Sentimental Business Cycles

Lagerborg, Pappa, Ravn

Discussion by
Luca Gambetti
(CCA, UniTo, UAB, BGSE)
The paper

QUESTION: Do sentiment/confidence shocks affect the macroeconomy?

ANSWER: YES, business cycle is sentimental.

NICE PAPER: contributing to the expectation-driven business cycles and the news shocks literature (vast, Barsky and Sims, Beaudry and Portier, Blanchard, L'Huillier and Lorenzoni, myself with coauthors, etc.).
QUESTION: Do sentiment/confidence shocks affect the macroeconomy?
The paper

- QUESTION: Do sentiment/confidence shocks affect the macroeconomy?

- ANSWER: YES, business cycle is sentimental.
The paper

QUESTION: Do sentiment/confidence shocks affect the macroeconomy?

ANSWER: YES, business cycle is sentimental.

NICE PAPER: contributing to the expectation-driven business cycles and the news shocks literature (vast, Barsky and Sims, Beaudry and Portier, Blanchard, L’Huillier and Lorenzoni, myself with coauthors, etc.).
Main Idea

- MS is:
 - Exogenous
Main Idea

- MS is:
 - Exogenous
 - Correlated with sentiment shock,
Main Idea

➤ MS is:
 ➤ Exogenous
 ➤ Correlated with sentiment shock,
 ➤ Uncorrelated with other shocks,

Great! Let’s use it as an external instrument in a VAR to identify the “sentiment shock.”

VAR(18) (btw, AIC says 14), US monthly data, IP, U, ICE, CPI, FFR (baseline).
Main Idea

- MS is:
 - Exogenous
 - Correlated with sentiment shock,
 - Uncorrelated with other shocks,

- Great! Let’s use it as an external instrument in a VAR to identify the “sentiment shock”.
Main Idea

- MS is:
 - Exogenous
 - Correlated with sentiment shock,
 - Uncorrelated with other shocks,

- Great! Let’s use it as an external instrument in a VAR to identify the "sentiment shock".

- VAR(18) (btw, AIC says 14), US monthly data, IP, U, ICE, CPI, FFR (baseline).
Main Results (my estimations)
IRF: Cholesky vs IV

![Graphs showing impulse response functions for ICE, IP, U, and CPI]
Adding October 2017
Main Conclusion
Main Conclusion

Cycles are sentimental
My discussion

Two main points:
1. First empirical: shock identification.
My discussion

- Two main points:
My discussion

- Two main points:
 1. First empirical: shock identification.
My discussion

- Two main points:
 1. First empirical: shock identification.
Why agents become pessimistic?

Many possible reasons.
1. World is a bad place.
2. Bad economic news about the future.
Why agents become pessimistic?

- Many possible reasons.
Why agents become pessimistic?

- Many possible reasons.
 1. World is a bad place.
Why agents become pessimistic?

Many possible reasons.
1. World is a bad place.
2. Bad economic news about the future.
Why agents become pessimistic?

▶ Many possible reasons.
 1. World is a bad place.
 2. Bad economic news about the future.
 ▶ Macro
Why agents become pessimistic?

- Many possible reasons.
 1. World is a bad place.
 2. Bad economic news about the future.
 - Macro
 - Financial markets
Why agents become pessimistic?

- Many possible reasons.
 1. World is a bad place. *Seems to be the focus here*
 2. Bad economic news about the future.
 - Macro
 - Financial markets
Why agents become pessimistic?

- Many possible reasons.
 1. World is a bad place. *Seems to be the focus here*
 2. Bad economic news about the future.
 - Macro *controlling for U and IP*
 - Financial markets
Why agents become pessimistic?

- Many possible reasons.
 1. World is a bad place. *Seems to be the focus here*
 2. Bad economic news about the future.
 - Macro *controlling for U and IP*
 - Financial markets *absent...*
Why agents become pessimistic?

Many possible reasons.

1. World is a bad place. Seems to be the focus here

2. Bad economic news about the future.
 - Macro controlling for U and IP
 - Financial markets absent...But shown to be important for news
S&P500 and VAR Residuals

- Estimate the regression

\[\hat{u}_{it} = \beta_0 + \beta_{i1}sp_{t-1} + \beta_{i2}sp_{t-2} + \beta_{i3}sp_{t-3} + \beta_{i4}sp_{t-4} + \eta_{it} \]

\((sp_t\text{ is log stock prices}).\)

<table>
<thead>
<tr>
<th>(t \text{- stat})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(sp_{t-1})</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>(u_{1t})</td>
</tr>
<tr>
<td>(u_{2t})</td>
</tr>
<tr>
<td>(u_{3t})</td>
</tr>
<tr>
<td>(u_{4t})</td>
</tr>
<tr>
<td>(u_{5t})</td>
</tr>
</tbody>
</table>
SP500 and VAR residuals

- Ans in growth rates

| $|t - stat|$ | sp_{t-1} | sp_{t-2} | sp_{t-3} | sp_{t-4} |
|----------|-----------|-----------|-----------|-----------|
| u_{1t} | 3.3605 | 1.3654 | 0.6050 | 0.7391 |
| u_{2t} | 0.9207 | 0.5150 | 0.9685 | 2.1359 |
| u_{3t} | 0.4675 | 1.4069 | 2.2517 | 0.8745 |
| u_{4t} | 4.1781 | 0.3700 | 0.3771 | 0.5684 |
| u_{5t} | 0.0807 | 1.3563 | 0.1759 | 0.3039 |

