Managing Expectations without RE: Instruments versus Targets

George-Marios Angeletos1 and Karthik Sastry2
1MIT and NBER, 2MIT

ECB Conference on Monetary Policy, October 7-8, 2019
How to Manage Expectations?

- **Instruments**: “will maintain 0% interest rates for τ quarters”
- **Targets**: “will bring unemployment down to $Y\%$’
How to Manage Expectations?

- **Instruments**: “will maintain 0% interest rates for τ quarters”
- **Targets**: “will bring unemployment down to $Y\%$’

Instrument Communication
August 2011: “The Committee [FOMC] currently anticipates ... exceptionally low levels for the federal funds rate at least through mid 2013.”
January 2012: horizon extended to “... at least through late 2014.”
September 2012: horizon extended to ” ... at least through mid 2015 .”

Target Communication (reserved?)
December 2012: “... as long as the unemployment rate remains above 6 1/2 percent, inflation between one and two years ahead is projected to be no more [than 2.5%], and longer-term inflation expectations continue to be well anchored.”
How to Manage Expectations?

- **Instruments**: “will maintain 0% interest rates for τ quarters”
- **Targets**: “will bring unemployment down to $Y\%$’

Instrument Communication

August 2011: “The Committee [FOMC] currently anticipates ... exceptionally low levels for the federal funds rate at least through mid 2013.”

January 2012: horizon extended to “... at least through late 2014.”

September 2012: horizon extended to ” ... at least through mid 2015 .”

Target Communication (reserved?)

December 2012: “... as long as the unemployment rate remains above 6 1/2 percent, inflation between one and two years ahead is projected to be no more [than 2.5%], and longer-term inflation expectations continue to be well anchored.

Target Communication (resolute?)

“do whatever it takes” (and perhaps won’t bother to tell you how)
Instrument vs Target Communication

- Reason to prefer one over the other?

 - **NO** in benchmark with “Ramsey world”
 - (i) Full credibility
 - (ii) No future shocks (or policy contingent on them)
 - (iii) Rational Expectations + Common Knowledge
Instrument vs Target Communication

- Reason to prefer one over the other?

- No in benchmark with
 - (i) Full credibility
 - (ii) No future shocks (or policy contingent on them)
 - (iii) Rational Expectations + Common Knowledge

“Ramsey world”

Our focus

Relax (iii) and explore role of bounded rationality
Main Lesson

<table>
<thead>
<tr>
<th>Optimal Forward Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Instrument communication when GE feedback is weak</td>
</tr>
<tr>
<td>▶ Target communication when GE feedback is strong</td>
</tr>
</tbody>
</table>

Stop talking about R and start talking about u, Y when:

- ✓ long ZLB
- ✓ steep Keynesian cross
- ✓ strong financial accelerator

Rationale: help minimize

- ✓ agents' need to “reason about the economy”
- ✓ distortion due to bounded rationality
- ✓ lack of confidence
Main Lesson

Optimal Forward Guidance

- Instrument communication when GE feedback is weak
- Target communication when GE feedback is strong

Stop talking about R and start talking about u, Y when:

✓ long ZLB
✓ steep Keynesian cross
✓ strong financial accelerator
Main Lesson

Optimal Forward Guidance

- Instrument communication when GE feedback is weak
- Target communication when GE feedback is strong

Stop talking about R and start talking about u, Y when:

✓ long ZLB
✓ steep Keynesian cross
✓ strong financial accelerator

Rationale: help minimize

✓ agents’ need to “reason about the economy”
✓ distortion due to bounded rationality
✓ lack of confidence
Literature

- Instruments vs Targets
 Poole (1970), Weitzman (1974), Taylor rules

- Micro-foundations of Beauty Contests

- Forward Guidance, GE Attenuation and Myopia
 Farhi & Werning (2018), Garcia-Schmidt & Woodford (2018): Level k
 Gabaix (2018): cognitive discounting

