Equilibrium Effects of the Minimum Wage: The Role of Product Market Power

Salvatore Lo Bello * Lorenzo Pesaresi **

*Bank of Italy¹

** University of Zürich

16th ECB-CEPR Labour Market Workshop November 21-22, 2022

¹The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Bank of Italy.

Motivation

- Minimum Wage (MW) prominent labor market policy.
- <u>Traditional view</u>: contrasts in-work poverty (*w* ↑) but increases unemployment (*u* ↑). [Brown et al. (1982); Neumark and Wascher (1992)] *Theory*: perfectly competitive labor market.
- <u>Current consensus</u>: boosts low wages (*w* ↑) with muted employment effects (*ū*). [Card and Krueger (1994); Cengiz et al. (2019)]
 Theory: labor market power.
- New empirical evidence: induces sizable price effects (*p* ↑). [Allegretto and Reich (2018); Link (2019); Harasztosi and Lindner (2019)]
 Theory: ?

Research Question

What is the role of product mkt power in the equilibrium effects of MW?

This Paper in a Nutshell

 Add strategic pricing to std monopsony model ⇒ novel concentration channel of the MW:

 $\mathsf{MW} \uparrow \xrightarrow{\mathrm{reallocation}} \mathsf{mkt} \mathsf{ share of large firms} \uparrow \xrightarrow{\mathrm{concentration}} \mathsf{markup} \uparrow$

- $\implies \underbrace{\text{Ambiguous labor share response to the MW: monopsony}}_{\text{power }\downarrow \text{ but monopoly power }\uparrow.}$
- $\implies \underbrace{\text{Restraining effect on Y and } w: \text{ monopoly power } \uparrow \implies \\ \text{labor demand } \downarrow.$
- 2. Construct a quantitative model w/ endogenous markups and markdowns.
 - Two-sided heterogeneity.
 - Frictional labor mkt (wage posting) + oligopolistic product mkt.
 - 3. Use the estimated model to simulate the effects of MW reforms \rightarrow prod mkt power affects aggregate and distributional impact.

Preview of Quantitative Results

- Hump-shaped response of the labor share.
 - Small MW: reduction in monopsony power dominates \implies labor share \uparrow .
 - Large MW: increase in monopoly power dominates \implies labor share \downarrow .
- MW=15th perc. ⇒ wage gains (+9%), modest unemployment surge (+1pp) but GDP rise (+4%), driven by sizable productivity gains from workers' reallocation.
 - Larger welfare gains for low-skill workers (+15%).
- Factoring in **product market power is key** for a correct evaluation of MW reforms.
 - 1. Crucial for quantifying the aggregate impact: GDP rises twice as much w/o prod mkt power.
 - 2. Necessary for studying the distributional impact: monotonic labor share response w/o endogenous markups.

Related Literature

• Structural Models of the Equilibrium Effects of the MW

Engbom and Moser (2021), Berger et al. (2022), Drechsel-Grau (2021), Hurst et al. (2022), Ahlfeldt et al. (2022)

<u>Contribution</u>: Show the importance of product market power and endogenous markup response for the aggregate and distributional impact of the MW.

• Wage Posting Models

Burdett and Mortensen (1998), Bontemps et al. (1999, 2000), van den Berg and Ridder (1998), Manning (2003), Bilal and Lhuillier (2021), Engbom and Moser (2021), Flinn and Mullins (2021)

<u>Contribution</u>: Highlight the role of product market power for the equilibrium wage distribution.

• Oligopolistic Competition in Sectoral Markets

Atkeson and Burstein (2008), Grassi (2017), Burstein et al. (2021), De Loecker et al. (2021), Edmond et al. (2015, 2018), Deb et al. (2020), MacKenzie (2020) <u>Contribution</u>: Discipline firms' labor market power by empirical wage distributions and worker transitions \rightarrow markdowns separately identified from markups.

Stylized Model

Introduction

A simple monopsony model w/o product market power

• Simple economy: 1 labor - 1 product market.

Perfectly competitive product market

- Continuum of firms w/ het. productivity $z \in [\underline{z}, \overline{z}]$.
- Profit maximization problem:

$$\max_{\ell} \ \bar{p}z\ell - w(\ell)\ell$$

s.t. $w(\ell) = \ell^{\frac{1}{\eta}}$

where η is the elasticity of labor supply.

