MoNK: Mortgages in a New-Keynesian Model

Carlos Garriga
St. Louis Fed
Finn Kydland UCSB
Roman Šustek
Queen Mary

6th Confernece on Household Finance and Consumption
Central Bank of Ireland
16-17 December 2019

Introduction

- A tractable framework for monetary policy analysis in which both short- and long-term debt affect equilibrium outcomes
- Why do we need such a framework?
- Many investment decisions facilitated through long-term loans
- The cost of long-term financing important to policy makers
- In NK models, long-term loans are redundant assets
- MoNK: both the NK channel and long-term debt matter
- Mortgage debt: 15-30 yrs, main liability of households, ...
- Long-term debt $=$ stream of contractual cash flows
- Cash flows depend on future policy rates (risk premia, ...)
- Two literatures find policy affects expect. future int. rates

Monetary policy and interest rates

1. Nominal interest rates and the nature of mon. policy shocks

- SVAR shocks: actions, only affect short rates (Evans and Marshal, 1998)
- Markets pay attention also to statements
- High frequency studies: all yields move after a FOMC meeting
- Gürkaynak, Sack, Swanson (2005), ...
- Two latent factors account for most of the movements
- GSS interpret them as an action factor and a statement factor about expected future policy rates

FOMC June 2019 policy shock

Monetary policy and interest rates

2. Behavior of nominal interest rates over time

- Monthly or quarterly frequencies
- Extract latent factors from yields (Ang and Piazzesi, 2003, ...)
- Two latent factors account for most of the movements
- One is very persistent (close to random walk): "level factor"
- Moves expected rates (Cochrane and Piazzesi, 2008, ...)
- Often attributed to monetary policy due to strong correlation with inflation (Duffee, 2012, ...)

Nominal rates over time: Germany

Data

Principal components

Long-term debt

- Passthrough of the policy rate
- Flow vs. stock
- FRM vs. ARM

Illustration: ECB and mortgage rates

New loans (FLOW)

Outstanding debt (stock)

Long-term debt

- Passthrough of the policy rate
- Flow vs. stock
- FRM vs. ARM
- The real value of cash flows depends on inflation, which (in equilibrium) is related to the policy rate
- These are the effects we want to capture

Questions

1. Effects of action vs. statement policy shocks

- Motivated by the above two literatures

2. Sticky prices vs. long-term debt?

- Debate on intertemporal vs. income channels of mon. policy (eg., Kaplan, Moll, Violante 2018)
- Direct link from mon. policy to household disposable income

3. Interactions between the two channels?

- Transparently document the mechanism
- Hopefully informative for future research

Outline

1. The model
2. Calibration and steady state
3. Findings for benchmark policy shocks
4. Mechanism
5. Shocks as in GSS 2005, Nakamura and Steinsson 2018
6. Conclusions

The model

Key features

- Two-agent economy, split by Campbell and Cocco (2003)
- Homeowners: stand-in for 3rd \& 4th quintile of wealth dist.
- Supply labor; buy housing w/ mortgages; trade a bond at a cost (resemble "rich hand-to-mouth")
- Capital owners: stand-in for 5th quintile
- Supply labor; invest in capital and mortgages; trade the bond at no cost
- The agents thus differ in access to cap. and bond markets
- \Rightarrow (i) value cash flows differently, (ii) have different MPCs
- Standard NK production w/ sticky prices
- Taylor rule /w two types of policy shocks
- Abstract from habits, labor market frictions, indexation, ...

