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(dampening) of future shocks.
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Abstract

The New Keynesian (NK) Cross is a graphical and analytical apparatus for heterogeneous-

agent (HANK) models expressing key aggregate demand objects� MPC and multipliers�

as functions of heterogeneity parameters. It a¤ords analytical insights into monetary,

�scal, and forward guidance multipliers, and replicates the aggregate implications of

quantitative HANK. The key parameter� the constrained agents�income elasticity to

aggregate income� depends on �scal redistribution: when it is larger (smaller) than

one, the e¤ects of policies and shocks are ampli�ed (dampened). With uninsurable

idiosyncratic uncertainty, this translates intertemporally� through compounding (dis-

counting) in the aggregate Euler equation� into further ampli�cation (dampening) of

future shocks.

JEL Codes: E21, E31, E40, E44, E50, E52, E58, E60, E62

Keywords: heterogeneity; aggregate demand; Keynesian cross; monetary policy;

�scal multipliers; redistribution; forward guidance; hand-to-mouth; HANK; TANK.

1 Introduction

If you had to name one research domain in macroeconomics whose dynamics most resem-
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with heterogeneity would likely make the shortlist. A burgeoning literature that I review

below tackles a rapidly expanding variety of topics using an itself expanding variety of mod-

els that� following an in�uential paper by Kaplan, Moll, and Violante (2018), hereinafter

KMV� I will generically refer to as HANK (Heterogeneous-Agent New Keynesian).

In this paper I propose a way to think graphically and analytically about the properties of

these� usually solved numerically� models. The two contributions are separate and comple-

mentary: a (New) Keynesian cross apparatus to decompose the e¤ects of policies and shocks

in these models. And an analytical framework to revisit some of the major themes of this

literature and provide sharper results for its outstanding questions: monetary policy trans-

mission (and the crucial role of �scal redistribution� of monopoly pro�ts� for shaping it);

the decomposition into direct and indirect e¤ects; �scal multipliers; and forward guidance.

Finally, I show how the simple analytical apparatus can be "calibrated" to replicate some

quantitative HANK models�aggregate equilibrium implications. In doing so, I outline an

analytical HANK model that� although an extension of the TANK (two-agent NK) model

and related to other simpli�ed HANK versions reviewed below� is to my knowledge novel.

I start by deriving the "New Keynesian cross"� a consumption function, or planned

expenditure PE curve� for the plain-vanilla RANK (representative-agent NK) model, and

argue that it is essentially �at for reasonable calibrations: the monetary policy multiplier

is dictated exclusively by intertemporal substitution, and almost none of it occurs through

general-equilibrium propagation ("indirect e¤ect" in KMV�s terminology). A related impli-

cation is that there is no �scal multiplier on consumption: public spending increases output

at most one-to-one1. One could then argue that RANK� purportedly a general-equilibrium

version of old Keynesian models� is neither Keynesian nor general-equilibrium!

I then show that the TANKmodel version in Bilbiie (2008) captures some of the key mech-

anisms of modern-vintage HANK models� by reviving the Keynesian cross. Much like the

old Keynesian cross when the marginal propensity to consume (MPC) increases, the model

implies a steeper PE curve: monetary (and �scal) multipliers and large general-equilibrium

feedback e¤ects arise when we add households with unit MPC (out of their own income) so

that aggregate MPC increases. The keystone is "their own": what delivers ampli�cation is

not the mere addition of hand-to-mouth agents but also an income distribution such that

their income rises more than one-to-one with aggregate income� which instead requires that

there not be too much endogenous redistribution in their favor (taxes not be too progres-

sive). This hand-to-mouth TANK channel can be summarized as: ampli�cation through �

(the share of) hand-to-mouth occurs if and only if � (their income elasticity to aggregate

1Multipliers in RANK can arise with complementarity between consumption and hours (e.g. Bilbiie,
2011), or in �scalist equilibria with passive monetary policy (Davig and Leeper, 2011).
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income) is larger than one� for then the slope of the PE curve increases faster than its shift

decreases. When instead � < 1, TANK implies dampening with respect to RANK (the shift

e¤ect dominates the increase in slope).

Insofar as a richer HANK model features agents who are constrained (hand-to-mouth)

in equilibrium and whose income is endogenous, this NK cross mechanism operates. One

serious quali�cation, however, is that HANK transmission is chie�y about those who face

the risk of becoming constrained, not merely about those who are so. In Section 4 I develop

an analytical HANK model that incorporates self-insurance in face of (a special form of)

idiosyncratic uncertainty. The model can be viewed as a minimal extension of TANK to

include that channel and, while related to existing work reviewed below, it is to the best of

my knowledge novel. In its closed-form representation, the di¤erence with TANK is captured

through only one new parameter, �: the coe¢ cient in front of future consumption in the

loglinearized aggregate Euler equation. This depends in a very transparent and intuitive

way on the interaction of idiosyncratic and aggregate uncertainty, the latter summarized by

the TANK hand-to-mouth channel through its key parameters (� and �).

The same NK cross now extends to ampli�cation/dampening intertemporally� of future

(news and persistent) shocks. Self-insurance magni�es the hand-to-mouth channel: when

there is dampening (� < 1), it implies more of it through "discounting" in the aggregate Euler

equation (� < 1).2 While when hand-to-mouth gives ampli�cation, self-insurance magni�es

that too through "compounding" (the inverse of discounting) in the aggregate Euler equation

� > 1: with � > 1, good news about future aggregate income mean disproportionately good

news in the hand-to-mouth state, less demand for self-insurance and (with zero equilibrium

savings) higher consumption and income.

The self-insurance and hand-to-mouth channels are complementary: the former is the

larger, the more the latter is expected to matter (the longer the expected hand-to-mouth

spell). The former is thus chie�y important to explain short-lived shocks and policies. But

for persistent shocks and "news" the di¤erence between the two models can become very

large: HANK can deliver much more ampli�cation (or dampening). I apply this to revisit,

�rst, the horizon e¤ects of forward guidance FG and the puzzle emphasized by Del Negro

et al (2012), Carlstrom et al (2015) and Kiley (2016). In my model, the multiplier of a

future interest rate cut is decreasing with its date in the "discounting" case, thus resolving

the puzzle� a generalization of MNS�s (2017) result, see the previous footnote. But in the

"compounding" case, the power of FG increases with its horizon and the FG puzzle is instead

2A version of this discounting has �rst been obtained in an incomplete-markets model by McKay, Naka-
mura, and Steinsson (2017)� hereinafter MNS� for the special case where income of the constrained is �xed
and with iid idiosyncratic uncertainty.
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aggravated. I �nally show how the TANK and analytical HANK apparatus can be calibrated

to replicate some quantitative HANK�s aggregate equilibrium implications.

Related TANK and HANK Literature. At the core of RANK stands an aggregate
Euler equation whose empirical failure has been widely documented� in particular in a se-

ries of celebrated papers by Campbell and Mankiw (1989, 1990, 1991), who argued it was

important to take into account that some households are "rule-of-thumb". Mankiw (2000)

advocated the use of models with savers and spenders for �scal policy analysis in a growth

model, with savers de�ned as the exclusive holders of the physical capital stock.

Galí, Lopez-Salido and Valles (2007) embedded this distinction� of holding or not physi-

cal capital� in a NK model and studied numerically the e¤ects of government spending; they

showed, importantly, that with enough "rule-of-thumb" agents coupled with other frictions,

public spending can have a positive multiplier on private consumption� in line with some

empirical �ndings and unlike then-existing models.

Bilbiie (2008) studied monetary policy building on GLV�s framework but with a substan-

tial simpli�cation, modelling the distinction between the two types based on participation in

asset markets (and thus abstracting from physical investment): hand-to-mouth H have no

assets, while savers S own all the assets� i.e. have a bond Euler equation and hold shares in

�rms; this emphasized the key role of pro�ts and their distribution for policy transmission

and aggregate demand (AD) ampli�cation. With this structure, the model has an analytical

expression for the aggregate Euler equation-IS curve and a 3-equation representation iso-

morphic to RANK. But it delivers AD ampli�cation of monetary policy through a feedback

from individual to aggregate income: the elasticity of aggregate demand to interest rates is

increasing with the share of H (the economy becomes "more Keynesian"). The paper also

analyzed the role of �scal redistribution (of pro�ts) for AD transmission of monetary policy;

and derived a quadratic welfare function to study optimal policy in TANK, along with the

determinacy properties of interest rate rules� all with pencil and paper.3

Because it has the familiar 3-equation form that nests the textbook RANK� with a

straightforward translation of that framework�s accumulated wisdom� I refer to this second

version as "TANK". A separate literature extended these studies (for the most part using

the latter version without investment) to analyze �scal and monetary policy questions.4

3This ampli�cation holds only up to some threshold beyond which the elasticity changes sign and the
economy becomes "non-Keynesian": interest rate cuts become contractionary, for reasons explained in that
paper in detail. Bilbiie and Straub (2012, 2013) estimate the TANK aggregate Euler equation using GMM,
and a medium-scale TANK model using Bayesian methods, respectively. They present empirical evidence
consistent with the "Keynesian" region since the 1980s and with the non-Keynesian region during the Great
In�ation.

4Fiscal multipliers in TANK were analyzed in Bilbiie and Straub (2004), with distortionary taxation;
Bilbiie, Meier, and Mueller (2008) estimated a medium-scale TANK to study how US �scal multipliers
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Quantitative HANK models explicitly take into account income risk heterogeneity and

the feedback e¤ects from equilibrium distributions to aggregates that depend on asset and

labor market characteristics. A rapidly growing number of HANK papers use quantitative

models to deal with topics ranging from the e¤ects of transfer payments (Oh and Reis,

2012) to deleveraging and liquidity traps (Guerrieri and Lorenzoni, 2017); job-uncertainty-

driven recessions (Ravn and Sterk, 2017; den Haan, Rendahl, and Riegler, 2018); monetary

policy transmission (KMV, 2018; Gornemann, Kuester, and Nakajima, 2016; Auclert, 2016);

forward guidance (MNS, 2016); �scal multipliers (Hagedorn, Manovskii, and Mitman, 2018);

and automatic stabilizers (McKay and Reis, 2016).