• The FOC implies:

$$w^*(z) = rac{\eta}{1+\eta} ar{p}z \implies LS^*(z) = rac{w^*(z)}{ar{p}z} = \psi$$

where ψ is the equilibrium markdown, constant across firms.

• MW $\uparrow \implies$ exit $(z < \underline{w}/\bar{p})$ + monopsony power of low prod firms \downarrow .

Proposition 1.

The introduction of a binding MW causes the aggregate labor share to increase: $\bar{LS}_{MW}^{**} > \bar{LS}^*$.

Imperfectly competitive product market

- $N < \infty$ firms w/ het. productivity $z \in [\underline{z}, \overline{z}]$.
- Profit maximization problem:

$$\max_{\ell} p(\ell) z \ell - w(\ell) \ell - \kappa$$

s.t.
$$p(\ell) = \left(\frac{z\ell}{Y}\right)^{-\frac{1}{\epsilon(N)}}$$
$$w(\ell) = \ell^{\frac{1}{\eta}}$$

where $\epsilon(N)$ is the elasticity of demand, with $\epsilon_N > 0$.

Demand elasticity is a positive function of number of firms.
 Intuition: N↓ ⇒ Market shares ↑ ⇒ Demand elasticity ↓.

The FOC implies

$$w^{*}(z) = \underbrace{\frac{\epsilon(N) - 1}{\epsilon(N)}}_{\mu(N)^{-1}} \underbrace{\frac{\eta}{1 + \eta}}_{\psi} p^{*}(z)z \implies LS^{*}(z) = \frac{\psi}{\mu(N)}$$

where $\mu(N)$ is the equilibrium markup, constant across firms.

- In this economy there is a **double wedge** between wage w^{*} and rev productivity p^{*}z.
 - \implies Firms make profits both on the output and the input market.
- Labor share depends on both markup and markdown.

 $\mathsf{MW} \uparrow \implies \mathsf{exit} (\Pi^{**}_{MW}(z) < 0) + \mathsf{monopsony} \mathsf{ power of low prod firms} \downarrow.$

• But that's not it... some firms have left the market:

$$N' < N \implies \epsilon(N') < \epsilon(N)$$

• Hence, all firms increase their markups:

$$\mu(N') > \mu(N)$$

 What happens to the labor share, then? It depends on whether monopsony ↓ or monopoly ↑ dominates.

Proposition 2.

The introduction of a sufficiently large MW, i.e., such that $\mu(N') > \mu(N)/\psi$, causes the labor share to decrease: $\bar{LS}_{MW}^{**} < \bar{LS}^*$.

Summing up

Takeaway: with product market power, the labor share may *shrink* in response to MW reforms \implies MW can backfire!

Quantitative Model

Model – Highlights

- Goal: Quantify the markup vs markdown response to the MW.
- How: Novel structural model w/ frictional labor markets (Engbom and Moser (2021)) and oligopolistically- competitive product markets (Atkeson and Burstein (2008)).
- SaM frictions + wage posting \rightarrow varying elasticity of labor supply \rightarrow endogenous and heterogeneous markdowns.
 - Source of monopsony power: matching frictions (geographical distance, incomplete info).
- Oligopolistic competition \rightarrow varying elasticity of demand \rightarrow endogenous and heterogeneous markups.
 - Source of monopoly power: consumers' preferences + granularity.

Mode

Model – Environment

- Segmented labor markets by worker ability a. Workers
 - Matching frictions: job finding rate $\lambda(\theta)$, job separation rate δ , OTJ search intensity *s*, vacancy posting costs c(v).
 - Wage posting: employment wage dist G(w), wage offer dist F(w).
- Sectoral product markets with $N_k < \infty$ firms. Consumers
 - Elasticity of subst across sectors $\rho > 1$.
 - Elasticity of subst within sectors $\sigma > \rho$.
- For tractability, each firm is assigned to one product and one labor market.

