vulnerability 
analysis exercise in 2020, combined with end-2019 balance sheet information as a starting point, the presence of funds together with banks in 
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The value added of ISA is to provide sector-specific heterogeneity and institution-specific 
outcomes. The granular approach takes into consideration within-sector heterogeneity, encompassing 
variations in balance sheets that remain unaccounted for within a modelling framework utilising aggregated 
data. In addition, the higher data granularity allows the model to consider better financial frictions and 
inefficiencies, which are otherwise difficult to model in frameworks with representative agents. ISA’s micro-
structural modelling approach permits the evaluation of novel metrics of systemic risk, while at the same 
time providing granular insights into the contribution of individual agents. The model can capture the 
individual contribution of each risk channel to systemic risk, as well as accommodating non-linearities and 
contagion effects that often surpass the capabilities of more conventional methods. ISA’s main features 
are depicted in Figure 17.  
 
Figure 17 
Current features of ISA for all euro area countries 

   
Source: ECB. 
Notes: *EBA: three-year macro-financial scenario. **EIOPA/ESMA: instantaneous shock scenario. 
 
 
 
The model is sensitive to different calibrations, which are currently being optimised. ISA relies on 
estimated parameters borrowed from satellite models or other researchers’ works. These parameters 
include probabilities of default and loss given default, price impact quantiles, surrender shock rates and 
flow-performance coefficients for funds. The 2022 Macroprudential Bulletin explored ISA’s sensitivity to 
various calibrations of price impact quantiles. In the model where price impact is higher, there are also 
higher system losses, primarily driven by second-round market reactions and contributions from 
investment funds. Ongoing efforts are underway to conduct more comprehensive sensitivity checks for the 
calibration of all ISA parameters. 

5.2 Model applications 
ISA employs a system-level perspective, centring on the financial system as a whole and 
consequently minimising the potential for underestimating systemic risk. The model can perform (i) 
a scenario analysis with an impact assessment for the whole financial system or a part of it, (ii) an 
evaluation of regulatory measures at institution and system level, (iii) a study of the role of the 
microstructure of the financial system in amplifying systematic and idiosyncratic shocks, and (iv) an 
estimation of measures of systemic relevance and vulnerability of different financial institutions. So far, ISA 
has been applied to investigate the system-wide impact of climate change, to construct investment fund-
specific stress-testing frameworks and to study the systemic relevance of overlapping portfolios. These 
topics are discussed in more detail in the following paragraphs. 
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ISA supports climate risk scenario analyses. The model was used for the climate risk analyses 
presented in the 2021 ESRB climate report108, the 2022 ECB/ESRB climate report109 and the June 2022 
Macroprudential Bulletin. The 2021 report looks at the impact of the Network for Greening the Financial 
System (NGFS) “orderly transition” and “hot house world” scenarios in the two-sector ISA model. This 
report finds that fire sales of common security holdings and fund share redemptions produce an additional 
decline in banks’ CET1 ratios of 0.9 and more than 1.2 percentage points under the two scenarios 
respectively. The two 2022 applications employ the three-sector ISA framework under the NGFS climate 
scenarios. The NGFS scenarios are translated into probabilities of default on bank loan exposures110 and 
initial asset price revaluations for the security holdings of banks, insurers and funds. These factors are 
subsequently amplified through contagion effects arising from bank solvency defaults and indirect 
contagion through overlapping portfolios. In general, ISA’s application to climate risk finds that losses from 
the NGFS 2050 “disorderly transition” and “no policy change” scenarios are substantially amplified in an 
interconnected financial system of banks, investment funds and insurers. The most substantial contribution 
to overall system losses is from investment funds, followed by the insurance sector and finally banks. 
However, even when acknowledging banks’ interconnectedness with funds and insurers, ISA generates 
loss estimates that are significantly larger than in a system with banks only.  
 