Relationship with other models

- Measure of homeowners $=0:$ MoNK \rightarrow RANK (w/ capital)
- No mortgages: MoNK \rightarrow TANK (eg., Debortoli and Galí, 2018)
- Richer heterogeneity: MoNK \rightarrow HANK (KMV 2018) with mortgages

Relationship with other models

- Measure of homeowners $=0:$ MoNK \rightarrow RANK (w/ capital)
- No mortgages: MoNK \rightarrow TANK (eg., Debortoli and Galí, 2018)
- Richer heterogeneity: MoNK \rightarrow HANK (KMV 2018) with mortgages
- No sticky prices, no labor supply: MoNK \rightarrow GKŠ (2017) without optimal refi \& mortgage choice (secondary effects)

Relationship with other models

- Measure of homeowners $=0:$ MoNK \rightarrow RANK (w/ capital)
- No mortgages: MoNK \rightarrow TANK (eg., Debortoli and Galí, 2018)
- Richer heterogeneity: MoNK \rightarrow HANK (KMV 2018) with mortgages
- No sticky prices, no labor supply: MoNK \rightarrow GKŠ (2017) without optimal refi \& mortgage choice (secondary effects)
- Compared with Doepke and Schneider (2006), Auclert (2018): in MoNK cash flows matter, not just the real PV of debt

Capital owners

$$
\max E_{0} \sum_{t=0}^{\infty} \beta^{t}\left\{\log c_{1 t}-\left[\omega_{1} /(1+\sigma)\right] n_{1 t}^{1+\sigma}\right\}
$$

s.t.

$$
\begin{aligned}
c_{1 t}+q_{K t} x_{K t}+\frac{b_{1, t+1}}{p_{t}}+\frac{l_{1 t}}{p_{t}} & =r_{t}^{*} k_{t}+\epsilon_{w} w_{t}^{*} n_{1 t}+\left(1+i_{t-1}\right) \frac{b_{1 t}}{p_{t}}+\frac{m_{1 t}}{p_{t}}+\tau_{1 t}+\Pi_{t} \\
k_{t+1} & =\left(1-\delta_{K}\right) k_{t}+x_{K t}
\end{aligned}
$$

$\Lambda_{1 t}$: new nominal mortgage loans
$m_{1 t}$: receipts of nominal payments on outstanding mortgage debt
Individual state: $k_{t}, b_{1 t}, m_{1 t}$
Decisions: $c_{1 t}, n_{1 t}, x_{K t}, b_{1, t+1}, l_{1 t}, k_{t+1}$

Homeowners

$$
\max E_{0} \sum_{t=0}^{\infty} \beta^{t}\left\{\varrho \log c_{2 t}+(1-\varrho) \log h_{t}-\left[\omega_{2} /(1+\sigma)\right] n_{2 t}^{1+\sigma}\right\}
$$

s.t.

$$
\begin{aligned}
c_{2 t}+q_{H t} x_{H t}+\frac{b_{2, t+1}}{p_{t}} & =w_{t}^{*} n_{2 t}+\left(1+i_{t-1}+\Upsilon_{t-1}\right) \frac{b_{2 t}}{p_{t}}-\frac{m_{2 t}}{p_{t}}+\frac{l_{2 t}}{p_{t}}+\tau_{2 t} \\
\frac{l_{2 t}}{p_{t}} & =\theta q_{H t} x_{H t} \\
h_{t+1} & =\left(1-\delta_{H}\right) h_{t}+x_{H t}
\end{aligned}
$$

$I_{2 t}$: new nominal mortgage loans taken out to purchase new housing $m_{2 t}$: nominal payments on outstanding mortgage debt
Υ_{t-1} : bond market participation cost (increasing and convex in $b_{2 t} / p_{t-1}$)
Indiv. state: $h_{t}, b_{2 t}, m_{2 t}$, dec.: $c_{2 t}, n_{2 t}, x_{H t}, b_{2, t+1}, l_{2 t}, h_{t+1}$

Mortgage cash flows

- Infinitely-lived loans approximating 30-yr mortgages (KRŠ, 2016)

Mortgage cash flows

- Infinitely-lived loans approximating 30-yr mortgages (KRŠ, 2016)
- $\phi_{j t} \equiv l_{j t} / d_{j, t+1} \quad(j=1,2)$