Model – Firm's Problem

• A firm w/ productivity z hiring workers of ability a and competing in product market k solves:

$$\begin{split} \max_{w \ge \underline{w}/a, v, \ell} & p(\ell) \underbrace{az\ell}_{=y(\ell)} - aw\ell - c(v) - \kappa \\ \text{s.t.} & \ell(w, v) = \frac{v}{V} \frac{\lambda(\theta) \left(u + seG(w)\right)}{\delta + s\lambda(\theta) \left(1 - F(w)\right)} & \text{(Labor Supply)} \\ & p(\ell) = y(\ell)^{-\frac{1}{\sigma}} Y_k \left(\ell\right)^{\frac{1}{\sigma} - \frac{1}{\rho}} Y^{\frac{1}{\rho}} & \text{(Inverse Demand)} \\ & Y_k(\ell) = \left[y(\ell)^{\frac{\sigma-1}{\sigma}} + \sum_{i \ne 1}^{N_k} y_{ki}^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}} & \text{(Sectoral Output)} \end{split}$$

Model – Firm's PMP – Cont'd

FOC/w:
$$\ell(w, v) = \left[(1 + \epsilon^{p,\ell}) p(\ell(w, v)) z - w \right] \frac{\partial \ell(w, v)}{\partial w}$$

• Can rewrite FOC/w as optimal pricing rule:

Mode

Model – Equilibrium Characterization

• Markup and markdown are equilibrium outcomes:

$$\mu(z) = \frac{\sigma}{(\sigma - 1) \left[1 - \frac{\sigma/\rho - 1}{\sigma - 1} s(z)\right]} > 1.$$

$$\psi(z) = \left(1 + \frac{1}{2f(w(z))w} \left[(1 - F(w(z))) + \frac{\delta}{s\lambda(\theta)}\right]\right)^{-1} < 1.$$

• Firm's total market power summarized by its Market Power Index:

$$\mathcal{M}(z) = rac{\mu(z)}{\psi(z)} > 1.$$

 $\implies \text{ Both product market power } (\mu > 1) \text{ and labor market power } (\Psi < 1) \text{ restrain optimal firm size (double wedge).}$

Quantitative Analysis

Estimation Strategy

- Estimate the model on Italian data, targeting empirical moments for the period 2016-18.
- Link worker ability types to **AKM worker fixed effects** (J = 10) and replicate actual workers' transitions (Engbom and Moser (2021)).
- For each worker type, two-step estimation of industry-specific (1-digit) firms' physical prod dist's (Bontemps et al. (2000)):

Estimation Strategy

- Estimate the model on Italian data, targeting empirical moments for the period 2016-18.
- Link worker ability types to **AKM worker fixed effects** (J = 10) and replicate actual workers' transitions (Engbom and Moser (2021)).
- For each worker type, two-step estimation of industry-specific (1-digit) firms' physical prod dist's (Bontemps et al. (2000)):

Estimation Strategy – Cont'd

- Structural estimation allows separately identifying markups and markdowns:
 - Observed wage dist's + observed workers' transitions \implies markdowns.
 - Inferred MRP dist's + observed market structure of 4-digit sectors ⇒ markups.

Model Fit – Wage Distribution

Source: INPS data (2016-2018) and model.

Model replicates almost exactly the empirical wage dist.

Estimated Model – Firm Size and Productivity Distribution

• Right-skewed firm size dist, \sim log-normal physical prod dist.

Labor Market Policies

Counterfactuals - Labor Share & Market Power

- Hump-shaped labor share response mirroring U-shaped MPI.

- $\Delta\psi$ dominates $\Delta\mu$ for low-to-middle MWs, opposite for large MWs.

impact of markups

factor shares

Counterfactuals – Wage Distribution

Takeaway: Wage dist shifts rightward w/ higher MW due to pay rises (bottom half) and selection into higher-paying firms.

Counterfactuals – Equilibrium Effects

Variable	Baseline	Small reform	Large reform
		(68% Kaitz index)	(92% Kaitz index)
Pa	nel a. Aggr	egate statistics	
GDP	1.000	1.044	1.110
Unemployment rate	0.108	0.118	0.135
Output per worker	1.000	1.042	1.118
Avg hourly wage (€)	11.032	12.032	13.500
Variance log wage	0.132	0.091	0.074
Avg firm size	4.051	4.076	4.189
Pane	el b. Distrib	utional Statistics	
Labor share	0.649	0.656	0.657
Profit share	0.351	0.344	0.343
Profit share (product market)	0.163	0.163	0.164
Profit share (labor market)	0.180	0.174	0.171

Source: Model. Note: the variables GDP and Output per worker are normalized to 1 in the Baseline.

Takeaway: MW $\uparrow \rightarrow$ employment \downarrow but GDP \uparrow since productivity \uparrow ; avg wage \uparrow and wage inequality \downarrow ; labor share \uparrow since profits from lab mkt \downarrow but profits from prod mkt \uparrow .