A separate work related to the ISA model describes how stress propagates in a system of funds 
via two contagion layers. The 2022 ECB/ESRB report also discusses a first contagion layer, which 
relates to holdings by other financial institutions of investment funds and changes in the value of shares 
issued by open-end funds that are held by other funds. The second layer consists of overlapping portfolios 
in the secondary market for securities, whereby investment funds may become exposed to common 
shocks but may also affect one another by influencing market prices through sales and purchases. The 
analysis focuses on short-term scenarios, on changes in the values of traded securities and on liquidity 
shocks arising due to redemptions by investors. Investors in “green” funds are found to react less to losses 
and reward funds with more positive flows when they exhibit positive returns. Because funds exhibit a lack 
of differentiation relative to physical risk, the impact of market shocks driven by the information on physical 
risk and by the materialisation of extreme weather events appears significantly more uniform than for 
transition risk. Furthermore, wildfire, water stress and heat stress are tail events that damage investment 
funds the most. Following on from this work, Gourdel and Sydow (2023) introduce a dual view of transition 
and physical climate risk exposures at fund level and elaborate on the relevance of the topology of the 
fund network.111 Table 15 provides an overview of ISA’s main applications. 
 
Table 15 
Summary of ISA’s system-wide stress-testing applications 

 Main stress-testing policy Exercises Description 

2021 
Amplification of climate scenarios in an 

interconnected financial system of banks and 
investment funds (ECB/ESRB Project Team on 

climate risk monitoring, 2021) 

Assessment of system-wide amplification of climate risk by applying 
2050 “orderly transition” and “hot house world” NGFS scenarios to 
ISA (two-sector model).  

2021 
Shock amplification in an interconnected 

financial system of banks and investment funds  
(Sydow et al., 2024) 

Assessment of system-wide amplification by applying VA COVID-19 
scenario to ISA (two-sector model). 

2022 System-wide amplification of climate risks 
(Dubiel-Teleszynski et al., 2022) 

Assessment of system-wide amplification of climate risk by applying 
the 2050 “disorderly transition” NGFS scenario to ISA (three-sector 
model). 

2022 
The macroprudential challenge of climate 

change (ECB/ESRB Project Team on climate risk 
monitoring, 2022) 

Assessment of system-wide amplification of climate risk by applying 
the long-term “net zero” and “delayed transition” relative to “current 
policies” NGFS scenarios to ISA (three-sector model). 

2022 Contagion from market price impact: a price-at-
risk perspective (Fukker et al, 2022) 

Assessment of system-wide amplification by applying different levels 
of redemption shocks to ISA (two-sector model) with a comparison of 
homogenous and heterogenous price impact parameters. 

Source: ECB. 

 

108 See Box 8 “Amplification of climate scenarios in an interconnected financial system of banks and investment funds” in ECB/ESRB Project 
Team on climate risk monitoring (2021). 
109 See “Interconnectedness and amplification effects following a severe climate risk shock scenario through a system-wide perspective” in 
ECB/ESRB Project Team on climate risk monitoring (2022). 
110 Probabilities of default in 2050 are derived from the ECB top-down climate stress test, while projected fund redemptions for 2050 are driven 
by variables such as GDP, carbon emissions, carbon and energy prices and physical risk scores. 
111 See Box 7 “Dual risk in investment fund climate stress testing” in ECB/ESRB Project Team on climate risk monitoring (2022). 
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6 Conclusions 

Stress testing is a continually evolving field. The WGST was established in 2018 to promote 
advancements in top-down stress-testing methods across the European Union and via this channel also 
benefit European bottom-up stress-testing initiatives. Initially, the main challenges revolved around refining 
the approaches developed by the ESRB and the ECB for regulatory stress tests in the financial sector. 
However, over the four years of the WGST’s existence, new challenges emerged due to events such as 
the COVID-19 pandemic, geopolitical conflicts and significant monetary policy changes. Policymakers 
began posing additional questions to stress testers that extended beyond traditional risk analysis, 
encompassing policy assessment and communication support. The WGST adeptly addressed most of 
these challenges before concluding its work at the end of 2022, leaving the stress test modelling field in 
Europe more advanced than ever before. Nevertheless, the work in this area will undoubtedly continue in 
the coming years. 
 
