Optimal macroprudential policy and asset price bubbles by Biljanovska, Górnicka, and Vardoulakis

Alberto Martin

CREI and Barcelona GSE

March 22, 2021

Martin (CREI and Barcelona GSE)

< ロ > < 同 > < 三 > < 三

Overview

- How should macroprudential policy react to asset price bubbles?
- This paper:
 - Develop macro model with financial constraints and bubbles.
 - Explore optimal macroprudential policy.

A bird's eye view of macropru

- Simple world: Today agents are unconstrained but potential crisis Tomorrow
 - ▶ e.g. low productivity, tight financial constraints
- Agents are rational: anticipate likelihood of crisis
- But do not fully internalize effects of their choices on the severity of the crisis
 - Deleveraging \rightarrow fall in AD \rightarrow fall in output (AD externalities)
 - \blacktriangleright Capital sales \rightarrow fall in price of capital \rightarrow tight financial constraints (pecuniary externalities)
- Too much borrowing ex ante \rightarrow need for macropru!

イロト イポト イヨト イヨト

This paper

- What changes when we introduce (rational) bubbles?
- Firms borrow against market value: fundamental and bubbly components

$$V_t = q_t \cdot k_t + b_t$$

- Main effects:
 - Extensive margin: bubbles provide collateral but can burst
 - Intensive margin: bubble valuation itself endogenous
- Conceptual/quantitative implications for optimal macroprudential tax

イロト イポト イヨト イヨト

- Key (simplified) equations:
 - ▶ SOE, financing (intra- and inter-period) subject to constraints:

$$\textit{financing}_t \leq m_t \cdot \left[\beta \cdot E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot \left([F_{k,t+1} + q_{t+1}] \cdot k_t + b_{t+1}\right)\right)\right]$$

- Key (simplified) equations:
 - ► SOE, financing (intra- and inter-period) subject to constraints:

$$\textit{financing}_t \leq m_t \cdot \left[\beta \cdot E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot \left([F_{k,t+1} + q_{t+1}] \cdot k_t + b_{t+1}\right)\right)\right]$$

Pricing of capital:

$$q_t = E_t \left[\frac{U_{c,t+1}}{U_{c,t}} \cdot (F_{k,t+1} + q_{t+1}) \right]$$

- Key (simplified) equations:
 - ► SOE, financing (intra- and inter-period) subject to constraints:

$$\textit{financing}_t \leq m_t \cdot \left[\beta \cdot E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot \left([F_{k,t+1} + q_{t+1}] \cdot k_t + b_{t+1}\right)\right)\right]$$

Pricing of capital:

$$q_t = E_t \left[\frac{U_{c,t+1}}{U_{c,t}} \cdot (F_{k,t+1} + q_{t+1}) \right]$$

Pricing of bubble:

$$b_t = (1 + m_t \cdot \mu_t) \cdot \beta \cdot E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot b_{t+1} \right)$$

where μ_t is multiplier on borrowing constraint,

$$\mu_t > 0 \Leftrightarrow b_t > \beta \cdot E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot b_{t+1} \right)$$

(ロ) (回) (三) (三)

- Key (simplified) equations:
 - ► SOE, financing (intra- and inter-period) subject to constraints:

$$\textit{financing}_t \leq m_t \cdot \left[\beta \cdot E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot \left([F_{k,t+1} + q_{t+1}] \cdot k_t + b_{t+1}\right)\right)\right]$$

Pricing of capital:

$$q_t = E_t \left[\underbrace{U_{c,t+1}}_{U_{c,t}} \left(F_{k,t+1} + q_{t+1} \right) \right]$$

Pricing of bubble:

$$b_t = (1 + m_t \mu_t) \cdot \beta \cdot E_t \left(\underbrace{U_{c,t+1}}_{U_{c,t}} \cdot b_{t+1} \right)$$

where μ_{t} is multiplier on borrowing constraint,

$$\mu_t > 0 \Leftrightarrow b_t > \beta \cdot E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot b_{t+1} \right)$$

(ロ) (回) (三) (三)

Rationale for macropru and the bubble

• Standard effect in literature

• When deciding t-1 borrowing, agents do not internalize effect on $U_{c,t}$ and thus on q_t :

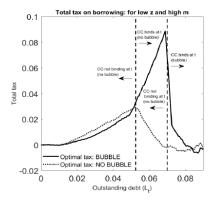
$$\downarrow q_t = E_t \left[\underbrace{U_{c,t+1}}_{U_{c,t}} \cdot \left(F_{k,t+1} + q_{t+1} \right) \right]$$

Affected by presence of bubble (extensive margin)

Rationale for macropru and the bubble

• Standard effect in literature

▶ When deciding t - 1 borrowing, agents do not internalize effect on U_{c,t} and thus on q_t:


$$\downarrow q_t = E_t \left[\frac{U_{c,t+1}}{U_{c,t}\uparrow} \cdot (F_{k,t+1} + q_{t+1}) \right]$$