Mortgage cash flows

- Infinitely-lived loans approximating 30-yr mortgages (KRŠ, 2016)
- $\phi_{j t} \equiv l_{j t} / d_{j, t+1} \quad(j=1,2)$
- Period- t nominal payments on outstanding mortgages:

$$
m_{j t}=\left(R_{j t}+\gamma_{j t}\right) d_{j t}
$$

Mortgage cash flows

- Infinitely-lived loans approximating 30-yr mortgages (KRŠ, 2016)
- $\phi_{j t} \equiv l_{j t} / d_{j, t+1} \quad(j=1,2)$
- Period- t nominal payments on outstanding mortgages:

$$
\begin{aligned}
m_{j t} & =\left(R_{j t}+\gamma_{j t}\right) d_{j t} \\
d_{j, t+1} & =\left(1-\gamma_{j t}\right) d_{j t}+l_{j t}
\end{aligned}
$$

Mortgage cash flows

- Infinitely-lived loans approximating 30-yr mortgages (KRŠ, 2016)
- $\phi_{j t} \equiv l_{j t} / d_{j, t+1} \quad(j=1,2)$
- Period- t nominal payments on outstanding mortgages:

$$
\begin{aligned}
m_{j t} & =\left(R_{j t}+\gamma_{j t}\right) d_{j t} \\
d_{j, t+1} & =\left(1-\gamma_{j t}\right) d_{j t}+l_{j t} \\
R_{j, t+1} & = \begin{cases}i_{t} & \text { ARM } \\
\left(1-\phi_{j t}\right) R_{j t}+\phi_{j t} I_{t}^{F} & \text { FRM }\end{cases}
\end{aligned}
$$

Mortgage cash flows

- Infinitely-lived loans approximating 30-yr mortgages (KRŠ, 2016)
- $\phi_{j t} \equiv l_{j t} / d_{j, t+1} \quad(j=1,2)$
- Period- t nominal payments on outstanding mortgages:

$$
\begin{aligned}
m_{j t} & =\left(R_{j t}+\gamma_{j t}\right) d_{j t} \\
d_{j, t+1} & =\left(1-\gamma_{j t}\right) d_{j t}+l_{j t} \\
R_{j, t+1} & = \begin{cases}i_{t} \\
\left(1-\phi_{j t}\right) R_{j t}+\phi_{j t} i_{t}^{F} & \text { FRM }\end{cases} \\
\gamma_{j, t+1} & =\left(1-\phi_{j t}\right)\left(\gamma_{j t}\right)^{\alpha}+\phi_{j t} \kappa
\end{aligned}
$$

$\kappa, \alpha \in(0,1) \quad$ chosen to approx. amortization of $30-\mathrm{yr}$ mortgage

Mortgage cash flows

- Infinitely-lived loans approximating 30-yr mortgages (KRŠ, 2016)
- $\phi_{j t} \equiv l_{j t} / d_{j, t+1} \quad(j=1,2)$
- Period- t nominal payments on outstanding mortgages:

$$
\begin{aligned}
m_{j t} & =\left(R_{j t}+\gamma_{j t}\right) d_{j t} \\
d_{j, t+1} & =\left(1-\gamma_{j t}\right) d_{j t}+l_{j t} \\
R_{j, t+1} & = \begin{cases}i_{t} & \text { ARM } \\
\left(1-\phi_{j t}\right) R_{j t}+\phi_{j t} i_{t}^{F} & \text { FRM }\end{cases} \\
\gamma_{j, t+1} & =\left(1-\phi_{j t}\right)\left(\gamma_{j t}\right)^{\alpha}+\phi_{j t} \kappa
\end{aligned}
$$

$\kappa, \alpha \in(0,1) \quad$ chosen to approx. amortization of $30-\mathrm{yr}$ mortgage

- Only either ARM or FRM, held to maturity

NK production

- PC: identical final good producers, measure $=1$

$$
\max _{Y_{t},\left\{y_{t}(j)\right\}_{0}^{1}} p_{t} Y_{t}-\int_{0}^{1} p_{t}(j) y_{t}(j) d j \quad \text { where } \quad Y_{t}=\left[\int_{0}^{1} y_{t}(j)^{\varepsilon} d j\right]^{1 / \varepsilon}
$$