There is a persistent need to enhance the robustness and universality of top-down models. This 
necessitates integrating new datasets as they become available, such as leveraging transaction-level data 
like Anacredit for credit risk modelling or EMIR for market risk modelling. It also involves reconciling 
different datasets, such as COREP and FINREP versus SHS-G information. Additionally, newer statistical 
methods, particularly for capturing non-linearities, should be incorporated into modelling approaches. 
Expanding models to encompass a broader or more granular range of parameters is another area for 
improvement. For example, enhancing the EPIC tool, which supports the market risk top-down 
infrastructure, can provide portfolio-level sensitivities that facilitate the benchmarking process for 
assessing losses from changes in asset prices. Furthermore, the three-sector ISA framework has been 
enhanced to include the modelling of the liability side of insurers and will later be expanded to cover central 
banks, hedge funds, money market funds and pension funds. The improvements allow insurers to more 
realistically assess how their funds will respond to exogenous shocks in bond, equity and property markets. 
 
Enhancing top-down model validation efforts is another crucial aspect of the future agenda. Model 
validation is already well-developed for credit risk IFSR 9 parameters and the BEAST model. It includes 
comparing projections with banks’ own forecasts (ex post) and back-testing against past exercises (ex 
ante). For the BEAST model, it involves evaluating pseudo out-of-sample forecasting properties, long-term 
properties and impulse response functions. Although the validation framework for top-down market risk 
and profitability models is still less advanced, their results are regularly compared with banks’ own 
forecasts. The ideal validation framework for top-down models should incorporate both ex ante and ex 
post elements and be sufficiently automated to facilitate timely model adjustments along with the 
conclusions of validations. For macroprudential models, specific elements such as long-term property 
testing, validation tests using different calibrations and broadly defined impulse responses may also be 
included. 
 
There are also aspects that, although primarily focused on enhancing the stress-testing process, 
benefit top-down modelling. Coordinated efforts to ensure higher-quality stress test submissions from 
banks in bottom-up exercises, and an improved and efficient outlier detection process in the early stages 
of each stress test would have a positive impact on the quality and back-testing validation of top-down 
stress test models. 
 
Furthermore, new policy questions have emerged from the changing environment, including 
climate and cyber risks. These new risks necessitate testing the resilience of the banking system and 
potentially implementing mitigating policies. Recent experience indicates the need for models capable of 
generating multiple scenarios and evaluating their impact. Such models enable the analysis of tail events 
that often remain obscured, providing a more comprehensive assessment of uncertainty across multiple 
dimensions compared with the traditional single-scenario approach. 
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The WGST’s work, alongside numerous models, represents an extraordinary level of cooperation 
between European central banks and supervisory authorities in the realm of stress testing. Stress-
testing methods often face the challenge of being perceived as “black boxes” due to their complexity and 
rapid evolution. This perception is further reinforced by disclosure limitations aimed at preventing 
manipulation by the institutions undergoing stress tests. In this complex field, the WGST played a crucial 
role in demystifying the “black box” through its forum and this publication. It fostered the exchange of data 
and experiences, building trust and a shared understanding of common objectives among stakeholders. 
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8 Appendix 

8.1 Credit risk: expected default rates 
 
The expected default rate (or point-in-time probability of default) model is tailored to provide 
projections that are both country-specific and portfolio-specific. The projections are conditional on 
scenarios and individual banks’ starting points for: 
 

• geographies 𝑐𝑐 including 27 EU countries and 17 non-EU geographies; 
• portfolio segments (asset classes) including non-financial corporate loans collateralised and not 

collateralised by real estate, mortgages, consumer credit and financials. 
 
