
Financial Crises and the Transmission of Monetary Policy to Consumer Credit Markets

Sasha Indarte Wharton

March 2021

Bank Losses During the Global Financial Crisis

Source: Bank of International Settlements (2018)

Sasha Indarte, Wharton

Q: how do asset losses affect the sensitivity of lending to conventional monetary policy?

- Asset losses can limit pass-though to lending: exacerbate constraints
- Or, asset losses can enhance pass-through: easing alleviates frictions
- Answer is informative about:
 - Mechanics of monetary transmission
 - Nature of financial frictions facing lenders
 - Complementarity/substitutability of conventional policy and tools like LSAPs
- Approach: est. causal effects of asset losses and 2-year Treasury rate on lending
 - ► Use quasi-experimental research design and data on the universe of US credit unions

• State dependence of monetary policy:

Kashyap and Stein (1995, 2000); Di Maggio, Kermani, and Palmer (2016); Tenreyro and Thwaites (2016); Scharfstein and Sunderam (2017); Gabriel and Lutz (2017); Berger et al. (2018); Jorda, Schularick, and Taylor (2018); Wieland and Yang (2019); Beraja et al. (2019); Paul (2019); Wong (2019); Benetton and Fantino (2019); Paz (2020)

- ► New focus on lender financial health as source of state dependence
- Separately look at both mortgages and non-mortgage consumer credit
- Role of financial frictions in monetary transmission:

Bernanke, Gertler, and Gilchrist (1999); Gertler and Kiyotaki (2010); Di Maggio et al. (2017); Drechsler, Savov, and Schnabl (2018); Piazzesi, Rogers, and Schneider (2019); Zentefis, (2019); Ottonello and Winberry (2019)

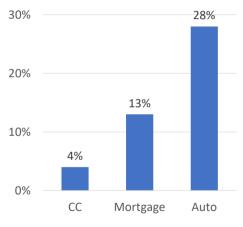
New empirical evidence on nature of frictions facing affecting creditor responses

• Macro consequences of credit supply shocks:

Greenstone, Mas, and Ngyuen (2015); Ramcharan, Van den Heuvel, and Verani (2016); Chodorow-Reich and Falato(2017); Di Maggio and Kermani (2017); Mondragon (2018); Benmelech, Frydman, and Papanikolaou (2019)

New evidence on how policy can combat credit supply shocks

Theory: Asset Losses and the Credit Channel of Monetary Policy (Summary)


Theoretical Ambiguity

- Simple models generate opposing predictions for the effect of asset losses on pass-thru
- Model 1: bank faces a capacity constraint (e.g., leverage constraint)
 - Lowering the policy rate isn't as powerful when a bad balance sheet constrains lending
 - Asset losses weaken the lending response to policy rate changes
- Model 2: bank faces an external finance premium
 - ▶ Risk premium magnifies pass-through of policy rate to cost of capital
 - Easing alleviates frictions constraining lenders
 - Asset losses amplify the lending response to policy rate changes

Background, Data, & Identification

- Resemble small banks
- Members often share common affiliation
- Consumer credit (not commercial)
- Restricted direct exposure to risky non-loan assets, including private-label ABS

CU Consumer Credit Market Share

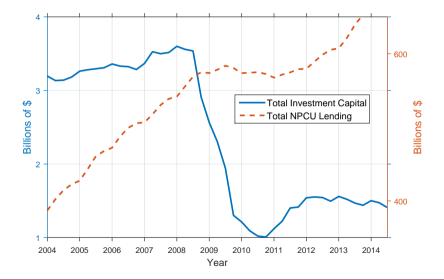
Source: Equifax (2017)

- Lender-Level Data: National Credit Union Administration's Call Reports
 - Quarterly panel of credit unions from 2004-2011
 - 200,000+ observations
 - ► Loan originations (total and fixed-rate 30-year mortgage) and detailed balance sheets
- Monetary Policy:
 - Two-year Treasury rate
 - Daily federal funds futures contract prices

