Fiscal Policy in a Networked Economy

John Sturm Becko Princeton

> Joel P. Flynn Yale

Christina Patterson Chicago Booth and NBER

ECB Biennial

December 2023

Policymakers Choose from Array of Fiscal Policies: How to Target?

Many fiscal stimulus instruments

- Undirected Transfers (e.g. stimulus checks)
- Targeted Transfers (e.g. extended UI benefits)
- Targeted Spending (e.g. auto industry bailout, infrastructure spending)

Policymakers Choose from Array of Fiscal Policies: How to Target?

Many fiscal stimulus instruments

- Undirected Transfers (e.g. stimulus checks)
- Targeted Transfers (e.g. extended UI benefits)
- Targeted Spending (e.g. auto industry bailout, infrastructure spending)

Does it matter?

- In RA / no-IO models, many such policies may have similar effects.
- In reality, policy propagates through complex supply chains, regional trade, employment, consumption linkages.

Policymakers Choose from Array of Fiscal Policies: How to Target?

Many fiscal stimulus instruments

- Undirected Transfers (e.g. stimulus checks)
- Targeted Transfers (e.g. extended UI benefits)
- Targeted Spending (e.g. auto industry bailout, infrastructure spending)

Does it matter?

- In RA / no-IO models, many such policies may have similar effects.
- In reality, policy propagates through complex supply chains, regional trade, employment, consumption linkages.

Research question: How does network structure shape impact and optimal design of fiscal policy?

Two Parts to this Paper

1. Theory: Develop model of how heterogeneity affects propagation of fiscal shocks

- Simple model of recessions: prices fixed, labor rationed in short run
- Rich model of heterogeneity: Many HHs, sectors, regions, linked via IO, emp., & cons. networks.
- Provide a novel decomposition describing how heterogeneity affects the fiscal multiplier(s).

1. Theory: Develop model of how heterogeneity affects propagation of fiscal shocks

- Simple model of recessions: prices fixed, labor rationed in short run
- Rich model of heterogeneity: Many HHs, sectors, regions, linked via IO, emp., & cons. networks.
- Provide a novel decomposition describing how heterogeneity affects the fiscal multiplier(s).
- 2. Empirics: Bring decomposition to data and explore implications for fiscal policy design
 - Estimate components of multiplier using several public-use datasets
 - Find that many dimensions of heterogeneity are irrelevant for aggregate multipliers
 - Key policy implication: targeting fiscal policy to high-MPC households is maximally expansionary
 - Estimate of fiscal spillovers across states, distributional impacts

Related Literature

- Literature has proposed many channels by which network structures and heterogeneity might matter. Our paper brings together and quantifies what matters for which questions:
 - Aggregate GDP responses: loading of shocks onto high MPC households (Werning, 2015; Kaplan, Moll, and Violante, 2018; Auclert, 2019; Patterson, 2019; Bilbiie, 2019), input-output linkages (Long and Plosser, 1987; Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi, 2012; Baqaee and Farhi, 2019; Rubbo, 2019; Bigio and La'O, 2020)
 - Distributional and spatial impacts: regional trade and within-region consumption bias (Farhi and Werning, 2017; Caliendo, Parro, Rossi-Hansberg, and Sarte, 2018; Dupor, Karabarbounis, Kudlyak, and Mehkari, 2018)

Related Literature

- Literature has proposed many channels by which network structures and heterogeneity might matter. Our paper brings together and quantifies what matters for which questions:
 - Aggregate GDP responses: loading of shocks onto high MPC households (Werning, 2015; Kaplan, Moll, and Violante, 2018; Auclert, 2019; Patterson, 2019; Bilbiie, 2019), input-output linkages (Long and Plosser, 1987; Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi, 2012; Baqaee and Farhi, 2019; Rubbo, 2019; Bigio and La'O, 2020)
 - Distributional and spatial impacts: regional trade and within-region consumption bias (Farhi and Werning, 2017; Caliendo, Parro, Rossi-Hansberg, and Sarte, 2018; Dupor, Karabarbounis, Kudlyak, and Mehkari, 2018)
- Sufficient statistics approach: Miyazawa (1976); Auclert, Rognlie, and Straub (2018); Wolf (2019)
- Network propagation of demand shocks: Baqaee (2015); Baqaee and Farhi (2018, 2020); Woodford (2020); Guerrieri, Lorenzoni, Straub, and Werning (2020); Andersen, Huber, Johannesen, Straub, Vestergaard (2023)
- Semi-structural approach consistent with and complements reduced-form estimation of fiscal multipliers: Ramey (2011); Nakamura and Steinsson (2014); Chodorow-Reich (2019); Corbi, Papaioannou, and Surico (2019)

This Talk

1 Model

- 2 Networks, Heterogeneity, and the Multiplier
- 3 Data and Calibration
- 4 Empirical Results
- 5 Implications for Design of Fiscal Policy

6 Conclusion

Setup: Two time periods t. Many sectors i and HHs n. One labor factor. More time periods

Setup: Two time periods t. Many sectors i and HHs n. One labor factor. More time periods

Prices: Goods prices p_i^t . Normalize wage $w^t = 1$. Assume rigid real interest rate r.

