

Default Risk Mitigation in Derivatives Markets and Its Effectiveness

Carsten Murawski
University of Zurich (Swiss Banking Institute)
& NCCR FINRISK

European Central Bank, Frankfurt, 4 April 2006

When you can *measure* what you are speaking about, and express it in *numbers*, you *know* something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind: it may be the beginnings of knowledge, but you have scarcely, in your thoughts, advanced to the stage of science.

—William Thomson (Lord Kelvin)

Background

- Growing importance of derivatives for banks and other financial institutions
- High concentration of derivatives markets
- Large players have significant leverage ratios
- OTC derivatives markets have experienced several large credit events
- Collateral usage in OTC markets has grown significantly

Research Questions

- 1) What are the differences in the mechanisms for default risk mitigation observed in derivatives markets?
- 2) How do these mechanisms affect the wealth of market participants, market liquidity, and default risk?

Different Perspectives on Collateral

Market
Risk

Price

Liquidity
Risk

“Spread”, quantity

Credit
Risk

PD, LGD

Credit Risk Perspective

- Credit risk: expected loss due to changes in counterparty credit quality
- Traditional perspective on collateral:
Reduces LGD → Reduces credit risk

Credit Risk Perspective (cont'd)

*The mechanisms by which collateral provides benefit is through improvement of the recovery rate. Collateral **does not** make it more or less likely that a counterparty will default and **does not** change the value of a defaulted transaction.*

What I tell you three times is true.

—Lewis Carroll

Credit Risk Perspective (cont'd)

- Credit risk: expected loss due to changes in counterparty credit quality
- Traditional perspective on collateral:
Reduces LGD → Reduces credit risk
- But what about PD?

Liquidity Risk Perspective

- Liquidity risk: expected loss due to trading costs (market) or funding needs (funding liquidity)
- Collateral imposes funding constraint on trader (funding liquidity)
- As a consequence, it might reduce market liquidity
- Both might affect a trader's ability to hedge, and might thus adversely affect her probability of default as well as loss given default

Market Risk Perspective

- Market risk: expected loss due to price changes
- Price reflects value of contract → function of credit and liquidity risk
- Effects of collateral on prices ambiguous
- Challenge: feedback effects

“Holistic” Perspective on Collateral

Modeling Challenges

- Heterogeneity of agents
- Non-linearity of wealth
- Path-dependence
- Dynamics

Model

- 25 banks
- Exogenous demand and supply for bond, subject to both price and default risk
- Fixed-floating v. floating-fixed exposure
- Solvency and funding constraint
- Asset-based insolvency

Model (cont'd)

- Banks trade swap contract to hedge price risk
- Swap contracts subject to default risk
- Three sets of default risk mitigation mechanisms:
 - Initial margin
 - Initial & variation margin
 - Initial & variation margin, CCP

Model Parameters

Type	Parameter	Description	Values
Market	T	Time horizon	100
	N	Number of agents	25
	r, u, σ_r	Term structure of interest rate	Empirical term structure
	T_D	Maturity of bonds	48
	T_S	Maturity of swaps	48
Real sector	$h, v, \rho_{h,r}, \sigma_h$	Term structure of hazard rate	
Banks	m	Initial amount of money	Empirical distribution

Interest-Rate Environment

A Sample Run

- Banks receive endowment in money
- At the beginning of every period, banks receive random client demand (function of wealth) and enter into a position
- Submit order for swap contract (constrained by solvency and by funding liquidity)
- Interest rate is revealed
- Positions are settled

A Sample Path of Wealth

Sample Path of a Bank's Wealth

Overall Effects of Mitigation Mechanisms

Simulation results for generic parameter configuration

	BC	0	IM	IM & VM	CCP
σ_w	0.492	0.397	0.401	0.498	0.498
W_T	166.0	174.7	169.8	162.2	161.4
d	0.176	0.112	0.140	0.240	0.240
LGD	n/a	0.227	9.94	5.74	5.62
V	n/a	19.0	18.6	15.4	15.4
θ	0.0	0.812	0.814	0.802	0.802

Model Limitations

- Assumption that banks try to hedge completely
- Derivatives market with hedgers only
- Information effects of collateral and CCP
- Externalities of derivatives markets

Swiss Banking Institute

22

*If you can look into the seeds of time,
And say which grain will grow and which will not,
Speak.*

—Shakespeare, *Macbeth*