- So, add the S&P500!
VAR+S&P500
Cholesky VAR+S&P500
What is going on? A possible explanation
What is going on? A possible explanation

- S&P500 predicts the residuals.
What is going on? A possible explanation

- S&P500 predicts the residuals.
 ⇒ VAR is noninvertible.
What is going on? A possible explanation

- S&P500 predicts the residuals.
 ⇒ VAR is noninvertible.
 ⇒ Residuals contain the past of the shock. R1

\[
\begin{align*}
ms_t &= \beta_0 + \beta_1 ms_{t-1} + \beta_2 ms_{t-2} + \beta_3 ms_{t-3} + \beta_4 ms_{t-4} + \eta_t \\
(t - \text{stat}) &
\end{align*}
\]

- Mass shooting predicts future mass shooting. R2
- R1+R2 ⇒ with S&P500 the model becomes invertible, past shocks disappear and the results change.

Take a look at Miranda-Agippino and Ricco (2018) (very interesting)!
What is going on? A possible explanation

- **S&P500 predicts the residuals.**
 - \Rightarrow VAR is noninvertible.
 - \Rightarrow Residuals contain the past of the shock. **R1**

- **Estimate the regression**

 $mst = \beta_0 + \beta_1 mst_{-1} + \beta_2 mst_{-2} + \beta_3 mst_{-3} + \beta_4 mst_{-4} + \eta_{it}$

 (mst is mass shooting).

<table>
<thead>
<tr>
<th>$t - stat$</th>
</tr>
</thead>
<tbody>
<tr>
<td>mst_{-1}</td>
</tr>
<tr>
<td>4.6890</td>
</tr>
</tbody>
</table>

- **Mass shooting predicts future mass shooting.** **R2**

- **R1+R2 \Rightarrow** with S&P500 the model becomes invertible, past shocks disappear and the results change.

- **Take a look at Miranda-Agippino and Ricco (2018) (very interesting!).**
And then I have found the following...

- Using a different sample: 1960-1996.

	$	t - stat	$	
sp_{t-1}	1.9108	-0.3538	-1.7397	1.4666
u_{1t}	-0.4088	0.5264	-0.6900	0.6748
u_{2t}	-1.5888	1.6382	-0.3492	-0.4737
u_{3t}	1.1943	-0.7249	-0.6707	1.0572
u_{4t}	0.2698	1.2207	-1.2814	-0.1778
u_{5t}				

Nothing is significant, S&P500 does not predict...
And then I have found the following...

- Using a different sample: 1960-1996.

<table>
<thead>
<tr>
<th></th>
<th>s_{t-1}</th>
<th>s_{t-2}</th>
<th>s_{t-3}</th>
<th>s_{t-4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_{1t}</td>
<td>1.9108</td>
<td>-0.3538</td>
<td>-1.7397</td>
<td>1.4666</td>
</tr>
<tr>
<td>u_{2t}</td>
<td>-0.4088</td>
<td>0.5264</td>
<td>-0.6900</td>
<td>0.6748</td>
</tr>
<tr>
<td>u_{3t}</td>
<td>-1.5888</td>
<td>1.6382</td>
<td>-0.3492</td>
<td>-0.4737</td>
</tr>
<tr>
<td>u_{4t}</td>
<td>1.1943</td>
<td>-0.7249</td>
<td>-0.6707</td>
<td>1.0572</td>
</tr>
<tr>
<td>u_{5t}</td>
<td>0.2698</td>
<td>1.2207</td>
<td>-1.2814</td>
<td>-0.1778</td>
</tr>
</tbody>
</table>

- Nothing is significant, S&P500 does not predict...
Summing up

- Omitting stock prices seems to create distortions in the IRF.
Omitting stock prices seems to create distortions in the IRF.

The distortions are mainly attributable to the latest part of the sample.
Minimization of the distance between empirical IRF and model IRF.
Model #1

- Minimization of the distance between empirical IRF and model IRF.

- Model IRF are obtained from estimating the empirical VAR with model-generated data.
Minimization of the distance between empirical IRF and model IRF.

Model IRF are obtained from estimating the empirical VAR with model-generated data.

(Sorry for bothering) Again, a VAR representation in terms of structural shocks does not exist in the model.
Model #1

- Minimization of the distance between empirical IRF and model IRF.

- Model IRF are obtained from estimating the empirical VAR with model-generated data.

- *(Sorry for bothering)* Again, a VAR representation in terms of structural shocks does not exist in the model.

- The reason is that under limited information not even the agents observe the shocks.
Minimization of the distance between empirical IRF and model IRF.

Model IRF are obtained from estimating the empirical VAR with model-generated data.

(Sorry for bothering) Again, a VAR representation in terms of structural shocks does not exist in the model.

The reason is that under limited information not even the agents observe the shocks.

So, the comparison is hard to interpret.
Model #2

- You use the noise as external instrument in the model.
Model #2

- You use the noise as external instrument in the model.

- Noise is about technology, while the empirical instrument has nothing to do.
Model #2

- You use the noise as external instrument in the model.

- Noise is about technology, while the empirical instrument has nothing to do.

- How can you reconcile this?