Setup: Two time periods t. Many sectors i and HHs n. One labor factor. More time periods

Prices: Goods prices p_i^t . Normalize wage $w^t = 1$. Assume rigid real interest rate r.

Firms: Competitive. CRS prod. fn.s $F_i^t(X_i^t, L_i^t)$ over labor and intermediate inputs. Imperfect competition

Setup: Two time periods t. Many sectors i and HHs n. One labor factor. • More time periods

Prices: Goods prices p_i^t . Normalize wage $w^t = 1$. Assume rigid real interest rate r.

Firms: Competitive. CRS prod. fn.s $F_i^t(X_i^t, L_i^t)$ over labor and intermediate inputs. • Imperfect competition

HHs: Choose cons. c_n^t and pd. 2 labor ℓ_n^2 . Face lump-sum taxes τ_n^t and budget, borrowing constraints.

Setup: Two time periods t. Many sectors i and HHs n. One labor factor. • More time periods

Prices: Goods prices p_i^t . Normalize wage $w^t = 1$. Assume rigid real interest rate r.

Firms: Competitive. CRS prod. fn.s $F_i^t(X_i^t, L_i^t)$ over labor and intermediate inputs. • Imperfect competition

HHs: Choose cons. c_n^t and pd. 2 labor ℓ_n^2 . Face lump-sum taxes τ_n^t and budget, borrowing constraints.

Government: Purchase goods G_i^t . Levy taxes τ_n^t . Face budget constraint.

Setup: Two time periods t. Many sectors i and HHs n. One labor factor. • More time periods

Prices: Goods prices p_i^t . Normalize wage $w^t = 1$. Assume rigid real interest rate r.

Firms: Competitive. CRS prod. fn.s $F_i^t(X_i^t, L_i^t)$ over labor and intermediate inputs. • Imperfect competition

HHs: Choose cons. c_n^t and pd. 2 labor ℓ_n^2 . Face lump-sum taxes τ_n^t and budget, borrowing constraints.

Government: Purchase goods G_i^t . Levy taxes τ_n^t . Face budget constraint.

Labor rationing: Pd. 1 labor supply determined by rationing. Model w/ flexible rationing function

 $R: \{L_i^1\} \mapsto \{\ell_n^1\}$

that satisfies labor market clearing: $\sum_{n} R_n(\{L_i^1\}) = \sum_{i} L_i^1$. Full equilibrium conditions

Networks, Heterogeneity, and the Multiplier

The Output Multiplier: From PE to GE

- We consider two policy shocks: tax and transfer shocks $d\tau$ and spending shocks dG^1
- Define shock's PE effect as Δ final demand before incomes adjust: $\partial Y^1 = dG^1 + \sum_n \frac{dc^1}{d\tau_n} d\tau_n$

The Output Multiplier: From PE to GE

- We consider two policy shocks: tax and transfer shocks d au and spending shocks dG^1
- Define shock's PE effect as Δ final demand before incomes adjust: $\partial Y^1 = dG^1 + \sum_n \frac{dc^1}{d\tau_n} d\tau_n$

Sufficient statistics

- $[\hat{X}^1]_{ij} = j$'s unit exp. on good *i*.
- $[\widehat{L}^1]_{ij} = \mathbb{1}_{i=j} \times j$'s unit exp. on labor.
- $[R_L]_{n,i}$ = marg. rationing of *i*'s LD to HH n
- $[m]_{n,n'} = \mathbb{1}_{n=n'} \times n$'s MPC.
- $[\hat{C}^1]_{in} =$ share of *n*'s marg. exp. on good *i*

Proposition (Network Keynesian Multiplier)

The general equilibrium change in first-period final output dY^1 following a fiscal shock with partial equilibrium impact on first-period final output ∂Y^1 is

$$dY^{1} = (I - \hat{C} m R_{L^{1}} \hat{L}^{1} (I - \hat{X}^{1})^{-1})^{-1} \partial Y^{1}$$

The Output Multiplier: From PE to GE

- We consider two policy shocks: tax and transfer shocks d au and spending shocks dG^1
- Define shock's PE effect as Δ final demand before incomes adjust: $\partial Y^1 = dG^1 + \sum_n \frac{dc^1}{d\tau_n} d\tau_n$