Identification – Instrumental Variables

- Two distinct identification challenges:
 - ► Macro GE: downturns can trigger easing, asset losses, and reduced lending
 - Local GE: asset losses related to both credit supply and demand
- Solution: IV Strategy
 - Assets Losses: exploit CU asset with plausibly exogenous variation (investment capital)
 - Similar to Ramcharan, Van den Heuvel, and Verani (2016)
 - Monetary Policy: high-frequency identification of monetary policy shocks
 - Kuttner (2001); Gürkaynak, Sack, and Swanson (2005); Gertler and Karadi (2015); Gorodnichenko and Weber (2016); Nakamura and Steinsson (2018); Wong (2019)

Investment Capital


- Investment Capital: equity position in a Corporate Credit Union
 - Corporates could invest in riskier securities (private-label ABS)
 - ▶ Some had no exposure, others invested >40% of their balance sheet in private-label ABS

- ABS-related losses were charged against investment capital, losses varied due to...
 - Size of Corporate's exposure
 - Corporate's capital structure
 - The credit union's relative share of ownership

Identifying the Effect of Asset Losses

- Identification requires investment capital losses are exogenous wrt local loan demand
- Relevant institutional background:
 - Choice of Corporate is persistent and mainly driven by geography (Ramcharan, Van den Heuvel, and Verani, 2016)
 - Investment capital has minimum duration requirement of up to 20 years
- Variation is similar to that of a shift-share instrument (Bartik shock)
 - Aggregate phenomenon: collapse of ABS market
 - Predetermined, idiosyncratic exposure to shock

Investment Capital and Lending During the Crisis

Empirical Analysis: The Causal Effects of Asset Losses and Monetary Policy

• Goal is to estimate:

$$\Delta \ln L_{i,t} = \beta_1 \Delta R_{t-1} + \beta_2 \Delta \ln A_{i,t-1} + \beta_3 \left(\Delta R_{t-1} \times \Delta \ln A_{i,t-1} \right) \\ + \kappa_i + \tau \operatorname{Year}_t + \gamma \operatorname{Quarter}_t + X_{i,t} + \varepsilon_{i,t}$$

• Goal is to estimate:

$$\Delta \ln L_{i,t} = \beta_1 \Delta R_{t-1} + \beta_2 \Delta \ln A_{i,t-1} + \beta_3 \left(\Delta R_{t-1} \times \Delta \ln A_{i,t-1} \right) + \kappa_i + \tau \operatorname{Year}_t + \gamma \operatorname{Quarter}_t + X_{i,t} + \varepsilon_{i,t}$$

• Goal is to estimate:

$$\Delta \ln L_{i,t} = \beta_1 \Delta R_{t-1} + \beta_2 \Delta \ln A_{i,t-1} + \beta_3 \left(\Delta R_{t-1} \times \Delta \ln A_{i,t-1} \right) + \kappa_i + \tau \operatorname{Year}_t + \gamma \operatorname{Quarter}_t + X_{i,t} + \varepsilon_{i,t}$$

• Goal is to estimate:

$$\Delta \ln L_{i,t} = \beta_1 \Delta R_{t-1} + \beta_2 \Delta \ln A_{i,t-1} + \beta_3 \left(\Delta R_{t-1} \times \Delta \ln A_{i,t-1} \right) \\ + \kappa_i + \tau \operatorname{Year}_t + \gamma \operatorname{Quarter}_t + X_{i,t} + \varepsilon_{i,t}$$

- Estimation: Two-Stage Least Squares
 - ▶ IV for asset losses w/ investment capital ($C_{i,t}$), Treasury rate w/ monetary surprises ($\Delta \widetilde{R}_t$)
 - ► 3 Endog. Regressors: ΔR_{t-1} , $\Delta \ln A_{i,t-1}$, $(\Delta R_{t-1} \times \Delta \ln A_{i,t-1})$
 - ► 5 Instruments: $\Delta \widetilde{R}_{t-1}$, $\Delta \ln C_{i,t-1}$, $\frac{C_{i,t-2}}{A_{i,t-2}}$, $\Delta \ln C_{i,t-1} \times \frac{C_{i,t-2}}{A_{i,t-2}}$, $\Delta \widetilde{R}_{t-1} \times \Delta \ln C_{i,t-1} \times \frac{C_{i,t-2}}{A_{i,t-2}}$

