Stock Price Cycles and Business Cycles

Klaus Adam
University of Oxford

Sebastian Merkel
Princeton University

October 2019
New technologies often associated with aggregate instability:
- 1990’s dotcom; 1920’s auto/aviation/electricity, 19th cent. railways
- booms: output + employment + stock prices
- booms followed by output falls & spectacular asset price collapses
New technologies often associated with aggregate instability:
- 1990’s dotcom; 1920’s auto/aviation/electricity, 19th cent. railways
- booms: output + employment + stock prices
- booms followed by output falls & spectacular asset price collapses

Aggregate instability associated with low real rates: Taylor (2007)
- secular decline in safe interest rates (Laubach & Williams)
- repeated stock price boom-bust cycles over past 30 yrs....
Figure: Price cycles in the S&P 500 (Q1:1985-Q4:2014)
Simple economic model: technology shocks only driving force
Simple economic model: technology shocks only driving force

Model quantitatively replicates

- behavior of postwar U.S. business cycle
- volatility of postwar U.S. stock prices
Introduction

- **Simple economic model**: technology shocks only driving force

- Model quantitatively replicates
 - behavior of postwar U.S. business cycle
 - volatility of postwar U.S. stock prices

- Generates occasional boom-bust cycles in stock prices & ec. activity
Model predicts likelihood of boom-bust episodes to be
- higher in periods of **high productivity growth**
- higher in periods of **low real interest rates**
- higher following a previous boom: **tendency to repeat cycles**
Model predicts likelihood of boom-bust episodes to be
- higher in periods of high productivity growth
- higher in periods of low real interest rates
- higher following a previous boom: tendency to repeat cycles

Large booms feature ‘Minsky moment’:
Persistent undershooting: depressed ec. activity & stock prices
Key Model Ingredient: Extrapolation

- Only ’non-standard’ model feature:
 - Subjective expectations about capital gains in the stock market

\[P_{t+1} = E P_t + \gamma P_{t-1} + \beta E P_{t-1} + \gamma E P_{t-1} \]

Rationalizable as Bayesian learning: \(\gamma > 0 \) is the Kalman gain
Key Model Ingredient: Extrapolation

- Only ’non-standard’ model feature:
 - **Subjective expectations about capital gains in the stock market**
- All other expectations rational & all agents maximize
Key Model Ingredient: Extrapolation

- Only 'non-standard' model feature:
 - Subjective expectations about capital gains in the stock market
- All other expectations rational & all agents maximize
- Learning from experience in line with survey evidence: Malmendier & Nagel (QJE 2011), Adam, Marcet & Beutel (AER 2017)

\[\text{Rationalizable as Bayesian learning: } g > 0 \text{ is the Kalman gain} \]
Key Model Ingredient: Extrapolation

- Only ’non-standard’ model feature:

 Subjective expectations about capital gains in the stock market

- All other expectations rational & all agents maximize

- Learning from experience in line with survey evidence: Malmendier&Nagel (QJE 2011), Adam,Marcet&Beutel (AER 2017)

- *Some* amount of extrapolation from past capital gains:

\[
E_t^P \left[\frac{P_{t+1}}{P_t} \right] = E_{t-1}^P \left[\frac{P_t}{P_{t-1}} \right] + g \left(\frac{P_t}{P_{t-1}} - E_{t-1}^P \left[\frac{P_t}{P_{t-1}} \right] \right)
\]

Rationalizable as Bayesian learning: \(g > 0 \) is the Kalman gain.
Survey Data and Extrapolative Expectations

Figure: UBS survey expectations versus adaptive prediction model
Extrapolation as Amplification

- Fundamental shocks \Rightarrow move stock prices

Stock price movements amplified by extrapolation

Stock price movements translate into real economy: high capital price trigger investment \Rightarrow output & hours worked

Amplification stronger when interest rates low or tech growth high
Extrapolation as Amplification

- Fundamental shocks \Rightarrow move stock prices
- Stock price movements *amplified* by extrapolation
Extrapolation as Amplification

- Fundamental shocks \Rightarrow move stock prices
- Stock price movements **amplified** by extrapolation
- Stock price movements translate into real economy:
 - high capital price trigger investment \Rightarrow output & hours worked
 - \Rightarrow **financial accelerator without financial friction**
Fundamental shocks \Rightarrow move stock prices

Stock price movements **amplified** by extrapolation

Stock price movements translate into real economy:
- high capital price trigger investment \Rightarrow output & hours worked
- \Rightarrow **financial accelerator without financial friction**

Amplification stronger when interest rates low or tech growth high
• Time-separable household preferences

\[E_0^P \sum_{t=0}^{\infty} \beta^t (\log C_t - H_t) \]

• Standard 2-sector production structure

\[Y_{C,t} = K_t^{\alpha_z} (Z_t H_{c,t})^{1-\alpha_c} \]
\[Y_{I,t} \propto (Z_t H_{i,t})^{1-\alpha_c} \]