The projections are calculated following the steps below: 
 

a) Projection of country-specific and portfolio-specific paths of probability of default: For country 𝑐𝑐 
and portfolio segment 𝑠𝑠, the country and portfolio starting points 𝑃𝑃𝐹𝐹𝑐𝑐,𝑠𝑠

𝑇𝑇0,𝑇𝑇𝑇𝑇 (from the free data 
collection at country level) and probability of default multiples (𝑃𝑃𝐹𝐹𝐴𝐴𝑐𝑐𝐹𝐹𝑔𝑔𝑐𝑐,𝑠𝑠

𝑡𝑡,𝑇𝑇𝑇𝑇) are applied to derive 
the top-down projected paths: 
 

𝑃𝑃𝐹𝐹𝑐𝑐,𝑠𝑠
𝑡𝑡,𝑇𝑇𝑇𝑇 = 𝑃𝑃𝐹𝐹𝑐𝑐,𝑠𝑠

𝑇𝑇0,𝑇𝑇𝑇𝑇 ∗ 𝑃𝑃𝐹𝐹𝐴𝐴𝑐𝑐𝐹𝐹𝑔𝑔𝑐𝑐,𝑠𝑠
𝑡𝑡,𝑇𝑇𝑇𝑇 (61) 

 
The superscript 𝑔𝑔 denotes the projection time (in years) spanning the stress horizon (e.g., if 𝐿𝐿0 =
2022, then 𝑔𝑔 ∈ {2023, 2024, 2025}).  
 

b) Conversion of country-level aggregate probabilities of default to distance-to-default measures: 
The country-specific and portfolio-specific paths of probability of default are translated into a 
distance-to-default measure (𝐹𝐹𝐹𝐹):112  
 

𝐹𝐹𝐹𝐹𝑐𝑐,𝑠𝑠
𝑡𝑡,𝑇𝑇𝑇𝑇 =  Φ−1(𝑃𝑃𝐹𝐹𝑐𝑐,𝑠𝑠

𝑡𝑡,𝑇𝑇𝑇𝑇)     (62) 
𝐹𝐹𝐹𝐹𝑐𝑐,𝑠𝑠

𝑇𝑇0,𝑇𝑇𝑇𝑇 =  Φ−1(𝑃𝑃𝐹𝐹𝑐𝑐,𝑠𝑠
𝑇𝑇0,𝑇𝑇𝑇𝑇)     (63) 

 
where Φ−1(. ) is the inverse standard normal cumulative distribution function.  
 

c) Application of distance-to-default measures to bank-specific starting points: The absolute 
changes in distance to default Δ𝐹𝐹𝐹𝐹𝑐𝑐,𝑠𝑠

𝑡𝑡,𝑇𝑇𝑇𝑇 =  𝐹𝐹𝐹𝐹𝑐𝑐,𝑠𝑠
𝑡𝑡,𝑇𝑇𝑇𝑇 –  𝐹𝐹𝐹𝐹𝑐𝑐,𝑠𝑠

𝑇𝑇0,𝑇𝑇𝑇𝑇 are applied to the bank-specific and 
portfolio-specific starting point to obtain the desired projection path for the bank and portfolio 
segment (𝑐𝑐, 𝑠𝑠) as: 
 

𝑃𝑃𝐹𝐹𝑐𝑐,𝑠𝑠
𝑡𝑡,  𝑝𝑝𝑑𝑑𝑛𝑛𝑘𝑘 = Φ(Φ−1(𝑃𝑃𝐹𝐹𝑐𝑐,𝑠𝑠

𝑇𝑇0,𝑝𝑝𝑑𝑑𝑛𝑛𝑘𝑘) +  Δ𝐹𝐹𝐹𝐹𝑐𝑐,𝑠𝑠
𝑡𝑡,𝑇𝑇𝑇𝑇) (64) 

            
 where 𝑃𝑃𝐹𝐹𝑐𝑐,𝑠𝑠

𝑇𝑇0,𝑝𝑝𝑑𝑑𝑛𝑛𝑘𝑘 is the starting point provided by the bank. 
 