Others studies also provide analytical frameworks that isolate di¤erent HANK mecha-

nisms. Werning (2015) uses a model with general income processes and market incomplete-

ness to study the e¤ects of monetary policy. The paper shows that AD ampli�cation relative

to RANK occurs when income risk is counter-cyclical (and/or when liquidity is pro-cyclical�

something that my model abstracts from). If uninsurable idiosyncratic income risk goes up

in a recession, agents increase their precautionary savings and decrease their consumption,

amplifying the initial recession, and so on� a mechanism for which others had previously

provided examples based on endogenous unemployment risk, e.g. Ravn and Sterk (2017).

While my analytical HANK model delivers a similar conclusion� intertemporal ampli-

�cation or dampening� the mechanism is di¤erent. Instead of income risk, the key here is

the distribution of income (between labor and "capital" understood as monopoly pro�ts)

and how it depends on aggregate income, as summarized through �. That is, the same

(within-the-period) ampli�cation that is the main theme of the TANK version in Bilbiie

(2008) and extends now intertemporally� when any agent can become constrained in any

current or future period and self-insures (imperfectly) against the risk of doing so. The

mechanism here thus relies on the cyclicality of income of constrained, while Werning�s is

instead about income risk of unconstrained� although of course in my two-state example

the two are convoluted (as they also are in Werning�s di¤erent framework).

A recent paper by Acharya and Dogra (2018) helps disentangle the two: it uses CARA

preferences to build an analytical HANK model and shows that such an intertemporal am-

pli�cation mechanism may occur purely as a result of uninsurable idiosyncratic income

volatility going up in recessions. Their results illustrate sharply that Werning�s income-

changed over time. Monacelli and Perotti (2012) studied the role of redistribution for the spending multi-
plier (in a borrower-saver model), and Bilbiie, Monacelli, and Perotti (2013) public debt and redistribution
(transfers)� see also Mehrotra (2017) and Giambattista and Pennings (2017). Colciago (2012) and Ascari,
Colciago, and Rossi (2017) extend TANK to the case of sticky wages; see also Walsh (2017) and Broer et al
(2017). Eggertsson and Krugman (2012) used a saver-borrower model for a compelling story of the Great
Recession as a deleveraging-triggered liquidity trap with Fisherian debt-de�ation. The TANK mechanism
emphasized here partly drives what generates a deep recession and large multipliers therein.
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risk-cyclicality-centered mechanism applies in a model without� and is therefore orthogonal

to� the TANK-originating, NK cross emphasized here.

The foregoing considerations also clarify the relationship of my analytical HANK model

with MNS (2017), itself an analytical version of MNS (2016). My framework implies that

what drives dampening of FG power in MNS (discounting in the Euler equation) is not only

idiosyncratic risk, but the combination of it with assumptions on the income of constrained

agents (which in MNS (2017) is exogenous). Considering instead that agents face an income

that, when constrained, may over-react to the cycle (e.g. through �scal redistribution)

overturns that prediction and can generate a compounded (rather than discounted) Euler

equation and an aggravation (rather than a resolution) of the FG puzzle.

In independent work, Ravn and Sterk (2016) study a di¤erent and complementary an-

alytical HANK� combined with search and matching in the labor market and thus useful

for understanding endogenous unemployment risk (a key feature of several HANK mod-

els). In their model, workers self-insure against the risk of becoming unemployed, which

(through search and matching) depends on aggregate outcomes. To obtain tractability while

modelling endogenous risk, the authors employ simplifying assumptions that are in fact or-

thogonal to the ones used here, in particular pertaining to the asset market structure.5 This

delivers a neat feedback loop from precautionary saving to aggregate demand (for a di¤er-

ent such mechanism, see also Challe and Ragot, 2016) that is absent here. My model does

the opposite: it instead assumes exogenous transition probabilities for tractability and�

with a di¤erent asset market structure� focuses on the NK-cross feedback loop through the

endogenous income of constrained agents that is absent in Ravn and Sterk.

The analytical HANKmodel proposed here is also related to previous TANK-complicating

(as opposed to HANK-simplifying) contributions; the closest is Nistico (2016), who adds to

TANK a similar stochastic structure for idiosyncratic uncertainty with Markov switching,

also used by Curdia and Woodford (2016) in a related context. Other than the di¤erent

focus, the main substantial di¤erences are that (i) I abstract from wealth accumulation and

focus on an equilibrium with no asset trade, which allows the very sharp analytical character-

ization;6 and (ii) I assume that while bonds are liquid (can be used for self-insurance), stocks

are illiquid. The combination of these delivers an aggregate Euler equation with discounting

or compounding, unlike in these previous contributions.

5In my model savers hold and price the shares whose payo¤ (pro�ts) they get. In Ravn and Sterk, hand-
to-mouth workers get all the return on shares but do not price them. See also Broer et al (2017) for the use
of a similar asset market structure.

6The original contribution for this simpli�cation with self-insurance to idiosyncratic risk is Krusell,
Mukoyama, and Smith (2011) in an asset-pricing context, used in "simple HANK" contexts by the papers
reviewed above. See also Challe et al (2016) for an estimated quantitative model.
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The analysis of replicating HANK aggregate outcomes is related to a recent and indepen-

dent paper by Debortoli and Galí (2017), that compares the TANK version in Bilbiie (2008)

with (an itself very useful version of) a HANK model that they solve numerically� spelling

out a pro�ts redistribution scheme that is consistent with that of TANK. They show that the

two models can deliver similar equilibrium responses ("total e¤ect") in response to monetary

policy and other shocks, for comparable redistribution schemes. My exercise of matching

equilibrium implications of HANK models (solved by others) by �nding the implied � is

similar in spirit� but includes a focus on the "indirect e¤ect" as a relevant object to match.

Furthermore, Debortoli and Galí propose an insightful decomposition of the total e¤ect of

HANK heterogeneity as the sum of "between" (the TANK constrained-unconstrained het-

erogeneity) and "within" (unconstrained who may at some di¤erent point be constrained,

a HANK heterogeneity); my analytical HANK model� that I also use to replicate the FG

horizon-multipliers computed by MNS (2016)� provides a simple closed-form expression for

this decomposition and thus a proxy for the "within" heterogeneity missed by TANK.

Finally, this paper is related to my own current work. A companion paper (Bilbiie,

2017) extends the analytical HANK model to include a supply side and study in detail its

equilibrium determination. It proves a modi�ed, HANK-version of the Taylor principle for

interest rate rules and shows that determinacy always occurs under the Wicksellian price-

targeting rule proposed by Woodford (2003); it then provides analytically the necessary and

su¢ cient conditions under which HA cures all the NK puzzles and paradoxes (pertaining

to FG, neo-Fisherian e¤ects, sunspot-driven liquidity traps, paradox of �exibility and thrift,

and so on). The paper points to a "Catch-22" (the puzzle-curing conditions are the opposite

of what HANK needs to deliver multipliers) and proposes a way out. In another paper,

Bilbiie and Ragot (2016) build a di¤erent analytical NK model with three assets� of which

one ("money") is liquid and traded in equilibrium while the others (bonds and stock) are

illiquid� and study Ramsey-optimal monetary policy as liquidity provision.

2 The (Lack of) Keynesian Cross in RANK

Before analyzing the New Keynesian cross, a succinct recollection of the textbook "old"

Keynesian cross is in order, for which Samuelson (1948, pp 256-279) is the original refer-

ence. In its stripped-down version (e.g. no government spending or taxes), this starts by

postulating a consumption function, or planned expenditure PE curve: C = C (Y; r), with

consumption an increasing function of income Y (denoting by a subscript the partial deriv-

ative 0 < CY < 1) and a decreasing function of the interest rate r, Cr < 0. Abstracting

from aggregate supply (with �xed prices) this leads to income determination once one adds
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the equilibrium condition, or economy resource constraint ERC that actual and planned

expenditure coincide, or consumption equal total income (and ultimately, output): C = Y .

The Keynesian cross puts these two equations together and plots C as a function Y;

where the PE slope CY < 1 is the marginal propensity to consume MPC (by how much

consumption increases when income increases by one dollar). A cut in interest rates shifts

the PE curve upwards by Cr: the autonomous expenditure increase. But the equilibrium

consumption (and output) increase by more: the famous multiplier. The initial Cr increase

in consumption and (C = Y ) income implies a further increase in consumption, by the MPC

to consume out of that, i.e. CrCY , which using C = Y is again an increase in income, and so

on; summing up all the terms, we have Cr (1 + CY + C2Y + :::). The equilibrium increase in

consumption and income is therefore dC = dY = Cr
1�CY d (�r), where

Cr
1�CY is the multiplier;

a similar analysis applies to changes in �scal policy, for example government spending. A

�rst glance at Figure 1 now will reveal this very familiar picture, replacing the notation


D = Cr, ! = CY , with 
 the multiplier of an interest rate cut:

2.1 The New Keynesian Cross: A Glossary

Throughout the paper, I interpret New Keynesian models with one, two or more agents

through the lens of a (New) Keynesian cross. In all models, prices are sticky and output is

demand-determined. To isolate the role of the aggregate demand side, I abstract from the

equilibrium mechanism by which the real interest rate is determined and assume throughout

that it is controlled by the central bank: as in e.g. Bilbiie (2011), this corresponds to the case

of �xed prices, or of a Taylor rule that sets nominal rates it to neutralize expected in�ation

�t (in log-deviations it = Et�t+1 + �rt, thus de facto controlling the real rate rt = �rt).

