The Long Shadows of the Great Inflation Evidence from Residential Mortgages

Matthew J. Botsch
Bowdoin College

Ulrike Malmendier
UC Berkeley

December 16, 2019

Mortgage Choice

- Major puzzle in mortgage markets (and financial contracting more broadly): consumers' aversion to adjustable-rate loans.
- Empirical contract mix in US: 80\% fixed-rate.
- Inconsistent with standard life-cycle consumption models (e.g., Campbell and Cocco 2003, 2015).
- Especially at high price, about 17obp above comparable variable-rate mortgages.
- Our own calculations (below): far more households choose FRMs than the standard economic model predicts, esp. in the wake of the Great Inflation: Baby Boomers should have taken out 1m fewer FRMs in the late 1980s, and 0.5 m fewer in the late 1990 s .

Mortgage Choice

- Puzzling because: Cost of these deviations large. Given expected refinancing behavior and mobility, Baby Boomers overpayed $>\$ 14$ billion on their FRMS in the late 1980s, and almost $\$ 9$ billion in the late 1990 s.
- Puzzling because: Home purchase and financing one of the biggest financial decisions for many households.
- ARM-type contracts have high market shares in other countries (Australia, Belgium, Chile, Estonia, Finland, Greece, Hungary, Ireland, Israel, Korea, Luxembourg, Mexico, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Switzerland, Turkey).
- Idea here: Role of "experience effects" in past inflation.

Idea

- Individuals overweight prior lifetime experiences when forming expectations.
- Cf. availability bias (Tversky and Kahneman 1974): "more memorable events are processed as more likely events" when forming beliefs.
- Underpinning: synaptic tagging (cf. Laudenbach, Niessen-Ruenzi, Malmendier AEA P\&P 2018) - personal experiences rewire our "hardware", especially experiences that are anchored more strongly due to emotions.

Many applications

1. Political attitudes: Alesina \& Fuchs-Schundeln (2007)
2. Medical diagnoses: Weber et al. (1993); Hertwig et al. (2004)
3. Climate change: Deryugina (2013)
4. Stock-market participation: Malmendier \& Nagel (2011)
5. Consumption behavior: Malmendier \& Shen (2015)
6. Expected inflation: Malmendier \& Nagel (2016)

Inflation experiences \& expectations

From Malmendier \& Nagel (2016) / Mich. Survey:

Inflation experiences \& expectations

From Malmendier \& Nagel (2016) / Mich. Survey:

This Paper

- Overweighting lifetime inflation experiences generates differences of opinion about the value of future inflation rates and hence nominal interest rates (Fisher equation).
$>$ Those with higher lifetime experiences of inflation will expect higher nominal interest rates.
- Overweighting lifetime inflation experiences generates differences of opinion about the value of fixed-rate assets (relative to variable/real-rate assets).
> Those with higher lifetime experiences of inflation will overvalue and overpay for fixed-rate mortgage contracts, relative to the full-information optimum.
- We assess the implications of experience-based beliefs for mortgage choice, and we provide quantitative estimates of the costs.

Preview of Results

1. Individuals' inflation experiences significantly affect beliefs about future nominal interests.
2. Individuals' inflation experiences significantly affect mortgage choice.

- Individuals with high experienced inflation are more likely to choose FRMs (within year).
- 1 in 6 HHs choose FRMs over ARMs because of π^{e}

3. The costs of overweighting are large.

- Ex ante: individuals pay 6-14 basis points for every additional pp. of π^{e}
- Ex post: switching HHs overpay by $\$ 8,000-16,000$ (over expected tenure, in after-tax PV)
> Concentrated among Baby Boomers: overpaid in aggregate by $\$ 14$ billion on FRMs in 1980 s , $\$ 9$ billion in 1990 .

Data and Methodology

Learning from Experiences

Experience effect hypothesis: individuals learn from lifetime experiences
Prior empirical evidence suggests that HH n's experience-based inflation forecast at time t is approximately:

$$
\pi_{n, t}^{e} \propto \sum_{j=0}^{\text {age }_{n}}\left(\frac{\operatorname{age}_{n}-j}{\operatorname{age}_{n}}\right) \pi_{t-j}
$$

where lag j runs from today $(j=0)$ to birth $\left(j=\right.$ age $\left._{n}\right)$.
Empirical content: cross-sectional heterogeneity of forecasts (by householder age).