- Communication in Beauty Contests, Information Design
Model
Notation and Behavior

\[C = \int c_i \, di = \text{average action today} \]

\[Y = \text{outcome (target) in the future} \]

\[\tau = \text{instrument in the future} \]

\[c_i = (1 - \gamma) \mathbb{E}_i[\tau] + \gamma \mathbb{E}_i[Y] \]

\[\gamma \in (0, 1) \] parameterizes GE feedback
Notation and Behavior

\[C = \int c_i \, di = \text{average action today} \]
\[Y = \text{outcome (target) in the future} \]
\[\tau = \text{instrument in the future} \]

\[c_i = (1 - \gamma) \mathbb{E}_i[\tau] + \gamma \mathbb{E}_i[Y] \]
\[\gamma \in (0, 1) \text{ parameterizes GE feedback} \]

Story (microfoundation in paper)

ZLB today, but not tomorrow

\[C = \text{spending today}; \ Y = \text{income today plus tomorrow} \]
\[\tau = \text{minus interest rate tomorrow (or for how long thereafter)} \]
\[\gamma = \text{Keynesian multiplier} \]
Final outcome depends on realized behavior and policy

\[Y = (1 - \alpha)\tau + \alpha C \]

\(\alpha \in (0, 1) \) parameterizes direct policy effect

Story (microfoundation in paper)

Loose policy tomorrow \(\rightarrow \) higher output tomorrow
The Model (just 2 equations!)

\[c_i = (1 - \gamma)E_i[\tau] + \gamma E_i[Y] \] (1)

\[Y = (1 - \alpha)T + \alpha C \] (2)
The Model (just 2 equations!) and the Key Issue

\[c_i = (1 - \gamma)E_i[\tau] + \gamma E_i[Y] \] \hspace{1cm} (1)

\[Y = (1 - \alpha)\tau + \alpha C \] \hspace{1cm} (2)

- **No guidance**: Agents have to forecast both \(\tau \) and \(Y \)
The Model (just 2 equations!) and the Key Issue

\[c_i = (1 - \gamma)E_i[\tau] + \gamma E_i[Y] \] (1)

\[Y = (1 - \alpha)\tau + \alpha C \] (2)

- No guidance: Agents have to forecast both \(\tau \) and \(Y \)
- **Instrument communication**: know \(\tau \), have to think about \(Y \)
The Model (just 2 equations!) and the Key Issue

\[c_i = (1 - \gamma)E_i[\tau] + \gamma E_i[Y] \]
\[Y = (1 - \alpha)\tau + \alpha C \]

- No guidance: Agents have to forecast both \(\tau \) and \(Y \)
- Instrument communication: know \(\tau \), have to think about \(Y \)
- Target communication: know \(Y \), have to think about \(\tau \)
Timing

\(t = 0 \) (FOMC meeting): PM sees \(\theta \) (ideal point) and announces either \(\tau = \hat{\tau} \) (IC) or \(Y = \hat{Y} \) (TC)

\(t = 1 \) (liquidity trap): Agents form beliefs and choose \(c_i \)

\(t = 2 \) (exit): \(C, \tau \) and \(Y \) are realized
Timing

\[t = 0 \text{ (FOMC meeting): PM sees } \theta \text{ (ideal point) and announces} \]
\[\text{either } \tau = \hat{\tau} \text{ (IC) or } Y = \hat{Y} \text{ (TC)} \]

\[t = 1 \text{ (liquidity trap): Agents form beliefs and choose } c_i \]

\[t = 2 \text{ (exit): } C, \tau \text{ and } Y \text{ are realized} \]

The Policy Problem

\[
\min_{\theta \mapsto \text{message,}(\tau,Y)} \mathbb{E}[(1 - \chi)(\tau - \theta)^2 + \chi(Y - \theta)^2]
\]
\[\text{s.t. } (\tau, Y) \text{ is implementable in equil given} \]
\[\text{eq. (1)-(2) and message } \tau = \hat{\tau} \text{ or } Y = \hat{Y} \]
Frictionless, REE Benchmark