Counterfactuals – Equilibrium Effects

Variable	Baseline	Small reform	Large reform
		(68% Kaitz index)	(92% Kaitz index)
Pai	nel c. Marke	t power statistics	
Average markup	1.134	1.135	1.138
Average markdown	0.536	0.550	0.559
Average mpi	2.128	2.078	2.054
Misalloc index (mpi std dev)	0.547	0.530	0.507
Pan	el d. Labor i	market transitions	
Job-finding rate	0.207	0.185	0.157
Job-to-job flow rate	0.013	0.013	0.012
Job-separation rate	0.025	0.025	0.025

Source: Model.

Takeaway: MW $\uparrow \rightarrow$ avg MPI (aggregate distorsion) \downarrow and MPI dispersion (misallocation) \downarrow .

Market Power Response

eh vs Comp

Counterfactuals – Distributional Impact

Takeaway: Wage gains and unemployment surge decrease w/ worker type; U-shaped welfare gains from large MWs (profits \uparrow). **profit dist**

The Role of Product Market Power

- **Goal**: Isolate the role of prod mkt power in the equilibrium effects of the MW.
- How: Replicate the same experiments in 2 alternative environments:
 - 1. What if there was no prod mkt power at all?

 $\frac{Markupless\ economy}{markups,\ identical\ prices.} \quad \text{Markupless\ Economy} \quad \text{Markupless\ vs\ Baseline}$

2. What if markups were constant?

 $\frac{MP\ economy:\ monopolistic\ competition\ in\ sectoral\ mkts}{\text{identical\ markups.}} \xrightarrow{\text{MP\ Economy}} \xrightarrow{\text{MP\ vs\ Baseline}}$

The Role of Product Market Power – Aggregates

Takeaway: No prod mkt power \rightarrow largely overstate unemp surge +50% and GDP rise (+200%) (excessive reallocation).

The Role of Product Market Power - Distribution

Takeaway: Identical markups \rightarrow monotonic labor share response.

Conclusions

• Characterize theoretically a **novel concentration channel** of the MW.

 \rightarrow Response of the labor share is qualitatively ambiguous: monopsony power \checkmark but monopoly power $\uparrow.$

- Estimate a structural model to quantify both forces.
- Find hump-shaped response of the labor share \implies concentration channel increasingly relevant as MW gets higher.
- Neglecting prod mkt power leads to overestimate reallocation gains
 → prod mkt power key for aggregate impact of medium-to-large
 MW.
- Ignoring endogenous markups leads to underestimate the surge in profits from higher concentration → strategic pricing crucial for distributional impact.

Appendix – Perfectly Competitive Labor Market

Appendix – Labor Market Power

Appendix – Labor Share Response

Back

Model – Consumer's Problem

 Hand-to-Mouth consumers with risk-neutral intertemporal preferences and nested CES static preferences over sectoral goods:

$$\max_{c_{ik}} C = \left(\int_{0}^{1} C_{k}^{\frac{\rho-1}{\rho}} dk\right)^{\frac{\rho}{\rho-1}}$$

s.t.
$$C_{k} = \left(\sum_{i=1}^{N_{k}} c_{ik}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$
$$\int_{0}^{1} \sum_{i=1}^{N_{k}} p_{ik} c_{ik} dk \leq Pl$$

where $\rho > 1$ and $\sigma > \rho$

• Preference-based sectoral oligopolistic competition

Model – Worker's Problem

• Workers can be either employed or unemployed in a labor market j

Value of Unemp:
$$rU = a_j b_j + \lambda(\theta) \int_{\underline{w}}^{\overline{w}} [W(w) - U] dF_j(w)$$

Value of Emp: $rW(w) = a_j w_j + \Pi_j + s_j \lambda(\theta_j) \int_{w}^{\overline{w}} [W(w') - W(w)] dF_j(w')$
 $+ \delta_j (U - W(w))$

where r > 0 is the instantaneous interest rate, *b* flow value of leisure, $\lambda(\theta)$ job finding rate, $s \in (0, 1)$ OTJ search efficiency, δ job separation rate, and F(w) the (endogenous) wage offer distribution

Appendix – Steady-State Labor Supply Curve

LOM firm-level employment

$$\dot{\ell}(t) = -\left[\delta + s\lambda\left(heta(t)
ight)\left(1 - F(w(t))
ight]\ell(t) + q\left(heta(t)
ight)\left[rac{u(t)}{S(t)} + rac{se(t)}{S(t)}G\left(w(t)
ight)
ight]v(t)$$