Consider thus the Keynesian Cross in Figure 1. The key equation, that I derive in

all models, is the upward sloping line PE : like for the (old) Keynesian cross, it expresses

consumption (aggregate demand) as a function of current income, for a given real rate:

ct = !yt � 
Drt: (1)

7



ct
ERC: ct = ŷt

PE: ct = c(ŷt,rt,gt)

ΩD

ΩI

Ω

ω

ŷt

Figure 1: The New Keynesian Cross

In this representation, the following key terms mirror those of the old Keynesian cross:

� ! is the slope of PE, i.e. theMPC (in heterogeneous-agent models, this will stand for
an aggregate MPC measure).

� 
D is the shift of the PE curve: the autonomous expenditure change when the policy
change takes place. In NK models without capital and inventories like the ones studied

here, this is nothing else than intertemporal substitution: when rt goes down at given

income, households want to bring consumption to the present. With no assets to

liquidate or "disinvest" their income adjusts to deliver equilibrium� how this happens

is part of what next section (and to some extent the rest of the paper) is about.

� 
 is themultiplier: the equilibrium e¤ect of the change in policy on aggregate demand
and income, determined by the mechanism described previously:


 =

D
1� ! :
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A cut in interest rates translates the PE curve (whose slope is !) upwards by 
D, and

the equilibrium moves from the origin to the intersection of the dashed PE curve and the 45-

degree ERC line; the total change is 
, out of which !
 is due to the endogenous multiplier

ampli�cation. The rest of the paper analyzes the key objects ! and 
 and their determinants

in RANK, TANK, and HANK� and uses them for some applications therein.

2.2 The NK Cross in RANK

Consider the RANK model �rst and let us derive its NK cross. An agent j chooses consump-

tion, assets and leisure solving the standard intertemporal problem: maxE0
P1

t=0 �
tU (Cj;t; Nj;t),

subject to the sequence of budget constraints outlined in Appendix A, where � is the discount

factor, Cjt consumption, N
j
t hours worked, and separable utility (UCN = 0) satis�es standard

Inada conditions. Absence of arbitrage implies the existence of a stochastic discount factor

Qjt;t+1 to price all assets, with Q
j
t;t+i pricing a payo¤ at t + i. Substituting asset-pricing

equations in the budget constraint, the intertemporal budget constraint is:

Et

1X
i=0

Qjt;t+iC
j
t+i � Et

1X
i=0

Qjt;t+iY
j
t+i; (2)

where Y is total income, the sum of labor and asset (pro�t) income. Maximizing utility

subject to this, we obtain that for each day and each state:

�
UC
�
Cjt+1

�
UC
�
Cjt
� = Qjt;t+1;

along with the constraint holding with equality. The riskless gross real interest rate on a

discount one-period bond is:

1

Rt
= EtQ

j
t;t+1 = �Et

"
UC
�
Cjt+1

�
UC
�
Cjt
� # : (3)

Loglinearizing the intertemporal budget constraint (2) and using the Euler equation and

the de�nition of stochastic discount factors (3) at di¤erent horizons, we obtain consumption

as the present discounted value of future interest rates and income:

cjt = ���
1X
i=0

�iEtrt+i + (1� �)
1X
i=0

�iEty
j
t+i;

denoting by small letters log deviations unless they pertain to rates of return, when they

9



denote absolute deviations, and de�ning curvature in consumption ��1 � �UCCC=UC .7

Rewritten in recursive form, this delivers a consumption function� for an agent j who

takes as given r and yj� that I will refer to as the PE curve in recursive form:

cjt = (1� �) yjt � ��rt + �Etcjt+1: (4)

In this representation, 1 � � is the MPC out of a purely transitory income increase, while
� is the marginal propensity to "save" MPS� even though, of course, there is no asset to

save in. The key is that shifts in the savings curve through substitution e¤ects need to be

accompanied by compensating income-e¤ect shifts to restore zero equilibrium saving, thus

changing equilibrium income.

To �nd the equilibrium PE curve of RANK of the form (1) for persistent shocks we need to

solve for the expectation function. Under rational expectations (the assumption maintained

throughout) and with exogenous persistence p, since the model is purely forward-looking

(there is no endogenous state), this is simply Etc
j
t+1 = pcjt . Replacing in (4) delivers the

RANK values of the key NK cross parameters in Proposition 1.

Proposition 1 In RANK, the MPC !, autonomous expenditure increase 
D and multiplier

 (for an interest rate cut of persistence p) are:

!� =
1� �
1� �p ; 


�
D =

��

1� �p ; 

� =

�

1� p:

Note that to solve for the multiplier we also imposed market clearing, i.e. used the

ERC (which with a representative agent is also the de�nition of aggregate income) cjt = y
j
t .

The way RANK is usually solved skips the PE representation (4) and goes directly to the

combination of it with cjt = ct = yt = y
j
t , the familiar Euler equation or IS curve:

ct = Etct+1 � �rt; (5)

which can be solved directly for the multiplier 
. The argument here is that going one level

of disaggregation deeper is useful for understanding heterogenous-agent models.

A �rst illustration of the NK cross�usefulness relates it to the decomposition of monetary

policy e¤ects in RANK performed by KMV (of which my Proposition 1 can be viewed as

a discrete-time version). Formally, their "total e¤ect" is the multiplier 
 � dcjt
d(�rt) and is

the sum of two components: the "direct e¤ect" is the partial derivative of the consumption

7See Campbell and Mankiw (1989, 1990, 1991) and Gali (1990) for earlier derivations and Preston (2005)
for an earlier use in the context of a general-equilibrium NK model with learning.
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function, keeping yjt �xed: 
D �
dcjt

d(�rt) jyjt=�y (aka the autonomous expenditure change); and
the "indirect e¤ect" (
I) is the derivative along the path where c

j
t = yjt , but the interest

rate is kept �xed: 
I � dcjt
d(�rt) jrt=�r (the relative share of the indirect e¤ect ! � 
I=
 being

the MPC). Other papers (discussed in detail by KMV) perform similar decompositions in

di¤erent models instead of the direct-indirect label, use "substitution" and "income" (see

e.g. Auclert (2016)). Another interpretation is that the direct e¤ect is the partial-, while

the indirect e¤ect captures the general-equilibrium response.

A useful benchmark is that of iid shocks p = 0� which gauges endogenous ampli�cation

and clearly illustrates two related di¢ culties for RANK as a model of monetary policy. The

�rst problem is that the multiplier (total e¤ect) is then given by the elasticity of intertem-

poral substitution 
 = �, whose estimates from aggregate consumption Euler equations

are hard to distinguish statistically from zero (Hall, 1988; Campbell and Mankiw, 1989;

Vissing-Jorgensen 2003; Bilbiie and Straub, 2012 and many others). The second problem

(emphasized by KMV) is that the MPC (indirect share) is ! = 1�� which, with � close to 1,
is nearly zero: the indirect e¤ect is almost absent in RANK, regardless of the magnitude of

the total e¤ect (with persistent shocks ! = :025 for p = :61 and still barely :092 for p = 0:9).8

A related implication of the lack of Keynesian cross is that RANK does not deliver �scal

multipliers: in this benchmark version with �xed prices, the multiplier of public spending on

private consumption is in fact 0 (the output multiplier is 1).9

The Keynesian cross of the baseline New Keynesian model is not very Keynesian at all:

the slope of the PE curve is very close to zero. Consumption is almost insensitive to current

income, which contradicts evidence obtained using a wide spectrum of (micro and macro)

data and econometric techniques.10 To make matters worse RANK is, paradoxically, not

very "general-equilibrium" either� almost all the e¤ect of monetary policy comes from the

(partial-equilibrium) direct shift of the PE curve! Such considerations spurred the develop-

ment of models with aggregate-demand heterogeneity: TANK and HANK.

8All of !, 
D and 
 increase with p. In every period the MPC is 1 � � (see (4)). But the expected
increase in income itself (in every future period) is the MPS times the persistence; so the MPC out of

the present discounted value of income with persistence is (1� �)
�
1 + �p+ (�p)

2
+ :::

�
. Likewise, the 
D

for a persistent income increase multiplies the purely transitory one, �� (the intertemporal elasticity of
substitution times the MPS out of transitory income) by the same discounted sum.

9With tax-�nanced spending gt = tt the economy resource constraint becomes ct = ŷt = yt � gt with ŷt
disposable income; the PE curve stays unchanged with ŷ replacing y, and the NK cross is invariant to g
changes. Equilibrium c is given by the Euler equation which, with �xed r, does not change: higher public
demand translates one-to-one to higher output with no further demand e¤ect. Making prices less than fully
rigid makes multipliers even smaller through intertemporal substitution (in�ation increases and, with an
active Taylor rule, the real rate increases generating intertemporal substitution)� see Footnote 1.
10To cite juste some: A large fraction of the population has zero net worth (i.a. Wol¤, 2000; Bricker et

al, 2014); consumption responds to transfers (e.g. Johnson, Parker and Souleles 2006), and in particular for
wealthy but liquidity-constrained (Kaplan and Violante 2014; Misra and Surico, 2016, Cloyne et al, 2016).
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3 TANK: Reviving the (New) Keynesian Cross

This section revisits and extends the TANK model version in Bilbiie (2008) with the NK

cross apparatus and in the context of the new HANK literature.

Households are of two types with total unit mass. A mass of � are "hand-to-mouth" H:
excluded from asset markets (with no Euler equation) but participating in labor markets and

earning endogenous labor income. The rest of 1 � � are savers S: they trade (and price) a
full set of state-contingent securities, including shares in monopolistically competitive �rms

whose pro�ts they therefore receive along with labor income. Savers�dynamic problem is

exactly as outlined in Appendix A replacing j with S and recognizing that in equilibrium their

portfolio of shares is now (1� �)�1. The budget constraint ofH is CHt = WtN
H
t +Transfer

H
t

where TransferHt are �scal transfers to be spelled out.