Sufficient statistics

- $[\hat{X}^1]_{ij} = j$'s unit exp. on good *i*.
- $[\widehat{L}^1]_{ij} = \mathbbm{1}_{i=j} \times j$'s unit exp. on labor.
- $[R_L]_{n,i}$ = marg. rationing of *i*'s LD to HH n
- $[m]_{n,n'} = \mathbb{1}_{n=n'} \times n$'s MPC.
- $[\hat{C}^1]_{in} =$ share of *n*'s marg. exp. on good *i*

Proposition (Network Keynesian Multiplier)

The general equilibrium change in first-period final output dY^1 following a fiscal shock with partial equilibrium impact on first-period final output ∂Y^1 is

$$dY^{1} = (I - \hat{C} m R_{L^{1}} \hat{L}^{1} (I - \hat{X}^{1})^{-1})^{-1} \partial Y^{1}$$

Intuition: Shock \rightarrow production \rightarrow labor rationed \rightarrow marg. consumption \rightarrow directed consumption

Comparative Statics

The Output Multiplier: Network Effects • Exact Decomposition • Neutral Case • Homotheticity

- The many dimensions of heterogeneity can amplify shocks through three network effects:
 - 1. Incidence Effect: The shock disproportionately hits households with higher MPCs
 - 2. Bias Effect: shocked HHs direct marginal spending towards HHs with higher-than-average MPCs
 - 3. Homophily Effect: Correlation between HH's own MPC and MPCs of the HHs they spend on

- The many dimensions of heterogeneity can amplify shocks through three network effects:
 - 1. Incidence Effect: The shock disproportionately hits households with higher MPCs
 - 2. Bias Effect: shocked HHs direct marginal spending towards HHs with higher-than-average MPCs
 - 3. Homophily Effect: Correlation between HH's own MPC and MPCs of the HHs they spend on

Proposition (Network Decomposition)

For any shock with PE incidence ∂h_n^1 onto first-period HH incomes and total incidence $\sum_n \partial h_n^1 = 1$, $\mathbbm{1}^T dY^1 = \mathbbm{1}^T dG^1 + \frac{1}{1 - \mathbb{E}_{\ell^1}[m_n]} \left(\underbrace{\mathbb{E}_{\ell^1}[m_n]}_{RA \ Keynesian \ effect} + \underbrace{\mathbb{E}_{\partial h^1}[m_n] - \mathbb{E}_{\ell^1}[m_n]}_{Incidence \ effect} + \underbrace{\mathbb{E}_{\partial h^1}[m_n] (\mathbb{E}_{\partial h^1}[m_n^{next}] - \mathbb{E}_{\ell^1}[m_n])}_{Biased \ spending \ direction \ effect} + \underbrace{\mathbb{C}ov_{\partial h^1}[m_n, m_n^{next}]}_{Homophily \ effect} \right) + O^3(|m|)$

where m_n^{next} is the average MPC of HHs who receive as income i's marginal dollar of spending.

Two-household economy

- High-MPC HH with $m_H = 0.5$. Low-MPC HH with $m_L = 0.1$
- Consider 4 different cases for shock incidence and spending-to-income network

Two-household economy

- High-MPC HH with $m_H = 0.5$. Low-MPC HH with $m_L = 0.1$
- Consider 4 different cases for shock incidence and spending-to-income network

Case 1: Uniform incidence, neutral network

- As if economy had a single household with $\overline{m} = \frac{m_L + m_H}{2}$
- Multiplier (*M*) given by

$$M = \frac{1}{1 - \overline{m}} = 1.43$$

Two-household economy

- High-MPC HH with $m_H = 0.5$. Low-MPC HH with $m_L = 0.1$
- Consider 4 different cases for shock incidence and spending-to-income network

Case 2: Heterogeneous incidence, neutral network

• Initial transfer directed entirely to m_H

• Initial and higher "rounds" of multiplier are different

$$M = 1 + \frac{m_H}{1 - \overline{m}} = 1.71$$

Two-household economy

- High-MPC HH with $m_H = 0.5$. Low-MPC HH with $m_L = 0.1$
- Consider 4 different cases for shock incidence and spending-to-income network

Case 3: Uniform incidence, biased network

• All marginal spending directed to sector employing m_H

• Higher "rounds" of multiplier propagates at m_H

$$M = 1 + \frac{\overline{m}}{1 - m_H} = 1.60$$

Two-household economy

- High-MPC HH with $m_H = 0.5$. Low-MPC HH with $m_L = 0.1$
- Consider 4 different cases for shock incidence and spending-to-income network