Benchmark \equiv \text{representative, rational and attentive agent}

(CK of both announcement and rationality)

\implies \text{no error in predicting behavior of others:}

\[E_i[C] = C \]

\implies \text{any equilibrium satisfies}

\[c_i = C = Y = \tau \]

\implies \text{irrelevant whether PM announces } \tau \text{ or } Y

(\text{equivalence of primal and dual problems})
Friction: Lack of CK / Anchored Beliefs

- **Assumption:** Lack of CK of announcement

Let $X \in \{\tau, Y\}$ be the announcement. Agents are rational and attentive but think only fraction $\lambda \in [0, 1]$ of others is attentive:

$$E_i[X] = X \quad E_i[E[X]] = \lambda E_i[X]$$
Friction: Lack of CK / Anchored Beliefs

- **Assumption:** Lack of CK of announcement
 Let \(X \in \{\tau, Y\} \) be the announcement. Agents are rational and attentive but think only fraction \(\lambda \in [0, 1] \) of others is attentive:

\[
E_i[X] = X \quad E_i[E[X]] = \lambda E_i[X]
\]

- **Convenient proxy for**
 - HOB in incomplete-info settings
 - **Level-C Thinking:** same essence, but a “bug”
 - **Cognitive discounting:** same for GE, but adds PE distortion
Friction: Lack of CK / Anchored Beliefs

▶ Assumption: Lack of CK of announcement
Let $X \in \{\tau, Y\}$ be the announcement. Agents are rational and attentive but think only fraction $\lambda \in [0,1]$ of others is attentive:

$$E_i[X] = X \quad E_i[E[X]] = \lambda E_i[X]$$

▶ Convenient proxy for
- HOB in incomplete-info settings
- Level-C Thinking: same essence, but a "bug"
- Cognitive discounting: same for GE, but adds PE distortion

▶ Key shared implication: Anchored Beliefs

$$\bar{E}[[C]] = \lambda C$$
Main Results
1. Friction *attenuates* power of FG under IC

1. Friction attenuates power of FG under IC

2. Friction *amplifies* power of FG under TC
Preview of Argument

1. Friction attenuates power of FG under IC

2. Friction amplifies power of FG under TC

3. Role of GE: As $\gamma \uparrow$, first distortion \uparrow and second \downarrow
Preview of Argument

1. Friction attenuates power of FG under IC

2. Friction amplifies power of FG under TC

3. Role of GE: As $\gamma \uparrow$, first distortion \uparrow and second \downarrow

4. Optimality: TC \succ IC if and only if γ large enough
IC: Game after Announcing τ

$$C = (1 - \gamma)\bar{E}[\tau] + \gamma\bar{E}[Y]$$
IC: Game after Announcing τ

\[C = (1 - \gamma)\bar{E}[\tau] + \gamma\bar{E}[Y] \]

(reasoning by agents)

\[= (1 - \alpha)\bar{E}[\tau] + \alpha\bar{E}[C] \]

\[= \tau \text{ (fixed by FG) } \]
IC: Game after Announcing τ

(reasoned by agents)

$C = (1 - \gamma)\bar{E}[\tau] + \gamma\bar{E}[\gamma]$

$\gamma \in (0, 1)$

$C = (1 - \delta_{\tau})\tau + \delta_{\tau}\bar{E}[C]$
IC: Game after Announcing τ

$$C = (1 - \gamma)\bar{E}[\tau] + \gamma\bar{E}[Y]$$

(reasoned by agents)

$$= (1 - \alpha)\bar{E}[\tau] + \alpha\bar{E}[C]$$

$$= \tau \quad \text{(fixed by FG)}$$

$$C = (1 - \delta_{\tau})\tau + \delta_{\tau}\bar{E}[C]$$

$\alpha \gamma \in (0, 1)$

- Game of **complements**

 “I expect less spending and income, so I spend less”