Inflation Experiences in 1985

Inflation Experiences in 1985

Inflation Experiences in 2000

Inflation Experiences in 2000

Three Steps

1. Overweighting lifetime inflation experiences and nominal interest rates.
$>$ Those with higher lifetime experiences of inflation will expect higher nominal interest rates.
> SCF data
2. Overweighting lifetime inflation experiences choice of fixed-rate mortgages.
$>$ Those with higher lifetime experiences of inflation will overvalue and overpay for fixed-rate mortgage contracts, relative to the full-information optimum.
$>$ RFS data (and BLS, PMMS)
3. Quantitative estimates of the costs.

Inflation experiences \& Interest Rate expectations

Mortgage Data

Residential Finance Survey: decennial Census Bureau survey of households, cross-referenced with servicers, in 1991 and 2001.

- Microdata on outstanding mortgages linked to 1-4 unit, owner-occupied properties:
\square FRM/ARM status
Loan terms \& property value
HH income \& demographics
\square Census region
- Missing recent movers
- We subset on mortgages originated ≤ 6 years prior.

Table 1: Summary Statistics			
	FRM	ARM	FRM - ARM
	12,416	2,245	
Contract Characteristics			
Current rate (bps)	972.7	924.5	48.2^{*}
Initial rate (bps)	$"$	876.2	96.4^{*}
Margin (bps)	n.a.	282.7	$\mathrm{n} . \mathrm{a}$.
Term (years)	23.2	26.1	-2.9^{*}
Loan Amount (2000 \$k)	102.0	140.3	-38.3^{*}
Borrower Characteristics			
Primary owner age	41.4	41.8	-0.4
Non-white	0.136	0.099	0.037^{*}
First-time owner	0.413	0.348	0.065^{*}
Total income (2000 \$)	75,177	84,165	$-8,989^{*}$
Other Loan Characteristics			
Junior mortgage	0.129	0.086	0.043^{*}
Non-conventional	0.211	0.061	0.150^{*}
Refi	0.256	0.244	0.012
Loan / income	1.73	2.04	-0.31^{*}
Loan / value \times 100	81.7	90.0	-8.3^{*}
Jumbo loan?	0.043	0.127	-0.084^{*}
Notes. Sample of mortgages $<=6$ years old at time of 1991 and 2001			
Residential Finance Surveys of homeowner properties. Statistics are			
based on available cases. * p<0.05.			
Botsch \& Malmendier (2019): Long Shadows ofthe Great Inflation			

Other Data

Inflation: log changes in CPI-U (from BLS)
Primary Mortgage Market Survey index rates for FRM and ARM (from Freddie Mac)

- Representative, nationwide survey of mortgage originators
- Quotes interest rates on first-lien, prime, conventional, conforming, 30-year loans with LTV $=0.8$
$>$ FRM and $1 / 1$ ARM
- Reweight from 5 Freddie Mac regions to 4 Census regions using 1990 Census state housing counts.
- Annual average of weekly data

Path of PMMS Interest Rates

Identification

Identification from cross-sectional differences in inflation experiences + their evolution over time (time series). This rules out:

1. Time-specific effects unrelated to learning from experiences.
$>$ Time dummies capture the effect of all individuals learning from the full historical inflation data, including current inflation.
2. Life-cycle effects
$>$ Age is separately identified in repeated XS data
$\beta_{\pi, F R M}$ picks up influence of remaining, individual heterogeneity in inflation experiences on expectations.
$>$ If experiences don't matter, coefficient should be zero.

FRM Share and Experienced Inflation by Age Group

Econometric Model

McFadden (1974): Indirect utility of $\mathrm{HH} n$ considering alternative i (FRM or ARM):

$$
U_{n i}=\alpha_{i t}+\beta_{R} \text { Rate }_{n i}+\beta_{\pi, i} \pi_{n}^{e}+x_{n}^{\prime} \delta_{i}+\varepsilon_{n i}
$$

Alternative i is chosen iff $U_{n i}>U_{n j} \forall j \neq i$.

Predictions:

1. $\beta_{R}<0$ - price elasticity of demand is negative
2. $\beta_{\pi, F R M}>0$ - inflation histories raise the FRM share (learning-from-experiences effect)

Econometric Model

McFadden (1974): Indirect utility of $\mathrm{HH} n$ considering alternative i (FRM or ARM):

$$
U_{n i}=\alpha_{i t}+\beta_{R} \text { Rate }_{n i}+\beta_{\pi, i} \pi_{n}^{e}+x_{n}^{\prime} \delta_{i}+\varepsilon_{n i}
$$

Alternative i is chosen iff $U_{n i}>U_{n j} \forall j \neq i$.