Case 4: Uniform incidence, homophilic network

• All marginal spending directed to own sector

• Each shock propagates separately

$$M = \frac{1}{2} \left(\frac{1}{1 - m_L} + \frac{1}{1 - m_H} \right) = 1.56$$

- "Sectors" = 51 states \times 55 industries (\approx 3-digit NAICS).
- "Households" = state \times income quintile \times age quartile \times gender \times race + capitalists + foreigners

- "Sectors" = 51 states \times 55 industries (\approx 3-digit NAICS).
- "Households" = state \times income quintile \times age quartile \times gender \times race + capitalists + foreigners

Strategy to calibrate multiplier =
$$\left(I - \hat{C}^{1}m R_{L_{1}}\hat{L}^{1} (I - \hat{X}^{1})^{-1}\right)^{-1}$$

- 1. Regional input-output matrix $(\widehat{X}^1) \bigoplus$
 - Data: BEA make and use tables. CFS interstate trade.
 - Assumptions: Each sector's prod. fn. is same across states. Non-tradables sourced within state.

- "Sectors" = 51 states \times 55 industries (\approx 3-digit NAICS).
- "Households" = state \times income quintile \times age quartile \times gender \times race + capitalists + foreigners

Strategy to calibrate multiplier =
$$\left(I - \hat{C}^{1}m R_{L_{1}}\hat{L}^{1} (I - \hat{X}^{1})^{-1}\right)^{-1}$$

- 1. Regional input-output matrix (\widehat{X}^1) \bigcirc Details
 - Data: BEA make and use tables. CFS interstate trade.
 - Assumptions: Each sector's prod. fn. is same across states. Non-tradables sourced within state.
- 2. Rationing matrix $(R_{l^1}^1 \hat{L}^1)$ Details
 - Data: BEA value added, emp. by region \times sector output. ACS demog.s of workers by state \times sector.
 - Assumptions: Ration locally among demog.s employed in sector. High-MPC bias (Patterson, 2022).

- "Sectors" = 51 states \times 55 industries (\approx 3-digit NAICS).
- "Households" = state \times income quintile \times age quartile \times gender \times race + capitalists + foreigners

Strategy to calibrate multiplier =
$$\left(I - \hat{C}^{1}m R_{L_{1}}\hat{L}^{1} (I - \hat{X}^{1})^{-1}\right)^{-1}$$

- 1. Regional input-output matrix (\widehat{X}^1) \bigcirc Details
 - Data: BEA make and use tables. CFS interstate trade.
 - Assumptions: Each sector's prod. fn. is same across states. Non-tradables sourced within state.
- 2. Rationing matrix $(R_{l^1}^1 \widehat{L}^1)$ \smile Details
 - Data: BEA value added, emp. by region \times sector output. ACS demog.s of workers by state \times sector.
 - Assumptions: Ration locally among demog.s employed in sector. High-MPC bias (Patterson, 2022).
- 3. Directed MPC matrix $(\widehat{C}^1 m)$ \smile Details
 - Data: PSID + CEX for MPC estimation. Details CEX cons. basket by demog. CFS interstate trade.
 - Assumptions: Marg. cons. basket = avg. cons. basket. Validation Same interstate sourcing as firms.

Empirical Results

Large dispersion in government purchases, transfer multipliers

- Aggregate government purchases multiplier: Response of GDP to GDP-proportional shock is 1.3
- Amplification beyond original purchase varies by a factor of 6 depending on sector/state targeted

Large dispersion in government purchases, transfer multipliers

- Aggregate government purchases multiplier: Response of GDP to GDP-proportional shock is 1.3
- Amplification beyond original purchase varies by a factor of 6 depending on sector/state targeted
- Uniform transfer multiplier: Transferring \$1 to average HH increases GDP by 77 cents

Sources of heterogeneity

• Observation 1: Basket-weighted network MPCs are very similar across population

- *Observation 1:* Basket-weighted network MPCs are very similar across population
- Observation 2: Basket-weighted network MPCs are similar to benchmark average MPC

- Observation 1: Basket-weighted network MPCs are very similar across population
- Observation 2: Basket-weighted network MPCs are similar to benchmark average MPC
- \rightarrow Bias and homophily terms are both close to 0 \rightarrow Robustness of empirical result

Understanding Bias and Homophily Terms: Two Offsetting Effects

- *Empirical Fact 1:* High MPC households consume from low labor share industries, creating negative homophily (Hubmer 2019)
- Empirical Fact 2: Substantial fraction of demand remains local, creating positive homophily

Regional Policy Spillovers

• Of national multiplier, out-of-state spillovers account for 47% of amplification