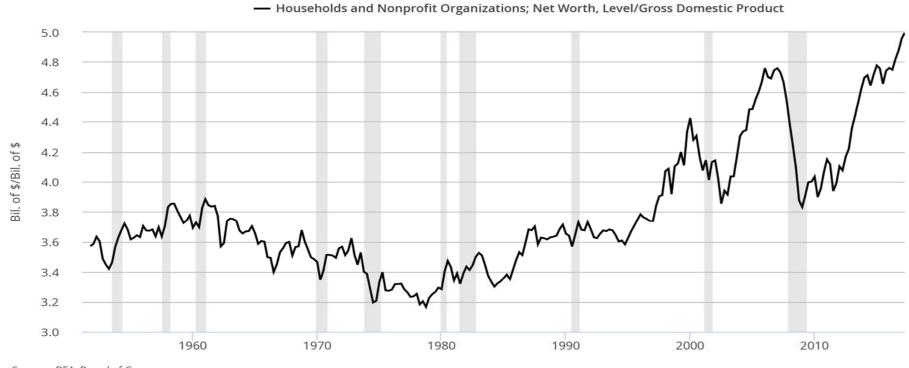
- Affected by presence of bubble (extensive margin)
- Intensive margin:
 - When deciding t 1 borrowing, agents do not internalize effect on $U_{c,t}$ and μ_t , and thus on $E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot b_{t+1} \right)$:

$$b_t = (1 + m_t (\mu_t)) \cdot \beta \cdot E_t (\underbrace{U_{c,t+1}}_{U_{c,t}} \cdot b_{t+1})$$

Quantitative implications

• Net effect of bubbles on macroprudential tax depends on debt level

・ロト ・回ト ・ヨト ・


General reaction

• Welcome connection between bubbles and macroprudential literatures

- We live in a world of asset price booms and busts
- Important to understand implications for macropru
- My comments:
 - Paper is not an easy read
 - Focus on general/robust insights
 - Do they apply only to bubbles?

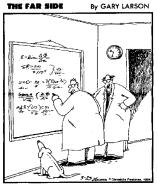
< ロ > < 同 > < 三 > < 三

United States: Household Net Worth / GDP

Sources: BEA, Board of Governors

fred.stlouisfed.org

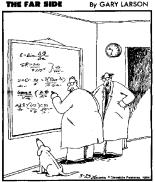
myf.red/g/fzbw


Paper is not always easy to follow

- Combines complex frameworks (Mendoza-Bianchi/Miao-Wang)
 - Occasionally binding financial constraints, rational bubbles, etc...

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Paper is not always easy to follow


- Combines complex frameworks (Mendoza-Bianchi/Miao-Wang)
 - Occasionally binding financial constraints, rational bubbles, etc...

"Ohhhhhhh . . . Look at that, Schuster . . . Dogs are so cute when they try to comprehend quantum mechanics."

Paper is not always easy to follow

- Combines complex frameworks (Mendoza-Bianchi/Miao-Wang)
 - Occasionally binding financial constraints, rational bubbles, etc...

"Ohhhhhhh . . . Look at that, Schuster . . . Dogs are so cute when they try to comprehend quantum mechanics."

• My advice: sharpen robust insights/messages

What I fully buy: extensive margin

Bubbles…

- provide collateral: relax constraints, reduce need for macropru
- but they can burst!: source of crises, increase need for macropru
- Very natural result, extends beyond specific modeling of bubbles
 - Natural interaction between bubbles and stock of debt
 - Bubble correlation to productivity and/or financial shocks
- Questions:
 - > To what extent are quantitative results driven by extensive margin?
 - * Decompose tax into intensive and extensive margin
 - Does it rely on bubbles? (e.g. what changes if these are Lucas trees?)

イロト イポト イヨト イヨト

What I buy (understand) less

Results in this literature tend to be sensitive to borrowing constraint:

$$\textit{financing}_t \leq m_t \cdot \left[q_t \cdot k_t + \beta \cdot E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot b_{t+1} \right) \right]$$

- Rationale: if default, lenders seize firm and resell it next period
- But borrowing is from foreigners (interest rate R)
 - * Why use domestic SDF to discount future value of firm?
- What would change is borrowing is backed by current value of firm?

イロト イポト イヨト イヨト

What I buy (understand) less

• Intensive margin: externality on b_t similar to traditional one on q_t

But b_t is a state variable

▶ Not sure why
$$E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot b_{t+1} \right)$$
 changes with $U_{c,t}$

What I buy (understand) less

• Intensive margin: externality on b_t similar to traditional one on q_t

But b_t is a state variable

▶ Not sure why $E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot b_{t+1} \right)$ changes with $U_{c,t}$

$$b_t = (1 + m_t \cdot \mu_t) \cdot \beta \cdot E_t \begin{pmatrix} U_{c,t+1} \\ U_{c,t} \end{pmatrix}$$

- Crucial difference between bubble and fundamental assets (e.g. trees)
- Of course, $U_{c,t}$ also affects growth between t-1 and t
 - * But for this, equilibrium selection is key

<ロ> (日) (日) (日) (日) (日)

- We live in a world of asset price booms and busts
- How do they shape optimal macroprudential policy?
 - ► Asset booms provide collateral (↓ macropru) but they may end (↑ macropru)
 - Extensive margin very convincing, intensive margin less so...
- Does it matter whether booms/busts are driven by bubbles or not?

< ロ > < 同 > < 三 > < 三