Missing Data Problem:

We only observe the rate of the chosen alternative:

$$
\text { Rate }_{n}=D_{n} \text { Rate }_{n, F R M}+\left(1-D_{n}\right) \text { Rate }_{n, A R M}
$$

Three-Step Estimation Procedure

1. Reduced-form mortgage choice model using Freddie Mac FRM \& ARM index rates (by year-region)

$$
U_{n i}=\alpha_{i t}+\tilde{\beta}_{R} P M M S \text { Rate }_{n i}+\beta_{\pi, i} \pi_{n}^{e}+x_{n}^{\prime} \delta_{i}+\tilde{\varepsilon}_{n i}
$$

2. Mortgage pricing equations, correcting for any selection bias using choice probabilities from Step 1-Heckman (1979), Powell (1984), Newey (2009)

$$
\text { Rate }_{n i}=\gamma_{R} \text { PMMSRate }_{n i}+x_{n}^{\prime} \gamma_{i}+v_{n i}
$$

3. Structural mortgage choice model using individual-level predicted interest rates for each alternative from Step 2

$$
U_{n i}=\alpha_{i t}+\beta_{R} \widehat{\operatorname{Rate}_{n i}}+\beta_{\pi, i} \pi_{n}^{e}+x_{n}^{\prime} \delta_{i}+\varepsilon_{n i}
$$

n : household; i : FRM or ARM.

Results

Table 2: Reduced-Form

 Mortgage Choice Model| | (4) | (5) |
| :--- | :---: | :---: |
| FRM Alternative-Specific Characteristics | | |
| Freddie Mac PMMS FRM | $-3.33^{* * *}$ | $-3.59^{* * *}$ |
| index rate (\%) | (0.575) | (0.816) |
| Experienced inflation (\%) | $0.254^{* * *}$ | 0.187^{*} |
| | (0.086) | (0.098) |
| Log(Income) | $0.0276^{* *}$ | $0.0278^{* *}$ |
| | (0.012) | (0.012) |

ARM Alternative-Specific Characteristics

Freddie Mac PMMS ARM	$-0.768^{* * *}$	$-0.844^{* * *}$
initial rate index (\%)	(0.250)	(0.314)
Alternative-specific constants	YES	YES
Origination year FE	YES	YES
Other controls	YES	YES
Number of Choice Situations	15,051	14,337
Number of Alternatives	3	2

Notes. Multinomial logit coefficients shown (robust SEs).
*** $\mathrm{p}<0.01$, ** $\mathrm{p}<0.05$, * $\mathrm{p}<0.1$

Table 2: Reduced-Form

 Mortgage Choice Model| | (4) | (5) |
| :--- | :---: | :---: |
| FRM Alternative-Specific Characteristics | | |
| Freddie Mac PMMS FRM | $-3.33^{* * *}$ | $-3.59^{* * *}$ |
| index rate (\%) | (0.575) | (0.816) |
| Experienced inflation (\%) | $0.254^{* * *}$ | 0.187^{*} |
| | (0.086) | (0.098) |
| Log(Income) | $0.0276^{* *}$ | $0.0278^{* *}$ |
| | (0.012) | (0.012) |

ARM Alternative-Specific Characteristics

WTP calculation:

$\beta_{\pi^{e}}=0.254$ $\beta_{\text {Rate }, \text { FRM }}=-3.33$
$\Rightarrow W T P=-\frac{\beta_{\pi^{e}}}{\beta_{\text {Rate,FRM }}}$
$=7.6 \mathrm{bps}$
$(S E=2.9 \mathrm{bps})$

Freddie Mac PMMS ARM	$-0.768^{* * *}$	$-0.844^{* * *}$
initial rate index (\%)	(0.250)	(0.314)
Alternative-specific constants	YES	YES
Origination year FE	YES	YES
Other controls	YES	YES
Number of Choice Situations	15,051	14,337
Number of Alternatives	3	2

Notes. Multinomial logit coefficients shown (robust SEs).
*** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Actual and Counterfactual FRM Shares

