

Discussion of Arias, Caldara, Rubio-Ramirez: The systematic component of monetary policy in SVARs: an agnostic identification procedure

Raffaella Giacomini

UCL

What the paper does

- A nice paper on an important topic that takes identification seriously

The take-away message

- Analysis of the effects of monetary policy shocks in SVARs crucially depends on identifying restrictions

The take-away message

- Analysis of the effects of monetary policy shocks in SVARs crucially depends on identifying restrictions
- Moving away from traditional identification based on questionable causal ordering restrictions can generate "puzzles"

The take-away message

- Analysis of the effects of monetary policy shocks in SVARs crucially depends on identifying restrictions
- Moving away from traditional identification based on questionable causal ordering restrictions can generate "puzzles"
 - ① Price puzzle: price level \uparrow when policy rate \uparrow

The take-away message

- Analysis of the effects of monetary policy shocks in SVARs crucially depends on identifying restrictions
- Moving away from traditional identification based on questionable causal ordering restrictions can generate "puzzles"
 - 1 Price puzzle: price level \uparrow when policy rate \uparrow
 - 2 Liquidity puzzle: monetary aggregates \uparrow when policy rate \uparrow

The take-away message

- Analysis of the effects of monetary policy shocks in SVARs crucially depends on identifying restrictions
- Moving away from traditional identification based on questionable causal ordering restrictions can generate "puzzles"
 - 1 Price puzzle: price level \uparrow when policy rate \uparrow
 - 2 Liquidity puzzle: monetary aggregates \uparrow when policy rate \uparrow
 - 3 Output puzzle: output \uparrow when policy rate \uparrow

The take-away message

- Analysis of the effects of monetary policy shocks in SVARs crucially depends on identifying restrictions
- Moving away from traditional identification based on questionable causal ordering restrictions can generate "puzzles"
 - 1 Price puzzle: price level \uparrow when policy rate \uparrow
 - 2 Liquidity puzzle: monetary aggregates \uparrow when policy rate \uparrow
 - 3 Output puzzle: output \uparrow when policy rate \uparrow
- Paper shows that one need not throw the baby out with the bathwater:

The take-away message

- Analysis of the effects of monetary policy shocks in SVARs crucially depends on identifying restrictions
- Moving away from traditional identification based on questionable causal ordering restrictions can generate "puzzles"
 - 1 Price puzzle: price level \uparrow when policy rate \uparrow
 - 2 Liquidity puzzle: monetary aggregates \uparrow when policy rate \uparrow
 - 3 Output puzzle: output \uparrow when policy rate \uparrow
- Paper shows that one need not throw the baby out with the bathwater:
 - Imposing (zero and sign) restrictions only on the policy equation is enough to remove all three puzzles

The econometric challenges

- Set-identification of impulse responses

The econometric challenges

- Set-identification of impulse responses
- Paper addresses computational challenge: how to obtain Bayesian estimates of set-identified impulse responses using priors that are "conditionally agnostic" (on the reduced form parameters)

What is great about the paper

- Useful general method for flexible use of identifying restrictions

What is great about the paper

- Useful general method for flexible use of identifying restrictions
- Potential for greater understanding effect of choice of identifying restrictions on policy conclusions and overturning conventional wisdom

What could go wrong...

- "Problems" of standard Bayesian inference in set-identified models

What could go wrong...

- "Problems" of standard Bayesian inference in set-identified models
 - Poirier (1998): priors in set identified models not updated and thus can entirely drive inference

What could go wrong...

