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1 Introduction

The introduction of a retail central bank digital currency (CBDC) is currently under
active consideration by central banks around the world. A key motivation for the intro-
duction of a central bank digital currency (CBDC) is the decrease in cash use. According
to the ECB Study on the payment attitudes of consumers in the euro area (SPACE) from
79% of all point-of-sale transactions in the Eurozone in 2016 to 72% in 2019 and 59%
in 2022, (ECB, 2022). The 2022 wave of the SPACE survey suggests that cash may no
longer be the preferred means of payment within the Eurozone; 55% of consumers within
the Eurozone stated a preference for using cards and other cashless payments in stores,
while only 22% preferred to use cash.

In the context of the decline in physical cash use, the introduction of a CBDC can be
considered a way to modernize fiat currency for the digital age. In addition, a CBDC is
likely to have technical features that make it a closer substitute for bank deposits than
physical cash. Thus, CBDC is likely to be a greater source of competition for banks in
the deposit market. This gives rise to potential risks associated with the introduction of
a CBDC, for example, the financial stability impact of an increase in the cost of bank
funding highlighted by Broadbent (2016).

Through the introduction of a retail CBDC, households will essentially be able to hold
a bank account directly with the central bank. To maintain a well-functioning payment
system, the introduction of a CBDC is likely to require additional settlement transactions
between the banking sector and the central bank. This paper focuses on the consequences
of this channel for the structure of the deposit market and the implementation of monetary
policy.

I propose a theoretical model where CBDC and bank deposits are imperfect substitutes
and where deposits are subject to liquidity shocks. Banks are able to transfer liquidity
between themselves through an interbank market. I assume that it is more costly for
banks to trade with the central bank than in the interbank market. This cost could
materialize, for example, due to central banks requiring better quality collateral than
would be required in the interbank market. In this paper, I assume the increased costs
occur as, following the liquidity shocks, banks are only able to trade with the central
bank via standing facilities. As a consequence, the introduction of a CBDC increases the
banking sector’s use of the central bank standing facilities, and thus increases the costs
associated with deposits. In this setting, CBDC raises the cost of bank funding in two
ways; directly by competing for depositors and indirectly by increasing the number of
transactions with the central bank.
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The deposit market is modeled as in the spatial competition model of Salop (1979) with
the addition of a central bank. A continuum of atomistic depositors choose to deposit their
funds at one of a finite number of banks or, through a CBDC, at the central bank. This
deviates from existing models of CBDC, where households hold portfolios of liquid assets
consisting of both bank deposits and CBDC. There is some evidence that many households
do not hold multiple deposit accounts simultaneously. As part of the UK Competition and
Markets Authority’s investigation into the retail banking market, they commissioned a
survey by GfK NOK which found that only 22% of UK households actively used a personal
current account at more than one bank, (Moon et al., 2015). Whether households are
more willing to hold both bank deposits and CBDC simultaneously is likely to depend
on the specific design choices of CBDC.

In order to study the impact of a CBDC on the structure of the deposit market, I consider
two equilibria; a short-run equilibrium where the number of banks is fixed and a long-run
equilibrium where the number of banks adjusts according to a free entry condition. With
the number of banks fixed, banks respond to the introduction of CBDC by increasing the
deposit rate as banks attempt to maintain market share. If the number of banks is able
to adjust, the deposit market becomes more concentrated following the introduction of
CBDC. This provides an additional channel for adjustment, which dampens the effect on
deposit rates.

Using this model, I study the effect of introducing a CBDC on the structure of the deposit
market and its monetary policy implications. In particular, I focus on two parts of the
policy debate around CBDC. First, the effectiveness of the CBDC remuneration rate as
an additional tool in the monetary policy toolkit and second, the implications CBDC
has on the transmission of the policy rate through the deposit market. To assess the
empirical relevance of the theoretical results, I calibrate the model for the Eurozone.

The model makes several predictions that have important policy implications. First, if
the banks do not face liquidity risk from deposit financing, then in the short-run the
introduction of a CBDC results in a fall in the market shares of banks in the deposit
market and upward pressure on banks to raise deposit rates in the face of greater compe-
tition. In the absence of liquidity risk, the bank deposit rate is strictly increasing in the
CBDC remuneration rate. This leads to a decrease in bank profitability; therefore, the
model predicts that in the long-run the number of banks active in the deposit market will
fall following the introduction of CBDC. In the long run, as the banking sector becomes
more concentrated, the remaining banks have more market power, which puts downward
pressure on the bank deposit rate. As a consequence, the interest rate on bank deposits
may not be increasing in the remuneration rate of CBDC in the long-run.

The model proposes a novel liquidity risk channel through which the introduction of
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a CBDC can further increase the costs of banks operating in the deposit market. As
deposits are subject to liquidity risk, the model predicts that as the market share of
CBDC increases, so does the size of transactions between the banking sector and the
central bank. As a consequence, an increase in the CBDC remuneration rate will increase
the cost banks face due to this liquidity risk. Thus, in the presence of this liquidity risk,
there is additional downward pressure on the bank deposit rate, which may lead to the
bank deposit rate not strictly increasing with the CBDC remuneration rate even in the
short-run. These results cast doubt on the use of the CBDC remuneration rate as an
additional tool for monetary policy.

This paper also highlights the importance of the liquidity risk channel for the transmission
of monetary policy more generally. In the absence of liquidity risk, the model predicts
that the bank deposit rate increases one-for-one following an increase in the policy rate,
even after the introduction of a CBDC. However, if banks face liquidity risk in the deposit
market, introducing a CBDC impacts the transmission of the policy rate and there will be
imperfect pass-through to the bank deposit rate. This occurs because raising the policy
rate also increases the cost banks face when obtaining additional liquidity from the central
bank. Furthermore, the impact of monetary policy will now impact the structure of the
deposit market and thus monetary policy will impact the deposit rate to differing degrees
in the short-run and long-run.

This paper is complementary to the growing literature on the policy implications of
CBDC. A large literature focuses on financial stability issues; in particular, both Böser
and Gersbach (2020) and Fernández-Villaverde et al. (2021) consider the increased risk
of bank runs that can occur if bank depositors had access to a CBDC so that they could
transfer their deposits in times of financial stress. Both Brunnermeier and Niepelt (2019)
and Niepelt (2020) discuss an equivalence result where appropriate transfers from the
central bank to the financial system are capable of neutralizing the impact of introducing
a CBDC and mitigate the risk of a CBDC-induced bank run. This paper also introduces
liquidity risk of deposits; the focus is not on bank runs, but on the costs imposed on
banks when they obtain liquidity from a central bank lending facility.

In casting doubt on the use of the CBDC remuneration rate in the monetary toolkit, this
paper contributes to the literature on how CBDC should be remunerated. Agur et al.
(2022) consider the welfare trade-off for the central bank when choosing a non-interest-
bearing versus an interest-bearing CBDC. Barrdear and Kumhof (2022) find that a coun-
tercyclical remuneration rate rule for CBDC can contribute to stabilizing the business
cycle. Similarly, Bordo (2021) finds that an interest-bearing CBDC may improve the
transmission mechanism of monetary policy. On the other hand, Chiu and Davoodal-
hosseini (2021) find that a non-interest-bearing CBDC increases bank intermediation
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and thus welfare, while an interest-bearing CBDC results in bank disintermediation and
lower welfare. Williamson (2022) studies various implementations of CBDC and shows
how an interest-bearing CBDC can increase welfare by competing with private means of
payment.

The results of this paper on the possible impact of CBDC on the transmission of monetary
policy can be considered alongside a growing literature on the implications of CBDC for
monetary policy. A summary of the possible monetary policy implications of CBDC can
be found in Bindseil (2019). For example, Keister and Sanches (2019) suggests that,
while CBDC can promote efficient exchange, it can also increase funding costs. Meaning
et al. (2021) provide a detailed discussion on the monetary transmission mechanism in
general, as well as other possible policy implications. Burlon et al. (2022) study the
welfare implications of a CBDC and provide a characterization of the welfare-maximizing
CBDC policy rules. Kumhof and Noone (2021) discuss the remuneration of CBDC in
detail and its possible use for monetary policy. Kumhof and Noone (2021) propose a
two-tier remuneration system, while Barrdear and Kumhof (2022) propose a quantity
rule and a price rule for CBDC.

This paper is also closely related to the literature on the impact of CBDC on the banking
sector. In a macroeconomic framework, Bacchetta and Perazzi (2021) assume a constant
elasticity of substitution between a CBDC and a continuum of monopolistically com-
petitive banks. Andolfatto (2021) analyzes the case of a single monopoly bank where
CBDC and bank deposits are perfect substitutes, but there is a fixed cost for depositors
to switch between the two. Chiu et al. (2019) study a model of Cournot oligopoly with a
finite number of banks where banks compete in quantity rather than the remuneration of
deposits. CBDC is assumed to be a perfect substitute for bank deposits, and so imposes
a minimum remuneration rate on bank deposits.

This paper is also related to the literature on spatial models of imperfect competition,
as the deposit market is based on the classic paper by Salop (1979). Spatial competition
models have been widely used to study deposit markets. For example, Chiappori et al.
(1995) study the regulation of deposit rates using a Salop circle model of both loans and
deposit markets, while Matutes and Vives (1996) study the impact of deposit insurance
in a model of spatial competition in the deposit market. Along similar lines Repullo
(2004) investigates the effect of capital requirements on bank behavior when imperfect
competition in the deposit market is modeled using a Salop circle. Empirical support for
spatial models of the deposit market is provided by Park and Pennacchi (2008) and Ho
and Ishii (2011), among others. The structure of competition after the introduction of a
CBDC is closely related to Salop Circle models with a center such as Bouckaert (2000)
and Madden and Pezzino (2011).
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Finally, this paper is also related to the literature on interbank markets. In particular,
the theoretical treatment of the interbank market in this paper is closest to that of Hauck
and Neyer (2014) and Bucher et al. (2020), who both study the operation of an interbank
market within the framework of the Eurozone.

The remainder of this paper is organized as follows. Section 2 presents the model. Section
3 goes into further detail on the bank problem. In Section 4 the equilibrium is presented.
Section 5 provides comparative statics on both the impact of the CBDC remuneration
rate on the bank deposit rate and the implications for the transmission of monetary
policy. Section 6 calibrates and provides a quantitative assessment of the model. Section
7 concludes.

2 Model

I consider a model of the retail deposit market with three discrete periods, t = 1, 2, 3.
The economy consists of three types of agents; risk-neutral banks, a central bank, and a
continuum of depositors.

