International Food Commodity Prices and Missing Dis(Inflation) in the Euro Area

Gert Peersman
UGent
Motivation of research agenda

• Surprisingly little is known about macroeconomic effects of disruptions in global food commodity markets (e.g. no quantitative evidence for advanced economies)

 – E.g. 17% of US household expenditures are food related, of which (in turn) 14% raw commodities: this corresponds to ±900 USD food commodity expenditures per capita per year (compared to e.g. ±750 USD crude oil)

• Climate change: there will be a rise in variability and frequency of extreme weather events in major agricultural producing regions (IPCC, 2019)

 – E.g. extreme droughts in Russia and Eastern Europe in summer 2010 raised global real food commodity prices by almost 30%

• Needed to analyze effects of policies that may influence food prices: public food security programs, agricultural trade policies, ethanol subsidies, ...
Relevance of fluctuations in international food commodity prices for euro area inflation dynamics: there have been substantial price swings, while food commodities are critical input factor in food production function.
This paper

- Food related items have, in turn, very large share in Harmonized Index of Consumer Prices

<table>
<thead>
<tr>
<th>HICP – Food related items</th>
<th>27.4%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processed food</td>
<td>12.1%</td>
</tr>
<tr>
<td>Unprocessed food</td>
<td>7.5%</td>
</tr>
<tr>
<td>Catering services</td>
<td>7.8%</td>
</tr>
<tr>
<td>HICP – Industrial goods excluding Energy</td>
<td>26.3%</td>
</tr>
<tr>
<td>HICP – Energy</td>
<td>9.7%</td>
</tr>
<tr>
<td>HICP – Services excluding catering</td>
<td>36.6%</td>
</tr>
<tr>
<td>HICP – Overall index</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

- Are even more important for formation of inflation expectations of households
 - Survey of Norges Bank: 61% of households consider “prices of food” as factor that influences inflation expectations most
Swings international food commodity prices could have contributed to so-called “twin puzzle” of missing disinflation/inflation after Great Recession.
Existing studies

- E.g. Fed, ECB, IMF: reduced-form time series models that only explore unconditional co-movement in data: *pricing chain assumption*

 ![Food commodity prices → Consumer prices](image)

 - In essence, these studies regress changes in consumer prices on contemporaneous and lagged changes in food commodity prices
 - Can be informative about signaling role (correlation) of food commodity prices for future inflation, but cannot be given causal interpretation
E.g. Fed, ECB, IMF: reduced-form time series models that only explore unconditional co-movement in data: *pricing chain assumption*

- In essence, these studies regress changes in consumer prices on contemporaneous and lagged changes in food commodity prices
- Can be informative about signaling role (correlation) of food commodity prices for future inflation, but cannot be given causal interpretation
Contribution of this paper

- Estimation of causal effects of shifts in international food commodity prices on euro area inflation dynamics for period 1970Q1–2016Q4

 - Unanticipated harvest shocks are used as an external instrument to identify exogenous food commodity price shocks

- Examination of contribution to “twin puzzle” of missing deflation/inflation and relevance for inflation fluctuations

- Analysis of pass-through
SVAR model for euro area with external instruments

\[Y_t = \alpha + A(L)Y_{t-1} + u_t \]

<table>
<thead>
<tr>
<th>International variables</th>
<th>Euro area variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ International real food commodity prices (USD)</td>
<td>✓ Real GDP</td>
</tr>
<tr>
<td>✓ International real crude oil prices (USD)</td>
<td>✓ Real personal consumption</td>
</tr>
<tr>
<td>✓ Real exports euro area</td>
<td>✓ Short-term interest rate</td>
</tr>
<tr>
<td>✓ Euro/USD exchange rate</td>
<td>✓ HICP</td>
</tr>
</tbody>
</table>

- Baseline sample period 1970Q1–2016Q4; 4 lags
- **Identification with external instrumental variable:** not full shock series, but reflects an exogenous component of target shock
Unanticipated harvest shocks

- Explore fact that **harvests cannot respond within quarter to economic shocks** due to time lag of 3-10 months between planting and harvest of cereal commodities
 - While actual harvests are subject to unanticipated autonomous shocks: e.g. caused by weather variation, pests or diseases
- FAO publishes annual harvest data of four most important staples (corn, wheat, rice and soybeans) for 192 countries since early 1960s
 - De Winne and Peersman (2016): combine annual harvest data with crop calendars of each country to construct quarterly harvest volumes