There is no starting point adjustment for the sovereign banking book. The outcome of points (a) and 
(b) is applied uniformly for all banks. It is justified by the postulate that there should be no heterogeneity 
in the evaluation of sovereign risk between banks at any point in time. 
  

112 The KMV model, developed by Kealhofer, McQuown and Vasicek in 1974, is an extension of Merton’s model and represents a structural 
approach to calculate distance to default. This is a key indicator in credit risk, estimating the likelihood that a borrower will be unable to meet its 
debt obligations. The empirical translation of distance to default into expected default frequency is proposed by Crosbie and Bohn (2003) and 
Kealhofer (2003). 
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8.2 Top-down tools  
This annex summarises the tools entering the top-down infrastructure and supporting the use of 
top-down models. These tools play a relevant role during the quality assurance process of the EU-wide 
stress tests, comprehensive assessments and other top-down exercises. Each of the following analytical 
tools is discussed in turn: business logic (embedded within Stress Test Accounts Reporting, STAR), 
“IFRS9er” (including the “Pocket IFRS9er”), the ECB Path Generator, “NIIer”, “SHS-G” and “EPIC” tools, 
and model assessment questionnaires. The overall ECB top-down analytical infrastructure is deemed fit-
for-purpose, relatively automated and encompassing a broad range of quality assurance aspects.  

8.2.1 IFRS9er  
The IFRS9er is a Matlab-based tool that generates top-down credit risk projections. It is the main 
credit risk tool that produces the capital impact stemming from loan losses and risk exposure amounts. It 
performs simulations and provides comparative statistics as well as hybrid views on flag impact. 
Additionally, it has been used for further aggregations of stress test results and sensitivity analyses. 
Several ad hoc requests for specific analysis (e.g., revised impact for asset classes and geographies, 
automated production of graphs, etc.) have been accommodated in the developed tools throughout the 
quality assurance phases.  
 
The IFRS9er tool is based on the EU-wide stress test data and ITS supervisory reporting. Data 
objects allow the usage of both starting points and projections, consisting of risk parameters and flow 
projections. The process components can be divided into the following modules:  

1. scenario; 
2. top-down models for (i) IFRS 9 parameters and (ii) risk exposure amount parameters; 
3. business logic, which corresponds to equations flowing risk parameters into balance sheets linked 

to the capital depletion of banks. 
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The IFRS9er can be considered a platform that connects the top-down models and allows a 
sequenced computation to measure the credit risk impacts (Figure 18). Its object-oriented structure 
allows for decoupling from running top-down models, producing benchmarks and data versioning, and 
offers increased speed and scale. Accordingly, the platform allows models to be run with different inputs. 
Additionally, a smaller and user-friendly version of IRFS9er has been developed, “Pocket IFRS9er”. It 
allows users to independently access a series of original IRFS9er functionalities to perform sensitivity 
analyses and provide a peer benchmark view for the portfolio-level parameters. 

 
Figure 18 
Graphical representation of IFRS9er architecture 

 

Template #1

Template #2

Template #3

1xbank
Multiple views and 

cycles

CSV_CR_SCEN & 
CSV_CR_REA*

CSV_CR_SCEN
CSV_CR_REA*

TD view

Efficiency gain

Reporting

In IFRS9er, the user can intervene at each and any stage of the 
process

TD CR models

 
Source: ECB. 
Note: CSV_CR_SCEN and CSV_CR_REA stand for the EBA templates that the main information for the calculation of credit risk impairments and risk exposure amounts 
are provided for respectively.  

8.2.2 Credit risk path generator tool  

The ECB Excel-based Path Generator replicates the methodology and calculations of the top-down 
credit risk models in an Excel file. The ECB Path Generator is a valuable, user-friendly tool shared 
externally with banks (without internal models) to facilitate additional analytical steps in relation to the top-
down credit risk benchmarks. 

