Low interest rates, market power, and productivity growth
by Liu, Mian and Sufi

Alberto Martin

ECB, CREI and Barcelona GSE

October 7, 2019
Overview

- In recent years: significant decline in real interest rates
- Source of concern?
 - Excessive risk-taking?
 - Misallocation of resources?
- This paper:
 - Very low interest rates stifle competition.
 - Ultimately, low productivity growth (i.e., secular stagnation).
 - Theory and empirical evidence.
Theory

In principle: low interest rates have mixed effects.

- Pro-competitive: make it easier for follower to catch up.
- Anti-competitive: make it easier for leader to sustain leadership.
Theory

- In principle: low interest rates have mixed effects.
 - Pro-competitive: make it easier for follower to catch up.
 - Anti-competitive: make it easier for leader to sustain leadership.

- Which one dominates?
Theory

- In principle: low interest rates have mixed effects.
 - Pro-competitive: make it easier for follower to catch up.
 - Anti-competitive: make it easier for leader to sustain leadership.

- Which one dominates?

- This paper: for \(r \) low enough, anti-competitive effect.
Theory: main ingredients

- Continuum of industries with a leader and a follower, Bertrand competition.
Theory: main ingredients

- Continuum of industries with a leader and a follower, Bertrand competition.
- Marginal cost of each firm decreasing in productivity.
Theory: main ingredients

- Continuum of industries with a leader and a follower, Bertrand competition.
- Marginal cost of each firm decreasing in productivity.
- Model state variable s: productivity gap between leader and follower.
Theory: main ingredients

- Continuum of industries with a leader and a follower, Bertrand competition.
- Marginal cost of each firm decreasing in productivity.
- Model state variable \(s \): productivity gap between leader and follower.
- Given \(R&D \) investment by leader and follower \((\eta_s, \eta_{-s})\) in interval \(\Delta \), productivity gap:
 - Increases by one step with probability \(\Delta \cdot \eta_s \).
 - Decreases by one step with probability \(\Delta \cdot (\eta_{-s} + \kappa) \).
 - Remains constant otherwise.
Theory: main ingredients

- Continuum of industries with a leader and a follower, Bertrand competition.
- Marginal cost of each firm decreasing in productivity.
- Model state variable s: productivity gap between leader and follower.
- Given $R&D$ investment by leader and follower (η_s, η_{-s}) in interval Δ, productivity gap:
 - Increases by one step with probability $\Delta \cdot \eta_s$.
 - Decreases by one step with probability $\Delta \cdot (\eta_{-s} + \kappa)$.
 - Remains constant otherwise.
- **Assumption:** flow payoffs negative if both firms invest.
Result #1: leader invests in more states than follower, $n \geq k$.

- Intuition: suppose $k > n$, leadership is short-lived.
Theory: main results (steady state)

- **Result #1**: leader invests in more states than follower, $n \geq k$.
- **Corollary**: competitive and monopolistic region.

Suppose $(n_k)_0$ and $(n_k)_0$

- **Flow**: payoffs negative!
 - Ultimately, all industries monopolistic, decline in productivity growth!

Martin (ECB, CREI and Barcelona GSE)
Low interest rates
October 7, 2019 6 / 17
Theory: main results (steady state)

- **Result #1**: leader invests in more states than follower, $n \geq k$.
- **Corollary**: competitive and monopolistic region.

- **Main result**: $\lim_{r \to 0} k = \infty$ and $\lim_{r \to 0} (n - k) = \infty$.
 - Both $k \to \infty$ and $n \to \infty$
 - Two possibilities: (i) $(n - k) \to \infty$ or (ii) $(n - k) \to 0$
 - Suppose $(n - k) \to 0$
 - Leader and follower invest in all states.
 - Economy is always in the competitive region.
 - Flow payoffs negative!

![Diagram showing competitive and monopolistic regions](image-url)
Theory: main results (steady state)

- **Result #1**: leader invests in more states than follower, \(n \geq k \).
- **Corollary**: competitive and monopolistic region.

