Owning Up: Closely Held Firms and Wealth Inequality

Alessandra Peter

NYU

HFC Conference, Central Bank of Ireland, December 2019

Differences in Wealth Inequality across Europe

Share of net worth held by top 10% of households: 43% to 60%

Introduction

- Is wealth inequality shaped by financial market frictions?
- With higher frictions, entrepreneurs keep more inside equity
 - Fewer public, more private firms
 - Higher insider shares of public firms
- How does wealth inequality relate to inside equity positions?

Inside Equity and Inequality

Inside Equity and Inequality

Both types of inside equity important for differences in inequality

Inside Equity and Inequality

Both types of inside equity important for differences in inequality

Mechanism

Financial market frictions drive inequality in DE (\approx 60%) vs FR (\approx 53%)

- ▶ 35% of difference: lower debt frictions
 - Germany has a traditionally stronger banking system
 - Higher investment, profits, entrepreneurial wealth, and inequality
- ▶ 58% of difference: higher equity frictions
 - Germany has higher IPO costs, more inside equity
 - Lower investment, but entrepreneurs exposed to more risk
 - Higher precautionary savings, wealth accumulation, and inequality

Mechanism

Financial market frictions drive inequality in DE (\approx 60%) vs FR (\approx 53%)

▶ 35% of difference: **lower debt frictions**

- Germany has a traditionally stronger banking system
- Higher investment, profits, entrepreneurial wealth, and inequality
- Higher inequality and higher output

▶ 58% of difference: higher equity frictions

- Germany has higher IPO costs, more inside equity
- Lower investment, but entrepreneurs exposed to more risk
- Higher precautionary savings, wealth accumulation, and inequality
- Higher inequality and lower output

Outline

Dynamic GE Model of Eurozone Countries

Entrepreneurs choose firm financing s.t. country-specific cost Financing costs affect household wealth distribution

Data and Quantification

New moments on external finance of firms Baseline country: France Across countries: moments identify financial market frictions

Results and Counterfactuals

Model predicts wealth inequality across countries Equality-efficiency trade-off with debt, not with equity

Outline

Dynamic GE Model of Eurozone Countries

Entrepreneurs choose firm financing s.t. country-specific cost Financing costs affect household wealth distribution

Data and Quantification

New moments on external finance of firms Baseline country: France Across countries: moments identify financial market frictions

Results and Counterfactuals

Model predicts wealth inequality across countries Equality-efficiency trade-off with debt, not with equity

Small Open Economies, Entrepreneurs & Workers

In all Eurozone countries

- Common interest rate R, labor markets clear domestically
- All shocks are idiosyncratic, no aggregate risk

Variation across countries

Firm productivity distribution & 3 financial market frictions

Entrepreneurs choose to run private or public firm

- Private firms finance with debt and inside equity
- Public firms issue outside equity, but controlled by entrepreneur
 - Average public firm: 40% of equity held by insiders
- Trade-off: financing & risk sharing vs agency cost

Continuum of agents

- Workers:
 - stochastic skill, fixed labor supply, consume and save.

Entrepreneurs

b productivity z_t , hire workers, invest capital.

Continuum of agents

Workers:

stochastic skill, fixed labor supply, consume and save.

Entrepreneurs

• productivity z_t , hire workers, invest capital.

Continuum of agents

Workers:

stochastic skill, fixed labor supply, consume and save.

Entrepreneurs

b productivity z_t , hire workers, invest capital.

Continuum of agents

Workers:

stochastic skill, fixed labor supply, consume and save.

Entrepreneurs

b productivity z_t , hire workers, invest capital.

Preferences & Technology

Preferences:

$$\mathbb{E}_0\left[\sum_{t=0}^{\infty} \left[\beta(1-\pi_d)\right]^t u(c_t)\right]$$

▶ π_d : i.i.d. death probability

• Child starts with $(1 - \chi)$ parental bequests $+ \chi$ average wealth

Technology:

$$y_t = z_t^{1-\psi} (k_t^{\alpha} l_t^{1-\alpha})^{\psi}, \quad k_t \text{ chosen in } t-1$$

Idiosyncratic productivity z_t: Markov process with absorbing state

- $\mathbb{P}(z_t = 0) = \eta$, i.i.d across firms and time, z_t constant o.w.
- firm exits, undepreciated capital $(1 \delta)k_t$ resold

