Fiscal Backing for Monetary Policy: What If It Ain't There?

Eric M. Leeper

University of Virginia

Monetary Policy: Bridging Science and Practice, ECB

October 2019

Euro Area Monetary Policy & Inflation

Policy rate, inflation rate & target inflation rate

Swiss Monetary Policy & Inflation

Policy rate, inflation rate & target inflation rate

Swedish Monetary Policy & Inflation

Policy rate, inflation rate & target inflation rate

Central Bank Assets (2006 = 100)

Many fold increases in central bank balance sheets

What's Wrong with Inflation?

Does fiscal practice undermine monetary science?

- How do the fiscal rules being adopted in Europe interact with monetary policy?
- Message from the science:

For monetary policy to successfully target inflation, fiscal policy must provide "appropriate backing"

Do existing fiscal rules deliver perverse backing?

Intuition

- In formal models, macro policy has two prime objectives
 - 1. uniquely determine inflation
 - 2. stabilize government debt
- Inflation-targeting regimes clearly assign tasks
 - 1. monetary policy determines inflation
 - 2. fiscal policy stabilizes debt
- These assignments hide a dirty little secret:

While stabilizing debt, fiscal policy must also back monetary policy

Institutional Designs Deny the Secret

Illustrative Model

- Representative household lives forever
 - receives constant endowment of goods, y, each period
 - chooses consumption & bonds to maximize $\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$
 - bonds sell at P^b_t & pay geometrically decaying coupons of ρ^{j-1}, for a *j*-period bond
- Two equilibrium conditions

Fisher Equation
$$\frac{1}{R_t} = \beta \mathbb{E}_t \frac{1}{\pi_{t+1}}$$
Term Structure $P_t^b = \mathbb{E}_t R_t^{-1} (1 + \rho P_{t+1}^b)$

Illustrative Model

- Model designed to examine how fiscal policy reacts to monetary policy actions
- Monetary policy: sets short-term interest rate, R_t

Monetary Policy
$$\frac{1}{R_t} = \frac{1}{R^*} + \alpha \left(\frac{1}{\pi_t} - \frac{1}{\pi^*}\right) + \varepsilon_t$$

- *ε_t*: temporary deviation from pure inflation targeting, *E_tε_{t+j}* = 0, *j* > 0
- positive ε_t is expansionary monetary policy
- when $\alpha > 0$, above-target inflation brings higher R_t
- $\alpha > 1$: the Taylor principle

Illustrative Model

Fiscal policy: sets primary surplus, s_t

Fiscal Policy
$$s_t = s^* + \gamma \left(\frac{P_{t-1}^b B_{t-1}}{P_{t-1}} - b^* \right)$$

• when $\gamma > 0$, above-target debt bring higher s_t

- to return debt to target, surplus must respond enough to cover interest payments & retire some debt
- this requires $\gamma > r$, *r* is the real interest rate
- \blacktriangleright But notice: fiscal rule entails direct response to price level when $\gamma>0$

• higher P_t leads to lower s_{t+1}

Required Policy Coordination

- Choices of policy parameters, (α, γ), determine joint monetary-fiscal regime
- Two distinct policy mixes achieve prime objectives
 - 1. uniquely determine inflation
 - 2. stabilize government debt
- I focus only on the conventional inflation-targeting regime
 - monetary policy satisfies Taylor principle, $\alpha > 1$
 - fiscal policy returns debt to target, $\gamma > r$
- Even in this IT regime, fiscal policy must support monetary policy

Equilibrium Inflation

In this monetary-fiscal regime

Equilibrium Inflation

$$\frac{1}{\pi_t} = \frac{1}{\pi^*} - \frac{1}{\alpha} \varepsilon_t$$

- If no shocks, inflation always on target
- Positive shock—expansion—raises inflation
- Tempting to infer...
 - only monetary policy choices— $\pi^*, \alpha, \varepsilon_t$ —matter for inflation
 - fiscal policy irrelevant for inflation

Do not submit to temptation

What Is Fiscal Policy Doing?

- Full equilibrium requires stable debt
- Transitory shock, so bond prices do not change
- Debt evolution comes from government's budget

$$\frac{P^{b}B_{t}}{P_{t}} + s^{*} - \gamma b^{*} = \left[R^{b}\left(\frac{1}{\pi^{*}} - \frac{1}{\alpha}\varepsilon_{t}\right) - \gamma\right]\frac{P^{b}_{t-1}B_{t-1}}{P_{t-1}}$$

• Monetary expansion, $\varepsilon_t > 0$, raises inflation

• reduces real debt service, R^b/π_t

- reduces real value of debt held by the public, $P^b B_t / P_t$
- Fiscal rule: lower real debt service produces lower future primary surpluses

What Is Fiscal Policy Doing?