In the first period t = 1, banks enter the deposit market, paying a fixed cost F > 0.
I consider two different equilibria: In a short-run equilibrium a fixed number N ≥ 2 of
banks enter in t = 1. In a long-run equilibrium, the number of banks adjusts endogenously
subject to a free-entry condition. This distinction allows for the study of different channels
of adjustment. In the short-run equilibrium banks adjust their intensity of competition
solely through the deposit rate. In the long-run equilibrium, the banking sector can
adjust through changes in the deposit rate and a change in the concentration of banks in
the deposit market.

Banks have access to a technology that yields an exogenously given return RL on liquidity.
Banks must obtain an exogenously given quantity of liquidity L > 1 to operate this
technology. Banks obtain liquidity in period t = 2, either from the central bank or from
depositors. The liquidity bank i obtains from the central bank in t = 2 is denoted by Bi

and is remunerated at the main policy rate Rf . Bank i sets a deposit rate Ri and obtains
a share qi of the retail deposit market. Deposits are subject to aggregate liquidity risk
that is realized in t = 3.

At the end of the final period, t = 3, banks must return to a liquidity neutral position.
To do so, banks may borrow or lend liquidity through the interbank market or the central
bank standing facilities. The central bank offers a deposit facility with an interest rate
RDF and a lending facility with an interest rate RLF . The central bank charges penalty
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rates on these standing facilities such that RDF < Rf < RLF . Banks can trade liquidity
between themselves in an interbank market. Trade in the interbank market takes place at
a state-dependent interbank rate Rs

IB, where the superscript s denotes the state associated
with the realized liquidity risk. The interest rates on the central bank standing facilities
define a corridor that sets an upper and lower bound on the interbank rate.

The retail deposit market is modeled as a Salop circle as in Salop (1979). There is a
continuum of depositors located around a circle with unit mass. The banks are located
equidistant from each other around the circle. A depositor located at a distance x ≥ 0

from the bank must pay a linear transportation cost tBx ≥ 0 to deposit their funds.
Banks compete in prices à la Bertrand. The interest rate paid on deposits by bank i,
denoted as Ri.

The central bank may also enter the deposit market in t = 1 by issuing a CBDC and
setting a remuneration rate RCB. The entry of CBDC into the deposit market and its
remuneration rate are known to all participants in advance. All bank decisions are made
in full knowledge of whether they will compete against a CBDC and are conditional on
the CBDC remuneration rate RCB.

Each depositor pays a fixed transport cost to obtain CBDC, with this transport cost
drawn uniformly from the interval tCB ∈ [0, tB]. The structure of CBDC transport costs
serves two purposes. First, it captures the idea that CBDC may have specific character-
istics that differentiate it from retail deposits. Examples given in the literature include
privacy concerns or preferences over additional security of deposited funds. Second, it
allows competition between neighboring banks and CBDC to occur simultaneously. This
would not be the case if CBDC transport costs were identical among depositors.

Deposits are subject to liquidity shocks that occur in the final period (t = 3). With
probability λ, the banking sector sees a net outflow of deposits. A fraction ξ ∈ [0, 1] of
bank deposits relocate to other locations, evenly distributed around the circle. As CBDC
depositors do not relocate, the net outflow of deposits will depend on the market share of
CBDC. With probability 1− λ, the banking sector does not see a net outflow of deposits
and the aggregate liquidity of the banking sector remains unchanged.

Given the structure of the liquidity shocks, the presence of CBDC introduces additional
liquidity risk in the banking sector. Although these liquidity shocks are similar in spirit
to those in papers such as Fernández-Villaverde et al. (2021) that focus on the possibility
of CBDC generated bank runs, here there is no risk of bank runs. Instead, liquidity risk
generates additional costs of deposits for banks. This cost occurs regardless of whether
the banking sector has excess liquidity in aggregate or not. The presence of CBDC in
conjunction with the liquidity shocks generates volatility in the aggregate liquidity of the
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banking sector. This in turn means that banks need to increase their use of the central
bank standing facilities in at least one of the states.

To summarize the timing of the model, in the first period (t = 1), the central bank
decides whether to introduce a CBDC and sets its remuneration rate RCB. In a short-
run equilibrium, a fixed number, N , banks enter in t = 1 while in a long-run equilibrium,
N banks enter subject to a free-entry condition. In the second period (t = 2), commercial
banks compete in the deposit market by setting a deposit rate Ri and obtaining liquidity
Bi from the central bank. In the third period (t = 3) the liquidity shock is realized and
commercial banks use the central bank standing facilities and the interbank market to
obtain a liquidity neutral position. In what follows, I focus on the symmetric equilibrium
and solve for the Subgame Perfect Nash Equilibrium in pure strategies using backward
induction.

3 Banking Sector

3.1 Bank Liquidity

I begin the analysis of the banking sector with the final period, t = 3. The N ≥ 2

banks, indexed by i, have made their decisions about their funding structure. The bank’s
funding structure consists of a quantity of deposits qi and central bank liquidity Bi.

The bank’s choice of liquidity Bi and deposits qi implies that before the realization of the
liquidity shocks the banks have the following ex ante liquidity deficit

ϵi ≡ L−Bi − qi. (1)

With probability 1−λ, a fraction ξ of all depositors relocate to locations evenly distributed
around the Salop circle. Here banks face the same liquidity inflows as liquidity outflows
and their ex post liquidity deficit is simply equal to their ex ante liquidity deficit

ϵ0i = ϵi. (2)

With probability λ, a fraction ξ of bank depositors relocate while CBDC depositors do
not. Bank i receives a liquidity outflow equal to qiξ, while each bank receives an inflow
of liquidity equal to (1− qCB) qiξ. Each bank faces a net outflow of liquidity and has an
ex post liquidity deficit equal to

ϵ+i = ϵi + qCBqiξ. (3)
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It is assumed that banks must return to a liquidity neutral position at the end of t = 3.
The amount of liquidity they must trade to achieve this depends on the bank’s ex post
liquidity deficit ϵsi , where s ∈ {0,+} denotes the realization of the liquidity shock. If
ϵsi > 0, bank i needs to obtain additional liquidity through the interbank market or
through the central bank liquidity facility. If, on the other hand, ϵsi < 0 bank i must
reduce its liquidity by lending in the interbank market or depositing liquidity in the
central bank deposit facility.

The interest rates on the central bank standing facilities act as upper and lower bounds on
the interbank rate. Whether these bounds are reached depends on the aggregate liquidity
deficit of the banking system

∑
i ϵ

s
i . The relationship between the interbank market and

the realization of the aggregate liquidity deficit is set out in the following equation.

Rs
IB


= RLF if

∑
i ϵ

s
i > 0

= RDF if
∑

i ϵ
s
i < 0

∈ [RDF , RLF ] otherwise.

(4)

The expected liquidity cost of deposits is simply the expected cost of returning to a
liquidity neutral position

E [Ci] = (1− λ)R0
IBϵ

0
i + λR+

IBϵ
+
i . (5)

By combining equations (2) and (3) with equation (5), the bank’s expected cost of deposits
can be written as

E [Ci] = ϵiRf + λξR+
IBqCBqi. (6)

An important property of equation (6) is that if the expected liquidity shock is positive,
λξ > 0, the expected cost of deposits is strictly increasing in the market share of the
central bank. This is an important feedback mechanism of the model. An increase in
the market share of CBDC increases the liquidity risk of deposits, and thus increases the
expected cost of deposits for banks.

3.2 Bank’s Problem

Consider the bank’s problem in the intermediate period, t = 2, taking the number of
banks N as given. In this period, the bank decides on its funding structure by obtaining
liquidity from the central bank and sets the interest rate it offers to depositors Ri. Banks
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are risk neutral and maximize expected profits. The profit function of bank i is

πi = max
Bi,Ri

{RLL−RfBi −Riqi − E [Ci]− F} , (7)

where E [Ci] is defined in equation (5) and F > 0 is the fixed cost that banks are assume
to pay in order to enter the deposit market. Banks compete for depositors in prices à
la Bertrand, taking as given both the deposit rates set by other banks and the funding
structure of other banks.

If the central bank does not introduce a CBDC, competition between banks in the deposit
market is identical to the Salop circle model. If bank i offers a deposit rate equal to Ri

and other banks offer a deposit rate equal to R−i, then a depositor located at a distance
x from bank i, where x ∈

[
0, 1

N

]
, will choose to deposit their funds at bank i rather than

the neighboring bank so long as

Ri − tBx ≥ R−i − tB

(
1

N
− x

)
, (8)

where tB is the linear transport cost that is incurred by depositors. Bank i thus faces the
following demand function

qi =
1

N
+

1

tB
(Ri −R−1) . (9)

If the central bank introduces a CBDC, bank i faces competition not only from the two
banks that neighbor it, but also from the CBDC. I assume that the central bank sets
a fixed remuneration rate RCB and that depositors incur a transport cost tCB if they
deposit funds in the CBDC. The transport costs associated with CBDC are assumed to
be drawn randomly from a uniform distribution over the interval [0, tB]. Thus a depositor
located at distance x from bank i would prefer to deposit funds in bank i rather than in
the CBDC so long as

x ≤ 1

tB
(Ri −RCB + tCB) . (10)

Following the introduction of CBDC, for a depositor to deposit funds in bank i, they
must prefer bank i to the CBDC, as well as all other banks and both equations (8) and
(10) must be satisfied.

The market share of deposits obtained by bank i depends on the deposit rate that it
sets, Ri, relative to the deposit rate set by the neighboring banks, R−i and the CBDC
remuneration rate RCB. To characterize the demand function of bank i, it is helpful to
define some additional variables.

