Defining High Growth Firms Sustainable Growth, Volatility, and Survival

Serban Mogos - CMU Alexander Davis - CMU Rui Baptista - IST

August 27, 2015 European Central Bank Frankfurt

Contents

Theoretical Background

Data & Methodology

Policy Implications

Results

Theory

Motivation - Policy side

Policy shift from creating *more* firms to creating *better* firms Better defined as firms with high and sustainable growth

(Shane, 2009; Stangler, 2010 [Kauffman]; Bosma & Stam, 2012 [OECD*]; Brown et al., 2014 [Nesta UK])

*OECD = Organization for Economic Co-operation and Development

Increasing number of high growth policies/programs Countries are experimenting with initiatives to foster high growth firm (HGF) creation (Autio, 2007; Mason & Brown, 2013; Autio & Rannikko, 2015; Soderblom et al., 2015)

HGF policies are needed, yet research offers "bland" proposals Research needs to create a solid background for better informed policies (Shane, 2009; Mason & Brown, 2013)

Motivation - Research side

High variation in defining growth and high growth firms (HGFs) Choices of indicator, measure, time period, growth type and HGF definition (Delmar 2006; Shepherd & Wiklund, 2009; Henrekson & Johansson, 2010; Daunfeldt et al., 2013)

- Link between HGFs and sustainable growth is implied, not discussed Some definitions include consecutive period growth, others do not (in selection) (Henrekson & Johansson, 2010)
- Research is limited in helping design policies for sustainable growth Limited knowledge accumulation between studies; superficial policy recommendations (Delmar 2006; Shepherd & Wiklund, 2009; Daunfeldt et al., 2013)

RESEARCH QUESTION Do high growth firms have more sustainable growth and does this depend on the definition used?

Sustainable growth

A measure of the "quality" of growth, implying that high positive growth rates can be sustained (replicated) in multiple consecutive periods, instead of one-shot growth events

* not related to environmental sustainability

Sustainable organizations successfully manage rapid expansion

IVIeasures of sustainable growth - persistence, volatility, <u>survival</u>

- The correlation of growth rates over time a measure of continuity
- Usually large firms show higher persistence, small firms show a random process (Coad, 2007a; Coad and Holzl, 2009; Holzl, 2014)

Growth volatility

The variance, or "unpredictability", of growth - a measure of uncertainty and risk Few results - Higher volatility for HGFs selected on relative versus absolute growth (Delmar, 2003)

Firm survival

- Probability of exiting the market a measure of market fitness
- Underperforming firms will be pushed out when industries enter a shakeout period (Gort & Klepper, 1982; Klepper, 1996)

Growth persistence

Huge variation in HGF definitions

Indicator	Rever
Παισαίσι	Asset
Χ	Absol
Value Measurement	diffe
Χ	Birch
Growth Type	Orgar
Χ	
Time Period	1, 3, 5
Χ	Rirch
HGF Definition	
	Top X

- nue, Employees, Profit, Productivity,
- s, Equity, Market Share lute, Relative (percentage, log
- erence)
- Index (absolute * relative)
- nic (hiring), Acquired (M&As), or Total
- 5, 7 years, depending on the available data
- (>20% for 3 periods), OECD (>20% average), <% (X% highest performing)</pre>

Examples from literature

- 5% fastest growing firms in Emp Index; 1% / 10% in multiple indicators
 - Schreyer (2000); Daunfeldt et al. (2013); Delmar (2006)
- Surviving firms, growing >100% + >5 employees in the studied period Bruderl & Prisendorfer (2000)
 - Double Sales + Emp index >2 over the period (4 years) Acs, Parsons & Tracy (2008)

>20% yearly Sales growth over the interval + base-year revenue \$100,000

- All are called HGFs! Are they all the same?
 - ** Adapted from Henrekson & Johansson (2010)

Data Sample

1.1m firms, 6.7m observations, 13 years, 2000-2012 ~70% of the population of Romanian firms

Romania

Democracy from 1989 => Oldest firm 22 years NATO from 2004 **EU from 2007**

SRL firms (LLCs) - most common (96%) [1m] [540k] No missing data; consecutive years [70k] Active between 2000-2004, no entry [45.5k] > \$50k* revenue in 2000; SMEs < 250 emp.