A monetary expansion that raises inflation is backed by a fiscal expansion that returns debt to target

- This fiscal rule achieves two distinct things
 - 1. it stabilizes debt
 - 2. it backs monetary expansion with fiscal expansion
- But don't have to think in terms of "backing"
- Instead ask: What ensures the bond market clears?
- (We usually apply Walras' law uncritically)

A Different Perspective

- In this model, demand for nominal bonds is simple
 - demand is homogeneous of degree 1 in P_t
 - demand is decreasing in bond price, P_t^b
 - bonds derive value from discounted stream of cash flows—primary surpluses
 - nominal demand for the government bond portfolio, B_t^d

$$B_t^d = \frac{1}{P_t^b} P_t \mathbb{E}_t \sum_{j=1}^{\infty} \beta^j s_{t+j}$$

$$=\frac{1}{P_t^b}P_t\mathbb{E}_tPV(S_{t+1})$$

- Economy initially in equilibrium at price level P_{t0}
- Monetary expansion raises inflation for a single period
- Price level is at the permanently higher level P_{1t}

Bond Market Equilibrium

At new price level, *CD* is excess demand for bonds B^s can rise, fall, stay unchanged, depending on s_t Figure drawn for $s_t = 0$

Discussion

- Excess demand for bonds arises for clear reasons
- Monetary expansion reduces the real value of bonds
- If the expected cash flows—surpluses—do not fall...
 - the goods cost of a bond has fallen
 - but the goods payoff—surpluses—is unchanged
 - makes bonds attractive
 - individuals substitute out of goods and into bonds
 - reduces aggregate demand for goods
- Bond market behavior counteracts monetary policy's aim to raise aggregate demand

Bond Market Equilibrium

- Models resolve this conflict with a convenient, completely untested assumption
- Models typically assume $\gamma > r$, so . . .
- Lower real value of debt brings forth lower $\mathbb{E}_t PV(S_{t+1})$
- To reduce bond demand exactly enough to clear the bond market at the new higher price level
- This is the magic of Ricardian equivalence

Bond Market Equilibrium

 $\mathbb{E}_t PV(S_{t+1})$ falls by exactly enough to eliminate excess demand B^s can rise, fall, stay unchanged, depending on s_t Figure drawn for $s_t = 0$

How Have Fiscal Policies Responded to Monetary Ease?

- European fiscal consolidations began as early as 2010 and really kicked in after sovereign debt troubles
- Governments have adopted aggressive rules that...
 - aim primarily at reducing government debt & running primary surpluses
 - with some provisions for countercyclical actions
- Rules designed primarily to solve political problems
 - certainly a legitimate concern
- But may inadvertently create economic problems

European Fiscal Rules

- It is perfectly possible for fiscal policy to stabilize debt, but not back monetary policy
- Set $\gamma = 0$ in fiscal rule, so $s_t = s^*$
- This will stabilize debt at

$$\frac{P_t^b B_t}{P_t} = \frac{s^*}{r}$$

Nail target b^* by setting target s^* appropriately

• Only one problem: P_t^b/P_t is fiscally determined

Monetary policy can choose **timing** of inflation but not entire inflation path

The essence of fiscal support for monetary policy is that surpluses must respond to the price level

a nominal impact induces a real response

- Fiscal rules that react only to real variables will fail to back monetary policy appropriately
- We see this in the euro area, Sweden, & Switzerland

Euro Area Budget Surpluses

Euro Area: Net Lending & Debt Service (% GDP)

Declining debt service & rising surpluses

Euro Area Budget Surpluses

Rapidly declining debt service & rapidly rising surpluses

Swedish Government Debt

Swedish Central Government Debt (% GDP)

Now well below the 35% debt anchor

Swedish Budget Surpluses

Swedish Budget Surpluses

Now well above the 0.33% net lending target

Swiss Government Debt

Surpluses since before the global financial crisis

Swiss Budget Surpluses

Surpluses since before the global financial crisis

European Fiscal Rules

- I've read some of the EC's material on rules
- Fiscal Rule Strength Index...
 - only one criterion is about macroeconomic considerations
 - "resilience to shocks outside control of government"
 - only one of the four components of that criterion might refer to fiscal backing for monetary policy
 - "Are there exclusions from the rule in the form of items that fall outside authorities' control at least in the short term (e.g. interest payments, unemployment benefits)?"
- Does this permit routine fiscal support for monetary policy?

Designing Fiscal Rules

- ► To answer this question, need richer models
- What does fiscal backing look like when...
 - monetary policy reacts to a range of non-policy shocks?
 - monetary policy is unconventional (e.g., QE)?
 - monetary policy is at the effective lower bound?
 - there is a single monetary authority & many fiscal authorities?
 - the economy is close to its fiscal limit?
- Need to address these questions before we design fiscal rules
- Need to quantify fiscal backing

Wrap Up

- I am not calling to abandon fiscal rules
- I am calling to design rules with monetary-fiscal interactions in mind
- There is no conflict between rules that...
 - stabilize debt at sensible levels and
 - ensure fiscal backing for monetary policy
 - possible to address political & economic problems simultaneously
- Key lies in understanding that monetary & fiscal policies necessarily interact
- Denying this fact is religion, not science