Steady-state conditions

$$\begin{cases} G_{j}(w) = \frac{\lambda(\theta_{j})F_{j}(w)}{\delta_{j} + s_{j}\lambda(\theta_{j})(1 - F_{j}(w))} \\ u_{j} = \frac{\delta}{\delta + \lambda(\theta)} \\ \dot{\ell}(t) = 0 \implies \ell = \frac{v}{V_{j}} \frac{\lambda(\theta_{j})(u_{j} + s_{j}e_{j}G_{j}(w))}{\delta_{j} + s_{j}\lambda(\theta_{j})(1 - F_{j}(w))} = \frac{\delta\lambda(\theta)}{\theta\left[\delta + s\lambda(\theta)(1 - F(w))\right]^{2}} v \end{cases}$$

Appendix – Labor Market Equilibrium

Define the MRP as $\tilde{z} \equiv \frac{p}{\mu}z$.

Equilibrium System of Differential Equations:

$$\begin{cases} h'(\tilde{z}) = \frac{M}{V} \tilde{\gamma}(\tilde{z}) \left(\frac{[\tilde{z} - w(\tilde{z})]}{\bar{c}} \frac{\delta \lambda(\theta)}{\theta \left[\delta + s\lambda(\theta) \left(1 - h(\tilde{z})\right)\right]^2} \right)^{\frac{1}{\eta}} \\ w'(\tilde{z}) = [\tilde{z} - w(\tilde{z})] \frac{2s\lambda(\theta)h'(\tilde{z})}{\delta + s\lambda(\theta) \left(1 - h(\tilde{z})\right)} \end{cases} \end{cases}$$

Boundary conditions:

$$\lim_{\substack{\tilde{z} \to \underline{\tilde{z}}(a) \\ \tilde{z} \to \underline{\tilde{z}}(a)}} h(\tilde{z}|a) = 0$$
$$\lim_{\substack{\tilde{z} \to \underline{\tilde{z}}(a) \\ \text{FOCs}}} w(\tilde{z}|a) = \max\left\{R(a), \frac{w^{min}}{a}\right\}$$

Appendix – Firm's PMP

Model – Equilibrium Characterization

• In equilibrium, firms are indifferent between adjusting their size through vacancy (*visibility channel*) or wage policy (*wage channel*)

$$rac{ar{c}_j v_{jk}(z)^\eta}{\partial \ell_{jk}(z) / \partial v_{jk}(z)} = rac{\ell_{jk}(z)}{\partial \ell_{jk}(z) / \partial w_{jk}(z)} \implies \epsilon_{jk}^{\ell,w}(z) = rac{w_{jk}(z)\ell_{jk}(z)}{(1+\eta)c_j(v_{jk}(z))}$$

⇒ Elasticity of labor supply implied by labor market policies
 Firms are granular in their product market → strategic choice of equilibrium size (*Cournot* game)

$$\epsilon_{jk}^{p,\ell}(z)=-rac{1}{
ho}s_{jk}(z)-rac{1}{\sigma}\left(1-s_{jk}(z)
ight)$$

where $s_{jk}(z) = rac{p_{jk}(z)y_{jk}(z)}{\sum_{i=1}^{N_k} p_{jki}y_{jki}}$

 \implies Elasticity of inverse demand depends on firm's market share

Appendix – Equilibrium Definition

Definition

A steady-state equilibrium of our model economy consists of:

- A set of reservation wages {<u>w</u>^{R,U}_j, <u>w</u>^{R,E}_j} for both unemployed and employed workers, that solve the workers' problems;
- Consumption policy functions {c_{ikj}} for the employed, that solve the consumers' problem;
- A set of wage, vacancy posting and price setting policies {w_{j,k}(z), v_{j,k}(z), p_{j,k}(z)} that solve the firms' problem;
- A set of thresholds $\{\underline{z}_{j,k}\}$ that determine the marginal firm of each submarket (j, k);
- Measures {G_j(w), e_j, u_j, V_j} and matching rates {λ(θ_j), q(θ_j)} that are consistent with firms' optimization, with the laws of motion in steady-state and with the matching technology;
- Goods market clearing conditions ensuring that quantities demanded and produced of each good coincide:

$$c_{ik} = \int_{j} e_{j} L_{j} \int_{\underline{w}_{j}}^{\overline{w}_{j}} c_{ik}(w, \Pi_{j}) \ dG_{j}(w) \ dj = y_{ik} - \overline{c}_{j} \frac{v_{ik}^{1+\eta}}{1+\eta} - \kappa_{k} \quad \forall \ i = 1, \dots, N_{k}, \ \forall k.$$