• Goal is to estimate:

$$\begin{split} \Delta \ln L_{i,t} &= \beta_1 \Delta R_{t-1} + \beta_2 \Delta \ln A_{i,t-1} + \beta_3 \left(\Delta R_{t-1} \times \Delta \ln A_{i,t-1} \right) \\ &+ \kappa_i + \tau \operatorname{Year}_t + \gamma \operatorname{Quarter}_t + X_{i,t} + \varepsilon_{i,t} \end{split}$$

(CU *i* in quarter *t*; $L_{i,t}$ = loan originations, R_t = 2-year Treasury yield, $A_{i,t}$ = total assets)

- Estimation: Two-Stage Least Squares
 - ▶ IV for asset losses w/ investment capital ($C_{i,t}$), Treasury rate w/ monetary surprises ($\Delta \widetilde{R}_t$)
 - ► 3 Endog. Regressors: ΔR_{t-1} , $\Delta \ln A_{i,t-1}$, $(\Delta R_{t-1} \times \Delta \ln A_{i,t-1})$
 - 5 Instruments:

Z

$$\Delta \widetilde{R}_{t-1}, \quad \Delta \ln C_{i,t-1}, \quad \frac{C_{i,t-2}}{A_{i,t-2}}, \quad \Delta \ln C_{i,t-1} \times \frac{C_{i,t-2}}{A_{i,t-2}}, \quad \Delta \widetilde{R}_{t-1} \times \Delta \ln C_{i,t-1} \times \frac{C_{i,t-2}}{A_{i,t-2}}$$

- Exclusion Restrictions:
 - Investment capital only affects lending through CU assets
 - Monetary surprises only affect lending through changes in the Treasury rate

Outcome: Total Loan Originations

		TSLS		OLS
	(1)	(2)	(3)	(4)
ΔR_{t-1}	-0.86***	-0.95***	-0.95***	-0.11
	(0.31)	(0.35)	(0.36)	(0.08)
$\Delta \ln A_{i,t-1}$	1.94	1.93	1.47	0.11***
,,, <u> </u>	(1.24)	(1.33)	(1.02)	(0.04)
$\Delta R_{t-1} imes \Delta \ln A_{i,t-1}$	0.18**	0.20**	0.19**	-0.01
,	(0.08)	(0.09)	(0.08)	(0.01)
Obs.	166,932	163,775	163,401	163,401
CU Controls		\checkmark	\checkmark	\checkmark
County Controls			\checkmark	\checkmark

Note: Outcomes and asset losses are in log points; coefficients on the policy rate give the effect of 10 BP change. SE's are two-way clustered by credit union and time. Regressions have year, quarter, and CU fixed effects. 10%*, 5%**, and 1%***. First Stage Weak IV and Overidentification Tests

Outcome: Mortgage Originations

	(1)	(2)	(3)
ΔR_{t-1}	-4.43***	-4.46***	-4.37**
	(1.58)	(1.69)	(1.73)
$\Delta \ln A_{i,t-1}$	3.24	3.58	3.95
.,	(4.16)	(4.12)	(3.39)
$\Delta R_{t-1} imes \Delta \ln A_{i,t-1}$	0.88**	0.89**	0.88**
,,	(0.35)	(0.36)	(0.38)
Obs.	70,886	69,767	69,726
CU Controls		\checkmark	\checkmark
County Controls			\checkmark

Note: Outcomes and asset losses are in log points; coefficients on the policy rate give the effect of 10 BP change. SE's are two-way clustered by credit union and time. Regressions have year, quarter, and CU fixed effects. 10%*, 5%**, and 1%***.