- Friction **reduces** effectiveness of FG

TC: Game after Announcing Y

$$C = (1 - \gamma)\bar{E}[\tau] + \gamma\bar{E}[Y]$$
TC: Game after Announcing Y

$C = (1 - \gamma)\bar{E}[\tau] + \gamma\bar{E}[Y]$

(reasoned by agents)

$= \frac{1}{1-\alpha}\bar{E}[Y] - \frac{\alpha}{1-\alpha}\bar{E}[C]$

$= Y$ (fixed by FG)
TC: Game after Announcing Y

\[C = (1 - \gamma) \bar{E}[\tau] + \gamma \bar{E}[Y] = \frac{1}{1-\alpha} \bar{E}[Y] - \frac{\alpha}{1-\alpha} \bar{E}[C] \]

Reasoned by agents

\[= Y \text{ (fixed by FG)} \]

\[C = (1 - \delta_Y) Y + \delta_Y \bar{E}[C] \]

\[- \frac{(1-\gamma)\alpha}{1-\alpha} \leq 0 \]

- Game of **substitutes**

 “I expect less spending, so I expect looser policy and spend more”

- Friction **increases** effectiveness of FG

 Turns FG literature upside down
Implementability

Proposition: implementable sets

\[\{ (\tau, Y) : \tau = \mu_\tau(\gamma, \lambda) Y \} \]

Instrument communication

\[\{ (\tau, Y) : \tau = \mu_Y(\gamma, \lambda) Y \} \]

Target communication

- Friction \neq “everything is dampened”
- TC keeps powder dry
The Role of the GE Feedback

Proposition

\[\frac{\partial \mu_\tau}{\partial \gamma} > 0 \]

\[\frac{\partial \mu_Y}{\partial \gamma} > 0 \]

Can prove these slope up, *and* never cross

Recall: \(\mu = \frac{\partial \tau}{\partial Y} \)

"Distortion from reasoning about what is not announced is very high when \(\gamma \) is large, but not as important for \(Y \), not so much for \(\tau \)"

"\(\mu \) changes as \(\gamma \) (GE) increases ⇒ distortion under IC increases, distortion under TC decreases"
The Role of the GE Feedback

Proposition

\[\frac{\partial \mu_T}{\partial \gamma} > 0 \]
\[\frac{\partial \mu_Y}{\partial \gamma} > 0 \]

Quick intuition

Distortion from reasoning about what is not announced

High \(\gamma \) → very important to figure out \(Y \), not so much \(\tau \)

As \(\gamma \) (GE) increases \(\Rightarrow \) distortion under IC increases
distortion under TC decreases

Can prove these slope up, *and* never cross

Recall: \(\mu = \frac{\partial \tau}{\partial Y} \)
Main Result

Theorem: optimal communication

There exists a \(\hat{\gamma} \in (0, 1) \) ("critical GE feedback") such that

- \(\gamma < \hat{\gamma} \): optimal to communicate instrument
- \(\gamma \geq \hat{\gamma} \): optimal to communicate target

Additional results in paper: precise values of optimal message and attained \((\tau, Y)\)
Main Result

Theorem: optimal communication

There exists a $\hat{\gamma} \in (0, 1)$ (“critical GE feedback”) such that

- $\gamma < \hat{\gamma}$: optimal to communicate instrument
- $\gamma \geq \hat{\gamma}$: optimal to communicate target

Additional results in paper:

precise values of optimal message and attained (τ, Y)

variant with Level-k Thinking
Application: Forward Guidance at the Zero Lower Bound
Forward Guidance at ZLB

- Angeletos & Lian (AER 2018)
 - lack of CK attenuates GE effects of FG
 - longer horizon \Rightarrow longer GE chains \Rightarrow more distortion

- Farhi & Werning (2018)
 - similar attenuation with Level-k Thinking
 - inco markets \Rightarrow steeper Keynesian cross \Rightarrow more distortion

Forward Guidance at ZLB

- **Angeletos & Lian (AER 2018)**
 - lack of CK attenuates GE effects of FG
 - *longer horizon* \Rightarrow longer GE chains \Rightarrow more distortion