Table 4: Structural Logit Model of Mortgage Choice

	(1)	(2)	(3)	(4)	(5)	(6)
Step 2 Selection Correction?	No	Yes	No	Yes	No	Yes
FRM Rate Offered Initial ARM Rate Offered	$\begin{aligned} & \hline 0.764 \\ & (0.74) \\ & -0.368 \\ & (0.62) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \hline-1.474^{* *} \\ (0.58) \\ 1.280^{* *} \\ (0.54) \end{gathered}$				
ARM Margin Offered						
Experienced inflation (\%)	$\begin{gathered} 0.237 * * \\ (0.09) \end{gathered}$	$\begin{aligned} & 0.181^{*} \\ & (0.10) \end{aligned}$				
Log(Income)	$\begin{gathered} 0.00221 \\ (0.02) \end{gathered}$	$\begin{gathered} -0.00875 \\ (0.03) \end{gathered}$				
Age	$\begin{aligned} & -0.015 \\ & (0.02) \end{aligned}$	$\begin{aligned} & 0.004 \\ & (0.02) \end{aligned}$				
Age ${ }^{2} / 100$	$\begin{aligned} & 0.018 \\ & (0.02) \end{aligned}$	$\begin{aligned} & -0.005 \\ & (0.02) \end{aligned}$				
Joint owners	$\begin{aligned} & 0.144 \\ & (0.12) \end{aligned}$	$\begin{gathered} -0.074 \\ (0.13) \end{gathered}$				
Rural county	$\begin{aligned} & -0.053 \\ & (0.32) \end{aligned}$	$\begin{gathered} -0.776^{* *} \\ (0.35) \end{gathered}$				
Non-conventional						
Origination year FE	YES	YES	YES	YES	YES	YES
Number of Choice Situations	14,337	14,337	14,337	14,337	14,337	14,337

Notes. Binomial logit coefficient estimates. Dependent variable is $1=$ FRM, $0=$ ARM. Bootstrapped standard errors in parentheses, adjusting for 1st- and 2nd-step estimation, from 200 repetitions. ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Table 4: Structural Logit Model of Mortgage Choice

	(1)	(2)	(3)	(4)	(5)	(6)
Step 2 Selection Correction?	No	Yes	No	Yes	No	Yes
FRM Rate Offered Initial ARM Rate Offered	$\begin{aligned} & \hline 0.764 \\ & (0.74) \\ & -0.368 \\ & (0.62) \end{aligned}$	$\begin{gathered} \hline-1.474^{* *} \\ (0.58) \\ 1.280^{* *} \\ (0.54) \\ \hline \end{gathered}$				
ARM Margin Offered						
Experienced inflation (\%)	$\begin{gathered} 0.237 * * \\ (0.09) \end{gathered}$	$\begin{aligned} & 0.181^{*} \\ & (0.10) \end{aligned}$				
Log(Income)	$\begin{gathered} 0.00221 \\ (0.02) \end{gathered}$	$\begin{gathered} -0.00875 \\ (0.03) \end{gathered}$				
Age	$\begin{aligned} & -0.015 \\ & (0.02) \end{aligned}$	$\begin{aligned} & 0.004 \\ & (0.02) \end{aligned}$				
Age ${ }^{2} / 100$	$\begin{aligned} & 0.018 \\ & (0.02) \end{aligned}$	$\begin{aligned} & -0.005 \\ & (0.02) \end{aligned}$				
Joint owners	$\begin{aligned} & 0.144 \\ & (0.12) \end{aligned}$	$\begin{gathered} -0.074 \\ (0.13) \end{gathered}$				
Rural county	$\begin{aligned} & -0.053 \\ & (0.32) \end{aligned}$	$\begin{gathered} -0.776 * * \\ (0.35) \end{gathered}$				
Non-conventional						
Origination year FE	YES	YES	YES	YES	YES	YES
Number of Choice Situations	14,337	14,337	14,337	14,337	14,337	14,337

Notes. Binomial logit coefficient estimates. Dependent variable is $1=$ FRM, $0=$ ARM. Bootstrapped standard errors in parentheses, adjusting for 1st- and 2nd-step estimation, from 200 repetitions. ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Table 4: Structural Logit Model of Mortgage Choice

	(1)	(2)	(3)	(4)	(5)	(6)
Step 2 Selection Correction?	No	Yes	No	Yes	No	Yes
FRM Rate Offered	0.764	$-1.474^{* *}$				
	(0.74)	(0.58)				
Initial ARM Rate Offered	-0.368	$1.280^{* *}$				
	(0.62)	(0.54)				

ARM Margin Offered

Experienced inflation (\%)	$0.237^{* *}$ (0.09)	0.181^{*} (0.10)
Log(Income)	0.00221	-0.00875
	(0.02)	(0.03)
Age	-0.015	0.004
	(0.02)	(0.02)
Age $^{2} / 100$	0.018	-0.005
	(0.02)	(0.02)
Joint owners	0.144	-0.074
	(0.12)	(0.13)
Rural county	-0.053	$-0.776^{* *}$
	(0.32)	(0.35)

Non-conventional

Origination year FE	YES	YES	YES	YES	YES	YES
Number of Choice Situations	14,337	14,337	14,337	14,337	14,337	14,337

Notes. Binomial logit coefficient estimates. Dependent variable is $1=$ FRM, $0=$ ARM. Bootstrapped standard errors in parentheses, adjusting for 1st- and 2nd-step estimation, from 200 repetitions. ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Table 4: Structural Logit Model of Mortgage Choice