All agents maximize present discounted utility, de�ned as previously, subject to the

budget constraints. Utility maximization over hours worked delivers the standard intratem-

poral optimality condition for each j: U jC
�
Cjt
�
= WtU

j
N

�
N j
t

�
. With ��1 de�ned as be-

fore, ' � U jNNN
j=U jN denoting the inverse labor supply elasticity, and small letters log-

deviations from steady-state (to be discussed below), we have the labor supply for each j:

'njt = wt � ��1cjt . Assuming for tractability that elasticities are identical across agents, the
same holds on aggregate 'nt = wt � ��1ct. The Euler equation of S (the only households
who do have one) is as above, replacing j with S and loglinearizing: cSt = Etc

S
t+1 � �rt.

Firms The supply side is standard. All households consume an aggregate basket of indi-

vidual goods k 2 [0; 1], with constant elasticity of substitution " > 1: Ct =
�R 1

0
Ct (k)

("�1)=" dk
�"=("�1)

.

Demand for each good is Ct (k) = (Pt (k) =Pt)
�"Ct; where Pt (k) =Pt is good k0s price relative

to the aggregate price index P 1�"t =
R 1
0
Pt (k)

1�" dk. Each good is produced by a monopolistic

�rm with linear technology: Yt(k) = Nt(k), with real marginal cost is Wt.

The pro�t function is: Dt (k) =
�
1 + �S

�
[Pt(k)=Pt]Yt(k)�WtNt(k)� T Ft and I assume

as a benchmark that the government implements the standard NK optimal subsidy inducing

marginal cost pricing: with optimal pricing, the desired markup is de�ned by P �t (k)=P
�
t =

1 = "W �
t =
��
1 + �S

�
("� 1)

�
and the optimal subsidy is �S = ("� 1)�1. Financing its

total cost by taxing �rms (T Ft = �SYt) gives total pro�ts Dt = Yt �WtNt. This policy is

redistributive because it taxes the holders of �rm shares: steady-state pro�ts are zero D = 0,

giving the "full-insurance" steady-state used here CH = CS = C. Loglinearizing around it

(with dt � ln (Dt=Y )), pro�ts vary inversely with the real wage: dt = �wt (an extreme form
of the general property of NK models).11

11This series of assumptions (optimal subsidy, steady-state consumption insurance, zero steady-state prof-
its) is not necessary for the results but makes the algebra simpler: see Appendix B for relaxations.
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The government conducts �scal policy, which (other than the optimal subsidy above)
consists of a simple endogenous redistribution scheme: taxing pro�ts at rate �D and rebating

the proceedings lump-sum to H: TransferHt =
�D

�
Dt; this is key here for the transmission

of monetary policy (summarized as before by an exogenous path of rt).

Market clearing implies for equilibrium in the goods and labor market respectively

Yt = Ct � �CHt + (1� �)CSt and �NH
t + (1� �)NS

t = Nt. With uniform steady-state

hours (N j = N) by normalization and the �scal policy assumed above (inducing Cj = C)

loglinearization delivers yt = ct = �cHt + (1� �) cSt and nt = �nHt + (1� �)nSt .

3.1 Aggregate Euler-IS and PE Curves

The hand-to-mouth consume all their income cHt = y
H
t , where the key word is "their": for

while their consumption comoves one-to-one with their income, it comoves more or less than

one-to-one with aggregate income. To understand this (the model�s keystone!), start from

H�s loglinearized budget constraint: cHt = wt + n
H
t +

�D

�
dt. Substituting wt = ('+ ��1) ct

(the wage schedule derived using the economy resource constraint, production function, and

aggregate labor supply), dt = �wt and H�s labor supply, we obtain:

cHt = yHt = �yt; (6)

� � 1 + '

�
1� �

D

�

�
7 1:

The parameter � is the key throughout the paper and denotes the elasticity of H�s

consumption (and income) to aggregate income yt. It is the main distinguishing feature of

my setup from Campbell and Mankiw (1989, 1990, 1991), where the maintained assumption

is that spenders H consume a constant fraction of aggregate income. That is, � = 1 which

I will henceforth call the Campbell-Mankiw benchmark (nested here with in�nitely elastic

labor ' = 0, or neutral redistribution �D = �).12 In TANK, instead, � depends chie�y

on �scal redistribution and labor market characteristics, and determines the ampli�cation

properties of monetary (and �scal) policy and shocks.

How can the income of H move disproportionately with aggregate income? Since there

are two (types of) agents in the economy, we must keep track of distributional e¤ects and

look at what savers do. Their income being: ySt = wt + n
S
t +

1��D
1�� dt, they face (relative to

RANK) an extra income e¤ect of the real wage, which for them counts as marginal cost and

12In their latest paper, Campbell and Mankiw (1991) do acknowledge, in a di¤erent context (of utility costs
of rule-of-thumb behavior� footnote 26), that under the assumption that spenders consume their own income
the model would behave di¤erently; That is the only mention of this alternative assumption, maintained
throughout this paper and crucial for its ampli�cation mechanism. See Bilbiie and Straub (2012, 2013) for
the implications of this di¤erent assumption for empirical estimates of �.
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reduces pro�ts. Replacing dt = �wt and S�s labor supply schedule, we obtain:

cSt =
1� ��
1� � yt: (7)

Trivially with two agents, whenever one�s income elasticity to aggregate income is larger

than 1, the other�s is lower than 1.

Consider now RANK, where one agent works and receives all the pro�ts. When aggregate

income goes up, demand goes up (sticky prices) which drives up the real wage (labor demand

expands). But it also drives down pro�ts (because the wage is marginal cost). And because

the same agent incurs both the labor gain and the "capital" (monopolistic rents) loss, the

distribution of income between the two is neutral.

TANK breaks this neutrality, because there is now an externality imposed by H on S

through an income e¤ect. Start with the case with no redistribution, �D = 0. When, for

whatever reason, demand goes up and the real wage goes up (moving along an upward-

sloping labor supply ' > 0), H�s income goes up, and� because they incur none of the

negative income e¤ect of pro�ts going down� so does their demand, proportionally. This

gives an extra kick to aggregate demand, thus shifting labor demand further, which increases

the wage further, and so on. This results in equilibrium because S, whose income goes down

as pro�ts fall (marginal cost goes up and, maintaining ' > 0, sales do not increase by as

much), optimally "pay" for it� by working more to produce the extra demand.

Introducing redistribution �D > 0 dampens this channel; a smaller � results, as H start

internalizing (through the transfer) some of the negative income e¤ect of pro�ts and do not

increase demand by as much. The Campbell-Mankiw benchmark � = 1 occurs when pro�ts�

distribution is uniform (this income e¤ect disappears) �D = �; or when labor is in�nitely

elastic ' = 0 (agents are perfectly insured through the wage). While when H receive a

disproportionate share of the pro�ts �D > � the opposite holds: the expansion in aggregate

demand is smaller than the initial impulse, as H recognize that this will lead to a fall in

their income (� < 1) and S are happy to work less and pocket the increase in pro�ts.

The mechanism just described has a very Keynesian �avour, and we are indeed ready

to characterize the New Keynesian cross of TANK: use S�s consumption function, (4) with

j = S, to write the aggregate:

ct = [1� � (1� ��)] yt � (1� �) ��rt + � (1� ��)Etct+1; (8)

which generalizes Campbell and Mankiw�s equation to arbitrary � 6= 1. Imposing good

market clearing ct = yt in (8) delivers the aggregate Euler-IS curve of TANK, isomorphic to
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RANK but with di¤erent interest elasticity:

ct = Etct+1 �
1� �
1� ���rt: (9)

Rather than analyze TANK through the prism of this Euler-IS curve (which is readily avail-

able in the earlier work referred to above that derived this equation), here we go one level

of disaggregation further and use the NK cross apparatus in Proposition 2.

Proposition 2 In TANK, the aggregate MPC ! and multiplier 
 (for an interest rate cut
of persistence p) are:

! =
1� � (1� ��)
1� �p (1� ��) ; 
 =

�

1� p
1� �
1� ��:

There is ampli�cation (@

@�
> 0) if and only if:

� > 1: (10)

To understand this Proposition, let us focus on the case of purely temporary shocks p = 0

(the extension to arbitrary p parallels that in RANK). Introducing H has two contradicting

e¤ects on the equilibrium on the NK cross in Figure 1: one on the shift of the PE curve

(autonomous expenditure), and one on its slope (the MPC). On the one hand, it reduces

proportionally the direct e¤ect of interest rate changes because H are insensitive to them:

all the intertemporal substitution is done by S. In particular, autonomous expenditure is


D = (1� !) 
 = ��(1��)
1��p(1���) ; at zero persistence, the PE curve shift (relative to RANK)

decreases with � by a factor of �, the MPS of each saver: @
�

D

�D

�
=@� = ��. On the other

hand, the aggregate MPC increases with � because H have a unit MPC out of their own

income ! = 1 � � + ���; that is, the indirect e¤ect is stronger (regardless of the value of
�!). Indeed, the e¤ect of � on the slope of PE is (with p = 0) @!=@� = ��.

Ampli�cation (a TANKmultiplier higher than RANK and increasing with �) occurs when

the latter slope e¤ect dominates the shift e¤ect ��+�� > 0, i.e. when (10) holds; otherwise,
there is dampening. This can be veri�ed directly (@
=@� = (�� 1)
�= (1� ��)2) and the
mechanism is the one discussed above: an interest rate cut implies an initial aggregate

demand expansion through S�s intertemporal substitution, a labor demand shift, and a real

wage increase. Since the wage is H�s income, this increases their demand further, which

ampli�es the initial aggregate demand expansion (� > 1) and is an equilibrium as the extra

output is produced by S (whose negative income e¤ect coming from pro�ts gives them the
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right incentives to do so).13 Dampening occurs when � < 1 as H internalize the negative

e¤ect of a potential wage increase on their income (through the �scal redistribution) and

rather than increase their demand in face of a labor demand shift, they decrease it.14

Yet even when the total e¤ect is lower, more of it goes through the general-equilibrium

response: the indirect e¤ect share ! is increasing with � regardless of �; in particular @!
@�
=

��(1�p)
(1��p(1���))2 > 0 for any �. All these e¤ects are illustrated in the �rst row of Figure 2 plotting

the total e¤ect and indirect share for TANK under � > 1 and < 1 and distinguishing

transitory and persistent policy changes to illustrate the role of p.
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Figure 2: � = 2 (thick), 0:5 (thin), p = 0 (solid) and 0:61 (dash).