Agents Save in Bonds & Equity

Inside equity

- Private firms: entirely owned by entrepreneur
- Public firms: entrepreneurs choose share of inside equity

Outside equity

- Held by investment fund
- Diversified portfolio \rightarrow fund earns return R
- Bonds (& outside equity) $a \ge 0$
 - Workers & entrepreneurs can save, but not borrow

Firms Finance with Debt & Equity

Debt

• Leverage constraint: $R b_{t+1} \leq \lambda (1 - \delta) k_{t+1}$

▶ $\lambda \leq 1$ varies across countries & captures creditor protection

Equity

- Claim to a share of dividends $\{D_{t+s}\}_{s=0}^{\infty}$
 - ► $D_t \equiv y_t wl_t [k_{t+1} (1 \delta)k_t] Rb_t + b_{t+1} \leq 0$

• φ : share of equity held by outsiders

- Entrepreneur receives $(1 \varphi)D_t \rightarrow$ incentive to divert funds
- linvestment fund needs to pay a monitoring cost = $c_M \varphi y$

 $ightarrow c_M$ varies across countries & captures shareholder protection

▶ Investment fund receives $\varphi D_t - c_M \varphi y$

Entrepreneurs Choose Investment & Share Sold

Except IPO period, entrepreneurs choose

cons c, savings a'

 investment k', labor l, debt b' ≤ (1-δ)/R λk'

Budget constraint: c + a' = Ra + (1 − φ)D

IPO: choose share sold $\varphi \in (0,1)$

$$\triangleright \ c+a' = Ra + (1-\varphi)D + P(\varphi, z, \mathsf{CoH}, c_M)$$

Competitive market for investment funds

 $\blacktriangleright P(\varphi, z, \mathsf{CoH}, c_M) = \mathbb{E}[\mathsf{pdv} (\varphi D_t - c_M \varphi y)]$

Entrepreneurs Choose Investment & Share Sold

Except IPO period, entrepreneurs choose

cons c, savings a'

 investment k', labor l, debt b' ≤ (1-δ)/R λk'

Budget constraint: c + a' = Ra + (1 − φ)D

IPO: choose share sold $\varphi \in (0,1)$

$$\blacktriangleright \ c+a'=Ra+(1-\varphi)D+P(\varphi,z,\mathsf{CoH},c_M)-c_{\mathsf{IPO}}$$

- Competitive market for investment funds
 - $\blacktriangleright P(\varphi, z, \mathsf{CoH}, c_M) = \mathbb{E}[\mathsf{pdv} (\varphi D_t c_M \varphi y)]$
- One-off fixed cost of IPO cIPO
 - Varies across countries & captures underwriting fees

Entrepreneurs Choose Investment & Share Sold

Except IPO period, entrepreneurs choose

cons c, savings a'

 investment k', labor l, debt b' ≤ (1-δ)/R λk'

Budget constraint: c + a' = Ra + (1 − φ)D

IPO: choose share sold $\varphi \in (0,1)$

$$\triangleright c + a' = Ra + (1 - \varphi)D + P(\varphi, z, \mathsf{CoH}, c_M) - c_{\mathsf{IPO}}$$

Competitive market for investment funds

 $\blacktriangleright P(\varphi, z, \mathsf{CoH}, c_M) = \mathbb{E}[\mathsf{pdv} (\varphi D_t - c_M \varphi y)]$

- One-off fixed cost of IPO cIPO
 - Varies across countries & captures underwriting fees
- Trade-off: financing and risk-sharing vs c_{IPO} and c_M

Mechanism: Financial Frictions and Wealth

- Wealth: savings $a + (1 \varphi) V_{\text{firm}} \begin{cases} \text{public: market value of equity} \\ \text{private: pdv of cash-flows} \end{cases}$
- Model simulation
 - Two entrepreneurs, identical productivity and cash on hand
 - Assume particular realization: no shocks
- 1. Effect of higher frictions in debt markets?
- 2. Effect of higher frictions in equity markets?

Debt Market Frictions Reduce Wealth

Mechanism: Financial Frictions and Wealth

- ▶ Wealth: savings $a + (1 \varphi) V_{\text{firm}}$
- Model simulation
 - Two entrepreneurs, identical productivity and cash on hand
 - Assume particular realization: no shocks
- 1. Effect of higher frictions in debt markets
 - Investment lower, slower capital accumulation
 - Lower wealth holdings
- 2. Effect of higher frictions in equity markets?