Non-conventional

Origination year FE	YES	YES	YES	YES	YES	YES
Number of Choice Situations	14,337	14,337	14,337	14,337	14,337	14,337

Notes. Binomial logit coefficient estimates. Dependent variable is $1=$ FRM, $0=$ ARM. Bootstrapped standard errors in parentheses, adjusting for 1st- and 2nd-step estimation, from 200 repetitions. ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Table 4: Structural Logit Model of Mortgage Choice

	(1)	(2)	(3)	(4)	(5)	(6)
Step 2 Selection Correction?	No	Yes	No	Yes	No	Yes
FRM Rate Offered	$\begin{aligned} & \hline 0.764 \\ & (0.74) \end{aligned}$	$\begin{gathered} \hline \hline-1.474^{* *} \\ (0.58) \end{gathered}$	$\begin{aligned} & \hline \hline-0.127 \\ & (0.60) \end{aligned}$	$\begin{gathered} \hline \hline-1.272 * * * \\ (0.45) \end{gathered}$		
Initial ARM Rate Offered	$\begin{aligned} & -0.368 \\ & (0.62) \end{aligned}$	$\begin{gathered} 1.280^{* *} \\ (0.54) \end{gathered}$	$\begin{aligned} & 0.838 \\ & (0.55) \end{aligned}$	$\begin{gathered} 1.196 * * * \\ (0.38) \end{gathered}$		
ARM Margin Offered			$\begin{gathered} -2.364^{* * *} \\ (0.55) \\ \hline \end{gathered}$	$\begin{aligned} & -0.302 \\ & (0.47) \end{aligned}$		
Experienced inflation (\%)	$\begin{gathered} \hline 0.237^{* *} \\ (0.09) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.181^{*} \\ & (0.10) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.222^{* *} \\ (0.10) \\ \hline \end{gathered}$	$\begin{aligned} & 0.180^{*} \\ & (0.10) \\ & \hline \end{aligned}$		
Log(Income)	$\begin{gathered} 0.00221 \\ (0.02) \end{gathered}$	$\begin{gathered} -0.00875 \\ (0.03) \end{gathered}$	$\begin{gathered} \hline-0.0572 \\ (0.04) \end{gathered}$	$\begin{gathered} \hline-0.0171 \\ (0.04) \end{gathered}$		
Age	$\begin{aligned} & -0.015 \\ & (0.02) \end{aligned}$	$\begin{aligned} & 0.004 \\ & (0.02) \end{aligned}$	$\begin{gathered} -0.007 \\ (0.02) \end{gathered}$	$\begin{aligned} & 0.004 \\ & (0.02) \end{aligned}$		
Age ${ }^{2} / 100$	$\begin{aligned} & 0.018 \\ & (0.02) \end{aligned}$	$\begin{aligned} & -0.005 \\ & (0.02) \end{aligned}$	$\begin{aligned} & 0.010 \\ & (0.02) \end{aligned}$	$\begin{aligned} & -0.004 \\ & (0.02) \end{aligned}$		
Joint owners	$\begin{aligned} & 0.144 \\ & (0.12) \end{aligned}$	$\begin{gathered} -0.074 \\ (0.13) \end{gathered}$	$\begin{aligned} & 0.035 \\ & (0.15) \end{aligned}$	$\begin{aligned} & -0.062 \\ & (0.12) \end{aligned}$		
Rural county	$\begin{aligned} & -0.053 \\ & (0.32) \end{aligned}$	$\begin{gathered} -0.776 * * \\ (0.35) \end{gathered}$	$\begin{gathered} -0.860^{* *} \\ (0.36) \end{gathered}$	$\begin{gathered} -0.761^{* * *} \\ (0.28) \end{gathered}$		
Non-conventional						
Origination year FE	YES	YES	YES	YES	YES	YES
Number of Choice Situations	14,337	14,337	14,337	14,337	14,337	14,337

Notes. Binomial logit coefficient estimates. Dependent variable is $1=$ FRM, $0=$ ARM. Bootstrapped standard errors in parentheses, adjusting for 1st- and 2nd-step estimation, from 200 repetitions. ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$