- **Farhi & Werning (2018)**
 - similar attenuation with Level-k Thinking
 - *inco markets* \Rightarrow steeper Keynesian cross \Rightarrow more distortion

Forward Guidance at ZLB

- Our paper: bypass friction with target communication
 - “stop talking about R, start talking about Y or U”
 - preferable when longer ZLB or steeper Keynesian cross
- Reminiscent of Mario Draghi’s “do whatever it takes”
 - relies on strong GE feedback but not multiple equilibria
 - common logic: alleviate concerns about behavior of others
Broader Scope
Generalized Departure from RE

- Misspecified beliefs:

\[
\tilde{E}[C] = \lambda C + \sigma \epsilon
\]

where \(\lambda, \sigma > 0 \) and \(\epsilon \) is orthogonal to \(\theta \)

- Nests:
 - under-reaction \((\lambda < 1)\): FG literature
 - over-reaction \((\lambda > 1)\): Shleifer et al
 - noise or animal spirits \((\sigma > 0)\)
Generalized Departure from RE

- Misspecified beliefs:

\[\bar{E}[C] = \lambda C + \sigma \epsilon \]

where \(\lambda, \sigma > 0 \) and \(\epsilon \) is orthogonal to \(\theta \)

- Nests:
 - under-reaction \((\lambda < 1)\): FG literature
 - over-reaction \((\lambda > 1)\): Shleifer et al
 - noise or animal spirits \((\sigma > 0)\)

- Optimal policy result goes through
 - intuition: all about limiting the role of \(\bar{E}[C] \)
 - i.e., “more thinking = more distortion” result extends
Policy Rules

- Announce a linear rule:

\[\tau = \phi_0 - \phi_y Y \]

(e.g., state-contingent “intercept” and “slope” of Taylor rule)

- RE (\(\lambda = 1\)) \(\Rightarrow\) optimal (\(\phi_0, \phi_y\)) is indeterminate
Policy Rules

- Announce a linear rule:
 \[\tau = \phi_0 - \phi_y Y \]
 (e.g., state-contingent “intercept” and “slope” of Taylor rule)
- RE \((\lambda = 1) \Rightarrow \) optimal \((\phi_0, \phi_y)\) is indeterminate

Optimal rule with bounded rationality \((\lambda < 1)\)

- Determinacy: unique optimal \((\phi_0^*, \phi_y^*)\)
- GE: optimal \(\phi_y^*\) increases with GE multiplier \((\gamma)\)

- I.e., smoothed version of earlier result:
 higher \(\gamma \rightarrow\) tilt toward target communication
Conclusion
Take-Home Lessons

How to communicate / manage expectations?

- Tilt focus from R path to u, Y targets when feedback loops are strong

New perspective on Taylor rules

- Traditional: demand vs supply shocks
- Here: arrest bounded rationality or nearly self-fulfilling traps

Extend logic from multiple equil (Mario Draghi) to unique equil

- large multipliers \rightarrow HOB critical \rightarrow “nearly” self-fulfilling \rightarrow
Supplementary Material
Level-\(k\): Similar but Less Sharp

- **Instrument comm** (games of complements): the same
 - others are less rational \(\approx\) others are less attentive
- **Target comm** (games of substitutes): a bug
 - distortion changes sign between even and odd \(k\)

- Our preferred formulation avoids the bug
- Cognitive discounting avoids it too (but confounds PE-GE)
FG: Three GE Feedbacks

1. Within Dynamic IS: Keynesian cross
2. Within NKPC: dynamic pricing complementarity
3. Across: inflation-spending feedback

- ▶ All three: intensify with length of ZLB / horizon of FG
FG: Numerical Illustration

- Textbook NK model, with modest friction \((\lambda = .75)\)

![Graph showing attenuation effect over horizon T in quarters]

- Attenuation by 90% when ZLB last 5 years
- Plus, discontinuity at infinite horizons