Equity Market Frictions Eventually Increase Wealth

Mechanism: Financial Frictions and Wealth

- ▶ Wealth: savings $a + (1 \varphi) V_{\text{firm}}$
- Model simulation
 - Two entrepreneurs, identical productivity and cash on hand
 - Assume particular realization: no shocks
- 1. Effect of higher frictions in debt markets
 - Investment lower, slower capital accumulation
 - Lower wealth holdings
- 2. Effect of higher frictions in equity markets
 - Investment lower, slower accumulation of capital
 - Initially, wealth holdings lower
 - ▶ Higher insider share, riskier portfolio & eventually higher wealth

Outline

Dynamic GE Model of Eurozone Countries

Entrepreneurs choose firm financing s.t. country-specific cost Financing costs affect household wealth distribution

Data and Quantification

New moments on external finance of firms Baseline country: France Across countries: moments identify financial market frictions

Results and Counterfactuals

Model predicts wealth inequality across countries Equality-efficiency trade-off with debt, not with equity

Quantification Within and Across Countries

Baseline country: France

Set of parameters separately estimated or externally set

- exit and death, AR(1) worker skill, depreciation rate
- Key parameters
 - TFP distribution
 - Max leverage constraint
 - Fixed & monitoring cost
 - Discount factor

- Target moments
 - Firm size distribution
 - Average leverage
 - Outside equity (2 margins)
 - Wealth inequality

Across countries: Germany, Austria, Netherlands

- Match firm moments using productivity and financial frictions
- Wealth inequality no longer a target

Quantification Within and Across Countries

Baseline country: France

Set of parameters separately estimated or externally set

- exit and death, AR(1) worker skill, depreciation rate
- Key parameters
 - TFP distribution
 - Max leverage constraint
 - Fixed & monitoring cost
 - Discount factor

- Target moments
 - Firm size distribution
 - Average leverage
 - Outside equity (2 margins)
 - Wealth inequality

Across countries: Germany, Austria, Netherlands

- Match firm moments using productivity and financial frictions
- Wealth inequality no longer a target

Data: Two Margins of Outside Equity

Extensive margin: share of private firms

- Value of private firms: HFCS
- Value of public firms: Compustat Global

Intensive margin: insider share of public firms

- Amadeus Ownership : shareholders of publicly traded companies
 - Match firms to their owners to find ultimate 'person' shareholders
 - Exclude banks and financial institutions from insiders
- Insider = top 3 domestic shareholders

► Top 1-5 Insider Share and Size Private Firms

other moments

France: Match Firm Moments and Inequality

 $z \in \{z_1, z_2, z_3\}$ with population shares $\{.8, .18, .02\}$

Value	Moment	Value
12.6	employment share top 25%	81.1%
53.0	employment share top 1%	18.3%
		10 - 0/
0.53	aggregate leverage	48.5%
0.04	share of private firms	37.0%
0.06	aggregate insider share	33.4%
0.96	top 10% wealth share	52.6%
	Value 12.6 53.0 0.53 0.04 0.06 0.96	ValueMoment12.6employment share top 25%53.0employment share top 1%0.53aggregate leverage0.04share of private firms0.06aggregate insider share0.96top 10% wealth share

 \blacktriangleright Identification of c_M and c_{IPO}

Similar effects on extensive margin, opposite on intensive margin

Top Wealth Shares - Model and Data

Financial Market Frictions Across Countries

Re-estimate

- TFP distribution
- Max leverage constraint
- Monitoring & fixed cost

Target

- Firm size distribution
- Average leverage
- Outside equity (2 margins)

Wealth inequality not a target (discount factor constant)

Financial Market Frictions Across Countries

Financial Market Frictions Across Countries

Outline

Dynamic GE Model of Eurozone Countries

Entrepreneurs choose firm financing s.t. country-specific cost Financing costs affect household wealth distribution

Data and Quantification

New moments on external finance of firms Baseline country: France Across countries: moments identify financial market frictions

Results and Counterfactuals

Model predicts wealth inequality across countries Equality-efficiency trade-off with debt, not with equity
Top 10% Wealth Shares Across Countries

Top 10% Wealth Shares Across Countries

2

Top Wealth Shares Across Countries

Counterfactuals

- Start from AT, DE, NL baseline
- Introduce French TFP distribution, financial frictions
- Comparisons of steady states