Intensive vs. Extensive Margins (Total Lending)

	Number	of Loans	Loar	Size
	(1)	(2)	(3)	(4)
ΔR_{t-1}	-0.32 (0.23)	-0.37 (0.25)	-0.69*** (0.20)	-0.67*** (0.21)
$\Delta \ln A_{i,t-1}$	1.98** (0.96)	1.30* (0.69)	0.36 (0.96)	0.51 (0.76)
$\Delta R_{t-1} imes \Delta \ln A_{i,t-1}$	0.13* (0.07)	0.12** (0.06)	0.09 (0.06)	0.08 (0.06)
Obs.	150,317	147,163	150,317	147,163
CU Controls County Controls		\checkmark		\checkmark

Note: Outcomes and asset losses are in log points; coefficients on the policy rate give the effect of 10 BP change. SE's are two-way clustered by credit union and time. Regressions have year, quarter, and CU fixed effects. 10%*, 5%**, and 1%***.

Intensive vs. Extensive Margins (Mortgage Lending)

	Number	Number of Loans		Loan Size		ge Share
	(1)	(2)	(3)	(4)	(5)	(6)
ΔR_{t-1}	-4.34*** (1.46)	-4.36*** (1.49)	-0.19 (0.38		-2.80** (1.20)	- <mark>2.83</mark> ** (1.42)
$\Delta \ln A_{i,t-1}$	5.29* (3.20)	5.12* (3.09)	0.42 (0.91		2.56 (2.90)	3.43 (2.29)
$\Delta R_{t-1} imes \Delta \ln A_{i,t-1}$	0.90*** (0.31)	<mark>0.90</mark> *** (0.31)	0.06 (0.09		0.63** (0.26)	<mark>0.66</mark> ** (0.30)
Obs.	70,575	69,903	70,60	69,453	70,844	69,692
CU Controls County Controls		\checkmark		\checkmark		\checkmark

Note: Outcomes and asset losses are in log points; coefficients on the policy rate give the effect of 10 BP change. SE's are two-way clustered by credit union and time. Regressions have year, quarter, and CU fixed effects. 10%*, 5%**, and 1%***.

Robustness & Interpretation

• Placebo Tests:

- Asset losses in 2008-2010 do not predict pre-crisis lending More
- Asset losses in 2008-2010 do not explain policy rate sensitivity in 2001 recession More
- Alternative Determinants of Sensitivity:
 - Robust to including interactions of ΔR_{t-1} with controls More
- Persistence: Negative effect on lending of rate hikes and asset losses persist 1-2 years
 More

Conclusion

Summary & Policy Implications

- Document asset losses increase sensitivity of lending to monetary policy
 - Effect depends on nature of financial frictions facing lender
 - Consistent with easing alleviating frictions that impede lending
- Mechanics of monetary policy
 - Extra benefit of easing: reduces lending sensitivity to asset losses
 - ► Lending response is lumpy easing ↑ lending along the extensive margin
 - Easing induces substitution towards mortgages
- Constraints on conventional policy may be extra costly in financial crises
- Implies conventional and unconventional policies like LSAPS are substitutes

Thanks!

Model 1: Lending Constraint

• Consider a monopolist bank/CU with a lending constraint who can borrow at the policy rate *R*:

$$\begin{array}{ll} \max_{L \geq 0} & R^L L - RL \\ \text{s.t.} & R^L = a - bL \quad (\text{inv. demand}) \\ & L \leqslant \bar{L}(B) \quad (\text{capacity constraint}) \end{array}$$