- M : intermediate good producer $j \in[0,1]$

$$
\max _{p_{t}(j)} E_{t} \sum_{i=0}^{\infty} \psi^{i} Q_{1, t+i}\left[\frac{p_{t}(j)}{p_{t+i}} y_{t+i}(j)-\chi_{t+i} y_{t+i}(j)\right]-\Delta
$$

s.t. a demand function of PC

$$
\chi_{t} y_{t}(j)=\min _{k_{t}(j), n_{t}(j)} r_{t} k_{t}(j)+w_{t} n_{t}(j) \quad \text { s.t. } \quad k_{t}(j)^{\varsigma} n_{t}(j)^{1-\varsigma}=y_{t}(j)
$$

- \Rightarrow NK Phillips Curve

Aggregate expenditures

$$
C_{1 t}+C_{2 t}+q_{K t}\left(X_{K t}\right) X_{K t}+q_{H t}\left(X_{H t}\right) X_{H t}+G=Y_{t}
$$

$$
\begin{array}{ll}
q_{K t}(.)^{\prime}>0 & q_{K t}(.)^{\prime \prime}>0 \\
q_{X t}(.)^{\prime}>0 & q_{X_{t}(.}(.)^{\prime \prime}>0
\end{array}
$$

- Implies a concave production possibilities frontier (eg., Fisher, 1997)
- A short cut for a multi-sectoral model (eg., Davis and Heathcote, 2005)
- $q_{H t}, q_{H t}$ work like capital adjustment costs; limit consumption smoothing in the aggregate

Equilibrium

- Market clearing

$$
(1-\Psi) l_{1 t}=\Psi I_{2 t}
$$

$$
\begin{array}{cc}
(1-\Psi) b_{1, t+1}=-\Psi b_{2, t+1}, & \text { (one-period bond) } \\
\int_{0}^{1} n_{t}(j)=\epsilon_{w}(1-\Psi) n_{1 t}+\Psi n_{2 t}, & \text { (capital) } \\
\int_{0}^{1} k_{t}(j)=(1-\Psi) k_{t}, & \text { (goods) } \\
C_{1 t}+C_{2 t}+q_{K t} X_{K t}+q_{H t} X_{H t}+G=Y_{t} & \text { (labor) } \tag{goods}
\end{array}
$$

- Aggregate consistency

$$
(1-\Psi) d_{1 t}=\Psi d_{2 t}, \quad \gamma_{1 t}=\gamma_{2 t}, \quad R_{1 t}=R_{2 t}
$$

Taylor rule and policy shocks

- Reflect following lessons from the literature

Taylor rule and policy shocks

- Reflect following lessons from the literature
- Short rate: $i_{t}=i+f_{1 t}+\ldots+f_{J t}$,

Taylor rule and policy shocks

- Reflect following lessons from the literature
- Short rate: $i_{t}=i+f_{1 t}+\ldots+f_{J t}$,
- Other rates: $i_{t}^{(n)}=i^{(n)}+A_{1}^{(n)} f_{1 t}+\ldots+A_{J}^{(n)} f_{J t}$,

$$
A_{1}^{(n)}, \ldots, A_{J}^{(n)}(\text { statistical or no-arbitrage })
$$

Taylor rule and policy shocks

- Reflect following lessons from the literature
- Short rate: $i_{t}=i+f_{1 t}+\ldots+f_{J t}$,
- Other rates: $i_{t}^{(n)}=i^{(n)}+A_{1}^{(n)} f_{1 t}+\ldots+A_{J}^{(n)} f_{J t}$,
$A_{1}^{(n)}, \ldots, A_{j}^{(n)}$ (statistical or no-arbitrage)
- Yields \rightarrow factors (orthogonal)
- Narrow window around FOMC decisions
- At monthly or quarterly frequencies

Taylor rule and policy shocks

- Reflect following lessons from the literature
- Short rate: $i_{t}=i+f_{1 t}+\ldots+f_{J t}$,
- Other rates: $i_{t}^{(n)}=i^{(n)}+A_{1}^{(n)} f_{1 t}+\ldots+A_{J}^{(n)} f_{J t}$,
$A_{1}^{(n)}, \ldots, A_{J}^{(n)}$ (statistical or no-arbitrage)
- Yields \rightarrow factors (orthogonal)
- Narrow window around FOMC decisions
- At monthly or quarterly frequencies
- Two factors account for 95% of variance in yields