where $L_j = L(a_j) = \omega(a)|_{a=a_j}L.$

Appendix – Markdown Derivation

$$mc(\ell) = w(\ell) + w'(\ell)\ell + c'(v(\ell))v'(\ell)$$

$$= w(\ell)(1 + \epsilon_{w,\ell}) + \frac{cv(\ell)^{1+\eta}}{\ell(w,v)}\epsilon_{v,\ell}$$

$$= w(\ell)\left(1 + \epsilon_{w,\ell} + \frac{\epsilon_{v,\ell}}{\epsilon_{\ell,w}}\right)$$

$$= w(\ell)\left(1 + \frac{\epsilon_{w,\ell} + \epsilon_{v,\ell}}{\epsilon_{\ell,w}}\right)$$

$$\implies \Psi(\ell) = \frac{\epsilon_{\ell,w}}{\epsilon_{\ell,w}(1 + \epsilon_{w,\ell}) + \epsilon_{v,\ell}}$$

where
$$\frac{cv(\ell)^{1+\eta}}{\ell(w,v)} = \frac{\ell(w,v)}{\partial \ell(w,v)/\partial w} = \frac{w(\ell)}{\epsilon_{\ell,w}}$$
 (interior optimum)
 $\ell = \ell(w,v) \implies \epsilon_{w,\ell} \epsilon_{\ell,w} + \epsilon_{v,\ell} = 1$

Appendix – Calibration

Parameter	Description	Value	Target/Source	Data	Model
	Pane	el a. Ex	ternally set parameters		
Matching	function				
χ	TFP parameter	1.000	Normalization	-	-
ξ	Elast. to search effort	0.500	Petrongolo and Pissarides (2001)	-	-
Household	preferences				
r	Discount rate	0.004	Annualized interest rate of 4 percent	-	-
Other para	ameters				
J	Number of labor markets	10	Deciles of AKM worker fixed effects	-	-
K	Number of product markets	8211	One firm in MRP level w/ lowest density	-	-
	Panel b. Directly	inferred	l structural and auxiliary parameters		
Labor mar	ket parameters				
М	Firm-to-worker population ratio	0.238	Average firm size	4.200	4.051
$\{\Pi_i\}$	Share of aggregate profits		Distribution of non-labor income		п
$\{\delta_j\}$	Separation rates	Values	EN rate		
$\{s_j\}$	On-the-job search intensity	Values	Job-to-job transition rate		
Productivi	ty distributions and product mark	kets			
$\left\{ \tilde{\Gamma}_{j,k} \right\}$	Firm MRP distributions		Wage distributions		
$\{N_k\}$	Number of competing firms		Distribution of market structures, 4-digit Ateco		

Appendix – Calibration – Cont'd Back

Parameter	Description	Value	Target/Source	Data	Model
	Panel c. Inter	nally es	timated parameters		
Search costs and labor market parameters					
$\{\bar{c}_i\}$	Vacancy posting cost (scale)	Values	Unemployment rate	0.108	0.108
η	Vacancy posting cost (elasticity)	0.530	Share of employment in firms 50+	0.372	0.358
$\{b_i\}$	Flow value of leisure	Values	Smallest observed wage		
$\{\kappa_i\}$	Overhead costs		Smallest operating profits		
$\{a_j\}$	Worker ability	-	Relative worker-firm AKM variance	0.886	0.883
Demand e	lasticity and firms' assignment				
ρ	Elast. of subst. across sectors	1.420	Weighted CR4	0.250	0.235
σ	Elast. of subst. within sectors	10.634	Profit-to-labor share ratio	0.539	0.554
Θ	Sampling function (scale)	-	Standard deviation log value added	1.490	1.437

Source: Model, INPS, Istat, Eurostat and SHIW data. Note: Labor market transition estimates and wage distributions are drawn from INPS matched employer-employee data (2016-2018). Statistics on average firm size and the share of employment in large firms are taken from Eurostat data. Finally, statistics on the number of firms in 4-digit Ateco sectors are drawn from the Structural Business Statistics dataset of Istat (2019).