Change in GDP / capita from \$1 / capita shock in Michigan

Implications for Design of Fiscal Policy

MPC-targeting for transfers vs. government purchases

Back to motivating question: If planner wants to max agg. income, how to target policy? Microfoundation

MPC-targeting for transfers vs. government purchases

Back to motivating question: If planner wants to max agg. income, how to target policy? Microfoundation

Transfers: A group's MPC is very highly correlated with multiplier for transfers to it Application: CARES Act

MPC-targeting for transfers vs. government purchases

Back to motivating question: If planner wants to max agg. income, how to target policy? Microfoundation

Transfers: A group's MPC is *very* highly correlated with multiplier for transfers to it (Application: CARES Act) **Gov't purchases:** Avg. MPC w/in sector \times state less correlated w/ multiplier. IO shapes incidence.

Theory + data

- Simple, rich model. Analytical decomp. of multiplier into deviations from Keynesian benchmark.
- Calibration in terms of estimable sufficient statistics.

Takeaway

- Targeting fiscal policy is (a) important and (b) simple.
 - Fiscal multipliers vary substantially depending on where the shock is targeted
 - All heterogeneity stems from heterogeneous initial incidence across households with differing MPCs

- Multiplier changes over time as fundamentals of economy change
 - 1. The role of IO linkages: An economy with no intermediate inputs has the same aggregate multipliers but more heterogeneity in spending multipliers Figure
 - 2. The decline of the labor share: The fall in the labor share from 2000 to 2012 lead to smaller purchases multipliers Figure
 - 3. Rising labor income inequality: Can change multipliers if it changes MPCs or shuffles workers across industries/regions

• Setting: Some amount of funds are available for fiscal spending, financing for such spending is fixed

- Setting: Some amount of funds are available for fiscal spending, financing for such spending is fixed
- Question facing planner: how should they allocate funds across the economy?

- Setting: Some amount of funds are available for fiscal spending, financing for such spending is fixed
 - Question facing planner: how should they allocate funds across the economy?
 - Additively-separable utility functions over consumption and labor
 - In t = 1, no labor supply decision and households face borrowing constraints
 - In t = 2, households are unconstrained
 - Utilitarian social planner puts weight λ_n on household n and chooses government spending (G) and taxes (τ) to maximize total welfare

Proposition 1

The change in welfare dW due to a small change in taxes and government purchases in the first period can be expressed as:
Formal Statement of Problem
Optimal Policy

$$dW = \sum_{n \in N} \mu_n \widetilde{\lambda}_n \left[\underbrace{-\Delta_n d\ell_n^1}_{Address \ under-emp.} - \underbrace{d\tau_n^1}_{Make \ transfers} \right]$$

Where $\widetilde{\lambda}_n$ = social value of transfers to n, Δ_n = labor wedge of household n.

• In the case where:

- 1. All labor is rationing to un(der)employed households, who have no marginal disutility of labor
- 2. Social value of transfers are equal across households
- 3. Bias and homophily effects are 0

• In the case where:

- 1. All labor is rationing to un(der)employed households, who have no marginal disutility of labor
- 2. Social value of transfers are equal across households
- 3. Bias and homophily effects are 0

$$dW \propto \sum_{n \in N} m_n \partial h_n^1$$

- ∂h_n^1 : partial equilibrium change in total household incomes induced by policy
- Intuition: Without bias/homophily, all households direct consumption in same way for purposes of amplification

• Allow set of periods $\mathcal{T}(\omega) \subseteq \mathbb{T}$ in which labor is rationed

Proposition 2

For any small shock to fiscal policy inducing a partial equilibrium effect ∂Y^{-T} in periods 1, ..., T - 1, there exists a selection from the equilibrium set such that the general equilibrium response of 1, ..., T - 1 period values added dY^{-T} is given by:

$$dY^{-T} = \left(I - \hat{C}^{-T} m^{-T} R_{L^{-T}}^{-T} \hat{L}^{-T} \left(I - \hat{X}^{-T}\right)^{-1}\right)^{-1} \partial Y^{-T}$$

- Shocks in each rationing period can influence output in other rationing periods
- Need to consider intertemporal MPCs (Auclert et al 2018)

Model Extensions: Imperfect Competition • Back

- Allow for fixed firm-level markups on marginal cost $\frac{\Pi_i^z}{1-\hat{\Pi}^z}$
- Now need to also ration dividends back to households
- Very similar result holds in this setting

Proposition 3

For any shock inducing a first-period partial equilibrium effect ∂Q , the general equilibrium response in production satisfies:

$$dQ = \widehat{X} dQ + C_{\ell^1} R^1_{L^1} \widehat{L}^1 dQ^1 + C_{\pi} D_{\Pi} \widehat{\Pi} dQ + \partial Q$$

where C_{π} is the matrix of household directed MPCs out of profit income, where D_{Π} is the block diagonal matrix composed of $D_{\Pi^1}^1$ and $D_{\Pi^2}^2$ – which are each $N \times I$ matrices with entries $D_{\Pi_i^t}^t(\Pi^t)_n$ – and where $\widehat{\Pi}$ is the block diagonal matrix composed of $\widehat{\Pi}^1$ and $\widehat{\Pi}^2$ – themselves each diagonal matrices with entries $\widehat{\Pi}_i^t$. All quantities are evaluated at the initial equilibrium.