Taylor rule and policy shocks

- Reflect following lessons from the literature
- Short rate: $i_{t}=i+f_{1 t}+\ldots+f_{J t}$,
- Other rates: $i_{t}^{(n)}=i^{(n)}+A_{1}^{(n)} f_{1 t}+\ldots+A_{J}^{(n)} f_{J t}$,
$A_{1}^{(n)}, \ldots, A_{J}^{(n)}$ (statistical or no-arbitrage)
- Yields \rightarrow factors (orthogonal)
- Narrow window around FOMC decisions
- At monthly or quarterly frequencies
- Two factors account for 95% of variance in yields
- 1st=near random walk, moves the level, affects exp. rates
- 2nd=less persistent, moves the slope, small effect on exp. rates

Taylor rule and policy shocks (cont.)

- Benchmark TR shocks: two independent $\operatorname{AR}(1)$ processes
- Persistent shock modeled as an inflation target shock

$$
i_{t}=r+\mu_{t}+\nu_{\pi}\left(\pi_{t}-\mu_{t}\right)+\eta_{t}, \quad \nu_{\pi}>1
$$

- $\mu_{t+1}=\left(1-\rho_{\mu}\right) \pi+\rho_{\mu} \mu_{t}+\xi_{\mu, t+1} \quad \rho_{\mu}=0.99$
- $\eta_{t+1}=\rho_{\eta} \eta_{t}+\xi_{\eta, t+1} \quad \rho_{\eta}=0.3$
- μ_{t}, η_{t} can be combined to form shocks as in GSS 2005, NS 2018
- Interest rate smoothing, output gap?

Equilibrium short rate

- Euler eqs. of capital owner for bonds and capital + Taylor rule, solve forward, exclude bubbles

$$
i_{t} \approx \mu_{t}+\left[\sum_{j=0}^{\infty}\left(\frac{1}{\nu_{\pi}}\right)^{j} E_{t} r_{t+j}^{*}-\frac{\rho_{\eta}}{\nu_{\pi}-\rho_{\eta}} \eta_{t}\right] \equiv \text { level }_{t}+\text { slope }_{t}
$$

- level/slope split if μ_{t} has no effect on real rates (will be the case)

Equilibrium inflation

- Using the above expression for i_{t} back in the Taylor rule gives

$$
\pi_{t} \approx \mu_{t}+\left[\frac{1}{\nu_{\pi}} \sum_{j=0}^{\infty}\left(\frac{1}{\nu_{\pi}}\right)^{j} E_{t} r_{t+j}^{*}-\frac{1}{\nu_{\pi}-\rho_{\eta}} \eta_{t}\right]
$$

- Sum of near random walk and temporary components (Stock and Watson, 2007)
- μ_{t} same effect on i_{t} and π_{t}

Equilibrium FRM rate

- No-arbitrage pricing by the cap. owner b/w the bond and a new loan

$$
1=E_{t}\left[\frac{i_{t}^{F}+\gamma_{1, t+1}}{1+i_{t}}+\frac{i_{t}^{F}+\gamma_{1, t+2}}{\left(1+i_{t}\right)\left(1+i_{t+1}\right)}\left(1-\gamma_{1, t+1}\right)+\ldots\right]+\psi_{t}
$$

Ψ_{t} : covariance terms between the pricing kernel and cash flows

Equilibrium ARM rate

- The interest rate of ARM is the short rate i_{t}
- Straightforward to verify the following no-arbitrage condition holds for any stochastic sequence of i_{t}

$$
1=E_{t}\left[\frac{i_{t}+\gamma_{1, t+1}}{1+i_{t}}+\left(1-\gamma_{1, t+1}\right) \frac{i_{t+1}+\gamma_{1, t+2}}{\left(1+i_{t}\right)\left(1+i_{t+1}\right)}+\ldots\right]
$$