13The ampli�cation applies only for � < ��1. Beyond ��1 an expansion can no longer be an equilibrium:
the income e¤ect on S starts dominating and the IS curve swivels. See Bilbiie (2008) for a full characterization
of that "non-Keynesian" equilibrium of TANK and Bilbiie and Straub (2012, 2013) for empirical analyses.
14This relies crucially on �exible wages: Colciago (2011) and Ascari, Colciago, and Rossi (2016) extended

TANK to sticky nominal wages, which leads to dampening (smaller multipliers) because, in my notation, it
reduces �. Furlanetto (2011) studies �scal multipliers in this case in a quantitative TANK model.
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3.2 Application: Fiscal Multipliers and the NK Cross

Fiscal multipliers are a major theme of TANK models in the 2000s. I revisit that literature

(reviewed in the Introduction) through the lens of the NK cross in this simple analytical

framework which isolates the minimal set of ingredients necessary to obtain multipliers in

TANK.15 Assume that the government spends an exogenous (wasteful) amount Gt every

period �nanced by lump-sum taxes Tt, of which each agent pays T
j
t .

To capture exogenous redistribution assume that H pay an arbitrary share of total taxes

�THt = �Tt (while savers pay (1� �)T St = (1� �)Tt). With steady-state values normalized
to zero for simplicity (with tH;t � THt =Y and gt � Gt=Y ) we can decompose tH;t as:

tH;t =
�

�
tt =

�

�
gt = gt|{z}

uniform

�
�
1� �

�

�
tt| {z }

exog. redist.

;

the sum of a uniform tax (equal to the spending increase) and a transfer to H whenever

� < � (from H otherwise) capturing exogenous redistribution.16 Notice the distinction with

the endogenous redistribution (through �D=�) emphasized previously. De�ning disposable

income (net of all taxes/transfers) with a hat, ŷjt = y
j
t � tjt , we now have:

cHt = ŷ
H
t = �ŷt +

1

1 + ('�)�1
(�gt � tH;t) :

The second term summarizes the impact of �scal variables onH. The coe¢ cient
�
1 + ('�)�1

��1
is the elasticity of H consumption to a transfer and governs the strength of the income e¤ect

relative to substitution: it is 0 when labor supply is in�nitely elastic ' = 0 and 1 (largest)

when it is inelastic, or when the income e¤ect ��1 is nil.

The PE curve with �scal policy (the derivation paralleling the one without) is:

ct = [1� � (1� ��)] ŷt � (1� �) ��rt + � (1� ��)Etct+1 + �
��� �

1 + ('�)�1
(gt � Etgt+1)

15The analysis hence complements GLV�s seminal 2007 paper which showed� in a numerically-solved
TANK version with savers holding all the physical capital and hand-to-mouth holding none (as in Mankiw,
2000)� that government spending can have a positive multiplier on private consumption with enough H, a
non-Walrasian labor market, and de�cit �nancing. The analytical approach here shows that the last two
ingredients are not necessary.
16This captures in a crude way (with two agents) the progressivity of tax changes used to �nance spending;

Ferrière and Navarro (2017) provide evidence that in the US spending increases are accompanied by changes
in tax progressivity, and a HA model to study it.
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and, adding the ERC ct = ŷt, the aggregate Euler-IS curve is:

ct = Etct+1 �
1� �
1� ���rt +

��� �
(1� ��)

�
1 + ('�)�1

� (gt � Etgt+1) :
which immediately delivers the �scal multiplier on output (recall that rt is �xed):


G = 1 +
�
�� �

�

� �

1� ��
1

1 + ('�)�1
:

This can now be larger than 1 (the �xed-rt value in RANK with separable preferences)

through the NK cross: higher government demand leads to higher labor demand, wage, and

consumption forH amplifying the initial demand expansion, which is produced in equilibrium

by S because of the income e¤ect through pro�ts. The condition for a multiplier 
G > 1

is now a generalized version of (10): � > �
�
, where the right-hand side is the share of taxes

that H need to pay. When they pay none (� = 0), there is a positive multiplier for any

� > 0; while when taxation is uniform � = � we are back to condition (10). The multiplier

disappears, as expected: in RANK � = 0, or when labor is in�nitely elastic ' = 0; but also

when � = �
�
, because there are two counterbalancing forces: the (endogenous-redistribution-

driven) multiplier �� 1 exactly cancels out with the exogenous-redistribution e¤ect 1� �
�
.

To represent this graphically using the NK cross we use again Figure 1, replacing 
 with


G and with the same MPC (p being now irrelevant). The multiplier is increasing with �

because this increases both the PE slope and shift� the latter, only if (10) holds, � > 1.


G is increasing with the implicit transfer (decreasing with �) because this increases the PE

shift, only if it is indeed a transfer (progressive taxation shock) � < �. Finally, at given �,

the multiplier increases with �; but with uniform taxation it is increasing with � if and only

if � > 1, with the same intuition as for monetary shocks (slope versus shift).

Paralleling the decomposition of taxes on H, it is informative to decompose the mul-

tiplier into two: the multiplier of a uniform-tax-�nanced spending increase 
uniform =

1 + ��1
1+('�)�1

�
1��� , and the multiplier of a pure redistribution (transfer from S to H) de-

noted 
transfer = 1
1+('�)�1

�
1��� :


G = 
uniform +
�
1� �

�

�

transfer.

While 
uniform disappears in the Campbell-Mankiw benchmark, 
transfer does not. Moreover,

while the former is only increasing with � when � > 1, 
transfer is increasing with � even

in the dampening case, albeit at a smaller rate. Fiscal stimulus in the form of transfers (the

policies considered by Oh and Reis, 2012 in HANK and e.g. Bilbiie et al, 2013 in TANK) is
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thus one policy instrument that can stimulate the economy even in the "dampening" case.

4 An Analytical HANK Model

One important HANK channel that TANK misses by construction is self-insurance in face

of idiosyncratic shocks: unconstrained agents� possibility of becoming constrained in the

future. I propose an analytical HANK model that captures this channel (and ultimately

allows quantifying its importance) in the simplest possible way� as an extension of TANK.

While related to several (both HANK-simplifying and TANK-extending) studies reviewed in

the Introduction, the exact model is to the best of my knowledge novel.17

The version here makes four key assumptions that make the equilibrium particularly

simple. These are: A1. an exogenous stochastic change of status between constrained H

and unconstrained S (idiosyncratic uncertainty); A2. insurance is full within type (after

idiosyncratic uncertainty is revealed), but limited across types; A3. di¤erent asset liquidity:

bonds are liquid (can be used to self-insure, before idiosyncratic uncertainty is revealed),

while stocks are illiquid (cannot be used to self-insure); and A4. no bond trading (no

equilibrium liquidity)� as was used before in other contexts (Krusell et al, 2011; Ravn and

Sterk, 2017), see the Introduction for comparison with existing work.

There are two states and two assets. Agents switch between S and H; that the former

may become constrained can thus be interpreted as "risk", and only one of the assets�

bonds� is "liquid", i.e. can be used to insure against this. The exogenous change of state

follows a Markov chain: the probability to stay type S is s, and to stay type H is h (with

transition probabilities 1� s and 1� h respectively).
I focus on stationary equilibria whereby the mass of H is (by standard results):

� =
1� s

2� s� h;

The requirement s � 1 � h insures stationarity and has a straightforward interpretation:
the probability to stay a saver is larger than the probability to become one (the conditional

probability is larger than the unconditional).18 When this holds with equality (s = 1 � h),
idiosyncratic shocks are iid: being S or H tomorrow is independent on whether one is S or

H today, 1�s = �. At the other extreme, we recover the TANK model: idiosyncratic shocks
17A companion paper Bilbiie (2017), analyzes the model�s implications more thoroughly by considering an

aggregate supply side and looking at determinacy properties of equilibria, liquidity traps, and the model�s
potential to solve all NK puzzles and paradoxes.
18An general version of this condition appears e.g. in Huggett (1993); see also Challe et al (2016) for an

interpretation in terms of job �nding and separation rates, and Bilbiie and Ragot (2016).
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are permanent (s = h = 1) and � stays at its initial value (a free parameter).

To characterize the equilibrium, start from H: in every period, those who happen to be

H would like to borrow, but we assume that they cannot (for instance they face a borrowing

limit of 0). Since the stock is illiquid, they cannot access that portfolio (owned entirely

by S, whoever they happen to be in that period). We therefore focus on an equilibrium

where they are constrained hand-to-mouth and consume all their (endogenous) income, like

in TANK CHt = Y Ht ; because transition probabilities are independent of history and we

assumed perfect insurance within type, all agents who are H in a given period have the same

income and consumption.

S are also perfectly insured among themselves in every period by assumption, and would

like to save in order to self-insure against the risk of becoming H. Because shares are illiquid,

they can only use (liquid) bonds to do that. But since H cannot borrow and there is no

government-provided liquidity, bonds are in zero supply (the no-trade equilibrium of Krusell,

Mukoyama, and Smith, see the Introduction). An Euler equation prices these bonds even

though they are not traded (just like in RANK, the aggregate Euler equation prices the

possibly non-traded bond). But now the bond-pricing Euler equation takes into account the

possible transition to the constrained H state� unlike in TANK, nested when idiosyncratic

shocks are permanent, where there is no transition and no self-insurance. Notice that in

line with some HANK models such as KMV, my model distinguishes, albeit in a crude

way, between liquid (bonds) and illiquid (stock) assets: in equilibrium, there is infrequent

(limited) participation in the stock market.

