Panel: Inflation objective, structural forces, central bank communication

Volker Wieland
GCEE and IMFS, Goethe University Frankfurt

2020 ECB Forum on Central Banking
Central banks in a shifting world
Wednesday, November 11, 2020
“Most importantly, the last decade has been defined by a persistent decline in inflation among advanced economies. In the euro area, annual inflation averaged 2.3% from 1999 to the eve of the great financial crisis in August 2008, but only 1.2% from then until the end of 2019.

We need to thoroughly analyse the forces that are driving inflation dynamics today, and consider whether and how we should adjust our policy strategy in response.”
Inflation averages – 3 periods: Pre-financial-crisis decade, double recession & recovery

<table>
<thead>
<tr>
<th>Inflation measures % growth rates</th>
<th>1999 Q1 - 2009 Q1</th>
<th>2009 Q2 - 2013 Q1</th>
<th>2013 Q2 – 2020 Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HICP: Harmonized Index of Consumer Prices in the euro area</td>
<td>2.2</td>
<td>1.8</td>
<td>0.9</td>
</tr>
<tr>
<td>GDP Deflator: Prices of all goods & services produced in the euro area</td>
<td>2.0</td>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Import Price Deflator: Prices of imported goods & services.</td>
<td>1.6</td>
<td>2.1</td>
<td>-0.3</td>
</tr>
</tbody>
</table>
Domestic price inflation reached 1.8 % end of 2019

- HICP & GDP deflator very similar from 1998 to mid 2007.
- HICP more variable in double recession.
- GDP deflator trends up with recovery.

Bletzinger-Wieland ECB target estimate from reaction function: 1.74%
Cost of housing under-represented in HICP, only rental cost while owner-occupied housing is not included.

Actual rentals for housing and HICP excluding energy: Euro area

1 – Working day and seasonally adjusted. 2 – Not seasonally adjusted.

Sources: ECB, Eurostat, own calculations

© Sachverständigenrat | 20-582

- Cost for housing under-represented in HICP.
- Low weights of rental cost.
- Rental cost inflation smoother higher than HICP inflation in low inflation periods.
Owner-occupied housing index increased in Germany, quite variable, partly asset price of land.

Germany

Year-on-year change in %

- HICP excluding energy (not seasonally adjusted)
- Actual rentals for housing in HICP (not seasonally adjusted)
- OOHPI (not seasonally adjusted, quarterly)

Sources: Eurostat, own calculations

France

Year-on-year change in %

- HICP excluding energy (not seasonally adjusted)
- Actual rentals for housing in HICP (not seasonally adjusted)
- OOHPI (not seasonally adjusted, quarterly)
Anticipated increase of HICP inflation due to CO2 Pricing for heating and mobility in Germany

Effects of German national emissions trading system on HICP between 2021 und 2026

Contribution to HICP roughly 0.34 pp (0.17 direct effect) in 2021.

Possibly more like a cost-push shock.

Policy at the ELB: Switching from interest rate to QE, while QE effects are uncertain.

\(\pi \): inflation, \(\pi^* \): target, \(i \): nominal interest rate, \(i^* \): nominal equilibrium rate, \(q \): quantitative policy, \(e \): shock, \(\sigma \): variances.

(1) \[\pi_t = -a(i_t-i^*) + b q_t + \pi_{t-1} + e_t \quad b \sim N(\bar{b}, \sigma_b), e_t \sim N(0, \sigma_e) \]

(2) \[\max_{i, q} E[-(\pi_t - \pi^*)^2] \Leftrightarrow \max_{i, q} -(E\pi_t - \pi^*)^2 - V\pi_t \]

(3) if \(i_t \geq i^{LB} \Rightarrow i_t = i^* + \frac{1}{a}\pi_{t-1} - \pi^* \), \(q_t = 0 \) \[E_t\pi_t = \pi^* \]
At ELB it may be optimal to have inflation converge more slowly to target from below, because of uncertainty ...

\(\pi \): inflation, \(\pi^* \): target, \(i \): nominal interest rate, \(i^* \): nominal equilibrium rate, \(q \): quantitative policy,
\(e \): shock, \(\sigma \): variances.

(4) if \(\pi_{t-1} < \pi^* + a(i^{LB} - i^*) \)

\[
i_t = i^{LB} , \quad q_t = -\frac{\bar{b}}{b^2 + \sigma_b} (\pi_{t-1} - a(i^{LB} - i^*) - \pi^*)
\]

\(\Rightarrow E \pi_t < \pi^* \)

..., or because of the risk of side effects of QE,

\(z \): side effects of QE, \(s \): shock, \(\sigma \): variances.

(5) \(z_t = c q_t + s_t \quad c \sim N(0, \sigma_c), s_t \sim N(0, \sigma_s) \)

(6) \(\max_{i,q} E \left[- \left(\pi_t - \pi^* \right)^2 - \lambda z^2 \right] \)

(7) \(i_t = i^{LB}, \quad q_t = - \frac{\bar{b}}{(\bar{b}^2 + \sigma_b + \lambda \sigma_c)} \left(\pi_{t-1} - a(i^{LB} - i^*) - \pi^* \right) \)

\(\Rightarrow E \pi_t < \pi^* \)
Factors that influence the constraint on interest rate policy.

\[(8) \quad [i_t - i^{LB}]_+ = \left[r^* + \pi^* + \frac{1}{a} (\pi_{t-1} - \pi^*) - i^{LB} \right]_+ \]

- \(r^* \downarrow \Rightarrow \) Interest rate policy more constrained.
- \(\pi^* \uparrow \Rightarrow \) Depends! When at ELB it widens the distance to cover and requires even easier policy.
- \(i^{LB} \downarrow \Rightarrow \) Interest rate policy less constrained.
- \(\pi_{t-1} \) measurement \(\uparrow \Rightarrow \) Interest rate policy less constrained.
Some conclusions for strategy

- Consider inflation more broadly in policy communication, not just HICP.
- Range as in “below but close to 2%” offers flexibility to include other measures in policy communication.
- At ELB it may be optimal to have inflation return to target more slowly due to uncertainty and side effects of QE.
- Raising inflation target when at ELB is tricky. Greater distance to target, requires easing policy further.
- Negative effect of lower r* at ELB may be offset by exploring potentially lower i^{LB}.