8.2.3 NIIer tool 

The NIIer is a Matlab-based tool that generates net interest income projections conditional on a 
macroeconomic scenario. The logic of the NIIer is analogous to that of the IFRS9er. The main building 
blocks of this calculation engine are the macroeconomic scenario, the top-down projections for NII margins 
and the business logic equations linking the projected parameters to the relevant balance sheet and profit 
and loss variables such as total NII, profit and CET1 capital. Granular starting point parameters for 
margins, reference rates and exposures are retrieved from bank’s stress test templates. 
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Users can change scenarios, top-down parameter projections and business logic equations. The 
flexibility of the tool with respect to the scenario and the top-down projections allows the user to answer 
policy-relevant questions outside the scope of the stress test, such as the impact of an increase in interest 
rates on bank’s profitability or the impact of various assumptions on the reference rate pass-through for 
loans and deposits rates. One useful feature of the NIIer tool is that the impact of the top-down projections 
on NII can be disentangled from the impact of the methodological constraints prescribed by the stress test 
methodology. It also generates a decomposition of NII into the main drivers, such as the reference rate, 
the margin or the increase in non-performing exposures. This tool is still being continuously developed 
and improved. 

8.2.4 SHS-G tool 

The SHS-G tool is built upon the database of Securities Holding Statistics by Reporting Banking 
Group (SHS-G) and aims to compute the impact of a scenario on a bank’s granular portfolio of 
direct market exposures (equities, fund shares and bonds). The tool allows the partial revaluation of 
each portfolio item with respect to all the scenario variables that have a direct, first-round effect on its fair 
value, according to the corresponding sensitivities. It can provide a general impact in terms of profits and 
losses on the fair value of the full portfolio, given the single-item revaluation process, and disentangles 
risk drivers according to several possible levels of granularity (e.g., based on the type of instrument or the 
scenario variables). The data preparation process is built upon the following databases. 

1. SHS-G: Provides information on securities held by euro area banks at security level. It covers
the exposures of all significant banking groups under direct ECB supervision, including holdings
of subsidiaries and branches outside the euro area. The perimeter of the database includes debt
securities, listed shares and investment fund units/shares.

2. CSDB: The Centralised Securities Database (CSDB) provides information about instruments,
issuers and prices for debt securities at ISIN-by-ISIN level. This database is used to enrich SHS-
G information and compute item sensitivities.

3. Iboxx: Provides information on fixed income, modified duration and convexity.

The SHS-G tool-based analysis performs a partial revaluation of banks’ exposures reported in the 
SHS-G database. For each ISIN in the database, losses are estimated under a stress test scenario by 
considering four risk areas: interest rate risk, credit risk, equity risk and FX risk. To fully capture the 
heterogeneity among instruments, shocks are applied at the highest level of granularity (single contract 
level) by considering the characteristic of the ISIN available via CSDB and Iboxx.  

The losses related to interest rate and credit risk factors take into account the modified duration 
and convexity of the contract, while losses related to the market price of equity or foreign exchange 
are a linear function of initial shocks. For the interest rate risk, a shock is applied for each currency and 
set of residual maturities. To achieve this, each item is assigned to a maturity bucket and the corresponding 
modified duration and convexity are computed, based on CSDB and Iboxx data. Similarly, for credit risk, 
the counterparty sector (sovereign, financial companies, non-financial companies), its credit worthiness113 
and the contract’s residual maturity are considered. Finally, the impact for a given security is calculated at 
ISIN level as:  
𝑝𝑝𝐴𝐴𝑠𝑠𝑠𝑠𝑐𝑐𝑔𝑔{𝑖𝑖𝑛𝑛𝑡𝑡𝑑𝑑𝑝𝑝𝑑𝑑𝑠𝑠𝑡𝑡 𝑝𝑝𝑑𝑑𝑡𝑡𝑑𝑑,𝑐𝑐𝑝𝑝𝑑𝑑𝑑𝑑𝑖𝑖𝑡𝑡} =  𝐴𝐴𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠𝑔𝑔 𝐺𝐺𝑠𝑠𝐹𝐹𝑐𝑐𝑠𝑠 ∙  (𝐴𝐴𝐹𝐹𝑠𝑠𝑝𝑝𝑜𝑜𝑝𝑝𝑠𝑠𝑠𝑠 𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑔𝑔𝑝𝑝𝐹𝐹𝐺𝐺 ∙ 𝑠𝑠ℎ𝐹𝐹𝑐𝑐𝑘𝑘 + 0.5 ∙ 𝑐𝑐𝐹𝐹𝐺𝐺𝐺𝐺𝑠𝑠𝑁𝑁𝑝𝑝𝑔𝑔𝑃𝑃 ∙ 𝑠𝑠ℎ𝐹𝐹𝑐𝑐𝑘𝑘2)      (65)