Frame

Sample Selection

*all financial values were converted to constant 2013 USD

45,500 firms, 535k observations Highly-performing selected sample**

HGF Definitions [Selection 2000-2004]

- Birch (>20% yearly growth for 3+ years)
- OECD (>20% growth average p.a. over 3 years)
- Top 5% Absolute
- Top 5% Percentage
- Top 5% Logarithmic $(Log(X_t) Log(X_{t-1}))$
- Top 5% Index (Absolute * Percentage)
 - over 5 years (2000-2004)
- ** Note: Our Productivity measure is different than the traditional one based on Value Added ** Note: Log and % select the same firms, so we have Absolute, Relative and Index for each

Sustainability Indicators [Observation 2005-2012]

- Persistence = the autoregressive coefficient (β_1)
 - Volatility = standard deviation of GrowthRate $\sigma * \sqrt{T}$)
- Survival (exit) = year of last observation in the sample

- $GrowthRate_t = \alpha * GrowthRate_{t-1} + \delta_t + \eta_i + v_{it}$
- $GrowthRate(Revenue) = Log(Revenue_t) Log(Revenue_{t-1})$ and $GrowthRate(Employees) = Log(Employees_t) - Log(Employees_{t-1})$

 $\Delta GrowthRate_t = \alpha * (\Delta GrowthRate_{t-1}) + \delta_t + \Delta v_{it}$

Estimated using Anderson-Hsiao (IV) and Arellano-Bond (GMM)

Autoregressive model AR(1), First Differenced

- α autoregressive coefficient
- δ_t time dummy
- η_i firm fixed effect
- v_{it} idiosyncratic error term

Summary

Results

Different definitions select different firms

Percentage of firms found at the intersection of two definitions

	OECD	Revenue	Employees	Profits	Productivity
TOP5		5,659	3,793	4,786	3,549
Revenue Abs	2,137	69 %	49%	25%	12%
Revenue Perc / Log	2,185	67%	42%	23%	11%
Revenue Index	2,160	78%	51%	25%	11%
Employees Abs	2,141	54%	62%	17%	12%
Employees Perc / Log	2,170	44%	48%	17%	4%
Employees Index	2,145	58%	69 %	19%	6%
Profits Abs	2,139	53%	37%	29%	16%
Profits Perc	2,197	25%	15%	28%	22%
Productivity Abs	2,256	23%	9%	24%	20%
Productivity Perc	2,254	12%	4%	23%	22%

Result

Different definitions select different firms

HGFs selected on Revenue have highest persistence

Estimations of autoregressive coefficients averaged per indicator

Result Variation in persistence results based on the indicator Highest persistence for Birch Revenue (24%)

HGFs have lower volatility

Median of standard deviations for GrowthRate(Revenue)

Result HGFs have lower volatility Profit and Revenue give lowest volatility OECD and Birch give lowest volatility

Survival / Exit

Exit rates per year and total, all firms vs averages for HGFs

uctivity)	HGF Av	verage (ALL)	• HGF	⁻ Min (Profi	t)
		34.6% 32.3% 23.3% 17.0% Total Exi	t at the e	end of the	period
2010 2		2			
Res	sult				
ve lov	wer e	xit rate	S		
nd R	evenı	le are	lowe	est (1	8%)
ductiv	vity a	re high	est (32%)	

Hazard ratios are lower for HGFs

Smoothed hazard estimates

Smoothed hazard estimates

Probability of exit increases with volatility

Exit percentage and average growth for quantiles of volatility

kernel = epanechnikov, degree = 0, bandwidth = .73, pwidth = 1.09

Conclusion

Implications of our study

(Labor) Productivity and Employment have an opposite relation Productivity HGFs have negative persistence, higher volatility and higher exit Indicates a potential mismatch between public and private incentives