First, define the distance x∗
i as the point where a depositor is indifferent between bank i

and the neighboring bank −i. The equation for x∗
i follows from equation (8) and is given
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by

x∗
i =

1

2

(
1

N
+

1

tB
(Ri −R−i)

)
. (11)

Now consider a depositor with the lowest possible CBDC related cost, tCB = 0. From
equation (10) this depositor’s preference for bank i’s deposits depends on their location
relative to bank i and the spread between bank deposits and the CBDC remuneration
rate. I now introduce a variable, zi, that will be important in describing the equilibrium
with CBDC that is defined as

zi ≡ x∗
i −

1

tB
(Ri −RCB) . (12)

If zi < 0, the CBDC remuneration rate is sufficiently low that any depositor that prefers
bank i deposits to those of another bank would also prefer bank i deposits to CBDC.
Banks compete for deposits with their neighboring banks. In a symmetric equilibrium
where Ri = R−i each bank obtains a market share of 1/N as in the standard Salop setup
and the demand for deposits follows from (11) as

qi = 2x∗
i if zi < 0. (13)

If 0 ≤ zi ≤ x∗
i , all depositors located at a distance x∗

i − zi > 0 or closer to bank
i prefer bank i deposits to CBDC. However, for depositors located at some distance
x ∈ [x∗

i − zi, x
∗
i ], some depositors with a low realization of the cost of CBDC tCB will

prefer CBDC to bank i deposits. For these depositors, there exists a function t∗i (x) that
defines the smallest value of tCB that depositors located a distance x from bank i must
have in order to prefer depositing in bank i rather than depositing in the CBDC. Bank i

faces competition from neighboring banks and partial competition from the CBDC. The
demand function facing bank i is

qi = 2

(∫ x∗
i

x∗
i−zi

(
tB − t∗ (x)

tB

)
dx+ x∗

i − zi

)
if 0 ≤ zi ≤ x∗

i (14)

To have meaningful competition between banks, some depositors located equidistant
between bank i and its neighboring bank must prefer to deposit in bank i over CBDC.
From equation (10) this occurs whenever

x∗
i ≤

1

tB
(Ri −RCB + tB) . (15)

Combining this with the definition of zi, equation (12), yields the condition that zi ≤ 1.
Therefore, if x∗

i < zi ≤ 1, some depositors with a low realization of the CBDC cost tCB
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will prefer CBDC to bank i deposits regardless of the distance they are located from
bank i. In this case, some fraction of all depositors located at a distance of x∗

i or closer
to bank i will choose CBDC over depositing at bank i. Bank i faces competition from
neighboring banks and full competition from CBDC. The demand function facing bank
i is then

qi = 2

(∫ x∗
i

0

(
tB − t∗ (x)

tB

)
dx

)
if x∗

i < zi ≤ 1 (16)

Banks are able to attract some depositors as long as zi ≤ 1 + x∗
i . Therefore, if 1 <

zi ≤ 1+ x∗
i , the bank i does not compete directly with its neighboring banks and instead

operates a local monopoly where it attracts a fraction of depositors located a distance zi

from it. Bank i competes only with CBDC for deposits, and only depositors who have
a high realization of the CBDC cost tCB will prefer deposits to CBDC. The demand
function facing bank i is then

qi = 2

(∫ zi

0

(
tB − t∗ (x)

tB

)
dx

)
if 1 < zi ≤ 1 + x∗

i (17)

Finally, if zi > 1+x∗
i , the CBDC remuneration rate is sufficiently high that RCB ≥ Ri+tB

and the CBDC dominates the deposit market. Here, the CBDC remuneration rate is
sufficiently high that no depositor would prefer to deposit in bank i over CBDC, and all
depositors hold CBDC. Banks do not obtain a market share, and thus qi = 0.

Explicitly evaluating the integrals, the demand function bank i faces can be specified in
a piece-wise fashion as

qi =



2x∗
i if zi < 0

2x∗
i − z2i if 0 ≤ zi ≤ x∗

i

2x∗
i − x∗

i (2zi − x∗
i ) if x∗

i < zi ≤ 1

(1 + x∗
i − zi)

2 if 1 < zi ≤ 1 + x∗
i

0 if zi > 1 + x∗
i .

(18)

As depositors are assumed not to have an outside option, there will be full coverage in
the deposit market and all deposits will be deposited either at a retail bank or at the
central bank. Thus the market share of CBDC can be written as

qCB = 1−
∑
i

qi. (19)
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3.3 Bank Entry

As discussed in Section 2, I consider both short-run and long-run equilibria. In a short-run
equilibrium, the number of banks competing in the deposit market is fixed exogenously
at some N ≥ 2. In a long-run equilibrium, the number of banks is set according to a
free-entry condition where banks pay a fixed entry cost F > 0 in t = 1 and enter as
long as their expected profits defined by equation (7) are weakly positive. The number
of banks that enter, N , then adjusts until expected profits are driven to zero.

4 Equilibrium

I focus on solving for a symmetric equilibrium in which all banks make identical decisions
about their funding structure: Bi and set the same deposit rate Ri. As banks set the
same deposit rate, they obtain an equal share of deposits qi. I distinguish between a
short-run equilibrium, where the number of banks N is fixed, and a long-run equilibrium
where N ≥ 2 adjusts according to a free-entry condition such that all banks make zero
expected profits.

4.1 Interbank Market and Bank Funding Structure

I begin by characterizing the equilibrium funding structure of the bank chosen in t = 2

and the equilibrium interest rate of the interbank market in t = 3. In choosing their
funding structure, banks take the interest rates in the interbank market, the policy rate
and the interest rates on standing facilities as given. Conditional on the deposit rate
they set, banks perfectly anticipate the market share of deposits they obtain. Obtaining
one additional unit of liquidity from the central bank in t = 2 has a marginal cost of
Rf , while also reducing by one unit the bank’s ex ante liquidity deficit ϵi. Therefore, in
equilibrium, banks adjust Bi so that the marginal cost of increasing Bi, Ri, is equal to
the expected marginal cost of increasing its ex ante liquidity deficit ϵi and the following
condition holds

∂E [Ci]

∂ϵi
= Rf . (20)

In equilibrium, the interbank rates that hold in t = 3 must be consistent with the bank’s
funding decisions made in t = 2. Given a bank’s choice of Bi and its market share qi, a
bank’s ex post liquidity deficit ϵsi is conditional on the realization of the liquidity shock
s ∈ {0,+}. In equilibrium, the interbank rate conditional on liquidity shock s can be
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found from equation (4). The equilibrium interbank rate and the bank’s equilibrium
funding structure are summarized in Proposition 1 below.

Proposition 1. In both a long-term and short-term equilibrium, banks obtain liquidity
Bi from the central bank in t = 2 such that

I. When λ ≤
(

Rf−RDF

RLF−RDF

)
, Bi = L − qi. The equilibrium interbank market rates are

R0
IB = RLF −

(
1

1−λ

)
(RLF −Rf ) and R+

IB = RLF .

II. When λ >
(

Rf−RDF

RLF−RDF

)
, Bi = L − (1− qCBξ) qi. The equilibrium interbank market

rates are R0
IB = RDF and R+

IB = RDF + 1
λ
(Rf −RDF ).

Proof. See the Appendix.

An implication of Proposition 1 is that interest rates in the interbank market depend on
λ, the probability that the bank is hit by a net liquidity outflow. If λ is low, then banks
have a neutral liquidity position if they are not hit by an outflow of liquidity, ϵ0i = 0.
However, if λ is sufficiently high, then banks have a neutral liquidity position if they are
hit by an outflow of liquidity and therefore hold surplus liquidity if they are not hit by a
liquidity outflow ϵ+i = 0. As the probability of being hit by a liquidity shock increases,
the incentive banks have a greater incentive to accumulate liquidity in t = 2, and thus
the supply of liquidity in the banking sector in t = 3 increases. As a result, conditional
interbank rates are weakly decreasing in λ.

4.2 Deposit Market Equilibrium without CBDC

I now turn to the equilibrium in the deposit market. In t = 2 bank i sets a deposit rate
Ri that in combination with its funding decision set out in Proposition 1 maximizes its
expected profit.

The equilibrium deposit rate can be found by differentiating the bank’s profit function
given by equation (7) with respect to the deposit rate chosen by the bank, Ri yielding

−qi −
∂qi
∂Ri

(
Ri +

∂E [Ci]

∂qi

)
− ∂qCB

∂Ri

∂E [Ci]

∂qCB

= 0. (21)

First, I focus on the case where CBDC does not have a share of the deposit market, qCB =

0. By combining equations (11) and (12), it follows that there exists a sufficiently low
CBDC remuneration rate, RCB such that no depositor prefers CBDC to bank deposits.
As depositors are assumed to have no outside option, with RCB ≤ RCB depositors will
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always choose to deposit their funds in a bank. In the symmetric equilibrium studied
here, banks obtain equal market shares, and thus bank i’s market share is qi =

1
N

.

In the case where RCB ≤ RCB, the first-order condition for the deposit rate described
in equation (21) can be simplified, leading to a closed-form solution for the deposit rate
Ri = Rf − 1

N
tB, as in a textbook Salop circle model.

The profit bank i makes in the case where RCB ≤ RCB can be found by substituting the
equilibrium deposit rate and market share into equation (7), yielding

πi = π̄ −
(
Ri −Rf + λξR+

IBqCB

)
qi, (22)

where
π̄ ≡ (RL −Rf )L− F. (23)

Absent CBDC, a necessary requirement for a finite number N ≥ 2 of banks to be prof-
itable is −1

4
tB ≤ π̄ < 0. Then, in a long-run equilibrium, the number of banks adjusts

subject to a free entry condition such that banks make zero profit in expectation. I
assume that this parameter restriction is satisfied and thus focus on the case where a
long-run equilibrium exists in the absence of CBDC.

The equilibrium without CBDC is fully characterized by Proposition 2.

Proposition 2. If RCB ≤ RCB ≡ Rf − 3
2
tB

1
N

then:

I. When the number of banks is fixed at N ≥ 2 there exists a unique symmetric short-
run equilibrium where banks compete such that every bank i sets the same deposit
rate Ri = Rf − 1

N
tB and obtains the same share of deposits qi = 1

N
. CBDC has zero

market share qCB = 0.
II. When banks enter subject to πi ≥ 0 and if −1

4
tB ≤ π̄ < 0 then there exists a unique

symmetric long-run equilibrium where banks compete such that every bank i sets the
same deposit rate Ri = Rf − 1

N
tB and obtains the same share of deposits qi =

1
N

.

The number of banks is N = t
1
2
B (F − (RL −Rf )L)

− 1
2 and CBDC has zero market

share qCB = 0.

Proof. See the Appendix.

With qCB = 0, the bank’s equilibrium funding decision combined with equation (6)
implies that E [Ci] = 0 and thus the expected liquidity cost of deposits is zero. This
is a direct consequence of the structure of the liquidity shock. In an economy without
CBDC, banks face net inflows of liquidity that exactly offset the net outflows of liquidity
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regardless of the realization of the aggregate liquidity shock, s. It is optimal for banks to
accumulate sufficient liquidity so that they do not need to make use of the central bank’s
standing facilities.

