Macroprudential Policy and Household Leverage Evidence from Administrative Household-Level Data

Sjoerd van Bekkum Erasmus University Rotterdam
Marc Gabarro University of Mannheim
Rustom M. Irani University of Illinois & CEPR
José-Luis Peydró Imperial, UPF-CREI-BGSE-ICREA & CEPR

Banca d’Italia ECB conference, Rome, October 2019
Household leverage cycles

1. **U.S. household leverage growth**
 - 1980s: household debt-to-GDP ~50%
 - 2008: ~100%
 - 2018: ~75%

2. **Negative consequences of “excessive” debt**
 - Household-level
 - Consumption and property maintenance
 - Default
 - Labor supply and mobility
 - Entrepreneurship and innovation
 - Aggregate effects
 - Drop in consumer spending, employment, and investment
 - Impairment of bank balance sheets
 - Longer and deeper recession, slower recovery
Policy responses aim to reduce household debt

1 **Ex post**: “bailout” bad debt in bad state of world
 ▶ HAMP, HARP, Countrywide settlement, etc.
 ▶ Benefits and costs?
 ☑ Reverses negative consequences
 ☑ Strategic default among healthy borrowers
 ☑ Lower credit supplied to vulnerable borrowers going forward

2 **Ex ante**: “macroprudential” policies in good state
 ▶ Lender-based: e.g., countercyclical capital buffers
 ☑ Reduce credit supply to households and firms
 ☑ “Leakages” may render ineffective
 ▶ Borrower-based: e.g., PTI, DTI, and/or LTV limits
 - Great in theory, very common in practice
 - Limited empirical evidence on effectiveness
Increasing share of countries regulating household leverage

Source: Cerutti et al. (2018)

- LTV regulation popular, but limited evidence on success
Key empirical evidence on macroprudential policies

1. Lender-based macroprudential policies can be effective
 - e.g., Jimenez et al. (2017), Basten and Koch (2019)

2. However, lender-based policies may suffer from “leakages”
 - e.g., Kim et al. (2018), Aiyar et al. (2014)

3. Cross-country evidence on borrower-based policies mixed
 - e.g., Cerutti et al. (2017)

4. Micro-level evidence primarily focused on lender responses
 - e.g., Acharya et al. (2019), DeFusco et al. (2019)

What do we do? Micro-evidence on how households respond to a borrower-based macroprudential policy (leverage restriction)
This paper

Our objectives

1. Household finance response to macroprudential lending limit
2. Household financial distress and homeownership dynamics

Setting: Dutch households facing new mortgage LTV limit in 2011
- Highly relevant: levered households, boom-bust cycle in prices
- Amazing data: all HH balance sheets and housing transactions
This paper

Our objectives

1. Household finance response to macroprudential lending limit
2. Household financial distress and homeownership dynamics

Setting: Dutch households facing new mortgage LTV limit in 2011

- Highly relevant: levered households, vicious boom-bust cycle
- Amazing data: all HH balance sheets and housing transactions
Household leverage in the Netherlands

Household leverage before 2011

1. High LTVs at-origination, often >>120
 - Demand: high transaction costs and unlimited MID
 - Supply: full recourse, gov’t guarantees, securitized

2. Highly-leveraged households
 - 2010: 120% HH debt-to-GDP (vs 99% peak in US in ‘08:Q1)

3. Ugly recession
 - 2008-2013:
 - House prices fell 20%
 - # underwater households increased from 5 to 30%
Household leverage in the Netherlands

2011 introduction of mortgage LTV limit

1. Maximum LTV ratio at-origination set to 106%
 - Announced 3/21/2011 and implemented 8/1/2011
 - Ratcheted down 1%pt per year to 100% by 2018

2. No “leakages”: all domestic/foreign banks and nonbanks must comply

3. Some exceptions for borrowers (“soft limit”)
 - Movers: allowed to roll negative equity
 - Stayers: if refinancing
 - Minimize by focus on first-time homebuyers
This paper

Our objectives

1. Household finance response to macroprudential lending limit
2. Household financial distress and homeownership dynamics