Demand for mortgages

- Financing constraint: $l_{2 t}=\theta p_{t} q_{H t} x_{H t}$
- First-order condition for $x_{H t}$

$$
\begin{gathered}
q_{H t}\left(1+\tau_{H t}\right)=\beta E_{t} \frac{V_{h, t+1}}{v_{c t}}, \\
\tau_{H t}=-\theta\left\{1-E_{t}\left[Q_{2, t+1} \frac{i_{t+1}^{M}+\gamma_{2, t+1}}{1+\pi_{t+1}}+Q_{2, t+2} \frac{\left(i_{t+2}^{M}+\gamma_{2, t+2}\right)\left(1-\gamma_{2, t+1}\right)}{\left(1+\pi_{t+1}\right)\left(1+\pi_{t+2}\right)}+\ldots\right]\right\}
\end{gathered}
$$

Calibration and steady-state

Calibration (selected parameters)

Symbol	Value	Description
Population ψ	2/3	Share of homeowners
Preferences		
ω_{1}	8.4226	Disutility from labor (capital owner)
ω_{2}	12.818	Disutility from labor (homeowner)
Technology		
ζ	3.2	Curvature of PPF
Fiscal		Rel. productivity of cap. owners
G	0.138	Government expenditures
τ_{N}	0.235	Labor income tax rate
τ_{K}	0.3361	Capital income tax rate
$\bar{\tau}_{2}$ Goods market	0.05853	Transfer to homeowner
ψ	0.75	Fraction not adjusting prices
Mortgage market		
θ	0.6	Loan-to-value ratio
Bond market		
ϑ	0.15	Participation cost function
Monetary policy		
ν_{π}	1.5	Weight on inflation
Exogenous processes		
ρ_{μ}	0.99	Persistence of the level factor shock
ρ_{η}	0.3	Persistence of standard mon. pol. shock

Values in red: calibrated to cross-sectional moments (and aggregate hours)

Steady-state cross-sectional implications

Symbol	Model	Data	Description
Targeted in calibration:			
$m_{2} /\left(w n_{2}+\bar{\tau}_{2}\right)$	0.15	0.15	Mortgage payments to income
$\bar{\tau}_{2} /\left(w n_{2}+\bar{\tau}_{2}\right)$	0.12	0.12	Transfers in homeowner's income
$\epsilon_{w} w^{\prime} n_{1} /$ income $_{1}$	0.53	0.53	Labor income in cap. owner's income
Not targeted:			
A. Capital owner's variables			
$\left(r k+m_{1}\right) /$ income $_{1}$	0.42	0.39 §	Income from assets in total income
$\tau_{1} /$ income $_{1}$	0.05	0.08	Transfers in total income
$m_{1} /$ netincome $_{1}$	0.07	N/A	Mortg. income to post-tax income
B. Homeowner's variables			
$w n_{2} /\left(w n_{2}+\tau_{2}\right)$	0.88	0.82	Labor income in total income
$m_{2} /\left[\left(1-\tau_{N}\right) w n_{2}+\tau_{2}\right]$	0.18	N/A	Mortgage payments to post-tax income
C. Earnings distribution			
$\epsilon_{w} w N_{1} /\left(\epsilon_{w} w N_{1}+w N_{2}\right)$	0.59	0.54	Capital owners' share
$w N_{2} /\left(\epsilon_{w} w N_{1}+w N_{2}\right)$	0.41	0.46	Homeowners' share
D. Income distribution			
Income $_{1} /\left[\right.$ Income $\left._{1}+\left(w N_{2}+\Psi_{\tau_{2}}\right)\right]$	0.70	0.61	Capital owners' share
$\left(w N_{2}+\Psi \tau_{2}\right) /\left[\right.$ Income $\left._{1}+\left(w N_{2}+\Psi_{\tau_{2}}\right)\right]$	0.30	0.39	Homeowners' share

Benchmark experiments:

AR(1) shocks

1. Temporary vs. persistent shock
2. ARM vs. FRM
3. MoNK vs. Mo (flexible prices) vs. NK (no mortgage loans)

Long-term mortgage debt channel

Temporary policy shock

Nominal ARM rates

Long-term mortgage debt channel

Temporary policy shock
Policy rate (i)