It follows from Proposition 2 that the cutoff CBDC remuneration rate RCB is increasing in
N . Thus, as the banking sector becomes more concentrated, the threshold remuneration
rate required for CBDC to obtain a positive market share also falls. With fewer banks
active in the deposit market, banks offer lower deposit rates, and therefore CBDC poses
greater competitive pressure on banks at a given remuneration rate, RCB.

4.3 Deposit Market Equilibrium with CBDC

Now, consider the bank’s choice of deposit rate when RCB > RCB, and thus the CBDC
remuneration rate is sufficiently high that it poses meaningful competition to banks. With
qCB > 0, the market share of each bank in a symmetric equilibrium is no longer equal to
1
N

and instead depends on the deposit rate offered by the banks. As a consequence, the
short-run deposit rate is now determined by a system of two equations; the first-order
condition for the deposit rate, equation (21), and the definition of zi set out by equation
(12). The long-run equilibrium will also require that the free-entry condition of banks
holds.

To simplify the analysis, I focus on the case where the liquidity cost facing banks is not
so large that banks are forced out of the deposit market almost immediately. Specifically,
I assume that the following parameter restriction holds

1

tB
λξR+

IB ≤ 1. (24)

In a symmetric short-run equilibrium, the number of banks is fixed at N and all banks set
identical deposit rates. Equation (11) simplifies to x∗

i = 1
2N

. If RCB > RCB, the CBDC
remuneration rate is sufficiently high that qCB > 0. In this case, by combining equations
(12) and (21) the short-run equilibrium can be found as the zi that solves the following
equation

Γ ≡ −qi −
∂qi
∂Ri

(
RCB + tB (x∗

i − zi)−Rf + λξR+
IBqCB

)
− ∂qCB

∂Ri

λξR+
IBqi = 0, (25)

where qi and qCB are functions of x∗
i and zi given by equations (18) and (19), respectively.

The bank takes the deposit rates set by the other banks, as well as the CBDC remuner-
ation rate, as given. It chooses its deposit rate Ri taking into account the effect that a
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change in the deposit rate has on both its own market share, qi, and on the market share
of CBDC, qCB.

Equation (25) also depends on the impact of an increase in Ri on the market share of
CBDC, holding the deposit rates of other banks fixed. This can be obtained through the
definition of qCB set out by equation (19). As depositors do not have an outside option,
they must deposit their funds at a bank or in the CBDC. Therefore, the market share
of CBDC is the mass of depositors who choose not to deposit funds at any bank. An
increase in the deposit rate set by bank i, Ri, affects the market share not only of bank
i, but also of neighboring banks; the impact of Ri on the market share of CBDC can be
calculated from

∂qCB

∂Ri

= − ∂qi
∂Ri

− ∂qi+1

∂Ri

− ∂qi−1

∂Ri

, (26)

where qi+1 and qi−1 denote the market shares of neighboring banks.

The short-run equilibrium is summarized by the zi that solves equation (25). In cases
where the CBDC remuneration rate is sufficiently high that RCB > RCB, it follows from
equation (25) that zi > 0 and CBDC obtains a positive share of the deposit market,
qCB > 0. There exists a threshold CBDC remuneration rate R∗

CB, found from equations
(11) and (12), above which banks do not directly compete with each other. Instead, banks
operate a local monopoly in which they compete only with the CBDC for depositors.
Should the CBDC remuneration rate increase above some upper limit R̄CB, then it follows
from equation (12) that banks will not operate in the deposit market and all depositors
hold CBDC. These results are summarized in the following proposition.

Proposition 3. Given that 1
tB
λξR+

IB ≤ 1 and the number of banks is fixed at N ≥ 2 then
if RCB > Rf − 3

2
tB

1
N

I. When RCB ≤ R∗
CB ≡ Rf + tB

(
1− 3

4N

)
− λξR+

IB

(
1− 1+N

4N2

)
there is short-run com-

petition between banks and some depositors hold CBDC (qCB > 0). The market
share of banks, qi is strictly decreasing in RCB while the market share of CBDC is
strictly increasing in RCB.

II. When RCB > R̄CB ≡ Rf + tB − λξR+
IB banks do not operate in the deposit market

in the short-run and CBDC dominates (qCB = 1)
III. When R∗

CB < RCB ≤ R̄CB banks operate local monopolies in the short-run and
directly compete only with the CBDC. Some depositors hold CBDC (qCB > 0) and
the market share of banks, qi, is strictly decreasing in RCB, while the market share
of CBDC is strictly increasing in RCB.

Proof. See the Appendix.
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In a short-run equilibrium, the market share of banks is strictly decreasing in RCB over
the interval

(
RCB, R̄CB

]
. As the number of banks in the short-run equilibrium is fixed,

this also results in an increase in the market share of CBDC. A higher remuneration rate
of CBDC leads to more depositors choosing CBDC over bank deposits. As banks face
stiffer competition from CBDC and declining market shares, their profit also decreases.

In the case where qCB > 0, the profit a bank makes by setting the deposit rate at the
profit maximizing level can be written as a function of zi and x∗

i . Substituting equation
(12) into (22) and noting that both qCB and qi will be functions of zi and x∗

i in equilibrium
yields

πi = π̄ −
(
RCB −Rf + tB (x∗

i − zi) + λξR+
IBqCB

)
qi. (27)

The long-run equilibrium in the deposit market can be summarized as the pair {x∗
i , zi}

that satisfies equations (25) and (27).

I focus on the case where −1
4
tB ≤ π̄ < 0 and therefore at least two banks compete in a

long-run equilibrium where the CBDC remuneration rate is sufficiently low that CBDC
has zero market share. By Proposition 3 if the number of banks is kept fixed, the bank
profits fall. In the long-run equilibrium, an increase in the CBDC remuneration rate,
RCB, results in an increase in market concentration, the number of banks in the deposit
market decreases, so that banks return to profitability. As the CBDC remuneration rate
increases, the number of banks decreases further. At some point, it becomes unprofitable
for a single banks to enter in the deposit market in the long-run equilibrium. I denote
this threshold value by R∗∗

CB, the formal definition of which is set out in the following
proposition which describes the long-run equilibrium.

Proposition 4. Given that 1
tB
λξR+

IB ≤ 1, −1
4
tB ≤ π̄ < 0 and banks enter subject to

πi ≥ 0, there exists some R∗∗
CB > Rf − tB

3
2N

such that if RCB = R∗∗
CB, a single bank

(N = 1) is indifferent between entering in t = 1 or not.

I. When RCB ≤ R∗∗
CB there is long-run competition between banks and some depositors

hold CBDC (qCB ≥ 0).
II. When RCB > R∗∗

CB in the long-run equilibrium banks do not operate in the deposit
market and CBDC dominates (qCB = 1).

Proof. See the Appendix.

In contrast to the short-run equilibrium, a long-run equilibrium in which multiple banks
operate local monopolies does not occur. From equation (6), as long as λξ > 0, the
liquidity cost increases in the market share of CBDC, lowering bank profits. When
operating a local monopoly, there exist gaps in bank coverage of the deposit market.
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More precisely, there exists some location in which all depositors prefer CBDC to bank
deposits. In this case, banks would strictly prefer a larger number of banks to enter in
order to remove these gaps and to lower the market share of the CBDC.

Although the central bank balance sheet is not explicitly modeled, Proposition 1 high-
lights that in equilibrium, each bank increases its holdings of central bank liquidity (Bi)
as its market share decreases. Summing over all N banks and using the definition of qCB

given in equation (19) yields the following equation for the aggregate liquidity borrowed
from the central bank by the banking sector∑

i

Bi = NL− (1− qCB) . (28)

Thus, as the market share of CBDC increases, the aggregate banking sector holds more
central bank liquidity, and therefore the introduction of a CBDC increases both the
liabilities (qCB) and the assets (

∑
i Bi) on the central bank balance sheet.

5 Comparative Statics

5.1 Impact of CBDC on deposit rates

I now present the impact of a change in the CBDC remuneration rate, RCB, on the
equilibrium deposit rate Ri offered by the banks. The impact of the CBDC remuneration
rate depends on whether the bank faces liquidity costs in its use of deposits. I consider
the impact of a change in RCB in two liquidity scenarios. First, when the expected size
of the liquidity shock is zero, λξ = 0, and banks do not face a liquidity cost. Second,
consider the case where the size of the liquidity shock is positive, λξ > 0, and banks face a
liquidity cost to hold deposits that increases in the market share of CBDC. The modeling
framework I use also allows me to distinguish between the change in RCB in a short-run
equilibrium, where the number of banks is held fixed, versus a long-run equilibrium, where
the number of banks adjusts according to the free-entry condition. The results presented
in this section are especially relevant to the policy question of whether the remuneration
rate of a CBDC can be used as an additional tool in the central bank’s toolbox, as has
been discussed among others in Meaning et al. (2021).

In the case where RCB ≤ RCB and qCB = 0, CBDC has no market share and the deposit
rate is given by Proposition 2. An increase in the CBDC remuneration rate will not have
an impact on the bank deposit rate. This holds regardless of the value λξR+

IB takes.
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If RCB > RCB so that in an equilibrium CBDC has a positive market share, qCB > 0, the
impact of an increase in RCB on the deposit rate in the short-run equilibrium can be found
by using the implicit function Theorem and rearranging equation (12) and differentiating
with respect to RCB which yields

∂Ri

∂RCB

= 1 + tB
dzi

dRCB

∣∣∣∣
Γ=0

. (29)

The impact of an increase in RCB in a long-run equilibrium with qCB > 0 can be calculated
in a similar way by applying the Implicit Function Theorem to equations (25) and (27).

In general, the pass-through of an increase in RCB to the deposit rate will be imperfect
since an increase in the CBDC remuneration rate would not lead to an equal increase in
the bank deposit rate, ∂Ri

∂RCB
< 1. In a short-run equilibrium with λξ = 0, the equilibrium

deposit rate will be strictly increasing in the CBDC remuneration rate, RCB, for all
RCB ∈

[
RCB, R̄CB

]
. An increase in the CBDC remuneration rate will result in banks

losing market share to CBDC and banks will raise their deposit rates in response to this
additional competition.

In a long-run equilibrium, as RCB increases, the number of banks in the deposit market
decreases. Thus, while banks face additional competition from higher CBDC remunera-
tion rates, this is counteracted in the long-run equilibrium by a more concentrated deposit
market resulting in lower competition from other banks. In a long-run equilibrium, the
pass-through of the CBDC remuneration rate to the deposit rate is always lower than
in the short-run equilibrium. Furthermore, in a long-run equilibrium it is possible for
the market concentration effect to dominate the increased competition from CBDC, as a
consequence even without liquidity risk (λξ = 0), the deposit rate is not guaranteed to
be strictly increasing in the CBDC remuneration rate.