Heterogeneous multipliers: Amplifying and dampening forces • Back

What widens the heterogeneity in multipliers?

- Heterogeneous demographic composition of states and sectors
- Covariance between worker MPCs and elasticity of income to changes in output

Heterogeneous multipliers: Amplifying and dampening forces • Back

What widens the heterogeneity in multipliers?

- Heterogeneous demographic composition of states and sectors
- Covariance between worker MPCs and elasticity of income to changes in output

What dampens the heterogeneity in multipliers?

 IO links dilute the MPC of workers receiving marginal dollars

Full equilibrium conditions

Firm optimization

$$(X_i^t, L_i^t) \in \operatorname{argmax}_{X, L} p_i^t F_i^t(X, L) - p^t \cdot X - L$$

HH optimization

$$\begin{aligned} (c_n^1, c_n^2, \ell_n^2) &\in \operatorname{argmax}_{c^1, c^2, \ell^2} \ \sum_t \beta^t u_n^t(c^t, \ell^t) \\ \text{s.t.} \ \sum_t \frac{p^t \cdot c^t + \tau_n^t - \ell^t}{(1+r)^t} \leqslant 0 \qquad \text{and} \qquad \ell^1 - p^1 \cdot c^1 - \tau_n^1 \leqslant \underline{s}_n \end{aligned}$$

Labor rationing

$$\ell_n^1 = R_n(\{L_i^1\})$$

Market clearing

$$F_i^t(X_i^t, L_i^t) = \sum_n c_{n,i}^t + \sum_j X_{j,i}^t + G_i^t \quad \text{and} \quad \sum_i L_i^t = \sum_n \ell_n^t$$

Network Effects: Exact Decomposition in Terms of Bonacich Centralities

- Define:
 - 1. \hat{m} diagonal matrix of MPCs
 - 2. \hat{C}^1 normalized spending direction matrix
 - 3. $\mathcal{G} \equiv R_{L^1} \hat{L}^1 \left(I \hat{X}^1 \right)^{-1} \hat{C}^1$ map from household spending to others' income
 - 4. $b \equiv \vec{1}^T (I \mathcal{G}\hat{m})^{-1}$ Vector of Bonacich centralities in spending network 5. $(b^{next})^T = b^T \mathcal{G}$ Average Bonacich centrality of households on whom I consume

Proposition 4

For any shock inducing a unit-magnitude labor incidence shock ∂y^1 :

$$\vec{1}^{T}dY^{1} = \underbrace{\frac{1}{1 - \mathbb{E}_{\partial y^{1}}[m_{n}]}}_{\text{Incidence multiplier}} + \underbrace{\mathbb{E}_{\partial y^{1}}[m_{n}]\left(\mathbb{E}_{\partial y^{1}}[b_{n}^{next}] - \frac{1}{1 - \mathbb{E}_{\partial y^{1}}[m_{n}]}\right)}_{\text{Biased spending direction effect}} + \underbrace{\mathbb{C}ov_{\partial y^{1}}[m_{n}, b_{n}^{next}]}_{\text{Homophily effect}}$$

• Household Problem:

$$\begin{aligned} (\ell_n^2, c_n^1, c_n^2) \in \operatorname{argmax}_{\ell^2, c^1, c^2} \ u_n^t(c^1, \ell_n^1) + \beta_n u_n^t(c^2, \ell^2) \\ \text{s.t} \ p^1 c^1 + \frac{p^2 c^2}{1+r} + \tau_n^1 + \frac{\tau_n^2}{1+r} = \ell_n^1 + \frac{\ell^2}{1+r} \\ \ell_n^1 - p^1 c^1 - \tau_n^1 \ge \underline{s}_n \end{aligned}$$

• Social welfare for fiscal policy (G, τ) :

$$W(G,\tau) \equiv \sum_{n \in \mathbb{N}} \lambda_n \mu_n W_n(I_n^1(G,\tau),\tau_n)$$

• $l^1(G, \tau)$: household labor income consistent with rationing equilibrium with fiscal policy given by (G, τ) .