Table 4: Structural Logit Model of Mortgage Choice

	(1)	(2)	(3)	(4)	(5)	(6)
Step 2 Selection Correction?	No	Yes	No	Yes	No	Yes
	FRM Rate Offered	0.764	$-1.474^{* *}$	-0.127	$-1.272^{* * *}$	-0.575
	(0.74)	(0.58)	(0.60)	(0.45)	(0.45)	$\left(0.692^{*}\right.$
Initial ARM Rate Offered	-0.368	$1.280^{* *}$	0.838	$1.196^{* * *}$	0.184	0.593
	(0.62)	(0.54)	(0.55)	(0.38)	(0.35)	(0.39)
ARM Margin Offered			$-2.364^{* * *}$	-0.302	$3.738^{* * *}$	$2.600^{* *}$
			(0.55)	(0.47)	(1.03)	(1.22)
Experienced inflation (\%)	$0.237^{* *}$	0.181^{*}	$0.222^{* *}$	0.180^{*}	0.181^{*}	$0.192^{* *}$
	(0.09)	(0.10)	(0.10)	(0.10)	(0.10)	(0.10)
Log(Income)	0.00221	-0.00875	-0.0572	-0.0171	0.0798^{*}	0.0916
	(0.02)	(0.03)	(0.04)	(0.04)	(0.05)	(0.06)
Age	-0.015	0.004	-0.007	0.004	0.007	0.015
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
Age ${ }^{2} /$ 100	0.018	-0.005	0.010	-0.004	-0.006	-0.014
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
Joint owners	0.144	-0.074	0.035	-0.062	0.101	0.183
	(0.12)	(0.13)	(0.15)	(0.12)	(0.16)	(0.20)
Rural county	-0.053	$-0.776^{* *}$	$-0.860^{* *}$	$-0.761^{* * *}$	0.106	-0.375
	(0.32)	(0.35)	(0.36)	(0.28)	(0.33)	(0.40)
Non-conventional					$3.744^{* * *}$	$4.736^{* *}$
					(0.59)	(2.16)
Origination year FE	YES	YES	YES	YES	YES	
Number of Choice Situations	14,337	14,337	14,337	14,337	14,337	14,337

Notes. Binomial logit coefficient estimates. Dependent variable is $1=$ FRM, $0=$ ARM. Bootstrapped standard errors in parentheses, adjusting for 1st- and 2nd-step estimation, from 200 repetitions. *** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05$, * $\mathrm{p}<0.1$

Simulation of ex post Costs

Simulation Details

We simulate the ex post payments each household would make.
Standard contract types:

- 30-year term
- Self-amortizing, level payment FRM
- 1/1 ARM indexed to 1-yearTreasury
- No early payments or defaults
- Predicted interest rates $\left(\widehat{\text { Rate }}_{n, F R M}, \widehat{\text { Rate }}_{n, A R M}\right)$

Time horizon:

- Survey year
- If held to 5, 10, 15 years

Simulation Details

How to model refinancing behavior?

1. No Refinancing: borrower holds FRM until maturity
2. Expected Refinancing: empirical model from Andersen, Campbell, Meisner-Nielsen, Ramadorai (2014): $P\left(\right.$ refi $\left.\mid i_{0}\right)$

$$
=\Phi\left\{-1.921+\exp \left(-1.033 \times\left(O T-\left(i-i_{0}\right)\right)\right)\right\}
$$

3. Optimal Refinancing: follow Agarwal, Driscoll, Laibson (2013) square-root rule for Optimal Threshold:

$$
\text { Refinance iff } i-i_{0}<O T
$$

$$
O T \approx-\sqrt{\frac{\sigma \kappa}{M(1-\tau)} \sqrt{2(\rho+\lambda)}}
$$

FRM Rate for Mortgage ID 500

Table 6: Interest Payments for a Sample Household

PV of interest payments, discounted at 8% per year. The loan was for $\$ 204,844$ in constant year 2000 \$. Marginal tax rate $=0.25 ; \mathrm{T}=25$ years.

	FRM (\$)			ARM (\$)
	No Refi	Expected Refi	Optimal Refi	
PDV	235,498	199,637	193,659	163,074
- Int. Deduct.	-58,874	-49,909	-48,415	-40,768
+ Refi Cost	0	4,633	3,895	0
Total	176,623	154,361	149,139	122,305

Table 6: Interest Payments for a Sample Household

PV of interest payments, discounted at 8% per year. The loan was for $\$ 204,844$ in constant year 2000 \$. Marginal tax rate $=0.25 ; \mathrm{T}=25$ years.

	FRM (\$)			ARM (\$)
	No Refi	Expected Refi	Optimal Refi	
PDV	235,498	199,637	193,659	163,074
- Int. Deduct.	-58,874	-49,909	-48,415	-40,768
+ Refi Cost	0	4,633	3,895	0
Total	176,623	154,361	149,139	122,305

Simulated dollar cost of choosing an FRM:

- No Refi: \$176K - \$122K = \$54,000
- Expected Refi: \$154K - \$122K = \$32,000
- Optimal Refi: \$149K - \$122K = \$27,000

Table 6: Interest Payments for a Sample Household

PV of interest payments, discounted at 8% per year. The loan was for $\$ 204,844$ in constant year 2000 \$. Marginal tax rate $=0.25 ; \mathrm{T}=25$ years.