- "Problems" of standard Bayesian inference in set-identified models
 - Poirier (1998): priors in set identified models not updated and thus can entirely drive inference
 - Baumeister and Hamilton (2014): apparently agnostic priors (such as those in this paper) can be unintentionally informative for the object of interest (e.g. impulse-response)

The econometric set-up

- n-variable SVAR:

$$A_0 y_t = a + \sum_{j=1}^p A_j y_{t-j} + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, I_n),$$

The econometric set-up

- n-variable SVAR:

$$A_0 y_t = a + \sum_{j=1}^p A_j y_{t-j} + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, I_n),$$

- Reduced-form VAR:

$$y_t = b + \sum_{j=1}^p B_j y_{t-j} + u_t, \quad u_t \sim \mathcal{N}(0, \Sigma)$$

$$\text{where } \Sigma = \Sigma_{tr} \Sigma'_{tr} = A_0^{-1} (A_0^{-1})'$$

The econometric set-up

- n-variable SVAR:

$$A_0 y_t = a + \sum_{j=1}^p A_j y_{t-j} + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, I_n),$$

- Reduced-form VAR:

$$y_t = b + \sum_{j=1}^p B_j y_{t-j} + u_t, \quad u_t \sim \mathcal{N}(0, \Sigma)$$

$$\text{where } \Sigma = \Sigma_{tr} \Sigma'_{tr} = A_0^{-1} (A_0^{-1})'$$

- Reduced-form parameters are $\phi = (B, \Sigma)$

The econometric framework

- Invert VAR into $MA(\infty)$ (restrict ϕ to ensure invertibility)

$$y_t = c + \sum_{j=1}^{\infty} C_j(B) A_0^{-1} \epsilon_t$$

The econometric framework

- Invert VAR into $MA(\infty)$ (restrict ϕ to ensure invertibility)

$$y_t = c + \sum_{j=1}^{\infty} C_j(B) A_0^{-1} \epsilon_t$$

- Impulse-response of variable i to shock j at horizon h is

$$r_{ij}^h = [C_h(B) A_0^{-1}]_{ij}$$

The impulse-response identified set

- Without identifying restrictions, knowledge of the reduced form parameter ϕ gives a set of observationally equivalent A'_0 s

$$\{A_0 = Q'\Sigma_{tr}^{-1}\},$$

with Q ranging over space of all orthonormal matrices \mathcal{O}

The impulse-response identified set

- Without identifying restrictions, knowledge of the reduced form parameter ϕ gives a set of observationally equivalent A'_0 s

$$\{A_0 = Q'\Sigma_{tr}^{-1}\},$$

with Q ranging over space of all orthonormal matrices \mathcal{O}

- This corresponds to a set of observationally equivalent impulse-responses $r_{ij}^h \equiv [C_h(B)\Sigma_{tr}Q]_{ij} = r(\phi, Q)$

The impulse-response identified set

- Without identifying restrictions, knowledge of the reduced form parameter ϕ gives a set of observationally equivalent A'_0 's

$$\{A_0 = Q'\Sigma_{tr}^{-1}\},$$

with Q ranging over space of all orthonormal matrices \mathcal{O}

- This corresponds to a set of observationally equivalent impulse-responses $r_{ij}^h \equiv [C_h(B)\Sigma_{tr}Q]_{ij} = r(\phi, Q)$
- The identified set for $r(\phi, Q)$ without restrictions is

$$IS : \{r(\phi, Q), Q \in \mathcal{O}\}$$

The impulse-response identified set

- Without identifying restrictions, knowledge of the reduced form parameter ϕ gives a set of observationally equivalent A'_0 's

$$\{A_0 = Q'\Sigma_{tr}^{-1}\},$$

with Q ranging over space of all orthonormal matrices \mathcal{O}

- This corresponds to a set of observationally equivalent impulse-responses $r_{ij}^h \equiv [C_h(B)\Sigma_{tr}Q]_{ij} = r(\phi, Q)$
- The identified set for $r(\phi, Q)$ without restrictions is

$$IS : \{r(\phi, Q), Q \in \mathcal{O}\}$$

- Imposing identifying restrictions progressively restricts the space of feasible Q 's until $r(\phi, Q)$ is point identified

From "agnostic priors" to "ambiguous priors"