Appendix – Estimation Strategy

Three-step estimation of industry-specific (1-digit) firm productivity dist's:

1. Structurally estimate the MRP (\tilde{z}) distributions by **inverting observed** wage distributions by worker type (Bontemps et al. (2000)):

$$ilde{z}(w;G(w)) = w + rac{u+s(1-u)G(w)}{2s(1-u)g(w)}\Delta w \implies ilde{z} \sim ilde{H}(ilde{z})$$

- 2. Each firm is assigned (i) a MRP drawn from the distribution $H(\tilde{z})$ and (ii) a product market according to the empirical distribution of market structures across 4-digit sectors Market structure distribution
- 3. Solve for the equilibrium market shares in each sectoral market to back out firms' *physical* productivity *z*:

$$\begin{cases} z(\tilde{z},s) = \mu(s)\frac{\tilde{z}}{\rho} \\ p = y(z,\tilde{z})^{-\frac{1}{\sigma}}Y_k(z,\tilde{z})^{\frac{1}{\sigma}-\frac{1}{\rho}}Y^{\frac{1}{\rho}} \end{cases} \implies z_k(\tilde{z}) \end{cases}$$

Appendix – Labor Market Statistics by Worker Type

Appendix – Wage Distribution by Worker Type

Source: INPS matched employer-employee data (2016-2018).

Back

Appendix – Distribution of Market Structure by Industry

Source: Structural Business Statistics (Istat), 2019. *Note*: Sectors are defined according to the 4-digit Ateco classification.

Appendix – Labor Market Policy Functions

Source: Model. Note: the charts show the firms' policy functions in the 5^{th} decile labor market.

Back

Appendix – Markup Share in MPI variation

Source: Model.

Appendix – Markups vs Markdowns

Source: Model. *Note*: the lines represent the average markup and inverse markdown for different levels of firm size.

Appendix – Factor Shares Response

Source: Model.

Appendix – Market Power Response

- In our model, market power reduces GDP for two reasons:
 - 1. aggregate market power distortion $\iff \mathbb{E}[\mathcal{M}] > 1$
 - 2. misallocation of labor $\iff \mathbb{V}[\mathcal{M}] > 0$ (Hsieh and Klenow (2009))
- As long as $\mathbb{V}[\mathcal{M}] > 0$, labor is paid differently across firms:

$$\frac{w}{p} = \underbrace{\frac{\Psi}{\mu}}_{1/\mathcal{M}} z$$

- Small-to-medium MWs: $\mathbb{E}[\mathcal{M}] \downarrow$ and $\mathbb{V}[\mathcal{M}] \downarrow$
- Large MWs: $\mathbb{E}[\mathcal{M}] \uparrow$ but $\mathbb{V}[\mathcal{M}] \downarrow$

Appendix – Behavioral vs Compositional Effects

-				
	в	\mathbf{c}	ĸ	

Variable	Overall change	Due to policy change	Due to reallocation			
	(log points)	(perc.)	(perc.)			
Pa	Panel a. Small reform (.68 Kaitz index)					
Average wage	10.610	64.5 %	35.5 %			
Average firm size	-10.626	116.2 %	-16.2 %			
Average vacancies	-22.387	103.4 %	-3.4 %			
Log wage variance	-37.509	82.6 %	17.4 %			
Labor share	1.298	221.8 %	-121.8 %			
Average markup	0.101	33.3 %	66.7 %			
Average markdown	3.077	165.3 %	-65.3 %			
Average market power index	-2.976	169.8 %	-69.8 %			
Pa	nel b. Large reform	n (.92 Kaitz index)				
Average wage	22.732	58.4 %	41.6 %			
Average firm size	-27.471	124.5 %	-24.5 %			
Average vacancies	-57.411	104.1 %	-4.1 %			
Log wage variance	-57.481	81.1 %	18.9 %			
Labor share	1.607	398.5 %	-298.5 %			
Average markup	0.358	32.2 %	67.8 %			
Average markdown	5.007	224.3 %	-124.3 %			
Average market power index	-4.649	239.0 %	-139.0 %			

Appendix – Wage CDF

Source: Model.

Appendix – Wage Gains by Percentile

Source: Model.

Appendix – Distribution of Profits

a) Across worker types (Π_j) b) Along the inc dist (model vs. data)

Source: Model. *Note*: panel a plots the estimates of the shares of aggregate profits accruing to each worker type; panel b plots the shares of aggregate profits accruing to each income decile (targets of the estimation), in the data and in the model.

Appendix – MW in PE: Unconstrained Firms

Figure: Non-binding MW.

Appendix – MW in PE: Constrained Firms

Figure: Binding MW.