	FRM (\$)			ARM (\$)
	No Refi	Expected Refi	Optimal Refi	
PDV	235,498	199,637	193,659	163,074
- Int. Deduct.	-58,874	-49,909	-48,415	-40,768
+ Refi Cost	0	4,633	3,895	0
Total	176,623	154,361	149,139	122,305

Simulated dollar cost of choosing an FRM:

- No Refi: $\quad \$ 176 \mathrm{~K}$ - $\$ 122 \mathrm{~K}=\$ 54,000$
- Expected Refi: \$154K - \$122K = \$32,000
- Optimal Refi: $\$ 149 \mathrm{~K}$ - $\$ 122 \mathrm{~K}=\$ 27,000$

Welfare-Relevant TE: weighted average over all households (using switching probabilities)

Aggregate Cost Calculations

What is the ex post cost of choosing an FRM for marginal households?

- We calculate a "welfare-relevant treatment effect":

$$
\underset{\text { potential outcomes }}{\mathbb{E}[\underbrace{Y_{n, F R M}-Y_{n, A R M}}_{\text {potential treatments }} \mid \underbrace{D_{n}\left(\beta_{\pi}\right)=1, D_{n}(0)=0}_{n}]}
$$

- Intuition: difference in actual and counterfactual mortgage payments for the subpopulation of nearlyindifferent HHs

Aggregate Cost Calculations

What is the ex post cost of choosing an FRM for marginal households?

- We calculate a "welfare-relevant treatment effect":

$$
\begin{gathered}
\underset{\text { potential outcomes }}{\mathbb{E}[\underbrace{Y_{n, F R M}-Y_{n, A R M}}_{\text {potential treatments }} \mid \underbrace{D_{n}\left(\beta_{\pi}\right)=1, D_{n}(0)=0}_{n}]} \\
\quad \int \Delta y \cdot f\left(\Delta y \mid D_{n}\left(\beta_{\pi}\right)=1, D_{n}(0)=0\right) d \Delta y
\end{gathered}
$$

Aggregate Cost Calculations

What is the ex post cost of choosing an FRM for marginal households?

- We calculate a "welfare-relevant treatment effect":

$$
\begin{gathered}
\mathbb{E}[\underbrace{Y_{n, F R M}-Y_{n, A R M}}_{\text {potential outcomes }} \mid \underbrace{D_{n}\left(\beta_{\pi}\right)=1, D_{n}(0)=0}_{\text {potential treatments }}] \\
= \\
\int \Delta y \cdot \frac{h\left(D_{n}\left(\beta_{\pi}\right)=1, D_{n}(0)=0 \mid \Delta y\right) \cdot f(\Delta y)}{g\left(D_{n}\left(\beta_{\pi}\right)=1, D_{n}(0)=0\right)} d \Delta y
\end{gathered}
$$

Aggregate Cost Calculations

What is the ex post cost of choosing an FRM for marginal households?

- We calculate a "welfare-relevant treatment effect":

$$
\begin{gathered}
\mathbb{E}[\underbrace{Y_{n, F R M}-Y_{n, A R M}}_{\text {potential outcomes }} \mid \underbrace{D_{n}\left(\beta_{\pi}\right)=1, D_{n}(0)=0}_{\text {potential treatments }}] \\
= \\
\int \Delta y \cdot \frac{h\left(D_{n}\left(\beta_{\pi}\right)=1, D_{n}(0)=0 \mid \Delta y\right) \cdot f(\Delta y)}{g\left(D_{n}\left(\beta_{\pi}\right)=1, D_{n}(0)=0\right)} d \Delta y
\end{gathered}
$$

can be estimated by

$$
\propto \frac{1}{N} \sum_{n=1}^{N}\left(\hat{Y}_{n, F R M}-\hat{Y}_{n, A R M}\right) \cdot\left(\hat{P}\left(D_{n}\left(\hat{\beta}_{\pi}\right)=1\right)-\hat{P}\left(D_{n}(0)=0\right)\right)
$$

Table 7: Additional Interest Paid Due to Inflation Experiences
Scenario 2: Risk-adjusted rates, seniority-adjusted ARM margins

Time Horizon:	Survey Year	5 years	10 years	15 years
After-tax PDV: (all in \$)				
No Refi	5,674	10,124	19,126	27,345
Expected Refi	-	10,056	15,886	20,505
Optimal Refi	-	9,455	14,460	18,639
\% switching households	13.5	13.5	13.5	13.5

Scenario 3: Risk-adjusted rates and ARM margins				
Time Horizon:	Survey Year	5 years	10 years	15 years
After-tax PDV: (all in \$)				
No Refi	5,355	9,635	18,193	26,176
Expected Refi	-	9,556	14,915	19,261
Optimal Refi	-	8,947	13,474	17,374
\% switching households	14.3	14.3	14.3	14.3
Notes. Table reports WRTEs, measured as the extra interest (after taxes) + refinancing costs paid by a household choosing an FRM instead of an ARM due to experienced inflation. Original loan amounts are in constant 2000 \$.				