	FR	DE	АТ	NL
Baseline	52.6%	59.7%	61.0%	44.9%
French TFP process				

Differences in inequality not driven by TFP distribution

	FR	DE	АТ	NL
Baseline	52.6%	59.7%	61.0%	44.9%
French TFP process		59.1%	60.5%	45.4%

Summary

Differences in inequality are driven by financial frictions

	FR	DE	AT	NL
Baseline	52.6%	59.7%	61.0%	44.9%
Financial frictions λ : max leverage c_{IPO} : fixed cost c_M : monitoring cost				
all together		53.1%	54.3%	53.0%
Change in Output		+0.3%	+2.7%	-2.3%

Summary

France has lower λ than Germany

 $\blacktriangleright \ \lambda^{\rm FR} = 53\% \qquad \qquad \lambda^{\rm DE} = 63\%$

• Reducing λ reduces output and inequality

	FR	DE	AT	NL
Baseline	52.6%	59.7%	61.0%	44.9%
Financial frictions λ : max leverage c_{IPO} : fixed cost c_M : monitoring cost		56.4%		
all together		53.1%	54.3%	53.0%
Change in Output		-0.5%	+2.7%	-2.3%

France has lower λ and lower $c_{\rm IPO}$ than Germany

• $c_{\rm IPO}^{\rm FR} = 4.0\%$ $c_{\rm IPO}^{\rm DE} = 7.5\%$

• Reducing c_{IPO} increases output and reduces inequality

	FR	DE	AT	NL
Baseline	52.6%	59.7%	61.0%	44.9%
Financial frictions λ : max leverage c_{IPO} : fixed cost c_M : monitoring cost		56.4% 54.3%		
all together		53.1%	54.3%	53.0%
Change in Output		+1.1%	+2.7%	-2.3%

- Equality-efficiency trade-off with debt, not with equity
- **•** Together: more equity, less debt \rightarrow less inequality, same output.

	FR	DE	AT	NL
Baseline	52.6%	59.7%	61.0%	44.9%
Financial frictions λ : max leverage c_{IPO} : fixed cost c_M : monitoring cost		56.4% 54.3%		
all together		53.1%	54.3%	53.0%
Change in Output		+0.3%	+2.7%	-2.3%

France has lower c_M than Austria

• $c_{\rm M}^{\rm FR} = 5.5\%$ $c_{\rm M}^{\rm AT} = 14\%$

 \blacktriangleright Reducing c_M increases output and reduces inequality

	FR	DE	AT	NL
Baseline	52.6%	59.7%	61.0%	44.9%
Financial frictions λ : max leverage c_{IPO} : fixed cost c_M : monitoring cost		56.4% 54.3%	52.5%	
all together		53.1%	54.3%	53.0%
Change in Output		+0.3%	+3.6%	-2.3%

FR financial markets:

- **DE**: more equity, less debt \rightarrow less inequality, same output.
- AT: more equity \rightarrow less inequality, more output.

	FR	DE	АТ	NL
Baseline	52.6%	59.7%	61.0%	44.9%
Financial frictions λ : max leverage c_{IPO} : fixed cost c_M : monitoring cost		56.4% 54.3%	52.5%	
all together		53.1%	54.3%	53.0%
Change in Output		+0.3%	+2.7%	-2.3%

Conclusion

Financial frictions shape differences in wealth inequality across Europe.

Dynamic GE model with choice of debt, inside & outside equity

- Choice of external finance depends on frictions
- Debt and equity frictions can have opposite effects on inequality

Quantitative Results

- Frictions identified by leverage, two margins of outside equity
- In more unequal countries, more debt and less equity financing
- Three frictions quantitatively explain differences in inequality

Counterfactuals

Equality-efficiency trade-off with debt, not with equity frictions

Welfare

BACK-UP SLIDES

Summary of Counterfactuals

Differences in wealth inequality driven by financial frictions

- Effect of TFP distribution quantitatively small
- Different frictions at play in different countries

Germany

• Less tight max leverage λ

▶ Higher cost of IPO c_{IPO}

<u>Austria</u>

• Higher monitoring cost c_M

Counterfactual with French financial market institutions

► $\Delta GDP \approx 0$ ► $\Delta GDP \approx +4\%$

Equality-efficiency trade-off with debt, not with equity.

Discussion: What are Financial Frictions?