Why it matters? HGF policies should target high quality growth Autio & Rannikko (May, 2015) evaluate a 6-year HG policy program in Finland "The initiative had more than doubled the growth rates of treated firms"

HGFs have more sustainable growth (after selection), but result vary Different definitions select different firms with different characteristics Birch & OECD / Rev & Emp give better results in terms of sustainable growth

Limitations & Future Work

Contributions

Limitations

Future work

country) context

Reduce the sample selection and missing data issues Explore in more detail - size, age and industry Multiple datasets - Portugal and United States

Benchmarking HGF definitions on future performance Methodology to evaluate sustainable growth of HGFs Unique context - dataset on Romania (developing

Limited generalizability - selected sample, specific

Data quality - significant amounts of missing data Small timeframe - only 8 years for observation

References

Acs, Z. J., Parsons, W., & Tracy, S. (2008). High-Impact Firms: Gazelles revisited. SBA Office of Advocacy, Corporate research Board, LLC Washington, DC 20037.34, pp. 253-277 Autio, E., & Rannikko, H. (2015). Retaining Winners: Can Policy Boost High-Growth Entrepreneurship?. Imperial College Business School Innovation and Entrepreneurship Working Papers. Birch, D. L. (1981). Who creates jobs? The Public Interest, 65(Fall), 3-14.

Bosma, N., & Stam, E. (2012). Local Policies for High-Employment Growth Enterprises.

Brown, R., Mason, C., & Mawson, S. (2014). Increasing 'The Vital 6 Percent': Designing Effective Public Policy to Support High Growth Firms. Coad, A. (2007). A closer look at serial growth rate correlation. Review of Industrial Organization, 31(1), 69-82. Coad, A., & Holzl, W. (2009). On the autocorrelation of growth rates. Journal of Industry, Competition and Trade, 9(2), 139-166. Daunfeldt, S. O., Elert, N., & Johansson, D. (2013). The economic contribution of high-growth firms: Do policy implications depend on the choice of growth indicator?. Journal of Industry, Competition and Trade

Delmar, F., Davidsson, P., & Gartner, W. B. (2003). Arriving at the high-growth firm. Journal of business venturing, 18(2), 189-216. Delmar, F. (2006). Measuring growth: methodological considerations and empirical results. Entrepreneurship and the Growth of Firms, 1, 62-84. Henrekson, M. and Johansson, D. (2010). Gazelles as job creators: A survey and interpretation of the evidence, Small Business Economics, Vol. 35, pp. 227-244. Gort, M., & Klepper, S. (1982). Time paths in the diffusion of product innovations. The economic journal, 630-653. Holzl, W. (2014). Persistence, survival, and growth: a closer look at 20 years of fast-growing firms in Austria. Industrial and Corporate Change, 23(1), 199-231. Klepper, S. (1996). Entry, exit, growth, and innovation over the product life cycle. The American economic review, 562-583. Mason, C., & Brown, R. (2013). Creating good public policy to support high-growth firms. Small Business Economics, 40(2), 211-225. Shane, F. (2009) Why encouraging more people to become entrepreneurs is bad public policy. Small Bus Econ 33:141-149 Soderblom, A., Samuelsson, M., Wiklund, J., & Sandberg, R. (2015). Inside the black box of outcome additionality: Effects of early-stage government subsidies on resource accumulation and new venture performance. Research Policy, 44(8), 1501-1512.

Stangler D (2010) High-growth firms and the future of the American economy. Kauffman Foundation Research Series: Firm Formation and Economic Growth, March 2010.

Shepherd, D., & Wiklund, J. (2009). Are we comparing apples with apples or apples with oranges? Appropriateness of knowledge accumulation across growth studies. Entrepreneurship Theory and Practice, 33(1), 105-123.

Thank You! Questions? mogos@cmu.edu

Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, INOVAÇÃO E DO ENSINO SUPERIOR

Carnegie Mellon Engineering & Public Policy