Setting: Dutch households facing new mortgage LTV limit in 2011
- Highly relevant: levered households, vicious boom-bust cycle
- Amazing data: all HH balance sheets and housing transactions
Administrative data on universe of households
Link Statistics Netherlands (tax data) and Land Registry (housing transactions)

- Labor income
- Interest expense
- Mortgage payment

Income statement (income tax)

Balance sheet (wealth tax)
- Assets
- Bank accounts
- Debt
- Mortgage debt
- Housing wealth
- Net worth (equity)

Housing transaction records
- Homeownership
- Sales price
- Timing

- We focus on non-self-employed first-time homebuyers
Administrative data on universe of households
Link Statistics Netherlands (tax data) and Land Registry (housing transactions)

- Labor income
- Interest expense
- Mortgage payment

Income statement (income tax)

Balance sheet (wealth tax)

- Assets
- Bank accounts
- Debt
- Mortgage debt
- Housing wealth
- Net worth (equity)

Housing transaction records

- Homeownership
- Sales price
- Timing

» We focus on non-self-employed first-time homebuyers
Key outcomes (mostly imputed from tax returns)

1. Mortgage debt choices
 - *Mortgage Amount, Home Value, LTV, Mortgage Payment, Interest Expense*

2. Household leverage
 - *Mortgage Payment/Income, Mortgage Debt/Income, and Total Debt/Income*

3. Household liquidity
 - *Liquid Assets*

- Things we are collecting...
 - Characteristics of home; borrower financials at time of purchase; family demographics at time of purchase; cash gifts
This paper

Our objectives

1. Household finance response to macroprudential lending limit
2. Household financial distress and homeownership dynamics

Setting: Dutch households facing new mortgage LTV limit in 2011

- Highly relevant: levered households, boom-bust cycle in prices
- Amazing data: all HH balance sheets and housing transactions
LTV adjustments: dramatic shift in time-series
LTV adjustments: bunching at threshold
Measuring household-level effects of LTV limit

- Main challenge
 1. We have a repeated cross-section of first-time homebuyers
 2. No obvious counterfactual (everyone’s affected)

- Simple before-versus-after comparison in a narrow window around shock requires that
 1. Borrowers and/or lenders do not anticipate policy
 2. No confounding macroeconomic events

- We build a counterfactual
 - Control for kitchen sink of observables via OLS
 - Or via matching estimators
 - [Instrument for purchase decision using family variables]
Measuring household-level effects of LTV limit

August 2010 No limit August 2011 Max LTV limit August 2012
Measuring household-level effects of LTV limit

- We refine this approach to control for potential time effects

- DiD based on $LTV > 106$
 - “Affected” households can’t choose $LTV > 106$ in after period
 - Latent choice is unobservable
 - Identify them based on predicted LTV
 - Prediction based on unconstrained choices in the before period

- How do we do prediction?
 - Predict LTV or $1_{LTV > 106}$
 - Old dog: kitchen sink approach via OLS
 - [New tricks: machine learning via LASSO/random forest]
Measuring household-level effects of LTV limit

\[\text{LTV} < 106 \]
\[\text{LTV} > 106 \]

August 2010
August 2011
August 2012

\[\overline{\text{LTV}} \] = prediction based on unconstrained choices in the before period
Mortgage borrowing outcomes

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>(LTV)</th>
<th>(\log(\text{Mortgage Amount}))</th>
<th>(\log(\text{Home Value}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[1]</td>
<td>[2]</td>
<td>[3]</td>
</tr>
<tr>
<td>(After \times d(LTV > 106))</td>
<td>(-0.064^{***})</td>
<td>(-0.042^{***})</td>
<td>0.018^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Postcode fixed effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Borrower control variables</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>(N)</td>
<td>34,223</td>
<td>34,022</td>
<td>33,950</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.34</td>
<td>0.69</td>
<td>0.70</td>
</tr>
</tbody>
</table>

1. **6.4%pt drop in LTV among affected households**

2. **Distributional consequences?**
 - Differences by \(Income_t\), \(Liquid \text{ Assets}_{t-1}\), and \(Wealth_{t-1}\)
 - Rich: constraint does bind (e.g., due to MID)
 - Poor: effect at least 20% larger
Mortgage borrowing outcomes