Back

• Direct payments in CARES Act: \approx \$1,200 to those making less than \$75,000

- Direct payments in CARES Act: \approx \$1,200 to those making less than \$75,000
- In our model, increased GDP by 79 cents per dollar spent

- Direct payments in CARES Act: \approx \$1,200 to those making less than \$75,000
- In our model, increased GDP by 79 cents per dollar spent

• Takeaway 1: With maximum transfer of \$1,200, income-targeting was very effective (0.79 vs. 0.8)

- Direct payments in CARES Act: \approx \$1,200 to those making less than \$75,000
- In our model, increased GDP by 79 cents per dollar spent

- Takeaway 1: With maximum transfer of \$1,200, income-targeting was very effective (0.79 vs. 0.8)
- Takeaway 2: Could have generated more stimulus with larger transfer to higher-MPC households

 $\hat{\chi}^1_{(S \times I) \times (S \times I)}$: sector *i* in state *s* uses $(\hat{x}^1_{si,kj})$ units of output from sector *j* in state *k*

- Use 2012 BEA make and use tables to construct national IO matrix
- Use 2012 CFS microdata on to compute gross trade flows between all state pairs for tradable commodities
- For nontradable sectors, we assume all production is within state

Estimating the Rationing Matrix •••••

$$\left(R_{L^{1}}^{1}\widehat{L}^{1}\right)_{rn,si} = \underbrace{\mathbb{I}[r=s]}_{\substack{\text{Within}\\\text{State}}} \underbrace{\alpha_{ir}\beta_{i}}_{\substack{\text{Labor Share}\\\text{of Output}}} \underbrace{\underbrace{y_{inr}}_{\sum_{n}y_{inr}}}_{\substack{\text{Nationing on MPCs}}} \underbrace{\left(1 + \xi\left(MPC_{n} - \overline{MPC}_{ir}\right)\right)}_{\text{Rationing on MPCs}} \right)$$

- 1. Assume all labor income earned within state where production takes place $(\mathbb{I}[r = s])$
- 2. Compute labor shares of output from BEA for each sector and state $(\alpha_{ri}\beta_i)$
- 3. Use ACS to compute income shares of demographics in sectors and states (y_{inr})
- 4. Use LEHD to estimate exposure to business cycle shocks by worker demographic (ξ) (Patterson 2019) Figure

 $\widehat{Cm}_{(S \times I) \times (S \times N)} : \text{ demographic } n \text{ in state } s \text{'s MPC for good } i \text{ in state } r$

$$MPC_{ri,sn} = \underbrace{MPC_n}_{\substack{\mathsf{PSID}/\mathsf{CEX}}} \times \underbrace{\alpha_{ni}}_{\substack{\mathsf{CEX Basket}}} \times \underbrace{\lambda_{irs}}_{\substack{\mathsf{CFS}}}$$

1. Use PSID and CEX to estimate MPC_n using methodology of Blundell, Pistaferri and Prestion (2008), Guvenen and Smith (2014) and Patterson (2019) • Figure • Details

- MPC for capitalists of 0.028 (Chodorow-Reich, Nenov, and Simsek 2019)
- 2. Use CEX to compute consumption basket shares for each demographic α_{ni} regure
 - Linear Engel curves for each demographic group
- 3. Use CFS to compute consumption trade flows across states λ_{irs}
 - Assume all non tradables consumed within state

Exploring constant consumption shares assumption

Figure: Estimated Directed MPCs Vs. CEX basket-weighted MPCs

Substantial MPC Heterogeneity Across Demographics

Figure: Heterogeneity in MPCs by Demographic Group (Patterson 2019)
• Following Gruber (1997) use panel structure of PSID:

$$\Delta C_{it} = \sum_{x} \left(\beta_x \Delta E_{it} \times x_{it} + \alpha_x \times x_{it} \right) + \delta_{s(i)t} + \varepsilon_{it}$$

 C_{it} = consumption expenditure, E_{it} = labor earnings, x = demographics, state-by-time FEs

- Instrument for income changes using unemployment shocks
- Using CEX: estimate demand for food expenditure as function of durable consumption, non-durable consumption, demographic variables and CPI prices
- Assuming monotonicity, invert to predict total consumption in the PSID using demographics and food expenditure

Relationship between MPC and Exposure to the Business Cycle

Figure: Earnings Elasticity and MPCs (Patterson 2019)

Empirical irrelevance of the bias and homophily effects is a robust feature economy

Homophily and Bias under Alternative Specifications

Regional Demand Linkages: Per Capita Spending

Change in GDP from \$1 shock in Michigan

IO linkages dampen the distribution of multipliers

- IO linkages narrow the heterogeneity across sectors/states
 - Inputs dilutes the MPC of workers receiving marginal dollars