Given assumptions A1-A4, the only equation that di¤ers from TANK is the Euler equa-

tion governing the bond-holding decision of S self-insuring against the risk of becoming H:

�
CSt
�� 1

� = �Et

n
(1 + rt)

h
s
�
CSt+1

�� 1
� + (1� s)

�
CHt+1

�� 1
�

io
; (11)

recalling that we focus on equilibria where the corresponding Euler condition for H holds

with strict inequality (the constraint binds), while the Euler condition for stock holdings by

S remains the same as in the TANK model.

4.1 The Aggregate Euler Equation in HANK: Discounting or Compounding
through Self-Insurance

Loglinearizing the self-insurance equation (11) around the same symmetric steady state as

in TANK, we obtain: cSt = sEtc
S
t+1+(1� s)EtcHt+1��rt. Replacing the (same as in TANK)

consumption function of H (6), we obtain the aggregate Euler-IS, the striking implications

of which are summarized in Proposition 3.
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Proposition 3 In the analytical HANK model, the aggregate Euler-IS curve is:

ct = �Etct+1 � �
1� �
1� ��rt; (12)

where � � 1 + (�� 1) 1� s
1� ��:

With idiosyncratic uncertainty s < 1, this is characterized by:19

discounting : � < 1 i¤ � < 1 and

compounding : � > 1 i¤ � > 1.

To understand this, start with RANK, where good news about future income imply a one-

to-one increase in aggregate demand today as the household wants to substitute consumption

towards the present and (with no assets) income adjusts to deliver this. The same also holds

in the TANK limit: with permanent idiosyncratic shocks (s = h = 1), � = 1.

Consider then the case of "discounting", which generalizes MNS (nested for � = 0,

implying � = s, and iid idiosyncratic shocks s = 1 � h = 1 � �). When good news about
future aggregate income/consumption arrive, households recognize that in some states of

the world they will be constrained and (because � < 1) not bene�t fully from it. They

self-insure against this and increase their consumption less than they would if they were

alone in the economy (or if there were no uncertainty). Like in RANK and TANK, this

(now: "precautionary") increase in saving demand cannot be accommodated (there is no

asset), so the household consumes less today and income adjusts accordingly to deliver this

allocation. The interaction of idiosyncratic (1 � s) and aggregate uncertainty (news about
yt, and how they translate into individual income through � � 1) thus determines the self-
insurance channel. The self-insurance channel is strengthened and the discounting is faster:

the higher the risk (1 � s), the lower the �, and the longer the expected hand-to-mouth
spell (higher � at given s implies higher h); these intuitive results follow immediately by

calculating the respective derivatives of � and noticing they are all proportional to (�� 1).
The opposite holds with � > 1: there is compounding instead of discounting. The en-

dogenous ampli�cation through the Keynesian cross now holds not only contemporaneously

(TANK), but also intertemporally: good news about future aggregate income boost today�s

demand because they imply less need for self-insurance. Since future consumption in states

where the constraint binds over-reacts to good aggregate news, households internalize this

by demanding less "saving". But savings still need to be zero in equilibrium, so households

19As in TANK, we restrain attention to the case � < ��1: otherwise the AD elasticity to interest rates
changes sign when � > 1 (with non-trivial implications for �), a topic studied in detail elsewhere.
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consume more that one-to-one� while income increases more than it would without risk. By

the same token as before (� derivatives proportional to (�� 1)), this e¤ect is magni�ed with
higher risk (1� s), �, and �; the highest compounding is obtained in the iid case, because
it corresponds to the strongest self-insurance motive, with �iid = (1� �) = (1� ��).
Furthermore, the self-insurance channel is complementary with the (TANK) hand-to-

mouth channel: compounding (discounting) is increasing with idiosyncratic risk at a higher

rate when there are more � (@2�= (@�@ (1� s)) � �� 1): an increase in (1� s) has a larger
e¤ect on self-insurance with a longer expected hand-to-mouth spell (1� h)�1.

4.2 The NK Cross in HANK

While the Euler equation is particularly useful to understand discounting/compounding, in

this model too we can derive (see Appendix C) the equally useful recursive PE curve:

ct = [1� � (1� ��)] yt � (1� �) ��rt + �� (1� ��)Etct+1. (13)

Remarkably, there is only one di¤erence relative to TANK, concerning the last term: the

discounting/compounding through �. Using this (together with ct = yt) or the aggregate

Euler-IS curve directly we �nd the key objects for the analytical HANK:

! =
1� � (1� ��)
1� ��p (1� ��) ; 
 =

�

1� �p
1� �
1� ��: (14)

The results are very intuitive: � matters exactly like exogenous persistence p: it is "as if"

the shock were more (less) persistent when � > 1 (< 1). TANK and analytical HANK are

only di¤erent when it comes to shocks that are about the future in some way (persistent,

or news shocks); this is natural, since self-insurance is about future shocks. In the "com-

pounding" case, there are hence two sources of ampli�cation: the TANK one, increasing

the contemporaneous elasticity of aggregate demand to interest rates (the MPC-slope of the

recursive PE curve is unchanged); and the HANK one through the compounding e¤ect �,

which only applies to future (persistent or announced) changes.
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Figure 3: � = 2 (thick), 0:5 (thin), s = 1� � (dots: iid ���) and 1 (dash: TANK)

Figure 3 illustrates and summarizes these �ndings; it plots the multiplier and MPC in

HANK as a function of �, for the same persistence as KMV p = 0:61. With red dashed line

we have the TANK limit (s = h = 1), distinguishing between � > 1 and < 1. The respective

e¤ects are magni�ed with higher risk (1� s): in the iid limit (1� s = h = �) represented by
blue dots, we have the highest compounding and the fastest discounting.

4.3 Application: Resolving or Aggravating the Forward Guidance Puzzle

The di¤erence between TANK and HANK (discounting/compounding) matters most when

it comes to future shocks; a topical application is to future monetary policy announcements,

or forward guidance FG. Consider for simplicity a future one-time interest rate cut at t+T ,

whose e¤ect is found by iterating forward the recursive PE curve (13) to obtain:20

ct = � (1� �)��
1X
i=0

[�� (1� ��)]iEtrt+i + [1� � (1� ��)]
1X
i=0

[�� (1� ��)]iEtyt+i: (15)

Di¤erentiation with respect to �rt+T delivers Proposition 4 (the proof is in Appendix C).

Proposition 4 The multiplier of forward guidance FG (an interest rate cut in T periods)

and the MPC in the analytical HANK model are:


FT = �
1� �
1� ���

T ; !FT = 1� [� (1� ��)]
1+T :

20Garcia-Schidt and Woodoford (2014) also use a version of the forward-iterated consumption function to
compute the e¤ects of FG under �nite planning horizon using a notion of "re�ective equilibrium". That can
also give rise to Euler discounting.

23



The multiplier decreases with the horizon (@
FT =@T < 0, thus resolving the FG puzzle) if and

only if there is discounting � < 1; in the compounding case, the multiplier increases with the

horizon (@
FT =@T > 0, the FG puzzle is aggravated).

To understand this, recall the RANK limit (s = 1 and � = 0) where 
FT is unity and

invariant to time� a manifestation of the FG puzzle emphasized by Del Negro et al (2012),

Carlstrom et al (2015), and Kiley (2016): the interest rate cut has the same e¤ect regardless

of whether it takes place next period, in one year, or in one century.

Take now the TANK limit (s = h = 1) with � = 1. As for within-period policy changes,

FG is more (� > 1) or less (� < 1) powerful than in RANK. But this has no impact on the

way in which the e¤ect depends (not) on T : the FG puzzle survives in TANK.

The HANK model breaks this invariance through the discounting-compounding mecha-

nism emphasized in Proposition 3. With discounting, the power of FG decreases with the

horizon� as MNS �rst demonstrated in a special case nested here for � = 0 and iid idiosyn-

cratic uncertainty 1� s = �. My proposition shows, �rst, that this applies generally as long
as there is some idiosyncratic uncertainty 1 � s > 0 and �scal redistribution or whatever

else makes � < 1; these features combined trigger self-insurance� and thus under-reaction

with respect to RANK and TANK� in response to good income news (such as FG).

The opposite is true, however, in the compounding case: the further in the future the

interest rate cut, the larger the e¤ect today. With � > 1 good news about aggregate demand

and income at T imply even better news for aggregate income at T � 1, and so on to the
present. The FG puzzle is aggravated with respect to RANK and TANK.21

Figure 4 illustrates this plotting the FG multiplier as a function of T for � = 0:2. I

distinguish the two cases according to whether � is larger (thick) or lower (thin) than unity,

and plot for each case TANK with dash and the iid case of analytical HANK with dots. In

the � > 1 case, the further FG is pushed into the future, the more powerful it is. The more

risk, the larger is this ampli�cation (which disappears with no risk, in the TANK limit).

Conversely, when � < 1, there is dampening: the total e¤ect decreases with the horizon,

and the more so the higher the risk (it is again invariant in the TANK limit, even though

lower in levels than in RANK). The share of the indirect e¤ect !F , on the other hand, is

invariant to the level of idiosyncratic risk: it is increasing with both � and T and the speed

with which it does so depends on �.

21An aggravation of the FG puzzle can also obtain by a di¤erent mechanism in Werning (2015): precau-
tionary saving in response to countercyclical income risk (the volatility of idiosyncratic income shocks goes
down in expansions). This mechanism is orthogonal to the TANK hand-to-mouth channel that is key here,
see Acharya and Dogra (2018) for an illustration and the Introduction for further discussion.
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4.4 Calibrating the Simple Models to Match the Complicated

In this section I use the analytical framework and NK cross apparatus to discuss whether

and how TANK and analytical HANK can be used quite literally as approximations to

quantitative HANK, by comparing their implications for aggregate equilibrium outcomes:

multipliers (total e¤ects) and MPC (indirect, general-equilibrium feedback).