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>LTV</th>
<th>log(Mortgage Amount)</th>
<th>log(Home Value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[1]</td>
<td>[2]</td>
<td>[3]</td>
</tr>
<tr>
<td>After × d(LTV > 106)</td>
<td>−0.064*** (0.002)</td>
<td>−0.042*** (0.004)</td>
<td>0.018*** (0.004)</td>
</tr>
<tr>
<td>Postcode fixed effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Borrower control variables</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>34,223</td>
<td>34,022</td>
<td>33,950</td>
</tr>
<tr>
<td>R²</td>
<td>0.34</td>
<td>0.69</td>
<td>0.70</td>
</tr>
</tbody>
</table>

1. Borrow 4.2%pt less, but do not buy cheaper homes

2. Interpretation?
 - Borrow ~€9k less to buy house costing an additional ~€4k
 - Funding gap ~€13k
Household debt and liquidity dynamics

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Mortgage Payment</th>
<th>Interest Expense</th>
<th>Payment /Income</th>
<th>Mortgage Debt /Income</th>
<th>Total Debt /Income</th>
<th>Liquid Assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>After × (d(\bar{LTV} > 106))</td>
<td>-2,354.52</td>
<td>-210.75</td>
<td>-0.032</td>
<td>-0.104</td>
<td>-0.109</td>
<td>-1,668.26</td>
</tr>
<tr>
<td></td>
<td>(1,002.11)</td>
<td>(105.56)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.019)</td>
<td>(460.51)</td>
</tr>
<tr>
<td>Postcode fixed effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Borrower control variables</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>(N)</td>
<td>32,296</td>
<td>32,296</td>
<td>32,296</td>
<td>34,001</td>
<td>34,223</td>
<td>34,223</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.10</td>
<td>0.51</td>
<td>0.09</td>
<td>0.54</td>
<td>0.50</td>
<td>0.59</td>
</tr>
</tbody>
</table>

1. Mortgage debt servicing costs decline
Household debt and liquidity dynamics

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Mortgage Payment</th>
<th>Interest Expense</th>
<th>Payment /Income</th>
<th>Mortgage Debt /Income</th>
<th>Total Debt /Income</th>
<th>Liquid Assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>After × d(\bar{LTV} > 106)</td>
<td>-2,354.52**</td>
<td>-210.75*</td>
<td>-0.032**</td>
<td>-0.104***</td>
<td>-0.109***</td>
<td>-1,668.26***</td>
</tr>
<tr>
<td>(1,002.11)</td>
<td>(105.56)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.019)</td>
<td>(460.51)</td>
<td></td>
</tr>
<tr>
<td>Postcode fixed effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Borrower control variables</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>32,296</td>
<td>32,296</td>
<td>32,296</td>
<td>34,001</td>
<td>34,223</td>
<td>34,223</td>
</tr>
<tr>
<td>R²</td>
<td>0.10</td>
<td>0.51</td>
<td>0.09</td>
<td>0.54</td>
<td>0.50</td>
<td>0.59</td>
</tr>
</tbody>
</table>

1. Mortgage debt servicing costs decline
2. Household leverage declines lockstep with mortgage leverage
 ▶ No “leakages” to “unregulated” debt (i.e., personal loans)
Household debt and liquidity dynamics

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Mortgage Payment</th>
<th>Interest Expense</th>
<th>Payment /Income</th>
<th>Mortgage Debt /Income</th>
<th>Total Debt /Income</th>
<th>Liquid Assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>After × d((LTV > 106))</td>
<td>-2,354.52**</td>
<td>-210.75*</td>
<td>-0.032**</td>
<td>-0.104***</td>
<td>-0.109***</td>
<td>-1,668.26***</td>
</tr>
<tr>
<td></td>
<td>(1,002.11)</td>
<td>(105.56)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.019)</td>
<td>(460.51)</td>
</tr>
<tr>
<td>Postcode fixed effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Borrower control variables</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>(N)</td>
<td>32,296</td>
<td>32,296</td>
<td>32,296</td>
<td>34,001</td>
<td>34,223</td>
<td>34,223</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.10</td>
<td>0.51</td>
<td>0.09</td>
<td>0.54</td>
<td>0.50</td>
<td>0.59</td>
</tr>
</tbody>
</table>

