Optimal macroprudential policy and asset price bubbles
by Biljanovska, Górnicka, and Vardoulakis

Alberto Martin
CREI and Barcelona GSE

March 22, 2021
Overview

How should macroprudential policy react to asset price bubbles?

This paper:

- Develop macro model with financial constraints and bubbles.
- Explore optimal macroprudential policy.
A bird’s eye view of macropru

- Simple world: Today agents are unconstrained but potential crisis Tomorrow
 - e.g. low productivity, tight financial constraints

- Agents are rational: anticipate likelihood of crisis

- But do not fully internalize effects of their choices on the severity of the crisis
 - Deleveraging \rightarrow fall in AD \rightarrow fall in output (AD externalities)
 - Capital sales \rightarrow fall in price of capital \rightarrow tight financial constraints (pecuniary externalities)

- Too much borrowing ex ante \rightarrow need for macropru!
What changes when we introduce (rational) bubbles?

Firms borrow against market value: fundamental and bubbly components

\[V_t = q_t \cdot k_t + b_t \]

Main effects:

- *Extensive margin*: bubbles provide collateral but can burst
- *Intensive margin*: bubble valuation itself endogenous

Conceptual/quantitative implications for optimal macroprudential tax
Skeleton of framework

- Key (simplified) equations:
 - SOE, financing (intra- and inter-period) subject to constraints:

\[
financing_t \leq m_t \cdot \left[\beta \cdot E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot ([F_{k,t+1} + q_{t+1}] \cdot k_t + b_{t+1}) \right) \right]
\]
Skeleton of framework

- Key (simplified) equations:
 - SOE, financing (intra- and inter-period) subject to constraints:
 \[\text{financing}_t \leq m_t \cdot \left[\beta \cdot E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot ([F_{k,t+1} + q_{t+1}] \cdot k_t + b_{t+1}) \right) \right] \]
 - Pricing of capital:
 \[q_t = E_t \left[\frac{U_{c,t+1}}{U_{c,t}} \cdot (F_{k,t+1} + q_{t+1}) \right] \]

where \(\mu_t \) is multiplier on borrowing constraint, \(\mu_t > 0 \), \(b_t > \beta E_t U_{c,t+1} U_{c,t} \).
Skeleton of framework

- Key (simplified) equations:
 - SOE, financing (intra- and inter-period) subject to constraints:
 \[\text{financing}_t \leq m_t \cdot \left[\beta \cdot E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot (F_{k,t+1} + q_{t+1}) \cdot k_t + b_{t+1} \right) \right] \]
 - Pricing of capital:
 \[q_t = E_t \left[\frac{U_{c,t+1}}{U_{c,t}} \cdot (F_{k,t+1} + q_{t+1}) \right] \]
 - Pricing of bubble:
 \[b_t = (1 + m_t \cdot \mu_t) \cdot \beta \cdot E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot b_{t+1} \right) \]
 where \(\mu_t \) is multiplier on borrowing constraint,
 \[\mu_t > 0 \iff b_t > \beta \cdot E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot b_{t+1} \right) \]
Skeleton of framework

- Key (simplified) equations:
 - SOE, financing (intra- and inter-period) subject to constraints:
 \[
 financing_t \leq m_t \cdot \left[\beta \cdot E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot ([F_{k,t+1} + q_{t+1}] \cdot k_t + b_{t+1}) \right) \right]
 \]
 - Pricing of capital:
 \[
 q_t = E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot (F_{k,t+1} + q_{t+1}) \right)
 \]
 - Pricing of bubble:
 \[
 b_t = (1 + m_t \cdot \mu_t) \cdot \beta \cdot E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot b_{t+1} \right)
 \]

 where \(\mu_t \) is multiplier on borrowing constraint,
 \[
 \mu_t > 0 \iff b_t > \beta \cdot E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot b_{t+1} \right)
 \]
Rationale for macropru and the bubble

- **Standard effect in literature**
 - When deciding $t-1$ borrowing, agents do not internalize effect on $U_{c,t}$ and thus on q_t:
 \[\downarrow q_t = E_t \left[\frac{U_{c,t+1}}{U_{c,t}} \cdot (F_{k,t+1} + q_{t+1}) \right] \]
 - Affected by presence of bubble (*extensive margin*)
Rationale for macropru and the bubble