As a �rst numerical exercise, we ask how far the TANK heterogeneity taken by itself

can go towards replicating the aggregate e¤ects of monetary policy shocks of an existing

HANK model (where that channel coexists with several others); in their in�uential study,

KMV show that in their HANK model matching wealth distributions and holdings of liquid

versus illiquid assets, the total e¤ect is 50% larger than RANK�s 
=
� = 1:5, while the

indirect e¤ect is ! = 0:8. Given the same parameter values (where available), I invert the

expressions in Proposition 2 to calculate the � and � that deliver, in TANK, the same 
 and

! as in KMV�s HANK. These are � = 0:41 and � = 1: 48 > 1 (which, with ' = 1; implies

�D = 0:21). Given the distributions of assets (:3 of agents hold zero liquid assets and :15

negative liquid assets) and the assumptions pertaining to how pro�ts are redistributed in

KMV�s economy, these summary numbers do not appear utterly unreasonable.

A point worth stressing is that in TANK, like in HANK, multipliers occur through general-

equilibrium, indirect e¤ects. That is, a large indirect e¤ect does not require a proportionally

higher share of H (! is proportional to � only in the Cambell-Mankiw benchmark � = 1).

Generally, if TANK gives A times the total e¤ect of RANK, 
=
� = A, then the indirect
share is at least (for p = 0) ! � 1�A�1: if the TANK multiplier is twice (four times, etc.)
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that of RANK, at least half (three quarters, etc.) of it is indirect.22

TANKmisses (among other HANK channels) self-insurance against the risk of constraints

binding in the future; the analytical HANK in this Section does captures it and implies a

magni�cation of the TANK e¤ects when aggregate shocks are persistent. As illustrated in

Figure 3, this creates an "identi�cation problem" if one is to use the aggregate objects 
 and

! to infer the heterogeneity parameters: a given multiplier and aggregate MPC can result

from a linear combination of hand-to-mouth �, their income elasticity to aggregate income

�, and the idiosyncratic risk they face 1 � s. In the previous numerical example, if instead
of TANK we use the analytical HANK proposed here with small degree of idiosyncratic

risk 1 � s = 0:04, the value of � necessary to match the KMV with the same � = :41

now goes down to 1:42, while in the iid case 1 � s = � = :41 the implied � is much lower
� = 1:14. Likewise, the value of � required to match the total e¤ect with the same � but

1� s = 0:04 is lower � = :37. These numbers are summarized in Table 1. Similar "indirect
inference" exercises can be conducted for any quantitative HANK where some multiplier

and/or "indirect e¤ect" share are computed and reported.23

Table 1: Approximating HANK

HANK: Equilibrium objects Implied parameters




� !


F1

�


F20

� � � 1� s

KMV: 1:5 :8 � � 1: 48 :41 0 (TANK)

1: 42 :41 :04

1: 14 :41 � (iid)

1: 48 :37 :04

MNS: � � :8 :4 � � 0 (TANK)

:3 :21 :04

22This is a lower bound, and is invariant to � and �. The proof is immediate: with p = 0 the ratio of the
two total e¤ects is A = 1��

1��� : Replacing in the indirect share we have ! = 1 � �
1��
A > 1 � 1��

A � 1 � 1
A .

For persistent shocks, the lower bound is ! �
�
1� 1

A
�
=
�
1� p 1A

�
:

23For example Debortoli and Gali�s (2017) numerical HANK delivers 
=
� = 1:7 (! is not reported).
Using their calibration (e.g. � = 0:21) reveals the underlying � = 2: 55 > 1 (for which ! = :64). With a
little idiosyncratic risk 1 � s = 0:04 it is � = 2:38 (with ! = :7), and in the iid case 1 � s = � = 0:21 it
is � = 1:87. Not that the authors use a setup with centralized labor market which a fortiori implies higher
�� see Appendix.
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This is of course only one of the several HANK channels that TANK misses. In their

recent paper comparing TANK and a quantitative HANK (reviewed in the Introduction, see

also previous footnote) Debortoli and Galí provide a useful decomposition of the total e¤ect

of heterogeneity in two parts: one "between" (constrained and unconstrained, in a given

period� the TANK heterogeneity) and the other "within" (the set of unconstrained� the

non-TANK HANK heterogeneity). My analytical HANK model provides a simple way of

capturing the latter: because of the Markovian structure, it is the di¤erence between "S who

stay S" and "S who become H next period".

This can be easily calculated by merely rewriting the HANK aggregate Euler equation in

Proposition 3 so as to recover the RANK Euler equation and the wedges de�ned by Debortoli

and Galí: the TANK "between" wedge bt, and the HANK "within" wedge vt:

ct = Etct+1 � �rt| {z }
RANK

+ bt|{z}
TANK

+ vt|{z}
HANK

where (16)

bt � �
� (�� 1)
1� �� (�rt) and vt � (� � 1)Etct+1 = (�� 1)

1� s
1� ��Etct+1:

Several insights follow directly: both wedges disappear in the Campbell-Mankiw benchmark

� = 1. "Within" heterogeneity vt is small if idiosyncratic risk 1 � s is small, and vanishes
with no risk.24 In response to "demand" shocks like the ones studied here, its response is

proportional to the shock�s persistence; it is procyclical in the compounding case only, since

@vt=@ (�rt) = (� � 1) p
. "Between" heterogeneity is also procyclical in the ampli�cation
case � > 1, even with no discounting/compounding � = 1.

A last set of insights concerns FG in quantitative HANK models: in their in�uential

contribution, MNS (2016) show that the FG puzzle is resolved in their HANK version. This

paper�s analytical apparatus suggests that the model features some version of � < 1; and

while � is a complicated function of many parameters (the most important of which are �scal

redistribution and labor market characteristics) it should be readily available numerically.

As an exercise therefore, I use MNS�calibration where available and (using the formula in

Proposition 4) match the FG multipliers relative to RANK that they report for 1-quarter-

ahead 
F1 = 0:8 and 20-quarters-ahead 
F1 = 0:4, respectively. As the analytical insights

led us expect, the implied value of � is lower than 1, � = :3 (or �D = 0:35 with � = 0:21),

and there is idiosyncratic risk, a 4% probability that the constraint will bind next period.

Interestingly, even though the models are di¤erent as discussed above, the implied Euler

discounting in my model (� = 0:965) is essentially identical to that of MNS (2017).

24In response to productivity shocks this is no longer true: it is easy to show that v depends on them
separately.
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Evidently, a di¤erent calibration with less �scal redistribution leading to � > 1 (such

as �D = 0) would instead imply compounding, and FG multipliers that increase with the

horizon, aggravating the puzzle; this suggests the importance for any quantitative model

approaching this question to report their version of � (and where it stands relative to 1).

5 Conclusions

The Keynesian cross is back in New Keynesian models, through HANK and TANK� back,

because not much of it was left in RANK. This paper proposes a "New Keynesian cross",

understood as both 1. a graphical apparatus� a planned expenditure PE curve describing

aggregate demand� and 2. an analytical framework determining its key objects (MPC and

multiplier) in closed-form as functions of micro parameters pertaining to heterogeneity. I use

this to revisit some major themes of the recent HANK (and TANK) literature: the monetary

policy transmission through indirect, general-equilibrium e¤ects and how it depends on �scal

redistribution; �scal multipliers; and forward guidance FG.

The slope of PE is a measure of the MPC, but also� in KMV�s terminology� the indirect

e¤ect share (the part that is due to general-equilibrium forces); while its shift in response to

policy, the autonomous expenditure change, is the direct e¤ect. This representation unveils

an ampli�cation mechanism when hand-to-mouth households�income responds endogenously

to aggregate income more than one-to-one: the more constrained agents, the higher the

aggregate MPC, and the larger the (monetary and �scal) multipliers. The slope increases by

more than the shift decreases, so ampli�cation is driven by the indirect e¤ect. Conversely,

there is dampening when the hand-to-mouth agents�income elasticity to aggregate income is

less than one. Whether that key elasticity is larger or smaller than one depends chie�y on the

details of the labor market (how much of an aggregate expansion goes to labor income) and

on �scal redistribution (how progressive is the tax system). The aggregate MPC depends on

the income (including �scal re-) distribution, which changes over the cycle; and the e¤ects

of monetary policy depend crucially on �scal redistribution.

Adding self-insurance to idiosyncratic risk (a central feature of HANK), I obtain a� to

the best of my knowledge novel� analytical HANK framework and show that these e¤ects

are magni�ed further. When the income of hand-to-mouth responds to aggregate income less

than proportionally, there is further dampening through discounting in the Euler equation�

of the type �rst identi�ed in this type of models by MNS (2017). But when it responds

more than proportionally, the TANK ampli�cation is magni�ed through an intertemporal

mechanism. There is now compounding in the aggregate Euler equation, for future aggregate

expansions imply an incentive to "dis-save" (reverse self-insurance) and thus a more than
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proportional increase in consumption today. This has stark implications for the e¤ects of

persistent shocks, and especially of announcements of future monetary policy (FG). I show

analytically that in the discounting case FG power decreases with its horizon, alleviating the

FG puzzle; whereas in the compounding case, the puzzle is aggravated: FG power increases

with its horizon as a direct consequence of the logic explained above.

My analysis suggests several central objects that quantitative HANK models could sys-

tematically report to enhance our understanding of their mechanism. The key parameter �

is a "su¢ cient statistic" to assess the e¤ects of policies and shocks in HA models, since its

being less or greater than one has such drastically di¤erent implications. The parameter can

be in principle computed in any HA model by solving numerically for the average elasticity of

income of agents for whom the constraint is binding in a given period to exogenous changes

in aggregate income, after �scal redistribution. Likewise, some version of the NK cross could

also be numerically solved by computing the equilibrium elasticity of aggregate consumption

to aggregate income (keeping all shocks and policies unchanged), which would correspond

to an aggregate measure of the slope of the PE curve, MPC.