1. Mortgage debt servicing costs decline
2. Household leverage declines lockstep with mortgage leverage
 - No “leakages” to “unregulated” debt (i.e., personal loans)
3. Tradeoff? Households consume liquidity (~25% at median)
This paper

Our objectives:
1. Household finance response to macroprudential lending limit
2. Household financial distress and homeownership dynamics

Setting: Dutch households facing new mortgage LTV limit in 2011
- Highly relevant: levered households, boom-bust cycle in prices
- Amazing data: all HH balance sheets and housing transactions
Two consequences for households

1. **Household financial distress:**
 - Lower household leverage and debt servicing costs
 - Higher upfront cost of buying \rightarrow consume liquidity buffer
 \rightarrow heightened risk of payment difficulties in short run

 ∴ We examine loan repayment performance

2. **Financial exclusion:**
 - Benefits of LTV limit *conditional on buying home*
 - Higher downpayment may impede ownership among poor

 ∴ We examine extensive margin decision to buy a first home
#1 Household financial distress

1. Conceptual issues
 - Loans are full recourse and government guaranteed
 - Mortgage foreclosure very unlikely
 - Focus instead on loan repayment performance
 - Distress due to excessive mortgage debt can have severe consequences for households (e.g., consumption)

2. Data and measurement
 - Loan-level data source from van Bekkum et al. (2018)
 - Monthly performance of large chunk of mortgage market
 - Cannot be linked to tax data (no wealth data)
 - Payment Arrears = 1 if missed a loan payment
#1 Poor households less likely to exhibit financial distress

<table>
<thead>
<tr>
<th>Sample:</th>
<th>All</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{After} \times \mathbb{1}(\text{LTV} > 106)$</td>
<td>-0.023*** (0.007)</td>
<td>-0.026** (0.010)</td>
<td>-0.014 (0.009)</td>
</tr>
<tr>
<td>Postcode fixed effects</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Loan control variables</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Borrower control variables</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>77,751</td>
<td>38,493</td>
<td>39,258</td>
</tr>
<tr>
<td>R^2</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

- 2.3%pt decline in arrears (baseline: 3.3%)
#2 Extensive margin transition into homeownership

- Goal: measure how LTV limit affects $\Pr(\text{Buy} \mid \text{Rent})$ for observationally similar households

- Revert to main data set and universe of renters
 - Identify renters pre-policy
 - Identify renters post-policy
 - Measure transition rate before-versus-after

- Modify DiD design
 - Predict LTV for renting population
 - Measure transition rate for affected-versus-unaffected
#2 Poor households less likely to get on property ladder

<table>
<thead>
<tr>
<th>Dependent variable: Homeowner</th>
<th>Income<sub>t</sub></th>
<th>Wealth<sub>t−1</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Household finance variable:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample:</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>[1]</td>
<td>[2]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>After × d(LTV > 106)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>−0.002***</td>
<td>−0.004***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Postcode fixed effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Borrower control variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>1,965,072</td>
<td>982,468</td>
</tr>
<tr>
<td>R<sup>2</sup></td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Low wealth households: 19.4%pt reduction in transition rate
Summary

- **Households respond to the LTV limit by reducing:**
 1. Mortgage debt
 2. Overall leverage (no “leakages” to unregulated debt)
 3. Liquidity
 4. Mortgage defaults
 5. Transition rate into homeownership

- **Further potential implications for households:**
 1. Does lower leverage improve resilience to negative shocks?
 - We already looked at this unconditionally
 - Default and consumption response to income/wealth loss
 - This really is the bigger question
 2. Private wealth accumulation and inequality
 3. Durable goods consumption at time of purchase
 4. Role of institutional buyers (“buy-to-let”)