If the expected value of the liquidity shock is positive λξ > 0, then an increase in the
market share of CBDC results in banks facing a higher expected liquidity cost from
holding deposits. Therefore, an increase in the CBDC remuneration rate, RCB, not only
increases the competition faced by banks in the deposit market, but also increases the
liquidity cost of deposits, making deposits a less desirable form of liquidity for banks
to hold. As a consequence of this, the pass-through of the CBDC remuneration rate
to the deposit rate is lower than it would be in the case without liquidity shocks λξ =

0. Furthermore, if deposits become less desirable for banks to hold, they may prefer
to switch to other sources of liquidity rather than raise deposit rates to compete for
additional market share. As a result in the presence of liquidity risk, the deposit rate
is not guaranteed to increase in the CBDC remuneration rate, even in the short-run
equilibrium.
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These results are summarized in the following proposition.

Proposition 5. Given that 1
tB
λξR+

IB ≤ 1 then

I. For any equilibrium that features qi > 0, the pass-through of the CBDC rate to the
deposit rate is imperfect

(
∂Ri

∂RCB
< 1
)
.

II. For any equilibrium, the pass-through is positive for any RCB larger but sufficiently
close to RCB.

(
limRCB↓RCB

{
∂Ri

∂RCB

}
> 0
)

III. For a short-run equilibrium if λξR+
IB = 0 the pass-through is positive

(
∂Ri

∂RCB
> 0
)

for all RCB ∈
[
RCB, R̄CB

]
.

IV. The pass-through
(

∂Ri

∂RCB

)
will be strictly lower in a long-run equilibrium than in a

short-run equilibrium.

Proof. See the Appendix.

The results set out in Proposition 5 have important policy implications. In particular,
regarding the use of the CBDC remuneration rate as an additional tool in the central
bank’s toolkit. Even in the most benign scenario where the number of banks is fixed and
there is no liquidity, the pass-through of the CBDC remuneration rate to the bank deposit
rate is imperfect. In this scenario, while banks raise their deposit rates in response to
increased competition from CBDC, as a consequence of the imperfect competition in the
deposit market, do so less than one-for-one. This section also highlights that if the central
bank chose to use the CBDC remuneration rate as a policy tool, there may be long-run
consequences on the structure of the banking sector, which would serve to dampen the
pass-through to the bank deposit rate. Finally, in the case where there is risk of liquidity
flowing from bank deposits to a CBDC, the additional cost this imposes on banks further
weakens the pass-through of the CBDC remuneration rate to the bank deposit rate, and
in some cases an increase in the CBDC remuneration rate may result in a fall in the bank
deposit rate.

5.2 Implications for Monetary Policy Transmission

In this section, I consider the implications of CBDC for the transmission of monetary
policy within the context of the model. To this end, I add some additional structure to
the model in the following way. First, I assume that the spreads on the central bank
standing facilities are held fixed and that the interest rate on the liquidity facility and on
the deposit facility are of the form

RLF = Rf +∆LF , (30)
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and
RDF = Rf −∆DF , (31)

with ∆LF > 0 and ∆DF > 0. Second, I assume that the interest rate on bank loans is
equal to the policy rate plus a fixed mark-up such that

RL = Rf +∆L, (32)

with ∆L > 0. Finally, I assume that the central bank sets the remuneration rate of CBDC
such that there is a fixed spread between the remuneration rate and the policy rate such
that

RCB = Rf +∆CB. (33)

Here, ∆CB could be positive or negative, depending on the remuneration rate of CBDC.
It should also be noted that this is just one possible remuneration policy that central
banks could choose for CBDC. However, as will be shown later, the remuneration policy
considered here is the most neutral implementation of CBDC remuneration in the model.
Other remuneration policies can be obtained by combining a change in the policy rate
with a change in RCB.

In the case where CBDC has no market share (qCB = 0) it follows from Proposition 2
that the deposit rate increases one-for-one with the policy rate. The most interesting
case occurs when CBDC has a share of the deposit market (qCB > 0). Given the above
assumptions on interest rates, the two key equations that determine the short- and long-
run equilibrium, equations (25) and (27), can be rewritten as follows

Γ̃ ≡ −qi −
∂qi
∂Ri

(
∆CB + tB (x∗

i − zi) + λξ
(
Rf +∆+

IB

)
qCB

)
− ∂qCB

∂Ri

λξ
(
Rf +∆+

IB

)
qi = 0,

(34)
and

π̃ ≡ ∆LL− F −
(
∆CB + tB (x∗

i − zi) + λξ
(
Rf +∆+

IB

)
qCB

)
qi = 0, (35)

where

∆+
IB =

∆LF if R+
IB = RLF(

1−λ
λ

)
∆DF if R+

IB = RDF + 1
λ
(Rf −RDF ) .

In the case where qCB > 0, the CBDC remuneration rate is sufficiently high that RCB >

RCB and the deposit rate can be written in terms of Rf as

Ri = tB (x∗
i − zi) +Rf +∆CB. (36)

Equation (36) shows that if the spread between the deposit rate and the CBDC rate, zi,
is held fixed then the deposit rate moves one-for-one with the policy rate.
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If banks do not face liquidity risk and λξ = 0, then banks can pass on the increase in the
policy rate to depositors without affecting their market shares. As a consequence, the
two equations that describe the equilibria, equations (34) and (35), do not respond to a
change in the policy rate Rf . It follows that in both a short-run and long-run equilibrium,
the value of zi is also unchanged, and so the deposit rate will increase one-for-one with
the policy rate.

If, on the other hand, banks face liquidity risk and λξ > 0, an increase in the policy rate
increases the liquidity cost of deposits that banks face. Passing on the increase in the
policy rate to depositors will no longer leave bank profits unchanged. Both equation (34)
and equation (35) are now affected by changes in policy rate Rf as it is no longer optimal
for banks to pass on the full policy rate change to depositors. As a consequence of this,
an increase in the policy rate affects the spread between the deposit rate and the CBDC
remuneration rate, zi, and thus the market share of CBDC is also impacted by the policy
rate. Furthermore, since bank profit is also affected by a change in the policy rate, the
pass-through of Rf to the deposit rate will be lower in the long-run equilibrium than in
the short-run equilibrium.

These results are summarized in the following proposition.

Proposition 6. Given that 0 < 1
tB
λξR+

IB ≤ 1 then for any equilibrium that features

qi > 0, the pass-through of the policy rate to the deposit rate is imperfect
(

∂Ri

∂Rf
̸= 1
)

and
the pass-through will be lower in a long-run equilibrium than in a short-run equilibrium.

Proof. See the Appendix.

The key mechanism driving the imperfect pass-through of the policy rate is the liquidity
cost of deposits described in equation (6). If banks face liquidity risk λξ > 0, an increase
in the policy rate also increases the cost of obtaining additional liquidity should the bank
require it. This results in lower profits, and thus a more concentrated banking sector in
the long-run equilibrium. As deposits become less desirable for the bank to hold, there is
downward pressure on bank deposit rates, and banks require larger spreads to compensate
for the additional liquidity risk.

Proposition 6 highlights a possible risk that the introduction of CBDC poses to the trans-
mission of monetary policy to the economy. In the model, monetary policy transmission
occurs solely through pass-through of the policy rate to the deposit rate set by banks.
In the case without deposit liquidity risk, a CBDC can be introduced without impacting
this transmission channel. However, if banks face a liquidity risk in obtaining liquidity
from retail deposits, this cost will increase in the deposit rate and, in turn, will affect the
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transmission of monetary policy through the deposit rate. This occurs because the cost
of this liquidity risk that banks face depends on the cost of obtaining additional liquidity
through the central bank lending facility. The cost of obtaining this liquidity increases
with the policy rate.

6 Quantitative Analysis

The previous section provides some theoretical results on the impact of a CBDC on both
the deposit rate and the transmission of monetary policy. To address whether these
theoretical results are quantitatively important, I present a simple calibration of the
model to the Eurozone economy without CBDC.

6.1 Calibration

Data are obtained from the ECB Statistical Data Warehouse. The data obtained are
averaged over the year 2021, which is the last year data are available for all of the series.
The policy rates in the model are calibrated to the corresponding ECB rates. The main
policy rate Rf is calibrated to the ECB’s Main Refinancing Rate which was 0 throughout
2021. The interest rates on the standing facilities, RLF and RDF are calibrated to the
ECB’s Lending Facility Rate and Deposit Facility Rate which were 25 basis points and
-50 basis points, respectively.

The parameters affecting the banking sector are calibrated so that in equilibrium there
is no CBDC (qCB = 0) and the free-entry condition holds. The number of banks in this
equilibrium is set to N = 7. This is chosen to match the Herfindahl Hirschman Index
(HHI) of Eurozone credit institutions which averaged 0.145 in 2021. Given that the model
assumes banks of equal size, the HHI corresponds to 1/N .

Given qCB = 0, the equilibrium deposit rate is given by Proposition 2 as

Ri = Rf −
1

N
tB. (37)

Therefore, the transport cost tB can be set such that the equilibrium deposit rate Ri

matches the average deposit rate in the Eurozone, which was -1.44 basis points. This
deposit rate is calculated as the weighted average deposit rate on overnight household
deposits and overnight corporate deposits.

In an equilibrium without CBDC, the model predicts that banks hold sufficient liquidity
that they do not require additional liquidity from central bank standing facilities or the
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interbank market. As a consequence, the following equation holds L = Bi + qi. As the
size of the banks is normalized by qi = 1/N , L and Bi are calibrated such that the ratio
of deposits to total liabilities (qi/L) in the model matches the ratio of deposit to liabilities
of Eurozone credit institutions which in the data is 0.42.

The bank lending rate RL is chosen to match the interest rate on short-term loans to non-
financial corporations, which stood at 150 basis points. It follows from the assumption
that the free-entry condition binds in this calibration, which implies that a value of F
can be found from the following equation

F = (RL −Rf )L+ tB
1

N2
. (38)

Finally, the size of the liquidity shock ξ is set to match the percentage of total deposit
liabilities that are traded daily in the Target 2 market which in 2021 was 3.13%. The
calibration is summarized in Table 1.