Persistent policy shock
Policy rate (i)

Temporary shock (1pp), ARM

Temporary shock (1pp), ARM

Temporary shock (1pp), FRM

Main takeaways so far

- Temporary shock
- MoNK similar to NK (except c_{t}^{H}) \Rightarrow contract irrelevance
- Cons. of homeowners (c_{t}^{H})
- Affected more than cons. of capital owners
- Affected more in MoNK than in NK

Persistent shock (1pp), ARM

Persistent shock (1pp), ARM

Persistent shock (1pp), FRM

Main takeaways so far

- Temporary shock
- MoNK similar to NK (except $\left.c_{t}^{H}\right) \Rightarrow$ contract irrelevance
- Cons. of homeowners (c_{t}^{H})
- Affected more than cons. of capital owners
- Affected more in MoNK than in NK
- Persistent shock
- MoNK similar to Mo (sticky prices small effect)
- Effects mainly redistributive
- Contract matters
- Real effects despite no change in the real rate
- Cons. of homeowners again affected by more than of capital owners

The mechanism

1. New-Keynesian channel
2. Long-term debt channel

New-Keynesian channel

The New-Keynesian Phillips Curve is where the action is!

$$
\pi_{t}=\frac{(1-\psi)(1-\beta \psi)}{\psi} \Theta \widehat{\chi}_{t}+\beta E_{t} \pi_{t+1}
$$

where

$$
\begin{aligned}
\widehat{\chi}_{t} \sim \widehat{Y}_{t} \quad \text { and } \quad \beta \rightarrow 1 \\
\Rightarrow \quad \pi_{t}-E_{t} \pi_{t+1} \approx \frac{(1-\psi)(1-\beta \psi)}{\psi} \Theta \widehat{Y_{t}}
\end{aligned}
$$

Hence $\quad \pi_{t}<E_{t} \pi_{t+1} \Rightarrow \widehat{Y_{t}}<0 \quad$ and $\quad \pi_{t} \approx E_{t} \pi_{t+1} \Rightarrow \widehat{Y_{t}} \approx 0$

Long-term debt channel I

Effect on budged constraint ("income effect")

Long-term debt channel I

Effect on budged constraint ("income effect")
Nominal mortgage payments over the remaining life of a loan

$$
m_{t}=\left(i_{t}^{M}+\gamma_{t}\right) d_{t}, \quad\left\{\gamma_{t}\right\}_{1}^{J}, \quad \gamma_{1} \approx 0 \ldots \gamma_{J}=1
$$

Long-term debt channel I

Effect on budged constraint ("income effect")
Nominal mortgage payments over the remaining life of a loan

$$
m_{t}=\left(i_{t}^{M}+\gamma_{t}\right) d_{t}, \quad\left\{\gamma_{t}\right\}_{1}^{J}, \quad \gamma_{1} \approx 0 \ldots \gamma_{J}=1
$$

Rewrite in real terms

$$
\begin{aligned}
& \widetilde{m}_{t+1}=\frac{\left(i_{t+1}^{M}+\gamma_{t+1}\right)}{\left(1+\pi_{t+1}\right)} \widetilde{d}_{t+1}, \quad \ldots \quad \widetilde{m}_{t+j}=\frac{\left(i_{t+j}^{M}+\gamma_{t+j}\right)}{\left(1+\pi_{t+1}\right) \ldots\left(1+\pi_{t+j}\right)} \widetilde{d}_{t+j}, \\
& \approx i_{t+1}^{M} \widetilde{d}_{t+1} \\
& \approx \frac{1}{\left(1+\pi_{t+1}\right) \ldots\left(1+\pi_{t+j}\right)} \widetilde{d}_{t+j}
\end{aligned}
$$

In the immediate future, i_{t+1}^{M} is all that matters! (ARM vs. FRM)