• Technology shocks (only source of randomness):

\[Z_t = \gamma Z_{t-1} \varepsilon_t \]
Quantitative Performance: Real Variables

<table>
<thead>
<tr>
<th>Moment</th>
<th>Data (StdDev)</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(Y)$</td>
<td>1.72 (0.25)</td>
<td>1.83</td>
</tr>
<tr>
<td>$\sigma(C)/\sigma(Y)$</td>
<td>0.61 (0.03)</td>
<td>0.67</td>
</tr>
<tr>
<td>$\sigma(I)/\sigma(Y)$</td>
<td>2.90 (0.35)</td>
<td>2.90</td>
</tr>
<tr>
<td>$\sigma(H)/\sigma(Y)$</td>
<td>1.08 (0.13)</td>
<td>1.06</td>
</tr>
<tr>
<td>$\rho(Y, C)$</td>
<td>0.88 (0.02)</td>
<td>0.84</td>
</tr>
<tr>
<td>$\rho(Y, I)$</td>
<td>0.86 (0.03)</td>
<td>0.89</td>
</tr>
<tr>
<td>$\rho(Y, H)$</td>
<td>0.75 (0.03)</td>
<td>0.70</td>
</tr>
</tbody>
</table>
Quantitative Performance: PD-Ratio and Return Volatility

<table>
<thead>
<tr>
<th>Moment</th>
<th>Data (StdDev)</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E[P/D]$</td>
<td>152.3 (25.3)</td>
<td>149.95</td>
</tr>
<tr>
<td>$\sigma(P/D)$</td>
<td>63.39 (12.39)</td>
<td>44.96</td>
</tr>
<tr>
<td>$\rho(P/D)$</td>
<td>0.98 (0.003)</td>
<td>0.97</td>
</tr>
<tr>
<td>$\sigma(r^e)$</td>
<td>7.98 (0.35)</td>
<td>7.07</td>
</tr>
</tbody>
</table>
Comovement: PD-Ratio with Real Side/Expectations

<table>
<thead>
<tr>
<th>Moment</th>
<th>Data (StdDev)</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho(P/D, H)$</td>
<td>0.51 (0.17)</td>
<td>0.79</td>
</tr>
<tr>
<td>$\rho(P/D, I/Y)$</td>
<td>0.58 (0.31)</td>
<td>0.69</td>
</tr>
<tr>
<td>$\rho(P/D, E^P[r^e])$</td>
<td>0.79 (0.07)</td>
<td>0.52</td>
</tr>
</tbody>
</table>
Equity Premium & Risk-Free Rate Volatility

<table>
<thead>
<tr>
<th>Moment</th>
<th>Data (StdDev)</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E[r^e]$</td>
<td>1.87 (0.45)</td>
<td>1.25</td>
</tr>
<tr>
<td>$E[r^f]$</td>
<td>0.25 (0.13)</td>
<td>0.78</td>
</tr>
<tr>
<td>$\sigma(r^f)$</td>
<td>0.82 (0.12)</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Belief-Driven Propagation (Estimated Model)

- $m_{c,t}$
- $Q_{c,t}$
- $K_{c,t+1}$
- W_t
Model predicts more boom-bust episodes with high technology growth or low real interest rates

Equilibrium capital price equation (slightly simplified):

\[Q_t = X_t^{1/\beta} \gamma m_t, \]

where

- \(m_t \): subjective capital gain expectations
- \(E_P_t[Q_t + 1/Q_t] \): end. variable that depend on parameters, technology, path of capital stock
- \(\beta \): discount factor (\(\beta < 1 \))
- \(\gamma \): gross aggregate growth rate (\(\gamma > 1 \))
- \(X_t \): end. variable that depend on parameters, technology, path of capital stock
Model predicts more boom-bust episodes with high technology growth or low real interest rates

Equilibrium capital price equation (slightly simplified):

\[Q_t = \frac{X_t}{1 - \beta \gamma \cdot m_t}, \]

where

\[m_t : \text{subjective capital gain expectations } E_t^P [Q_{t+1} / Q_t] \]

\[\beta : \text{discount factor } (\beta < 1) \]

\[\gamma : \text{gross aggregate growth rate } (\gamma > 1) \]

\[X_t : \text{end. variable that depend on parameters, technology, path of capital stock} \]
Equilibrium capital price equation (slightly simplified):

\[Q_t = \frac{X_t}{1 - \beta \gamma \cdot m_t}, \]
Equilibrium capital price equation (slightly simplified):

\[Q_t = \frac{X_t}{1 - \beta \gamma \cdot m_t}, \]

- Higher technology growth or higher discount factor:
 - \(\beta \gamma \) moves closer to 1
 - \(\beta \gamma \cdot m_t \) closer to one
 - any given movement in \(m_t \) generates larger price effect
 - fundamental price movements get amplified more!
 - more boom-bust episodes
Higher Steady-State Safe Rate (1.4% vs. 0.8%)
The Effects of Initial Conditions

- 8 pos. shocks
- 4 pos. shocks, depressed initial condition

Q_c vs. time (years)
Conclusions

- Extrapolation in asset markets:
 A powerful amplification mechanism of fundamental shocks

- Simple and otherwise standard model:
 Quantitatively consistent with BC & stock price evidence

- Model features boom and bust cycles:
 Persistent over & under-shooting of long-run growth trends
 Higher risk of booms with strong tech. growth / low real rates