Table 1: Calibrated Parameters

Parameter Notation Value Calibration Target

Main Policy Rate Rf 1.0 ECB Main Refinancing Rate

Lending Facility Rate RLF 1.0025 ECB Lending Facility Rate

Deposit Facility Rate RDF 0.995 ECB Deposit Facility Rate

Number of Banks N 7 Herfindahl Hirschman Index (HHI)
of Eurozone credit institutions

Bank Lending Rate RL 1.015 Interest rate on short-term loans to
non-financial corporations

Bank Deposit Rate Ri 0.99986 Overnight deposit rate of household
and corporate deposits

Deposit to Liability Ratio qi/L 0.42 Ratio of Deposit to Liabilities of Eu-
rozone Credit institutions

Size of Liquidity Shock ξ 0.00313 Ratio of Euro short-term rate vol-
ume to Eurozone Credit institutions
Deposits

25



6.2 Impact of the CBDC remuneration rate

Using the benchmark calibration, I now plot how the deposit rate Ri changes as RCB

varies in the range RCB to R̄CB. First I consider the case where λ = 0 and thus the
liquidity shock channel is shut down. This case is shown in Figure 1.

In Figure 1, when the CBDC remuneration rate is sufficiently low such that qi = 0,
RCB ≤ RCB, the deposit rate, Ri, does not respond to the CBDC remuneration rate,
RCB. As the market share of CBDC is zero at these low remuneration rates, CBDC
does not pose meaningful competition to bank deposits. As the CBDC remuneration
rate increases above RCB, the deposit rate, Ri, is strictly increasing in the short-run
equilibrium. In the long-run equilibrium, the deposit rate, Ri, increases in the CBDC
remuneration rate only for RCB above but sufficiently close to RCB. As the CBDC
remuneration rate increases further there becomes a point above which, in the long run,
the deposit rate decreases in RCB. This matches the results stated in Proposition 5
that the long-run response of Ri to an increase in RCB will always be lower than in the
short-run.

In the short-run, with the number of banks fixed, an increase in RCB decreases the market
share of banks, and banks raise deposit rates to mitigate the loss of market share. The
fall in market share and the increase in the cost of deposits results in a fall in bank profits
in the short-run. Thus, in the long run, there is a consolidation of the banking sector and
a fall in the number of banks. As banks face less competition in the long-run following an
increase in RCB, banks can reduce deposit rates even in the face of greater competition
from CBDC.

There are two kinks in the response of Ri to RCB that exist in Figure 1. The first
of these occurs at the point where zi = 0 This is the point at which CBDC starts to
put competitive pressure on bank deposits. The second kink occurs at the point where
zi = x∗

i . This is the point at which some proportion of depositors choose CBDC over bank
deposits, no matter how far away they are located from a bank. These kinks correspond
to the intervals over which the piece-wise continuous function for qi is defined by equation
(18).

Setting λ = 0.05 such that banks now face deposit liquidity risk, the response of the
deposit rate, Ri, to a change in RCB is plotted in Figure 2. Apart from λ, all other
parameters remain the same as in Figure 1. Figure 2 illustrates the case where the
expected size of the liquidity shock, λξ, is large enough that even in the short-run the
deposit rate decreases in RCB at sufficiently high levels of RCB. In the previous case
where λ = 0 and thus banks did not face deposit liquidity risk, an increase in RCB placed
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Figure 1: Impact of RCB on the deposit rate (λ = 0)

Figure 2: Impact of RCB on the deposit rate (λ = 0.05)

27



additional competitive pressure on the banking sector in the short-run and thus forced
banks to set higher deposit rates to compete for market share. However, in the case where
λ > 0 and banks face liquidity risk, increasing RCB has an additional effect, which is to
increase the cost of deposits for banks. The expected liquidity cost of deposits increases in
the market share of CBDC and decreases in the bank’s own market share qi, as evidenced
by equation (5). Therefore, if the CBDC remuneration rate (RCB) and the market share
of CBDC (qi) are sufficiently large banks can choose to lower their deposit rate to reduce
their own market share, thus lowering the liquidity cost of deposits.

6.3 Implications for Monetary Policy Pass-through

I now plot how the pass-through of the deposit rate interacts with the market share of
CBDC. As discussed in the previous section, in the case without liquidity risk, λ = 0,
the policy rate has perfect pass-through to the deposit rate with dRi

dRf
= 1. Thus, I focus

only on the parameterization that features λ > 0 and where banks face liquidity risk. In
the quantitative exercise, I make the same simplifying assumptions regarding the policy
rate as in the previous numerical exercise.

Figure 3 illustrates the pass-through of the policy rate to the deposit rate, dRi

dRf
, in the case

where λ = 0.05. There is a non-linear response of the pass-through, dRi

dRf
, to the increase

in the market share of CBDC, qCB. The figure uses the same calibration as that of Figure
2, with an increase in qCB generated by a corresponding increase in RCB. It should be
noted that while the numerical analysis confirms the theoretical results of Proposition 6,
it also suggests that, at least with the current parameterization, the magnitude of this
effect may not be very large.

It is instructive to consider what generates the non-linear response of dRi

dRf
to the increase

in qCB, especially in the short-run. From equation (34) it follows that an increase in
Rf would lead to a change in zi and hence each bank’s share of the deposit market.
Therefore, in the presence of liquidity shocks, the increase in the policy rate will have
an impact on the deposit market similar to the increase in RCB. The main mechanism
occurs as an increase in Rf will, if qCB is sufficiently large, lead to an increase in zi

and therefore, through equation (36), to a lower increase in the bank deposit rate with
dRi

dRf
< 1. Analogously to the result stated in Proposition 5, the increase in zi for a given

increase in Rf will vary with qCB, hence the non-linear response of dRi

dRf
.

Figure 3 also shows a discontinuity in the pass-through response in the short-run equi-
librium. This occurs at the point where RCB = R∗

CB and the banking sector transitions
to an equilibrium without direct competition between banks. As stated in Proposition
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4, this equilibrium does not occur in the long-run, hence why this discontinuity is only
visible in the short-run response.

Next, I consider the reason for the low magnitude of the pass-through distortion high-
lighted in Figure 3. Equation (34) and equation (35) show that an important determinant
of the pass-through distortion is the expected size of the liquidity shock, λξ. The values
of λ and ξ in the benchmark calibration are quite modest and are the key to driving the
low magnitude exhibited in Figure 3. To illustrate this, Figure 4 shows the response of
the policy rate pass-through when the probability of liquidity shocks takes a higher value,
λ = 0.15. Here, the magnitude of the effect is much stronger and the differences between
the long-run and short-run responses are more stark. A similar increase in magnitude
would occur if the size of the liquidity shock, ξ, were to take a higher value.

The quantitative analysis highlighted the importance of both allowing for long-run struc-
tural changes in the banking sector and the size of the liquidity risk channel. This is
especially true when attempting to quantify the impact of CBDC on the transmission of
monetary policy.

7 Conclusion

As the policy debate surrounding the potential introduction of a retail CBDC grows,
so does the need for further analysis of its potential implications. This paper focuses
on the impact of CBDC on the structure of the market for retail bank deposits and on
bank liquidity. In this paper, CBDC is modeled as a source of direct competition for
bank deposits. Competition in the deposit market is modeled using a Salop circle model,
and thus there is imperfect substitutability between deposits of different banks and the
CBDC. This framework allows us to distinguish between the short-run impact of CBDC,
where the number of banks is fixed, and the long-run impact where the number of banks
may adjust. Additionally, the model suggests a liquidity risk channel through which
CBDC can further increase the costs of banks operating in the deposit market.

In the absence of liquidity risk, the model suggests that in a short-run equilibrium,
the introduction of CBDC will result in an increase in interest rates on bank deposits.
This leads to a reduction in the market shares of banks in the deposit market. Banks
substitute these deposits by obtaining additional liquidity from the central bank through
open market operations, and bank profitability falls. In the long run, the model suggests
that the introduction of CBDC will reduce the number of banks active in the deposit
market and lead to greater concentration in the banking sector. The pass-through of
the CBDC remuneration rate to the bank deposit rate is lower in the long-run than in
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Figure 3: Impact of CBDC on Monetary Policy Transmission (λ = 0.05)

Figure 4: Impact of CBDC on Monetary Policy Transmission (λ = 0.15)
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the short-run, and the deposit rate may even be decreasing in the CBDC remuneration
rate. This effect is amplified if banks face liquidity risk in holding deposits, and in this
case the bank deposit rate may be decreasing in the CBDC remuneration even in the
short-run. Thus, the paper casts doubt on the use of the remuneration rate of CBDC as
an additional tool in the monetary policy toolkit of central banks.

The paper also highlights the importance of the liquidity risk channel for monetary pol-
icy transmission in general. Absent liquidity risk, the model predicts that banks increase
the deposit rate one-for-one following an increase in the policy rate, even after the in-
troduction of a CBDC. However, if banks face liquidity risk in the deposit market, the
introduction of a CBDC also affects the transmission of monetary policy through the
bank deposit rate. Furthermore, the impact of monetary policy impacts the structure of
the deposit market, and thus monetary policy will have a different impact in the short-
and long-run.

Although this paper makes no claims regarding the welfare implications of the introduc-
tion of CBDC, it would be prudent for policymakers to take into account the welfare
implications of a more concentrated banking sector that may follow the introduction of
a CBDC, as well as possible implications for the transmission of monetary policy.
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Appendix

Proof of Proposition 1

By combining (5) and (7) the single bank’s problem can be written as follows

πi = max
Bi,Ri

{
RLL−RfBi −Riqi − (1− λ)R0

IBϵ
0
i − λR+

IBϵ
+
i − F

}
(A.39)

where ϵ0i and ϵ+i are defined by equations (2) and (3) respectively.

Differentiating with respect to Bi yields the following first-order condition

−Rf + (1− λ)R0
IB + λR+

IB = 0. (A.40)

Given that ϵ0i < ϵ+i it follows from equation (4) and Rf ∈ (RDF , RLF ) that R0
IB < R+

IB.
Furthermore, since obtaining too much or too little liquidity from the central bank in
t = 2 is costly, the following inequality constraints must hold, ϵ0i ≤ 0 and ϵ+i ≥ 0, with
one of these inequality constraints holding with equality.