![Diagram showing competitive and monopolistic regions with transition rates](image)

- **Main result**: \(\lim_{r \to 0} k = \infty \) and \(\lim_{r \to 0} (n - k) = \infty \).
 - Both \(k \to \infty \) and \(n \to \infty \)
 - Two possibilities: (i) \((n - k) \to \infty \) or (ii) \((n - k) \to 0 \)
 - Suppose \((n - k) \to 0 \)
 * Leader and follower invest in all states.
 * Economy is always in the competitive region.
 * Flow payoffs negative!

- Ultimately, *all industries monopolistic*, decline in productivity growth!
Empirics: main results

- Theory’s main prediction: at low levels of r...
 - ...a decline in r should increase the relative valuation of leaders vs. followers
Empirics: main results

- Theory’s main prediction: at low levels of r...
 - ...a decline in r should increase the relative valuation of leaders vs. followers

- Regress firm stock return on 10-year treasury yield:

$$R_{i,j,t} = \alpha_{j,t} + \beta_0 D_{i,j,t-1} + \beta_1 D_{i,j,t-1} \cdot \Delta i_{t} + \beta_2 D_{i,j,t-1} \cdot i_{t-1} + \beta_3 D_{i,j,t-1} \cdot \Delta i_{t} \cdot i_{t-1} + \gamma X_{i,j,t} + \varepsilon_{i,j,t}$$

where $D_{i,j}$ is an “industry leader” dummy
Empirics: main results

- Theory’s main prediction: at low levels of r...
 - ...a decline in r should increase the relative valuation of leaders vs. followers

- Regress firm stock return on 10-year treasury yield:

$$R_{i,j,t} = \alpha_{j,t} + \beta_0 D_{i,j,t-1} + \beta_1 D_{i,j,t-1} \cdot \Delta i_t + \beta_2 D_{i,j,t-1} \cdot i_{t-1}$$

$$+ \beta_3 D_{i,j,t-1} \cdot \Delta i_t \cdot i_{t-1} + \gamma X_{i,j,t} + \epsilon_{i,j,t}$$

where $D_{i,j}$ is an “industry leader” dummy

- Theoretical predictions:
 - $\beta_1 < 0$
 - $\beta_3 > 0$
 - Confirmed in their data (post 1980)
General reaction

- Very rich (and long!) paper.
- Provocative message, elegant model, and suggestive empirics.
- My discussion: general comments.
On the theory

- After all is said and done, main question lingers.
 - Why does anticompetitive effect dominate?
 - Strengthen intuition, concentrate discussion in one section.
 - Horizon of leader vs. horizon of follower
 - Formally, what is the role of κ?

- Low interest rates improve performance of leader.
- But low interest rates could also allow development of new industries.
 - e.g. horse-carriage industry vs. development of combustion engine!
On the theory

- After all is said and done, main question lingers.
 - Why does anticompetitive effect dominate?
 - Strengthen intuition, concentrate discussion in one section.
 - Horizon of leader vs. horizon of follower
 - Formally, what is the role of κ?

- Main result relies on unbounded returns as $r \to 0$.
 - Formally, it is firms’ discount rate that goes to zero.
 - But this rate could be positive even at very low interest rates.
 - e.g. risk of expropriation, obsolescence...
On the theory

- After all is said and done, main question lingers.
 - Why does anticompetitive effect dominate?
 - Strengthen intuition, concentrate discussion in one section.
 - Horizon of leader vs. horizon of follower
 - Formally, what is the role of κ?

- Main result relies on unbounded returns as $r \to 0$.
 - Formally, it is firms’ discount rate that goes to zero.
 - But this rate could be positive even at very low interest rates.
 - e.g. risk of expropriation, obsolescence...