- Giacomini and Kitagawa (2015): use of multiple-prior Bayesian inference (=ambiguous priors) instead of single-prior solves the problem

From "agnostic priors" to "ambiguous priors"

- Giacomini and Kitagawa (2015): use of multiple-prior Bayesian inference (=ambiguous priors) instead of single-prior solves the problem
- In practice: obtain an estimate of the impulse response *identified set* by adding simple optimization step to the algorithm in this paper

The robust Bayes approach

- In a nutshell:

The robust Bayes approach

- In a nutshell:
 - Instead of choosing one prior consider the class of all possible priors for Q

The robust Bayes approach

- In a nutshell:
 - Instead of choosing one prior consider the class of all possible priors for Q
 - This gives a class of posteriors for the impulse response

The robust Bayes approach

- In a nutshell:
 - Instead of choosing one prior consider the class of all possible priors for Q
 - This gives a class of posteriors for the impulse response
 - Summarize this class by reporting posterior mean upper and lower bounds \implies estimator of the identified set

A different conclusion?

- Aruoba & Schorfheide (2011)

$$A_0 \begin{pmatrix} r_t \\ \Delta y_t \\ \pi_t \\ m_t \end{pmatrix} = c + A(L) \begin{pmatrix} r_t \\ \Delta y_t \\ \pi_t \\ m_t \end{pmatrix} + \begin{pmatrix} \epsilon_{rt} \\ \epsilon_{yt} \\ \epsilon_{\pi t} \\ \epsilon_{mt} \end{pmatrix}$$

A different conclusion?

- Aruoba & Schorfheide (2011)

$$A_0 \begin{pmatrix} r_t \\ \Delta y_t \\ \pi_t \\ m_t \end{pmatrix} = c + A(L) \begin{pmatrix} r_t \\ \Delta y_t \\ \pi_t \\ m_t \end{pmatrix} + \begin{pmatrix} \epsilon_{rt} \\ \epsilon_{yt} \\ \epsilon_{\pi t} \\ \epsilon_{mt} \end{pmatrix}$$

- Zero restrictions: 1) r_t does not respond to Δy_t ; 2) contemp. output response to $\epsilon_{rt} = 0$; 3) long-run output response to $\epsilon_{rt} = 0$

A different conclusion?

- Aruoba & Schorfheide (2011)

$$A_0 \begin{pmatrix} r_t \\ \Delta y_t \\ \pi_t \\ m_t \end{pmatrix} = c + A(L) \begin{pmatrix} r_t \\ \Delta y_t \\ \pi_t \\ m_t \end{pmatrix} + \begin{pmatrix} \epsilon_{rt} \\ \epsilon_{yt} \\ \epsilon_{\pi t} \\ \epsilon_{mt} \end{pmatrix}$$

- Zero restrictions: 1) r_t does not respond to Δy_t ; 2) contemp. output response to $\epsilon_{rt} = 0$; 3) long-run output response to $\epsilon_{rt} = 0$
- Sign restrictions: $\frac{\partial r_{t+h}}{\partial \epsilon_{rt}} \geq 0$, $\frac{\partial \pi_{t+h}}{\partial \epsilon_{rt}} \leq 0$, $\frac{\partial m_{t+h}}{\partial \epsilon_{rt}} \leq 0$, for $h = 0, 1$

A different conclusion?