Table 7: Additional Interest Paid Due to Inflation Experiences
Scenario 2: Risk-adjusted rates, seniority-adjusted ARM margins

Time Horizon:	Survey Year	5 years	10 years	15 years
After-tax PDV: (all in $\$$)				
No Refi	5,674	10,124	19,126	27,345
Expected Refi	-	10,056	15,886	20,505
Optimal Refi	-	9,455	14,460	18,639
\% switching households	13.5	13.5	13.5	13.5

Scenario 3: Risk-adjusted rates and ARM margins				
Time Horizon:	Survey Year	5 years	10 years	15 years
After-tax PDV: (all in \$)				
No Refi	5,355	9,635	18,193	26,176
Expected Refi		9,556	14,915	19,261
Optimal Refi	-	8,947	13,474	17,374
\% switching households	14.3	14.3	14.3	14.3
Notes. Table reports WRTEs, measured as the extra interest (after taxes) refinancing costs paid by a household choosing an FRM instead of an ARM due to experienced inflation. Original loan amounts are in constant 2000 \$.				

Householder Age and Mobility

Source: CPS ASEC 2005 \& 2010 / authors' calculations.
Fitted values calculated using fourth-order polynomial.

Table 7: Additional Interest Paid Due to Inflation Experiences

 Scenario 2: Risk-adjusted rates, seniority-adjusted ARM marginsTime Horizon:
E[tenure | age]
After-tax PDV: (all in \$)

No Refi	20,819
Expected Refi	15,769

Optimal Refi 14,475
\% switching households
13.5

Scenario 3: Risk-adjusted rates and ARM margins
Time Horizon:
E[tenure | age]
After-tax PDV: (all in \$)

No Refi	19,964
Expected Refi	14,854
Optimal Refi	13,543

Optimal Refi $\frac{13,543}{} 14.3$
Notes. Table reports WRTEs, measured as the extra interest (after taxes) +
refinancing costs paid by a household choosing an FRM instead of an ARM due to
experienced inflation. Original loan amounts are in constant $2000 \$$.

Different Inflation Environments

Our ex post estimates reflect the actual realization of inflation over 1985-2013.

- Are results driven by the Great Moderation?
- Other realizations were possible given initial conditions.

Simulation parameters

Variable	Process	$\boldsymbol{\mu} \quad \boldsymbol{\sigma}$	Source
π	$\operatorname{AR}(1), \phi=0.811$	$0.038 \quad 0.027$	CPI-U, 1960-2013
r_{1}	Indep. WN	0.020 .022	Campbell-Cocco (2003)
Nominal rates	ST given by Fisher equation LT given by EH + TP	$\theta_{10}=0.01$	Campbell-Cocco (2003)
Mortgage rates	$\begin{aligned} & y_{F R M}=y_{10}+\theta_{F R M} \\ & y_{A R M, 1}=y_{1}+\theta_{A R M, 1} \\ & y_{A R M, 2+}=y_{1}+\theta_{A R M, 2+} \end{aligned}$	$\begin{aligned} & \theta_{F R M}=0.017 \\ & \theta_{A R M, 1}=0.015 \\ & \theta_{A R M, 2+}=0.0275 \end{aligned}$	PMMS, 1971-2013 PMMS, 1984-2013 PMMS, 1987-2013

Average Inflation and E[WRTE] in 100 Simulations

Aggregate Implications

Lifetime experiences of macroeconomic outcomes influence HH decision-making in an economically-significant manner.

- Most effected cohorts: young in the 1980s - Boomers.
- Overweighting lifetime experiences significantly distorted mortgage decisions. Using structural choice estimates and accounting for E[tenure] and E[refi]:
$>$ In late 1980s: 1 million additional $\mathrm{FRMs} \Rightarrow$ ex post overpayment of $\$ 14$ billion.
$>$ Long shadows: in late 1990s, Boomers took out $1 / 2$ million additional $\mathrm{FRMs} \Rightarrow$ ex post overpayment of $\$ 9$ billion.

Welfare implications of overweighting are potentially large.