- In model, number of industries (varieties) fixed.
 - Low r improves performance of leader.
 - But low r could also allow development of new industries.
 - e.g. horse-carriage industry vs. development of combustion engine!
BOOKS

Commentary: Stores like Barnes & Noble used to be the bad guys, but now I'm nostalgic for them

The shuttering of once-mighty video-rental chain Blockbuster, store after store, in the face of competition from Netflix and other streaming services prompted similar twinges.
On the theory

- After all is said and done, main question lingers.
 - Why does anticompetitive effect dominate?
 - Strengthen intuition, concentrate discussion in one section.
 - Horizon of leader vs. horizon of follower
 - Formally, what is the role of κ?

Main result relies on unbounded returns as $r \to 0$.
 - Formally, it is firms’ discount rate that goes to zero.
 - But this rate could be positive even at very low interest rates.
 - e.g. risk of expropriation, obsolescence...

In model, number of industries (varieties) fixed.
 - Low r improves performance of leader.
 - But low r could also allow development of new industries.
 - e.g. horse-carriage industry vs. development of combustion engine!

Key takeaway of model: decline in r could have anticompetitive effects.
On the empirics

Basic mechanism of the theory

- Decline in interest rates
- Industry monopolistic: leader increases investment relative to follower
- Decline in productivity growth

Empirical exercise: Decline of interest rates on relative return of leaders

Martin (ECB, CREI and Barcelona GSE)
On the empirics

- Basic mechanism of the theory

1. Decline in interest rates
2. Industry monopolistic: leader increases investment relative to follower
3. Decline in productivity growth

Empirical exercise:
Decline of interest rates on relative return of leaders
On the empirics

- Basic mechanism of the theory

Decline in interest rates → Industry monopolistic: leader increases investment relative to follower → Decline in productivity growth

Empirical exercise:
Decline of interest rates on relative return of leaders
On the empirics

- Basic mechanism of the theory

 - Decline in interest rates
 - Industry monopolistic: leader increases investment relative to follower
 - Decline in productivity growth

 Empirical exercise:
 Decline of interest rates on relative return of leaders

- But Δr could raise return of leaders for many reasons:
 - Enable firms of certain size (i.e., leaders) to upgrade technology (e.g. Melitz-type model).
 - In such a case, productivity growth need not decrease.
On the empirics

- **Basic mechanism of the theory**

- But Δr could raise return of leaders for many reasons:
 - Enable firms of certain size (i.e., leaders) to upgrade technology (e.g. Melitz-type model).
 - In such a case, productivity growth need not decrease.

- **More direct evidence?**
 - Effect of Δr on $R&D$ or productivity growth.
 - Differential effects of Δr across industries (depending on contestability).
On the empirics II

- Δr stifles competition when r is low.
On the empirics II

- Δr stifles competition when r is low.
 - Split sample into high- and low- r and run
 \[
 R_{i,j,t} = \alpha_{j,t} + \beta_0 D_{i,j,t-1} + \beta_1 D_{i,j,t-1} \cdot \Delta i_t + \gamma X_{i,j,t} + \epsilon_{i,j,t}
 \]
 separately in subsamples.
Δr stifles competition when r is low.

- Split sample into high- and low-r and run

$$R_{i,j,t} = \alpha_{j,t} + \beta_0 D_{i,j,t-1} + \beta_1 D_{i,j,t-1} \cdot \Delta i_t + \gamma X_{i,j,t} + \epsilon_{i,j,t}$$

separately in subsamples.

- Prediction: sign of β_1 should change
Δr stifles competition when r is low.

- Split sample into high- and low- r and run

$$R_{i,j,t} = \alpha_{j,t} + \beta_0 D_{i,j,t-1} + \beta_1 D_{i,j,t-1} \cdot \Delta i_t + \gamma X_{i,j,t} + \varepsilon_{i,j,t}$$

separately in subsamples.
- Prediction: sign of β_1 should change

- Regressions use *nominal* interest rates.
 - *Real* interest rates matter for theory.
 - Significant fluctuations in inflation during sample.
 - I would stick to real.
Conclusions

- Very thought provoking paper.

- Key takeaways:
 - Theory: declines in r could have anticompetitive effects.
 - Empirics: declines in r appear to benefit large firms.
 - Is this bad for productivity growth?