Equity markets

- Monitoring cost , ex-post punishment
 - Ex-ante monitoring : accounting and disclosure standards
 - LaPorta et.al. (1997) Accounting Standards and Insider Share

Ex-post punishment: in DE and AT, shareholders cannot sue

Fixed cost of IPO

Underwriting fees higher in DE than FR (Abrahamson et.al. (2010))

Debt markets

Creditor rights & efficiency of insolvency framework World Bank Measure

Accounting Standards and Insider Share

Creditor Rights and Leverage

Welfare Effect of Financial Market Frictions

Direct effects:

- λ : all entrepreneurs benefit from higher λ
 - Poor entrepreneurs rely more on external finance
- c_{IPO}, c_M : only affects entrepreneurs who IPO
 - Type 1 never IPO
 - ▶ Type 2 & 3: \exists threshold level of wealth s.t. c_{IPO}, c_M irrelevant

General Equilibrium: wage

- Any reduction in financial frictions increases the wage
 - Workers benefit from high wage
 - Entrepreneurs dislike high wage

DE with FR fin market institutions: lower $\lambda \& c_{IPO}$

▶ Workers gain .04% of consumption

AT with FR fin market institutions: lower c_M , higher w

▶ Workers gain 3.1% of consumption

Investment is Increasing in Share Sold

$$c + \tilde{a}' + (1 - \varphi)k' = X$$

$$\tilde{a}' \ge -\lambda \frac{\rho(1 - \delta)}{R} (1 - \varphi)k'$$

$$X' = R\tilde{a}' + (1 - \varphi)[zk'^{\alpha} + (1 - \delta)k']$$

$$X'_{f} = R\tilde{a}' + (1 - \varphi)\rho(1 - \delta)k'$$

• The higher is φ

- The less of k' the entrepreneur has to finance
- The less risk the entrepreneur is exposed to
- \blacktriangleright \rightarrow investment k' is increasing in φ
- Since technology has decreasing returns

• $(1-\varphi)k'$ decreasing in φ

Optimal Choice of Share Sold φ

Entrepreneurs chooses share of firm φ that maximizes

$$\max_{\varphi} \{ \max_{\varphi} V_{PUB}(\hat{X}(\varphi),\varphi;z), V_{PRIV}(X;z) \}$$
 where $\hat{X}(\varphi) = X + P(X,\varphi,z) - c_{IPO}$

At optimal interior choice (φ^*, \hat{X}^*)

▶
$$\lambda$$
 mostly affects $V_{PRIV} \rightarrow$ IPO
▶ c_M shifts both φ^* & $V_{PUB}(\hat{X}^*, \varphi^*; z) \rightarrow$ insider share & IPO

HFCS: Details

Country	Sample (Hh)	Sample (ppl)	Oversampling top 10%	Pop (Hh, mio)
BE	2,364	11,376	47%	4.7
DE	3,565	20,501	117%	39.7
ES	6,197	11,782	192%	17.0
FR	15,006	21,627	129%	27.9
IT	2,364	15,592	4%	23.8
NL	15,006	2,263	87%	7.4
AT	2,364	4,436	1%	3.8
PT	3,565	8,000	16%	3.9
FI	15,006	13,525	68	2.5

Amadeus: Sample

Country	# firms	# firms (assets > 1 mio)	<pre># firms (public)</pre>
AT	2,364	4,436	60
BE	2,364	11,376	143
FI	15,006	13,525	439
FR	15,006	21,627	747
DE	3,565	20,501	685
IT	2,364	15,592	276
NL	15,006	2,263	143
PT	3,565	8,000	54
ES	6,197	11,782	439

Amadeus Ownership: Details

Country	# firms (public)	avg (med) # SH	avg (med) % recorded	held by P/F/B/D
AT	60	3.9 (3)	83 (96)	21/ 49/ 14/ 14
BE	143	5.3 (5)	76 (86)	11/ 36/ 26/ 18
FI	439	22.1 (21)	67 (72)	23/23/41/1
FR	747	7.9 (6)	84 (92)	22/34/24/12
DE	685	5.1 (4)	79 (90)	19/37/19/18
IT	276	6.3 (4)	76 (76)	16/47/27/5
NL	143	6.9 (6)	55 (54)	11/28/44/3
ΡT	54	8.2 (8)	92 (100)	9/59/29/.1
ES	439	8.6 (3)	74 (85)	32/ 30/ 34/ .1