𝑝𝑝𝐴𝐴𝑠𝑠𝑠𝑠𝑐𝑐𝑔𝑔{𝑑𝑑𝑞𝑞𝑑𝑑𝑖𝑖𝑡𝑡𝑦𝑦,𝑑𝑑𝑥𝑥} =  𝐴𝐴𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠𝑔𝑔 𝐺𝐺𝑠𝑠𝐹𝐹𝑐𝑐𝑠𝑠 ∙ 𝑠𝑠ℎ𝐹𝐹𝑐𝑐𝑘𝑘   (66) 

113 The credit worthiness is expressed in EBA credit quality steps. 
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8.2.5 EPIC tool

The EPIC tool114 is built upon the EMIR115 derivatives database and aims to reprice items in the
entity’s derivatives portfolio, also providing their sensitivities to each corresponding risk factor.
Eventually, the computation of sensitivities also allows the revaluation of items’ fair value according to one
or multiple scenarios. The tool is in continuous development to accommodate challenges posed by:

• the database (i.e., misreporting issues, scope of the reporting framework);
• the scope (i.e., pricing of more complex and exotic instruments);
• the performance (i.e., increasing the efficiency of the tool considering the extensive data

available).

Currently,  the  EPIC  tool  allows  for  the  analysis  of  interest  rate  derivates  (interest  rate  swaps,
forward rate agreements) and contracts with underlying equity/commodities (European options,
futures). Although these items already cover a major portion of banks’ derivative portfolios, instruments
that  are  still  not  in  the  scope  need  to  be  considered  (CDS  contracts,  exotic  options,  inflation-linked
derivatives, foreign exchange derivatives, etc.).

The EPIC tool  provides various outputs  based on the revaluation of single  items. It  calculates a
measure of liquidity risk on the derivative portfolio by estimating variation margins dependent on scenario
realisations,  provides  the  option  of  distinguishing  different  risk  drivers  and  aggregates  the impact
according to different levels of granularity (e.g., based on the type of instrument, the underlying asset class
or the scenario variables). The risk drivers considered in this context are risk-free rates, government and
corporate bond yields, stock market values and exchange rates. Through the same rationale as the SHS-
G tool, the EPIC methodology is ultimately meant to frequently update portfolio sensitivities and partially
revaluate portfolio items.

The relevance of the EPIC tool goes beyond the stress-testing exercise, as it is also an instrument
for the daily monitoring of portfolio strategies and emerging risks. Due to the high frequency of EMIR
data (daily reporting) and their high granularity (especially by instrument and underlying asset class), EPIC
allows a 360° overview of banks’ derivative portfolio composition.

8.2.6 Model questionnaires

The model assessment questionnaires include the supplementary technical information provided
by banks on their models. The use of model assessment questionnaires by top-down teams is key to
supporting the quality assurance process. Less conservative bank projections are often justified by bank
model deficiencies, therefore enabling the top-down credit team to substantiate the ECB challenger view.

114 EMIR repricing tool.
115 European Market Infrastructure Regulation.
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