Long-term debt channel II

Effect on the cost of new housing ("price effect")
F.O.C. for $x_{H t}$

$$
\begin{gathered}
q_{H t}\left(1+\tau_{H t}\right)=\beta E_{t} \frac{V_{h, t+1}}{v_{c t}}, \\
\tau_{H t}=-\theta\left\{1-E_{t}\left[Q_{2, t+1} \frac{i_{t+1}^{M}+\gamma_{2, t+1}}{1+\pi_{t+1}}+Q_{2, t+2} \frac{\left(i_{t+2}^{M}+\gamma_{2, t+2}\right)\left(1-\gamma_{2, t+1}\right)}{\left(1+\pi_{t+1}\right)\left(1+\pi_{t+2}\right)}+\ldots\right]\right\}
\end{gathered}
$$

Alternative formulations of the shocks

Shocks as in GSS (2005)

- Action vs. statement shock

$$
\begin{aligned}
& i_{t}=i+\nu_{\pi}\left(\pi_{t}-\pi\right)+v^{\top} z_{t}, \\
& v^{\top} \equiv\left[1-\nu_{\pi}, 1\right], z_{1 t} \equiv \mu_{t}-\pi, z_{2 t} \equiv \eta_{t} \\
& z_{t}^{*}=M z_{t} \\
& i_{t}=i+\nu_{\pi}\left(\pi_{t}-\pi\right)+v^{\top} M^{-1} z_{t}^{*},
\end{aligned}
$$

M restricted so that $z_{1 t}^{*}, z_{2 t}^{*}$ are orthogonal and $z_{1 t}^{*}$ has no effect on i_{t} in equilibrium, only forecasts future $z_{2 t}^{*}$

Statement shock (1pp), ARM and FRM

Shocks as in NS (2018)

- Policy shock vs. signal about the future state of the economy

$$
\begin{aligned}
i_{t} & =r_{t}^{*}+\pi+\nu_{\pi}\left(\pi_{t}-\pi\right)+\eta_{t} \\
{\left[\begin{array}{l}
A_{t} \\
S_{t}
\end{array}\right] } & =\left[\begin{array}{cc}
\rho_{A} & 1 \\
0 & \rho_{S}
\end{array}\right]\left[\begin{array}{l}
A_{t-1} \\
S_{t-1}
\end{array}\right]+\left[\begin{array}{l}
\xi_{A t} \\
\xi_{S t}
\end{array}\right]
\end{aligned}
$$

$A_{t}=\mathrm{TFP}, S_{t}=$ signal about future TFP
$\rho_{S}=0.999$ chosen to match the persistence of the FRM rate
\Rightarrow Bansal and Yaron (2004)-type process for TFP growth

$$
\Delta A_{t}=\left(\rho_{A}-1\right) A_{t-1}+S_{t-1}+\xi_{A t}
$$

TR accommodates resulting changes in r_{t}^{*} so that $\pi_{t}=\pi$

Information shock (1pp), ARM and FRM

Conclusions

- NK channel dominating for policy shocks affecting the nominal interest rate only temporarily
- Long-term debt channel dominating for policy shocks affecting the nominal rate persistently
- NK channel generates short-lived aggregate effects that are essentially the same under ARM and FRM (with the exception of homeowners consumption)
- The long-term debt channel generates prolonged redistributive effects, which are markedly different across ARM and FRM
- The two channels interact in affecting homeowners consumption under ARM and a temporary shock
- The basic shocks can be combined to form shocks with interesting economic intrepretations

Thank you!

Mortgages: example, 30yr

$$
\gamma_{t}^{\alpha}, \quad \alpha=0.9946, \kappa=0.00162
$$

Quarterly payments

Composition of payments

Balance

Approximation error

Mortgages: example, 30yr

$$
\underset{\substack{\gamma_{t} \\ \text { Quarteriy payments }}}{\gamma_{t}^{\alpha_{1}}+\gamma_{t} \gamma_{t}^{\alpha_{2}}, \quad \alpha_{1}=0.9974, \quad \alpha_{2}=\underset{\text { Balance }}{0.7463,} \kappa=0.00162}
$$

Composition of payments