- **Standard effect in literature**
 - When deciding $t-1$ borrowing, agents do not internalize effect on $U_{c,t}$ and thus on q_t:
 \[
 \downarrow q_t = E_t \left[\frac{U_{c,t+1}}{U_{c,t}} \cdot (F_{k,t+1} + q_{t+1}) \right]
 \]
 - Affected by presence of bubble (extensive margin)

- **Intensive margin:**
 - When deciding $t-1$ borrowing, agents do not internalize effect on $U_{c,t}$ and μ_t, and thus on $E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot b_{t+1} \right)$:
 \[
 b_t = (1 + m_t \cdot \mu_t) \cdot \beta \cdot E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot b_{t+1} \right)
 \]
Quantitative implications

- Net effect of bubbles on macroprudential tax depends on debt level
Welcome connection between bubbles and macroprudential literatures

- We live in a world of asset price booms and busts
- Important to understand implications for macropru

My comments:

- Paper is not an easy read
- Focus on general/robust insights
- Do they apply only to bubbles?
United States: Household Net Worth / GDP

Sources: BEA, Board of Governors
fred.stlouisfed.org
Paper is not always easy to follow

- Combines complex frameworks (Mendoza-Bianchi/Miao-Wang)
 - Occasionally binding financial constraints, rational bubbles, etc...
Paper is not always easy to follow

- Combines complex frameworks (Mendoza-Bianchi/Miao-Wang)
 - Occasionally binding financial constraints, rational bubbles, etc...

"Ohhhhh... Look at that, Schuster... Dogs are so cute when they try to comprehend quantum mechanics."
Paper is not always easy to follow

- Combines complex frameworks (Mendoza-Bianchi/Miao-Wang)
 - Occasionally binding financial constraints, rational bubbles, etc...

- My advice: sharpen robust insights/messages
What I fully buy: extensive margin

- Bubbles...
 - provide collateral: relax constraints, reduce need for macropru
 - but they can burst!: source of crises, increase need for macropru

- Very natural result, extends beyond specific modeling of bubbles
 - Natural interaction between bubbles and stock of debt
 - Bubble correlation to productivity and/or financial shocks

- Questions:
 - To what extent are quantitative results driven by extensive margin?
 - Decompose tax into intensive and extensive margin
 - Does it rely on bubbles? (e.g. what changes if these are Lucas trees?)
What I buy (understand) less

- Results in this literature tend to be sensitive to *borrowing constraint*:

\[
financing_t \leq m_t \cdot \left[q_t \cdot k_t + \beta \cdot E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot b_{t+1} \right) \right]
\]

- **Rationale**: if default, lenders seize firm and resell it next period
- But borrowing is from foreigners (interest rate \(R \))
 - Why use domestic SDF to discount future value of firm?
- What would change is borrowing is backed by current value of firm?
What I buy (understand) less

- **Intensive margin**: externality on b_t similar to traditional one on q_t
 - But b_t is a state variable
 - Not sure why $E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot b_{t+1} \right)$ changes with $U_{c,t}$
What I buy (understand) less

- **Intensive margin**: externality on b_t similar to traditional one on q_t
 - But b_t is a state variable
 - Not sure why $E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot b_{t+1} \right)$ changes with $U_{c,t}$
 \[
 b_t = (1 + m_t \cdot \mu_t) \cdot \beta \cdot E_t \left(\frac{U_{c,t+1}}{U_{c,t}} \cdot b_{t+1} \right)
 \]
 - Crucial difference between bubble and fundamental assets (e.g. trees)
 - Of course, $U_{c,t}$ also affects growth between $t - 1$ and t
 - But for this, equilibrium selection is key
Final remarks

- We live in a world of asset price booms and busts
- How do they shape optimal macroprudential policy?
 - Asset booms provide collateral (↓ macropru) but they may end (↑ macropru)
 - Extensive margin very convincing, intensive margin less so...
- Does it matter whether booms/busts are driven by bubbles or not?