- Assume $\bar{L}(\cdot)$ is an increasing function
- Equilibrium credit supply:

$$L^*(R,B) = \min\left\{\frac{a-R}{2b}, \bar{L}(B)\right\}$$

Lemma 1

In model 1, equilibrium loan supply $L^*(R, B) = \min\left\{\frac{a-R}{2b}, \overline{L}(B)\right\}$ has increasing differences in (-R, B): R' < R and $B' > B \Rightarrow$

$$\underbrace{L^*(R',B')-L^*(R,B')}_{L^*(R',B)-L^*(R,B)} \geq \underbrace{L^*(R',B)-L^*(R,B)}_{L^*(R',B)-L^*(R,B)}$$

pass-thru with strong balance sheet

pass-thru with weak balance sheet

Intuition: lowering the policy rate isn't as helpful if a bad balance sheet constrains lending

Corollary: lending response to asset losses is stronger with low policy rate

Model 2: External Finance Premium

- Monopolist bank/CU
 - Borrows from external creditors at *R*
 - Lends to households at rate R^L
- External creditors
 - Risk neutral
 - Own cost of capital given by policy rate R
 - Believe bank repays with Pr(repay lenders) = $1 \Delta(B)$, which is increasing in assets B
- No arbitrage pins down marginal cost of funds:

$$\tilde{R} = \frac{R}{1 - \Delta(B)}$$

Model 2: External Finance Premium

• Bank/CU's problem:

$$\begin{array}{ll} \max_{L \geqslant 0} & R^L L - \tilde{R}L \\ \text{s.t.} & R^L = a - bL \quad (\text{inv. demand}) \\ & \tilde{R} = \frac{R}{1 - \Delta(B)} \quad (\text{no arb.}) \end{array}$$

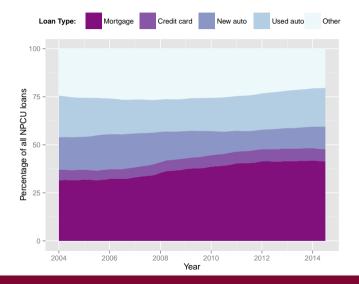
- Assume $\Delta(\cdot)$ is a decreasing function
- Equilibrium credit supply:

$$L^{*}(R,B) = \frac{a - R[1 - \Delta(B)]^{-1}}{2b}$$

Lemma 2

In model 2, equilibrium loan supply $L^*(R, B) = \frac{a - R[1 - \Delta(B)]^{-1}}{2b}$ has decreasing differences in (-R, B): R' < R and $B' > B \Rightarrow$

$$\underbrace{L^{*}(R',B) - L^{*}(R,B)}_{L^{*}(R',B') - L^{*}(R,B')} \geq \underbrace{L^{*}(R',B') - L^{*}(R,B')}_{L^{*}(R',B') - L^{*}(R,B')}$$


pass-thru with weak balance sheet pass-thru with strong balance sheet

Intuition: risk premiums magnify pass-thru of risk-free rate to effective cost of capital

Corollary: lending response to asset loss is weaker with low policy rate

NPCU Lending Composition

Sasha Indarte, Wharton

Identification: Asset Losses

- Concern: spurious time series correlation between investment capital losses and loan demand
- Mitigated by addition of year fixed effects
- 95 % of variation in $\Delta \ln C_{i,t} \times \frac{C_{i,t-2}}{A_{i,t-2}}$ is in the cross-section
- Significant cross-sectional heterogeneity during the crisis 2008 Map

Back

Natural P	erson	Credit Unio	ns	Corpo	orate (redit Unions	
Assets	5	Liabilitie	s	Asset	s	Liabilitie	s
Loans	69%	Shares/deposits	86%	ABS Non-investme assets Other invest.	16% ent 10% 74%	Shares/deposits	86%
Cash Agency sec. Invest. cap.	9% 12% 1%						
Other CCU investments Other invest.	3% 6%	Equity Other liabilities	11% 3%			Other eq. <mark>Invest. cap.</mark> Other liabilities	3% <mark>1%</mark> 10%