<table>
<thead>
<tr>
<th>Country</th>
<th>Crop</th>
<th>Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kazakhstan</td>
<td>Wheat</td>
<td>June</td>
</tr>
<tr>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td></td>
<td></td>
<td>August</td>
</tr>
<tr>
<td></td>
<td></td>
<td>September</td>
</tr>
</tbody>
</table>

![Diagram showing planting and harvesting months for Kazakhstan wheat](chart.png)
Unanticipated harvest shocks

- Estimate series of unanticipated (non-European) harvest shocks

\[Q_t = c + trend + C(L)X_t + D(L)Q_t + v_t \]

- Prediction errors are unanticipated harvest shocks

- \(Q_t \): two-thirds of global (non-European) harvest volume of corn, wheat, rice and soybeans constructed as in De Winne and Peersman (2016)

- \(X_t \): vector of control variables that may influence harvests with a lag of 1 or more quarters: 8 lags of food commodity prices (narrow and broad index), global economic activity, crude oil prices

- Harvest shocks turn out to be strong instrument for food commodity price innovations: F-statistic and robust F-statistic are respectively 13.9 and 17.4

- Note: standard deviation of shock is 4.3% of global harvest volume
Baseline VAR results

- Effects of 1% increase in real international food commodity prices
Exogenous international food commodity price shocks explain 25% - 30% of the forecast error variance of the HICP.
Impact on food commodity prices: counterfactual analysis

- **counterfactual without food commodity price shocks**
- **baseline evolution VAR**
- **actual evolution**

18% 12% 26%
Impact on annual HICP inflation: counterfactual analysis

- counterfactual without food commodity price shocks
- baseline evolution VAR
- actual evolution
- inflation target

0.2% - 0.8%
0.5% - 1.0%
• Construction of (sub)indexes for EU farm-gate and internal market prices

– Not only a rise of international food commodity prices (=import prices), also a (less than proportional) rise of EU internal market and farm-gate prices

• Note: large fraction of cereal commodities are used to feed animals, which augments production costs of meat and dairy products
Effects through the food production chain

- Significant (less than proportional) pass-through to retail prices of food in HICP

Response of HICP excluding food and energy

- Meat
- Fish
- Fruit
- Vegetables
- Bread and cereals
- Milk, cheese and eggs
- Oils and fats
- Sugar products
Effects through the food production chain

- Impact on food services is, however, not larger than impact on non-food products

Catering services

Restaurants, cafes, ...

Canteens

Response of HICP excluding food and energy
There is also significant increase of HICP excluding food and energy, as well as HICP energy...
Indirect effects of international food price shocks

- Can be explained by depreciation of euro (higher import prices, including oil prices in euro’s) and second-round effects via rising inflation expectations and wages

![Graphs showing real crude oil prices, nominal effective exchange rate, import deflator, price expectations, inflation expectations, and nominal wages.](image_url)
Post-1990 sample period

- There appears to be smaller and less persistent impact on HICP in more recent sample period (1990Q1–2016Q4)

 - Does not matter for variance decomposition and contribution to twin puzzle after Great Recession
Post-1990 sample period

- Effects through food production chain are quite similar in post-1990 sample

- Indirect effects on HICP excluding energy and food have changed: more subdued depreciation and much less second-round effects via rising wages

- On other hand: there have been spillover effects of food commodity price shocks on oil prices in recent sample period, resulting in stronger impact on HICP energy
 - Peersman et al. (2019): NOT because of biofuels, but spillovers between commodity prices as a consequence of price discovery in more globalized and financialized commodity markets in the presence of informational frictions
Conclusions

• Fluctuations in food commodity prices matter for euro area inflation dynamics

 – Relatively strong impact on HICP, explaining 25%-30% of forecast variance

 – Economic relevant influence on both missing deflation and inflation in aftermath Great Recession

• Direct transmission channel through the food production chain, but also indirect effects via depreciation of euro and second-round effects of rising wages

• There appears to be time-variation in the pass-through: smaller and less persistent effects due to reduction of the indirect effects