Thus, there are two cases to consider. First, if ϵ0i = 0, then banks will have exactly
enough liquidity to ensure that if they are in a neutral liquidity position if they do not
receive a net liquidity outflow. In this case, R+

IB = RLF and R0
IB ∈ [RDF , RLF ). From

equation (A.40) it follows that the value of R0
IB that ensures the first condition holds is

R0
IB = RLF −

(
1

1− λ

)
(RLF −Rf ) , (A.41)

and that for R0
IB ≥ RDF it must be the case that

λ ≤
(

Rf −RDF

RLF −RDF

)
. (A.42)

Finally, for ϵ0i = 0 it follows from equation (2) that

Bi = L− qi. (A.43)

The second case to consider occurs if ϵ+i = 0 where banks have exactly enough liquidity so
that they do not require additional liquidity should they suffer a net outflow of liquidity.
In this case, R0

IB = RDF and R+
IB ∈ (RDF , RLF ). From equation (A.40) it follows that
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the value of R+
IB that ensures the first condition holds is

R+
IB = RDF +

1

λ
(Rf −RDF ) , (A.44)

and for R+
IB < RLF it follows that

λ >

(
Rf −RDF

RLF −RDF

)
. (A.45)

Finally, for ϵ+i = 0 it follows from equation (3) that

Bi = L− (1− qCBξ) qi. (A.46)

The proposition follows.

Proof of Proposition 2

First, differentiating the bank’s profit function given in equation (A.39) with respect to
Ri and combining with equation (A.40) gives the following first-order condition for the
bank given by equation (21).

In the case where qCB = 0, the demand function that the bank faces is given by equation
(9) and thus

∂qi
∂Ri

=
1

tB
, (A.47)

while from equation (6) if qCB = 0 then

∂E [Ci]

∂qi
= −Rf , (A.48)

and
∂E [Ci]

∂qCB

= 0. (A.49)

In the short-run equilibrium with qCB = 0, all banks have an equal market share and
since there is full coverage, qi = 1

N
. Combining the above with the first-order condition

yields the following equation for the deposit rate in the short-run

Ri = Rf − tB
1

N
. (A.50)

Finally, from equation (11), the distance from bank i where a depositor is indifferent
between holding a bank i deposit and the CBDC is x∗

i = 1
2N

. The highest possible
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remuneration rate in CBDC such that all depositors prefer bank deposits to CBDC,
RCB, can be found by combining equations (12) and (A.50) and substituting x∗

i =
1
2N

to
produce

RCB = Rf −
3

2
tB

1

N
. (A.51)

In a long-run equilibrium, N adjusts so that banks enter and make zero expected profits.
The bank’s profit function is given by equation (7). Substituting the expected liquidity
of the deposits given by equation (6), the deposit rate given by equation (A.50) and the
optimal funding decision as defined by Proposition 1 produce the following equation for
profit in the case where qCB = 0

πi = (RL −Rf )L− F + tB
1

N2
. (A.52)

Denote the number of firms that drive bank profit to zero as N∗. Assuming that F −
(RL −Rf )L > 0, a positive N∗ exists and can be written as

N∗ = t
1
2
B (F − (RL −Rf )L)

− 1
2 . (A.53)

If F − (RL −Rf )L ≤ 1
4
tB then N∗ ≥ 2 and it follows that when RCB ≤ Rf − 3

2
tB

1
N∗

there exists a long-run equilibrium with qCB = 0 where banks obtain equal market shares
with qi =

1
N∗ and set deposit rates as in equation (A.50).

Proof of Proposition 3

A short-run equilibrium with RCB > Rf − 3
2
tB

1
N

can be summarized as zi that solves
equation (25).

From equation (18), the derivative of a bank’s share of the deposit market with respect
to the deposit rate is

∂qi
∂Ri

=



1
tB

if zi < 0

1
tB

(1 + zi) if 0 ≤ zi ≤ x∗
i

1
tB

(1 + 2x∗
i − zi) if x∗

i < zi ≤ 1

2 1
tB

(1 + x∗
i − zi) if 1 < zi ≤ 1 + x∗

i

0 if zi > 1 + x∗
i .

(A.54)
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From equation (19), the derivative of the CBDC’s share of the deposit market with respect
to the deposit market is

∂qCB

∂Ri

=



0 if zi < 0

−2 1
tB

(x∗
i − x̂i) if 0 ≤ zi ≤ x∗

i

−2 1
tB
x∗
i if x∗

i < zi ≤ 1

−2 1
tB

(1 + x̂i) if 1 < zi ≤ 1 + x∗
i

0 if zi > 1 + x∗
i .

(A.55)

Equation (25) can be written as

Γ =



Rf −RCB − tB (x∗
i − zi)− λξR+

IB
z2i
2x∗

i

−tB

(
1− 2zi

1
tB
λξR+

IB

)(
2x∗

i−z2i
1+zi

)
, if 0 ≤ zi ≤ x∗

i

Rf −RCB − tB (x∗
i − zi)− λξR+

IB

(
zi − 1

2
x∗
i

)
−tB

(
1− 2x∗

i
1
tB
λξR+

IB

)(
2x∗

i−x∗
i (2zi−x∗

i )
1−zi+2x∗

i

)
, if x∗

i < zi ≤ 1

Rf −RCB − tB (x∗
i − zi)− λξR+

IB

(
1− 1

2x∗
i
(1 + x∗

i − zi)
2
)

−tB

(
1− 2 (1 + x∗

i − zi)
1
tB
λξR+

IB

)
(1 + x∗

i − zi) , if 1 < zi ≤ 1 + x∗
i .

(A.56)

A solution to Γ = 0 exists at the limit as zi → 0, which is equal to the equilibrium without
CBDC set out by Proposition 2 where the solution to Γ = 0 occurs if RCB = RCB where
RCB ≡ Rf − tB

3
4N

.In the case where RCB < RCB, the CBDC remuneration rate is
sufficiently low that CBDC does not compete with bank deposits and the equilibrium
without CBDC set out by Proposition 2 holds.

Next, consider how the function Γ changes with zi

∂Γ

∂zi
=


tB − λξR+

IB
zi
x∗
i
+

(
2λξR+

IB(2x∗
i−z2i (2zi+3))+tB(2x∗

i+2zi+z2i )
(1+zi)

2

)
if 0 ≤ zi ≤ x∗

i

tB − λξR+
IB + 3x∗2

i

(
tB−2x∗

i λξR
+
IB

(1−zi+2x∗
i )

2

)
if x∗

i < zi ≤ 1

tB − λξR+
IB

1
x∗
i
(1 + x∗

i − zi) + tB − 4 (1 + x∗
i − zi)λξR

+
IB if 1 < zi ≤ 1 + x∗

i .

(A.57)

At the limit as zi → 0, ∂Γ
∂zi

> 0 and by the implicit function theorem there exists a
solution to Γ = 0 in the neighborhood of zi = 0+. In general, as long as λξR+

IB ≤ tB,
∂Γ
∂zi

> 0 for all zi ∈ [0, 1 + x∗
i ].

Thus, if λξR+
IB ≤ tB, a solution to Γ = 0 exits at the upper limit, as zi → 1 + x∗

i and
occurs if RCB = R̄CB were R̄CB = Rf + tB − λξR+

IB. It follows that there is a solution
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to Γ = 0 for any RCB ∈
[
RCB, R̄CB

]
and that the equilibrium zi increases in RCB. From

equations (18) and (19) it follows that qi increases in RCB and qCB decreases in RCB over
this range.

In the case where RCB > R̄CB, the CBDC remuneration rate is sufficiently high that
CBDC dominates bank deposits and banks obtain zero market share.

Finally, for any zi > 1, banks do not compete directly in the sense that all depositors
who are indifferent between holding deposits at neighboring banks strictly prefer to hold
CBDC to bank deposits. In this case, banks face direct competition only from CBDC.
This occurs whenever RCB > R∗

CB where R∗
CB can be found as the limit of equation

(A.56) as zi → 1

R∗
CB = Rf + tB

(
1− 3

4N

)
− λξR+

IB

(
1− 1 +N

4N2

)
. (A.58)

Proof of Proposition 4

A long-run equilibrium with RCB > Rf − 3
2
tB

1
N

can be summarized as the tuple (x∗
i , zi)

that solves equations (25) and (27).

Equation (27) can be written explicitly in terms of x∗
i and zi as

π =



π̄ − (2x∗
i − z2i ) (RCB −Rf )

− (2x∗
i − z2i )

(
tB (x∗

i − zi) + λξR+
IB

1
2x∗

i
z2i

)
if 0 ≤ zi ≤ x∗

i

π̄ − (2x∗
i − x∗

i (2zi − x∗
i )) (RCB −Rf )

− (2x∗
i − x∗

i (2zi − x∗
i ))
(
tB (x∗

i − zi) + λξR+
IB

(
zi − 1

2
x∗
i

))
if x∗

i < zi ≤ 1

π̄ − (1 + x∗
i − zi)

2 (RCB −Rf )

− (1 + x∗
i − zi)

2
(
tB (x∗

i − zi) + λξR+
IB

(
1− 1

2x∗
i
(1 + x∗

i − zi)
2
))

if 1 < zi ≤ 1 + x∗
i .

(A.59)

As long as −1
4
tB ≤ π̄ < 0 a solution to this system of equations exists at the limit of

zi → 0 where qCB = 0. This is simply the long-run no-CBDC equilibrium set out by
Proposition 2 and occurs if RCB = RCB where RCB is defined in Proposition 2.

In the case where RCB < RCB, the CBDC remuneration rate is sufficiently low that
CBDC does not compete with bank deposits and the no-CBDC equilibrium set out by
Proposition 2 holds.
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At the limit as zi → 0, det

(
∂Γ
∂zi

∂Γ
∂x∗

i

∂π
∂zi

∂π
∂x∗

i

)
> 0 for any N ≥ 2. From the implicit function

theorem, there exists a solution to [Γ, π] = [0, 0] in the neighborhood of zi = 0+. In
general, for there to exist a solution to this system of equations, we require

det

(
∂Γ
∂zi

∂Γ
∂x∗

i

∂π
∂zi

∂π
∂x∗

i

)
=

∂Γ

∂zi

∂π

∂x∗
i

− ∂Γ

∂x∗
i

∂π

∂zi
> 0. (A.60)

Consider first the following derivative.

∂Γ

∂zi
+

∂Γ

∂x∗
i

=



−tB

(
2−2x∗

i−z2i
(1+zi)

2

)
− λξR+

IB

(
2
(

2−2x∗
i−z2i

(1+zi)
2

)
+
(
1− 1

2
zi
x∗
i

)
zi
x∗
i

)
if 0 ≤ zi ≤ x∗

i

tB

(
1− 3x∗2

i +6x∗
i (1−zi)+3(1−zi)

2

(1−zi+2x∗
i )

2

)
−λξR+

IB

(
1
2
− 2x∗

i (x∗2
i +7x∗

i (1−zi)−4(1−zi)
2)

(1−zi+2x∗
i )

2

)
if x∗

i < zi ≤ 1

−λξR+
IB

((
2 + 1

x∗
i

)
(1 + x∗

i − zi) +
1
2

(
1+x∗

i−zi
x∗
i

)2)
if 1 < zi ≤ 1 + x∗

i .