Natural P	erson	Credit Unio	ns	Corpo	orate (Credit Un
Assets		Liabilitie	s	Asset	s	Liab
Loans	69%	Shares/deposits	86%	ABS Non-investme assets Other invest.	16% ent 10% 74%	Shares/de
Cash Agency sec. Invest. cap. Other CCU investments Other invest.	9% 12% 1% 3% 6%	Equity	11%			Other eq. Invest. ca
		Other liabilities	3%			Other liab

nions bilities eposits 86% 3% 1% ilities 10%

Variation in invest. capital comes from:

- CCU's ABS exposure
- CCU reliance on debt vs. equity
- NPCU's relative ownership

Investment capital subject to minimum duration requirements up to 20 years

Identifying assumption: losses plausibly exogenous w.r.t. credit demand

Back

Computation of Shocks

Futures spot price:

$$f_t = \frac{d}{M}\bar{R} + \frac{M-d}{M}\mathbb{E}_t\widehat{R}$$

As in Kuttner (2001), monetary surprises:

$$\mu_t = \mathbb{E}_t \widehat{R} - \mathbb{E}_{t-\Delta t} \widehat{R} = \frac{M}{M-d} (f_t - f_{t-\Delta t})$$

First Stage

	(1)	(2)	(3)
Dependent variable:	ΔR_{t-1}	$\Delta \ln A_{i,t-1}$	$\Delta R_{t-1} imes \Delta \ln A_{i,t-1}$
$\Delta \widetilde{R}_{t-1}$	1.50***	-1.07	5.88***
	(0.46)	(0.81)	(1.54)
$\Delta \ln \mathit{C}_{i,t-1}$	-0.23*	0.12	-0.03
	(0.14)	(0.35)	(0.29)
$\frac{C_{i,t-2}}{A_{i,t-2}}$	0.14	8.65**	1.59
~ <i>i</i> , <i>t</i> =2	(0.53)	(3.44)	(2.45)
$rac{C_{i,t-2}}{A_{i,t-2}} imes\Delta \ln C_{i,t-1}$	-1.38	28.87***	11.60
~,,t-2	(2.22)	(7.97)	(15.99)
$\Delta \widetilde{R}_{t-1} \times \Delta \ln C_{i,t-1} \times rac{C_{i,t-2}}{A_{i,t-2}}$	72.65	-421.57*	1073.26*
, t -2	(199.20)	(224.39)	(575.31)
R ²	0.60	0.24	0.18
F statistic	29.44	6.29	4.33
Observations	166,932	166,932	166,932

Testing TSLS Assumptions

	Value	Null Hypothesis
Kleibergen-Paap LM Statistic p-value	14.25*** 0.0026	<i>H</i> ₀ : under-identification (instruments uncorrelated with regressors)
Cragg-Donald Wald Statistic Kleibergen-Paaap Wald Statistic	12.28 5.26	H_0 : weak identification (instruments weakly correlated with regressors)
Hansen J Statistic p-value	1.04 0.5952	<i>H</i> ₀ : <i>not</i> over-identified (instruments uncorrelated with error term, excluded instruments correctly excluded)

Note: The Stock and Yogo (2005) 5% critical value for Cragg-Donald statistic is 9.53. The null hypothesis associated with this statistic formally is that the maximal bias due to weak instruments exceeds 10%.

OLS: Total Lending

	(1)	(2)	(3)	(4)
ΔR_{t-1}	-1.44	-1.12	-1.43	-1.1*
	(0.92)	(0.82)	(0.91)	(0.81)
$\Delta \ln A_{i,t-1}$	0.11***	0.11***	0.11***	0.11***
	(0.04)	(0.04)	(0.04)	(0.04)
$\Delta R_{t-1} imes \Delta \ln A_{i,t-1}$	-0.08	-0.09	-0.09	-0.1
$\Delta n_t = 1 \land \Delta m n_{t,t} = 1$	(0.07)	(0.07)	(0.07)	(0.07)
$UR_{i,t-2}$		-0.39**		-0.40**
.,		(0.16)		(0.16)
$\Delta \ln ZHVI_{t-1}$		21.85**		22.25**
		(9.55)		(9.62)
CU Controls		\checkmark	\checkmark	\checkmark
Observations	166,932	163,775	166,553	163,401