Larger Firms Have Smaller Insider Shares

Country and Size Both Matter

Country Matters Independently of Size

Share of Equity Held by Top 5 Shareholders

Ownership of German Public and Private Firms

Leverage Higher Where Fewer Public Firms

Fewer Public Firms in Unequal Countries

Germany has more leverage, fewer public firms

Parameter	Value	Moment	Value
$\frac{z_2/z_1}{z_3/z_1}$	20.2 64.5	share of employment in top 25% share of employment in top 1%	82.6% 16.1%
λ	0.63	average leverage	58.3%
c_{IPO} c_M	0.07 0.05	share of private firms (value) aggregate insider share	58.9% 28.0%

Austria has a higher insider share

Parameter	Value	Moment	Value
$\frac{z_2/z_1}{z_3/z_1}$	13.0 35.0	share of employment in top 25% share of employment in top 1%	74.0% 13.1%
λ	0.54	average leverage	49.6%
$c_{IPO} \ c_M$	0.004 0.14	share of private firms (value) aggregate insider share	78.6% 57.4%

The Netherlands have strong equity markets

Parameter	Value	Moment	Data	Model
$\frac{z_2/z_1}{z_3/z_1}$	5.3 19.4	share of employment in top 25% share of employment in top 1%	67.1% 12.7%	67.1% 12.7%
λ	0.48	average leverage	44.7%	44.7%
c_{IPO} c_M	0.0 0.0	share of private firms (value) aggregate insider share	11.4% 16.1%	13.1% 15.5%

Model Fit: France

Moment	Data	Model
T 050/ 141 1	75.00/	70 70/
Top 25% wealth share	75.3%	70.7%
Top 5% wealth share	39.9%	42.7%
Top 1% wealth share	22.6%	24.3%
Share of Hh with wealth ≤ 0	3.9%	1.4%
Wealth Gini	0.66	0.64
Top 10% labor share	62.7%	62.1% %
Top 5% labor share	48.8%	40.7%
Slope of insider share wrt size	024	033
Share of wealth held by private entrep	23.7%	25.3%
Wealth to GDP	3.5	5.4
France: Alternative Quantification

 $z \in \{z_1, z_2, z_3\}$ with population shares $\{.8, .18, .02\}$

Parameter	Value	Moment	Value
z_2/z_1	13.7	employment share top 25%	81.1%
z_{3}/z_{1}	60.7	employment share top 1%	18.3%
λ	0.55	aggregate leverage	48.5%
<i>C</i> IPO	0.03	share of private firms	37.0%
c_M	0.06	aggregate insider share	33.4%
2		100/ 111	F0 (0)
β	.902	top 10% wealth share	52.6%
R	1.07	wealth/GDP	3.4

Results

back

Main result in both quantifications

top 10% wealth share

	Data	Baseline Model	Alternative
France	52.6%	52.6%	52.6%
Germany	59.1%	59.7%	59.2%
Austria	59.4%	60.1%	61.2%
Netherlands	42.6%	44.9%	43.4%

Inequality and Entrepreneurs Across Countries

	NWsh top 10%		NWsh top 1%		NWsh Entrep	
	Data	Model	Data	Model	Data	Model
FR	52.6%	52.6%	22.6%	24.2%	22.6%	25.3%
DE	59.1%	59.7%	26.2%	31.5%	31.6%	34.6%
AT	59.4%	60.1%	26.4%	30.5%	30.4%	37.1%
NL	42.6%	44.9%	12.2%	15.9%	7.9%	17.2%

Top 1% Wealth Shares Across Countries

No Relationship between age and insider Share

Value Function of Public Entrepreneurs

$$V_{\mathsf{PUB}}(X;\tilde{z},\varphi) = \max_{\{c,\tilde{a}',k',X'\}} u_e(c) + \beta(1-\pi_d) \Big\{ (1-\eta) V_{\mathsf{PUB}}(X';\tilde{z},\varphi) + \eta \mathbb{E}_{\theta'|\tilde{z}}[V_W(X',\theta';w)] \Big\}$$

s.t.

$$\begin{split} c + \tilde{a}' + (1 - \varphi)k' &= X \\ X' &= (1 - \varphi) \left[\tilde{z}'k'^{\nu} + (1 - \delta)k' \right] + R\tilde{a}' \\ \tilde{a}' &\geq -(1 - \varphi)\lambda \frac{(1 - \delta)}{R}k' \end{split}$$