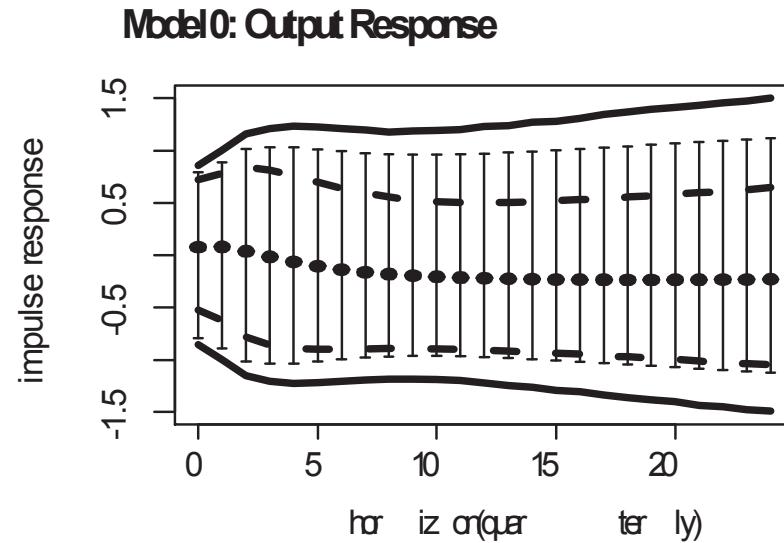
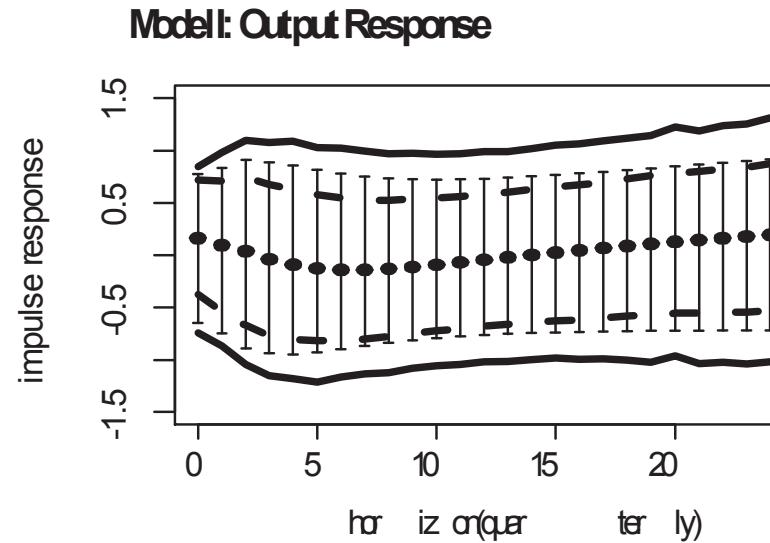
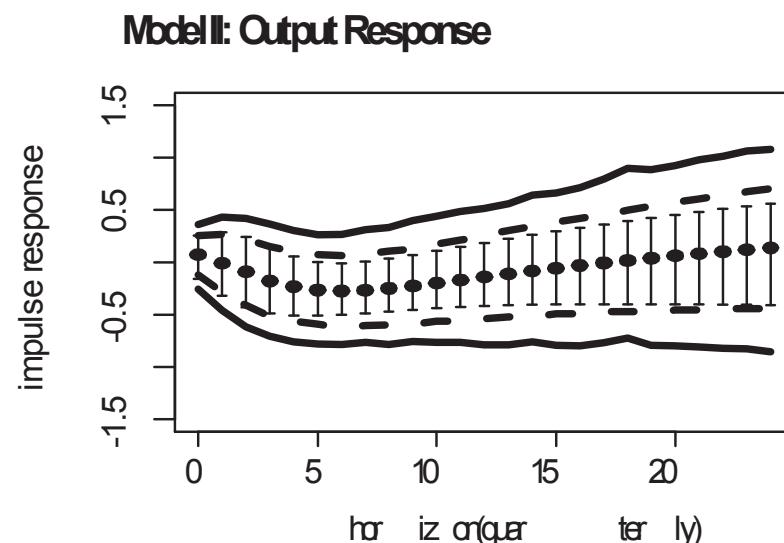
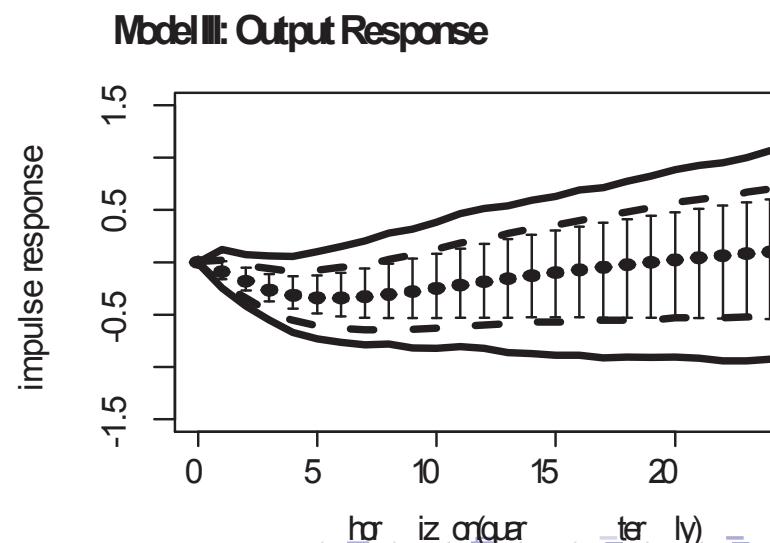
- Different combinations of restrictions