Other Sensitivity Determinants

	Coef.	SE	Coef. $ imes \Delta R_{t-1}$	SE
ΔR_{t-1}	6.11	(4.01)		
$\Delta \ln A_{i,t-1}$	1.16	(0.86)	1.18*	(0.67)
Unemp. $Rate_{i,t-2}$	0.12	(0.25)	-1.11	(0.70)
Δ In House $Prices_{i,t}$	9.23	(14.46)	-34.70	(24.34)
% Mortgage Delinq. $_{i,t-1}$	0.02	(0.15)	0.76**	(0.37)
In members _{<i>i</i>,<i>t</i>-1}	-2.79	(1.76)	-1.87***	(0.50)
$\frac{Net Worth_{i,t-1}}{Assets_{i,t-1}}$	0.41	(0.35)	0.37***	(0.06)
$\Delta \ln \text{LLA}_{i,t-1}$	0.23	(0.31)	0.35	(1.23)
Observations				150,293

Dependent variable: Δ In total loan originations YTD

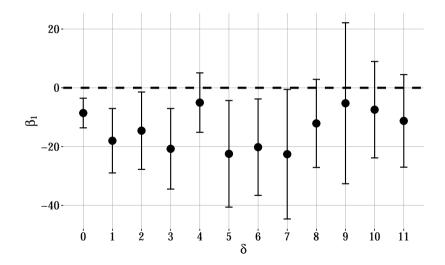
Note: Coefficients (and SE's) are multiplied by 100. SE's are two-way clustered by credit union and time. Year, quarter, and CU fixed effects are present in each regression. Statistical significance: 10%*, 5%**, and 1%***.

Placebo Test

- Were CUs that experienced large investment capital losses systematically different? E.g., less risk averse?
- Relevant for exclusion restriction to hold
- Test if ABS-related losses during The Great Recession (*TGR*) explain pre-crisis (*PC*) lending:

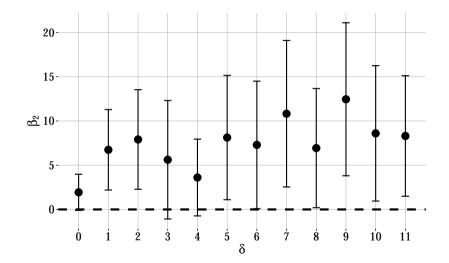
$$\Delta \ln L_i^{PC} = \zeta \Delta \ln A_i^{TGR} + \lambda \operatorname{County}_i + \varphi \operatorname{FOM}_i + \varepsilon_i$$

Note: I estimate the above for a variety windows defining *PC* and *TGR* for both total and mortgage lending (volume). Standard errors are clustered by state.

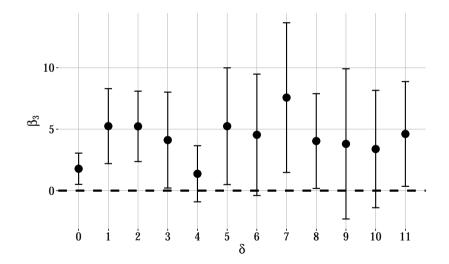

• Significant once at the 10% level in 1 out of 16 regressions; generally ζ is close to 0

General Equilibrium

- "Global" GE: credit crunch amplified
- "Local" GE: What if people switch from CUs to banks?
 - ▶ Bank-level lending decreases ⇒ decrease in loan originations within a county (Greenstone, Mas, and Nguyen, 2014)
 - Most households and firms live within 25 miles of their lender (Amel, Kennickel, and Moore, 2008; Brevoort, Holmes, and Wolken, 2010)
 - NPCU market share in auto and mortgage loans rose during 2006-2010


Back

Policy Rate Coefficient



A Back Sasha Indarte, Wharton

Asset Loss Coefficient

Interaction Coefficient