Back

Appendix – Exit Response after MW Reform

Source: Model.

Appendix – Baseline vs Markupless Economy

Variable	Baseline	Economy	Markuple	ss Economy
	Status quo	Large reform	Status quo	Large reform
GDP	1.000	1.110	1.000	1.246
Unemployment rate	0.108	0.135	0.108	0.148
Avg firm size	4.051	4.189	4.051	6.776
Avg wage	11.032	13.498	11.032	14.337
Labor share	0.650	0.657	0.777	0.760
Avg mpi	2.127	2.054	1.865	1.922
	6			

Source: Model.

Takeaway: Product market power reins in reallocation and spillover effects and drives the distributional impact of high MWs

Back

Appendix – Baseline vs MP Economy

Variable	Baseline	Economy	MP E	conomy
	Status quo	Large reform	Status quo	Large reform
GDP	1.000	1.110	1.000	1.105
Unemployment rate	0.108	0.135	0.108	0.135
Avg firm size	4.051	4.189	4.051	4.190
Avg wage	11.032	13.500	11.032	13.498
Labor share	0.650	0.657	0.650	0.663
Avg mpi	2.127	2.054	2.127	2.038
	6-			

Source: Model.

Takeaway: Endogenous markups do not affect aggregate variables significantly, but influence the dynamics of factor shares

Back

Appendix – Markupless Economy

Variable	Baseline	Small reform	Large reform
		(68% Kaitz index)	(92% Kaitz index)
Pa	nel a. Aggre	gate statistics	
GDP	1.000	1.078	1.246
Unemployment rate	0.108	0.120	0.148
Output per worker	1.000	1.087	1.315
Avg hourly wage (€)	11.032	12.165	14.337
Variance log wage	0.132	0.098	0.090
Avg firm size	4.051	4.422	6.776
_			
Pane	el b. Distribu	itional Statistics	
Labor share	0.777	0.777	0.760
Profit share	0.223	0.223	0.240
Profit share (product market)	0.000	0.000	0.000
Profit share (labor market)	0.223	0.223	0.240

Source: Model. Note: the variables GDP and Output per worker are normalized to 1 in the Baseline.

Product Market Power

Appendix – Markupless Economy – Cont'd

Variable	Baseline	Small reform	Large reform	
		(68% Kaitz index)	(92% Kaitz index)	
Pane	el c. Market	power statistics		
Average markup	1.000	1.000	1.000	
Average markdown	0.536	0.540	0.520	
Average mpi	1.865	1.853	1.922	
Misalloc index (mpi std dev)	0.463	0.462	0.453	
Panel	l d. Labor n	narket transitions		
Job-finding rate	0.207	0.181	0.141	
Job-to-job flow rate	0.013	0.012	0.010	
Job-separation rate	0.025	0.025	0.025	

Source: Model.

Product Market Power

Baseline Model

Appendix – MP Economy

Variable	Baseline	Small reform	Large reform
		(68% Kaitz index)	(92% Kaitz index)
Pa	nel a. Aggre	gate statistics	
GDP	1.000	1.044	1.105
Unemployment rate	0.108	0.118	0.135
Output per worker	1.000	1.042	1.114
Avg hourly wage (€)	11.032	12.035	13.498
Variance log wage	0.132	0.091	0.074
Avg firm size	4.051	4.082	4.190
Pane	l h Distribu	itional Statistics	
Labor share	0 650	0.658	0.663
	0.050	0.058	0.003
Profit share	0.350	0.342	0.337
Profit share (product market)	0.170	0.168	0.166
Profit share (labor market)	0.180	0.174	0.171

Source: Model. Note: the variables GDP and Output per worker are normalized to 1 in the Baseline.

Product Market Power

Baseline Model

Appendix – MP Economy – Cont'd

Variable	Baseline	Small reform	Large reform
		(68% Kaitz index)	(92% Kaitz index)
Pane	el c. Market	power statistics	
Average markup	1.140	1.140	1.140
Average markdown	0.536	0.550	0.560
Average mpi	2.127	2.073	2.038
Misalloc index (mpi std dev)	0.528	0.511	0.486
Pane	I d. Labor n	narket transitions	
Job-finding rate	0.207	0.185	0.158
Job-to-job flow rate	0.013	0.013	0.012
Job-separation rate	0.025	0.025	0.025

Source: Model.

Product Market Power

Baseline Model

Appendix – Distributional Impact Across Economies