Back

Value Function of Private Entrepreneurs

$$V_{\mathsf{PRIV}}(X;\tilde{z}) = \max_{\{c,\tilde{a}',k',X'\}} u_e(c) + \beta(1-\pi_d) \Big\{ (1-\eta) \, V'(X';\tilde{z}) + \eta \, \mathbb{E}_{\theta'|\tilde{z}} [V_W(X',\theta';w)] \Big\}$$

s.t.

$$\begin{aligned} c + \tilde{a}' + k' &= X \\ X' &= [\tilde{z}'k'^{\nu} + (1-\delta)k'] + R\tilde{a}' \\ \tilde{a}' &\geq -\lambda \frac{(1-\delta)}{R}k' \end{aligned}$$

 V^\prime includes the option value of going public:

$$V'(X', \tilde{z}) = \max\left\{ V_{\mathsf{priv}}(X', \tilde{z}), \max_{\varphi} \{ V_{\mathsf{pub}}(\underbrace{X' + P(\varphi, \tilde{z}, X') - c_{\mathsf{IPO}}}_{\mathsf{Post-IPO \ cash-on-hand}}, \tilde{z}, \varphi) \} \right\}$$

Value Function of Workers

$$V_{\mathsf{W}}(X;\theta) = \max_{\{c,\tilde{a}',X'\}} u_w(c) + \beta(1-\pi_d) \mathbb{E}_{\theta'|\theta} [V_{\mathsf{W}}(X',\theta')]$$

s.t.
$$c + \tilde{a}' = X$$
$$X' = R\tilde{a}' + w\theta'$$
$$\tilde{a}' \ge -0$$

Back

$c_M \& c_{IPO}$ are separately identified

Share Price is Non-Monotonic in Outsider Stake

- Firms with more outside equity are larger
- Insider and outsider disagree on optimal investment

φ higher for poor & high TFP entrepreneurs

Externally Set Parameters

	Value	Description	Comment	
R	1.02	risk-free rate		
σ	2	CRRA		
π_d	.02	death probability	average working life of 50 years	
δ	.06	depreciation	Stokey & Rebelo (1995)	
η	.0514	exit probability	average firm age 14 years	
p_{yo}	.1	maturing probability	firm age at IPO	
$\nu \\ \alpha$.9 1/3	returns to scale exponent on capital	capital share	
$ ho_{ heta} \sigma_{ heta}$.9 .65	persistence of worker prod st.dev. of worker prod	Fuchs-Schuendeln et al (2010)	
S_w	.924	share of workers	share of workers	
χ	.5	parent wealth in starting assets	share of wealth inherited	

HFCS

External

Quantitative Strategy - France

6 parameters

- TFP distribution (2)
- Maximum leverage constraint
- Monitoring Cost
- Fixed Cost
- Discount factor

6 moments

- Firm size distribution (2)
- Average leverage
- Insider share of public firms
- Share of private firms
- ► Top 10% wealth share

- Share of private firms
 - Combine household survey (HFCS) with Compustat
- Insider share of public firms
 - Insider = top 3 domestic person shareholders
 - Use Amadeus to identify ultimate person shareholders

Top Wealth Shares - Model and Data

Quantitative Strategy - DE, AT, NL

- Re-estimate
 - TFP distribution
 - Max leverage constraint
 - Monitoring & fixed cost

- Target
 - Firm size distribution
 - Average leverage
 - Outside equity (2 margins)
- Wealth inequality not a target (discount factor constant)
- Identify cost of external finance from firm choices
 - e.g. Infer higher c_{IPO} from Germany's higher private share
- Consistent with direct estimates from empirical literature
 - Details

- e.g. higher underwriting spreads in German IPOs
- Debt (equity) correlates with creditor (shareholder) protection

Back

Poor Entrepreneurs Sell More

Productive and Poor Entrepreneurs Sell More

Firm Size Distribution - Model and Data

back

More Inequality in Countries with More Inside Equity

Data: Household Wealth, Firm Size & Leverage

Wealth Inequality

- Household Finance and Consumption Survey
- Share of wealth held by the top 10%

Distribution of firm size

- Amadeus Financials wide coverage of private and public firms
- Size distribution measured as shares of aggregate wage bill

Average leverage of private firms

Amadeus Financials

Leverage = Outstanding Liabilities - Cash Total Assets - Cash