(A.61)

From equation (A.61), if λRLF ξ < tB then for any x∗
i <

1
2N

and N ≥ 2, it follows that

∂Γ

∂zi
+

∂Γ

∂x∗
i

< 0. (A.62)

Given this,the following two inequalities must hold

det

(
∂Γ
∂zi

∂Γ
∂x∗

i

∂π
∂zi

∂π
∂x∗

i

)
<

(
− ∂Γ

∂x∗
i

)(
∂π

∂x∗
i

+
∂π

∂zi

)
(A.63)

and

det

(
∂Γ
∂zi

∂Γ
∂x∗

i

∂π
∂zi

∂π
∂x∗

i

)
>

∂Γ

∂zi

(
∂π

∂x∗
i

+
∂π

∂zi

)
(A.64)

It follows from this that a necessary and sufficient condition for the existence of a long-run
equilibrium is the following

∂π

∂x∗
i

+
∂π

∂zi
> 0 (A.65)
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where

∂π

∂zi
+

∂π

∂x∗
i

=



2tB (1− zi)
(

2x∗
i−z2i
1+zi

)
−λξR+

IB

(
2x∗

i−z2i
1+zi

)(
(1 + zi)

(
1− 1

2

(
zi
x∗
i

))(
zi
x∗
i

)
+ 4zi (1− zi)

)
if 0 ≤ zi ≤ x∗

i

2tB (1− zi)

(
2x∗

i−x∗
i (2zi−x∗

i )
1−zi+2x∗

i

)
−λξR+

IB

(
2x∗

i−x∗
i (2zi−x∗

i )
1−zi+2x∗

i

)((
1
2
+ 4x∗

i

)
(1− zi) + x∗

i

)
if x∗

i < zi ≤ 1

− 1
x∗
i
λξR+

IB (1 + x∗
i − zi)

3
(
1 + 1

x∗
i
(x∗

i + zi − 1)
)

if 1 < zi ≤ 1 + x∗
i .

(A.66)

From equation (A.66), the condition set out by equation (A.65) clearly holds for 0 ≤ zi ≤
x∗
i , while it fails to hold for 1 < zi ≤ 1 + x∗

i . There exists a point z∗∗i ∈ (x∗
i , 1) such that

at zi = z∗∗i the determinant is zero and negative for zi > z∗∗i . From equation (A.66) z∗∗i

can be written as

z∗∗i ≤

(
2− 1

tB
λRLF ξ

(
1
2
+ 5x∗

i

)
2− 1

tB
λRLF ξ

(
1
2
+ 4x∗

i

)) . (A.67)

By combining equation (A.67) with equation (A.56), an upper-bound in terms of the
CBDC remuneration rate, R∗∗

CB can be found, where

R∗∗
CB = Rf−tB (x∗

i − z∗∗i )−λξR+
IB

(
z∗∗i − 1

2
x∗
i

)
−tB

(
1− 2x∗

i

1

tB
λξR+

IB

)(
2x∗

i − x∗
i (2z

∗∗
i − x∗

i )

1− z∗∗i + 2x∗
i

)
.

(A.68)

From this it follows that given 1
tB
λξR+

IB ≤ 1 and −1
4
tB ≤ π̄ < 0 there exists a long-run

equilibrium with qi > 0 and qCB > 0 for any RCB ∈ [RCB, R
∗∗
CB]. In the case where

RCB > R∗∗
CB, banks do not enter the deposit market and CBDC dominates the market

with qCB = 1.

Proof of Proposition 5

From equation (12), in a symmetric equilibrium,

Ri = RCB + tB (x∗
i − zi) . (A.69)

Given that 1
tB
λξR+

IB ≤ 1, any equilibrium with qi > 0 features RCB > RCB. Applying
the Implicit Function Theorem to equation (29) yields the following equation for the
pass-through of the CBDC rate to the deposit rate in the short-run where x∗

i is fixed

∂Ri

∂RCB

= 1 + tB
∂Γ/∂RCB

∂Γ/∂zi
. (A.70)
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From Proposition 4, ∂Γ
∂zi

> 0. Differentiating equation (25) with respect to RCB yields
∂Γ

∂RCB
= −1. Therefore, it follows that given 1

tB
λξR+

IB ≤ 1, whenever qi > 0, ∂Ri

∂RCB
< 1

and the pass-through of the CBDC rate to the deposit rate is imperfect.

Next, consider the limit of the short-run pass-through as RCB approaches RCB from
above.

lim
RCB↓RCB

{
∂Ri

∂RCB

}
=

(
2 1
tB
λξR+

IB + 1
)
2x∗

i

1 +
(
2 1
tB
λξR+

IB + 1
)
2x∗

i

> 0 (A.71)

Thus, the short-run pass-through is positive (but less than 1) for any x∗
i for RCB above

but sufficiently close to RCB.

In the special case where λξR+
IB = 0, from equation (A.57) note that

∂Γ

∂zi
=


tB

(
1 +

2x∗
i+2zi+z2i
(1+zi)

2

)
if 0 ≤ zi ≤ x∗

i

tB

(
1 +

3x∗2
i

(1−zi+2x∗
i )

2

)
if x∗

i < zi ≤ 1

2tB if 1 < zi ≤ 1 + x∗
i .

(A.72)

and thus ∂Γ
∂zi

> tB. From equation (A.70) it follows that in the short-run ∂Ri

∂RCB
> 0.

In the long-run, x∗
i is not fixed, and applying the Implicit Function Theorem to equation

(29) yields the following equation for the pass-through of the CBDC rate to the deposit
rate in the long-run

∂Ri

∂RCB

= 1 + tB

(
∂x∗

i

∂RCB

− ∂zi
∂RCB

)
(A.73)

where

∂x∗
i

∂RCB

− ∂zi
∂RCB

=

det

(
∂Γ

∂RCB

∂Γ
∂x∗

i

∂π
∂RCB

∂π
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i

)
− det

(
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∂zi

∂Γ
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∂π
∂zi

∂π
∂RCB

)

det

(
∂Γ
∂zi

∂Γ
∂x∗

i

∂π
∂zi

∂π
∂x∗

i

) . (A.74)

From Proposition 4 we showed that for all RCB < R∗∗
CB we have

det

(
∂Γ
∂zi

∂Γ
∂x∗

i

∂π
∂zi

∂π
∂x∗

i

)
> 0. (A.75)
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Thus the properties of the long-run pass-through depend on

det

(
∂Γ

∂RCB

∂Γ
∂x∗

i

∂π
∂RCB

∂π
∂x∗

i

)
− det
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)
=

(
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∂π

∂x∗
i

)
∂Γ

∂RCB

−
(
∂Γ

∂zi
+

∂Γ

∂x∗
i

)
∂π

∂RCB

(A.76)
and thus

∂Ri

∂RCB

= 1−

 1 + qi

(
−

∂Γ
∂zi

+ ∂Γ
∂x∗

i
∂π
∂zi

+ ∂π
∂x∗

i

)
1
tB

∂Γ
∂zi

+ 1
tB

∂π
∂zi

(
−

∂Γ
∂zi

+ ∂Γ
∂x∗

i
∂π
∂zi

+ ∂π
∂x∗

i

)
 < 1 (A.77)

where we note that from Proposition 4 we found that have shown that for all RCB < R∗∗
CB

we have (
∂π

∂zi
+

∂π

∂x∗
i

)
> 0

(
∂Γ

∂zi
+

∂Γ

∂x∗
i

)
< 0 (A.78)

and thus (
−

∂Γ
∂zi

+ ∂Γ
∂x∗

i

∂π
∂zi

+ ∂π
∂x∗

i

)
> 0. (A.79)

Comparing equation (A.70) to equation (A.77), the long-run pass-through will be strictly
less than the short-run pass-through if

qi
∂Γ

∂zi
>

∂π

∂zi
(A.80)

This holds for all zi ∈ [0, z∗∗i ].

Proof of Proposition 6

Applying the Implicit Function Theorem to equation (29) yields the following equation
for the pass-through of the policy rate to the deposit rate in the short-run where x∗

i is
fixed is

∂Ri

∂Rf

= 1 + tB
∂Γ/∂Rf

∂Γ/∂zi
. (A.81)

From Proposition 3 as long as 1
tB
λξR+

IB ≤ 1

∂Γ

∂zi
> 0 (A.82)

and that from differentiating equation (34)

∂Γ

∂Rf

= −λξ

([
∂qi
∂Ri

]−1
∂qCB

∂Ri

qi + qCB

)
(A.83)
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which in the case where 0 < 1
tB
λξR+

IB is non-zero and in general as ∂Ri

∂Rf
̸= 1.

In the long-run, x∗
i is not fixed, and applying the Implicit Function Theorem to equation

(29) yields the following equation for the pass-through of the CBDC rate to the deposit
rate in the long-run

∂Ri

∂Rf

= 1 + tB

(
∂x∗

i

∂Rf

− ∂zi
∂Rf

)
(A.84)

where

∂x∗
i

∂Rf

− ∂zi
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=
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(
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) (A.85)

From Proposition 4, given 1
tB
λξR+

IB ≤ 1, we showed that for all RCB < R∗∗
CB we have

det

(
∂Γ
∂zi

∂Γ
∂x∗

i

∂π
∂zi

∂π
∂x∗

i

)
> 0. (A.86)

Thus the properties of the long-run pass-through depend on

det

(
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i
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(A.87)
with

∂Γ

∂Rf

= λξ

([
∂qi
∂Ri

]−1
∂qCB

∂Ri

qB + qCB

)
(A.88)

and
∂π

∂Rf

= −λξqCBqi (A.89)

where the derivative will again be nonzero if 1
tB
λξR+

IB > 0.

Now note that equation (A.85) can be rewritten as

∂x∗
i
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∂Rf

=
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i

)
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(A.90)

A sufficient condition for the long-run pass-through to be less than the long-run pass-
through is that

∂π

∂Rf

< qi
∂Γ

∂Rf

(A.91)
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which holds for all values of zi ∈ [0, z∗∗i ].
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