Sorted purchases multipliers

Multipliers and the decline of the labor share

- Consider the decline in the labor share by industry from 2000-2012, keeping all else equal
- Assume the difference in labor income accures to a factor with MPC = 0

- Assume the following conditions:
 - Consumption preference and labor rationing are homothetic (i.e. marginal change is the same as the average)
 - No households are net borrowers in period 1
 - No government spending
- Then, for a final-output-proportional demand shock, the incidence and bias effects are 0
 - Each household's marginal consumption is proportional to its initial consumption → income-weighted average of marginal consumption is proportional to output.
 - Households with different consumption bundles → some households experience a greater change in income
 - Those households have different MPCs from the average \rightarrow homophily possible.

When does this collapse to classical Keynesian multiplier?

• If all industries have a common rationing-weighted average MPC, m, then

$$\vec{1}^T dY^1 = rac{1}{1 - \mathbb{E}_{y*}[m_n]} = rac{1}{1 - m}$$

- No matter where the shock hits, the aggregate consumption response is the same
- Special case of this: single good and single household

Optimal Fiscal Policy • Back

• In the paper we provide a number of results on the optimality of fiscal policy, not merely the welfare effects of potentially suboptimal fiscal policy

Proposition 5

Suppose taxes τ^{1*}, τ^{2*} and purchases G^{1*}, G^{2*} solve the planner's problem. Now consider a change in policy $\tau^t = \tau^{t*} + \varepsilon \tau^t_{\varepsilon}, G^t = G^{t*} + \varepsilon G^t_{\varepsilon}$, indexed by ε . The following first-order condition holds:

$$\begin{split} 0 &= \underbrace{\left(\tilde{\lambda}^{T} \mu WTP^{1} - (\gamma \mathbf{1}^{T} + \tilde{\lambda}^{T} \Delta \Gamma^{1})\right) \mathbf{G}_{\varepsilon}^{1}}_{Opportunistic government purchases} \qquad \underbrace{ + \underbrace{\left(\tilde{\lambda}^{T} \mu (l - \phi) WTP^{2} - \gamma \mathbf{1}^{T}\right) \mathbf{G}_{\varepsilon}^{1}}_{Short-termist government purchases} \\ &\underbrace{ - (\tilde{\lambda} - \gamma \mathbf{1})^{T} \mu \left(\tau_{\varepsilon}^{1} + \frac{\tau_{\varepsilon}^{2}}{1 + r}\right)}_{Pure redistribution} \qquad \underbrace{ + \underbrace{\tilde{\lambda}^{T} \frac{\phi \mu \tau_{\varepsilon}^{2}}{1 + r}}_{Relaxation of borrowing constraints} \\ &- \widetilde{\lambda}^{T} \Delta \Gamma^{1} \left(l - C_{\ell \mathbf{1}}^{1} \Gamma^{1}\right)^{-1} C_{\ell \mathbf{1}}^{1} \left(\Gamma^{1} \mathbf{G}_{\varepsilon}^{1} - \mu \tau_{\varepsilon}^{1} - \frac{\mathbf{1}\phi_{\mu} = 0 \mu \tau_{\varepsilon}^{2}}{1 + r}\right) \end{split}$$

Keynesian stimulus (alleviation of involuntary unemployment)

where γ is the marginal value of public funds, $\Gamma^1 \equiv \mathsf{R}^1_{11} \left(l - \hat{X}^1 \right)^{-1}$, μ , ϕ , and Δ are the diagonal matrices of type weights, borrowing wedges, and labor wedges, respectively.

Comparative Statics • Back

- In the paper we derive a number of comparative statics results which explore how changes in the network structure affect the distribution of fiscal multipliers
- Define the matrix:

$$\mathcal{M} = C_{\ell^1}^1 R_{L^1} \widehat{L}^1 \left(I - \widehat{X}^1 \right)^{-1}$$

Proposition 6

Consider a change in the economy such that \mathcal{M} is replaced with $\mathcal{M}' = \mathcal{M} + \varepsilon \mathcal{E}$. The effect on dY^1 of this change is given to first order in ε by:

$$rac{d}{darepsilon} dY^1|_{arepsilon=0} = (I-\mathcal{M})^{-1} \mathcal{E}(I-\mathcal{M})^{-1} \partial Q^1$$

where ∂Q^1 generalizes ∂Y^1 to the case with supply shocks.

- Corollaries include:
 - 1. Higher multipliers with higher MPCs / labor shares
 - 2. More dispersed multipliers with less connected IO matrix