Models

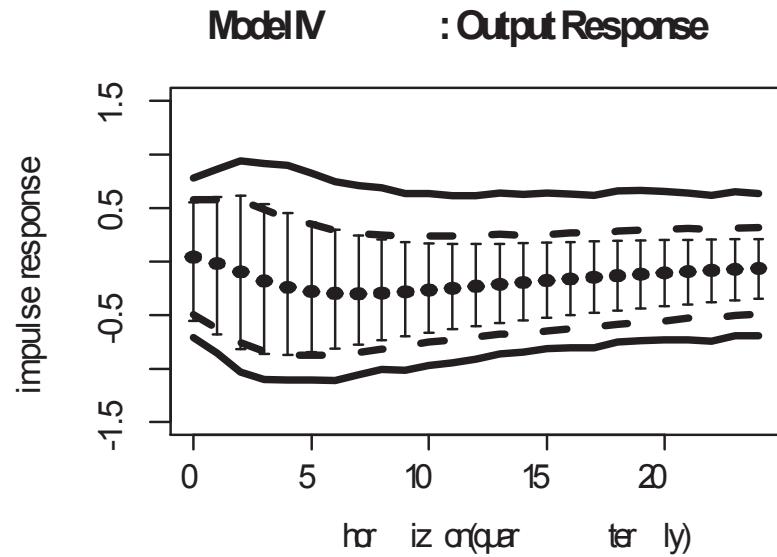
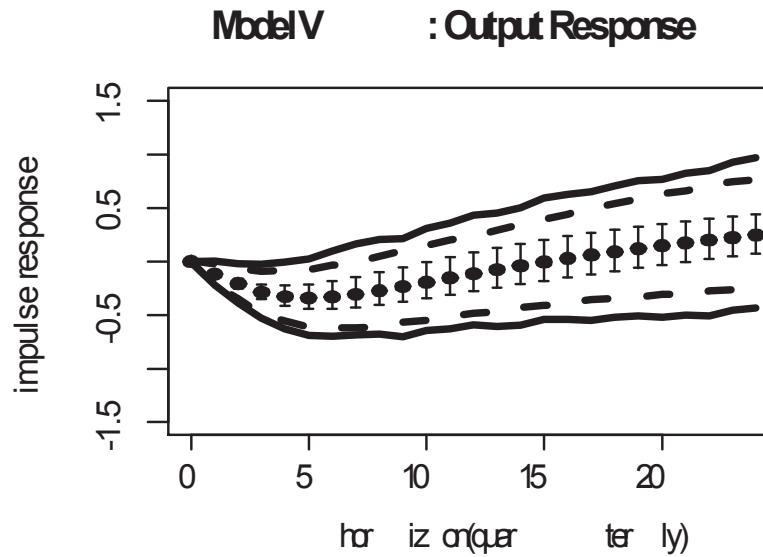
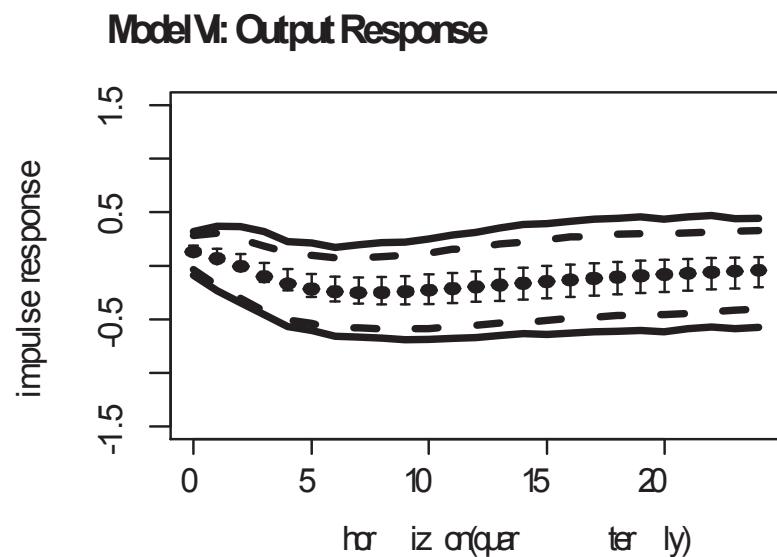
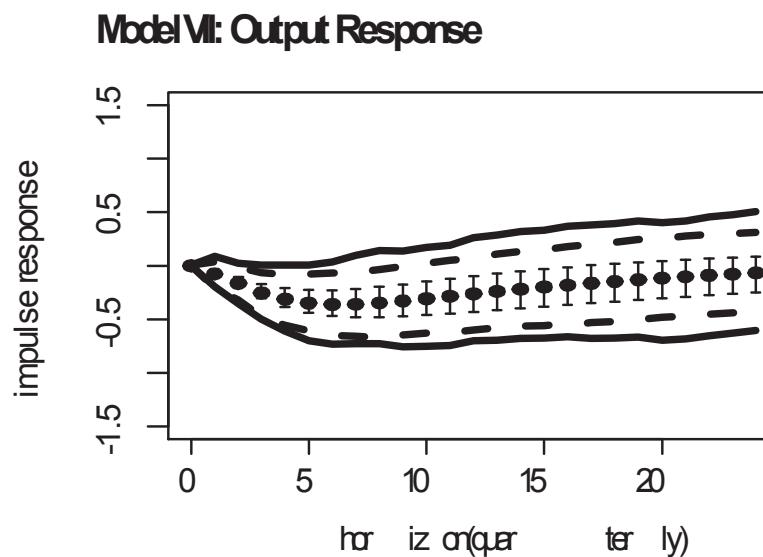
Restrictions	0	I	II	III	IV	V	VI	VII
(i) $a_{12} = 0$	-	-	X	-	-	X	X	-
(ii) $IR^0 = 0$	-	-	-	X	-	X	-	X
(iii) $CIR^\infty = 0$	-	-	-	-	X	-	X	X
(iv) sign restr.	-	X	X	X	X	X	X	X

Note: "x" indicates the restriction is imposed

Results - Models 0-III



Results - Models IV-VII



Bottom line

- After removing effect of prior choice, a simple zero restriction on policy equation not enough to obtain decline in output

Bottom line

- After removing effect of prior choice, a simple zero restriction on policy equation not enough to obtain decline in output
- Important to isolate informativeness of identifying restrictions from arbitrary choice of (unintentionally informative?) priors
➡ multiple prior Bayesian approach can help