It goes without saying that the analysis here is meant as a complement to (and in no

way as a substitute for) full-�edged quantitative models that can draw on micro data and

answer sophisticated distributional questions. And a caveat is that complex HANK models

have other mechanisms that can interact with the two identi�ed here in interesting ways;

I do hope that the literature will explore such interactions in depth. But I also hope to

have convinced the reader that these simple models are reasonable approximations to the

more complicated ones when it comes to certain aggregate responses to speci�c shocks and

policies, such as the ones analyzed here.
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A RANK Derivations

An agent j chooses consumption, asset holdings and leisure solving the standard intertem-
poral problem: maxE0

P1
t=0 �

tU
�
Cjt ; N

j
t

�
, subject to the sequence of constraints:

Bjt + 

j
t+1Vt � Z

j
t + 


j
t (Vt + PtDt) +WtN

j
t � PtCjt :

Cjt ; N
j
t are consumption and hours worked, B

j
t is the nominal value at end of period t

of a portfolio of all state-contingent assets held, except for shares in �rms� likewise for Zjt ,
beginning of period wealth.25 Vt is average market value at time t of shares, Dt their real
dividend payo¤ and 
jt are share holdings. Absence of arbitrage implies that there exists a
stochastic discount factor Qjt;t+1 such that the price at t of a portfolio with uncertain payo¤

25We distinguish shares from the other assets explicitly since their distribution plays a crucial role in the
rest of the analysis.
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at t+1 is (for state-contingent assets and shares respectively, for an agent j who participates
in those markets):

Bj;t
Pt

= Et

�
Qjt;t+1

Zj;t+1
Pt+1

�
and

Vt
Pt
= Et

�
Qjt;t+1

�
Vt+1
Pt+1

+Dt+1

��
; (17)

which iterated forward gives the fundamental pricing equation: Vt
Pt
= Et

1X
i=1

Qjt;t+iDt+i:The

riskless gross short-term REAL interest rate Rt is a solution to:

1

Rt
= EtQ

j
t;t+1 (18)

Note that for nominal assets we have the nominal interest rate 1
It
= Et

Pt
Pt+1

Qjt;t+1.
Substituting the no-arbitrage conditions (17) into the wealth dynamics equation gives

the �ow budget constraint. Together with the usual �natural�no-borrowing limit for each
state, and anticipating that in equilibrium all agents will hold a constant fraction of the
shares (there is no trade in shares) 
j (whose integral across agents is 1), this implies the
usual intertemporal budget constraint:

Et

�
Pt
Pt+1

Qjt;t+1X
j
t+1

�
� Xj

t +WtN
j
t � PtCjt :

Xj
t = Zjt + 


j (Vt + PtDt)

= Zjt + 

j

 
Et

1X
i=0

PtQ
j
t;t+iDt+i

!

Et

1X
i=0

Qjt;t+iC
j
t+i � Xj

t

Pt
+ Et

1X
i=0

Qjt;t+i
Wt+i

Pt+i
N j
t+i (19)

= Et

1X
i=0

Qjt;t+iY
j
t+i

where

Y jt+i = 

jDt+i +

Wt+i

Pt+i
N j
t+i (20)

is income of agent j. Maximizing utility subject to this constraint gives the �rst-order
necessary and su¢ cient conditions at each date and in each state:

�
UC
�
Cjt+1

�
UC
�
Cjt
� = Qjt;t+1

along with (19) holding with equality (or alternatively �ow budget constraint holding with
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equality and transversality conditions ruling out Ponzi games be satis�ed: lim
i!1

Et
�
Qjt;t+iZ

j
t+i

�
=

lim
i!1

Et
�
Qjt;t+iVt+i

�
= 0): Using (19) and the functional form of the utility function the short-

term nominal interest rate must obey:

1

Rt
= �Et

"
UC
�
Cjt+1

�
UC
�
Cjt
� # :

Denote by small letter log deviations from steady-state, except for rates of return (where
they denote absolute deviations). Notice that

Qt;t+i = �
iUC

�
Cjt+i

�
UC
�
Cjt
�

and in steady state: Qi = �
i. Thus we have

qjt;t+i = ln
Qjt;t+i

Qji
= ln

UC
�
Cjt+i

�
UC
�
Cjt
� = ���1

�
cjt+i � c

j
t

�
;

where
qjt;t+i = q

j
t;t+1 + q

j
t+1;t+2 + :::+ q

j
t+i�1;t+i

The Euler equation is:
rt = �Etqjt;t+1

Rewrite as
cjt = Etc

j
t+1 � �rt

and iterate forward, using qjt;t+i = �
Pi�1

k=0 rt+k

cjt = Etc
j
t+i + �Etq

j
t;t+i (21)

Now loglinearize intertemporal budget constraint

Et

1X
i=0

�i
�
qjt;t+i + c

j
t+i

�
= Et

1X
i=0

�i
�
qjt;t+i + y

j
t+i

�

and add to each side (� � 1)
1X
i=0

�iEtq
j
t;t+i

Et

1X
i=0

�i
�
�qjt;t+i + c

j
t+i

�
= Et

1X
i=0

�i
�
�qjt;t+i + y

j
t+i

�
By virtue of the Euler equation the LHS simpli�es

1

1� � c
j
t = �

1X
i=0

�iEtq
j
t;t+i +

1X
i=0

�iEty
j
t+i
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Develop RHS, use qjt;t = 0:

1X
i=0

�iEtq
j
t;t+i = 0�

1X
i=1

�iEt

i�1X
k=0

rt+k

= � �

1� �

1X
i=0

�iEtrt+i

And replace to obtain (multiplying by 1� �)

cjt = ���
1X
i=0

�iEtrt+i + (1� �)
1X
i=0

�iEty
j
t+i

= ���rt + (1� �) yjt � ��
1X
i=1

�iEtrt+i + (1� �)
1X
i=1

�iEty
j
t+i

Now replace the expression for expected consumption tomorrow

�cjt+1 = ���
1X
i=0

�i+1Etrt+1+i + (1� �)
1X
i=0

�i+1Ety
j
t+1+i

to obtain the consumption function in text 4.

B TANK Derivations

Consider the TANK model without the assumption of optimal steady-state subsidy, so with
positive pro�ts and lack of steady-state consumption insurance. In particular, instead of
assuming �S = ("� 1)�1 we set it free: using the steady-state pricing condition WN

PC
= 1��

where I de�ned the steady-state distortion following Woodford (2003), Chapter 6 as � �
1� (1+�

S)("�1)
"

2 [0; 1]. A value of 0 corresponds to an undistorted steady-state equilibrium
(such as under an optimal subsidy �S = ("� 1)�1) and the maximum of 1 obtains when
the markup tends to in�nity and the subsidy s is �xed.26 Using this, the pro�t share in
consumption in steady state is: D

C
= 1 � (W=P )N

C
= �; and the transfer share TH

C
= �D

�
D
C
,

delivering the share of H consumption in total:

CH
C
=
(W=P )N

C
+
TransferH

C
= 1�

�
1� �

D

�

�
�

Approximating around this steady state we have pro�t deviations as share of C, dt =
(Dt �D) =C

dt = ct � (1� �) (wt + nt) = �ct � (1� �)wt:
26Other distortions such as imperfect labor markets and a wage markup, or distortionary taxation would

change the exact expression for � but neither its interpretation nor the limit result that under appropriately
designed taxes it can be eliminated� so � can be regarded as a general index of supply distortions.
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The approximation of transfers is still �
D

�
dt with the wage schedule (aggregating labor sup-

plies and using goods market clearing and production function) wt = ('+ ) ct. Replacing
all this in the approximation of H 0s budget constraint:

CH
C
cH;t =

(W=P )N

C
(wt + nH;t) +

�D

�
dt

we obtain their consumption function:

cH;t = � (�) yt;

where � (�) � 1 + '

�
1� �

D

�

�
� with � � 1

1 + �D

�
�
1��

'
'+

2 [0; 1]

which shows that our main conclusions and intuition for the benchmark TANK model in text
carry through to the case of more general �scal policy, without full steady-state redistribution
and without optimal subsidy.27

Consider now the case of decreasing returns and of a di¤erent labor market setup,
used in Debortoli and Galí (2017), and previously by Galí, Lopez-Salido and Valles (2007): a
centralized labor market pooling everybody�s labor input and supplying demand-determined
labor according to an aggregate wage schedule; the production function is Y = N � and the
individual labor supply optimality conditions are replaced by a wage schedule and a condition
stating that everybody works the same hours, in loglinearized form 'nt = wt � ��1ct and
nHt = n

S
t = nt. With this setup the pro�t function becomes dt = ct� � (1� �) (wt + nt) and

the consumption function of H (replacing everything):

cH;t = ~�yt

~� = 1 +

�
1� �

D

�

��
1� � + '

�
+ 

�
~� with ~� =

1

1 + �D

�

�
1

�(1��) � 1
�

The main insight regarding � carries through: whether it is smaller or larger than 1 depends
on the progressivity of taxes, in particular whether �D is smaller or larger than �. Other
than that, the main di¤erence is that � (when > 1) is larger ceteris paribus under DRS
� < 1, and it is larger under a centralized labor market even with CRS and optimal subsidy
(1 +

�
1� �D

�

�
('+ )); for instance, with no redistribution with competitive labor market

it is 2, and with centralized labor market it is 3.

27The more general point about redistribution is as follows: given an income function for H, say CHt =
� (Yt)+T , a transfer reduces the elasticity of their after-tax income to aggregate income. Letting �� = �Y Y

�+T ,
it follows immediately that as long as T >0 we have �� < �0 and if it is high enough, �� < 1 < �0, where
�0 is the elasticity under zero transfer.
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C Analytical HANK Derivations

The loglinearized self-insurance Euler equation of S around the symmetric steady-state is:

cSt = sEtc
S
t+1 + (1� s)EtcHt+1 � �rt

and noticing that we have, as before, whatever the redistribution scheme determining � (6):
cHt = y

H
t = �yt we obtain the aggregate Euler-IS for this model (12). Using the stochastic

discount factor notation, we now have

�qSt;t+1 = c
S
t � sEtcSt+1 � (1� s)EtcHt+1

Iterating forward (note: we no longer have qjt;t+i = �
Pi�1

k=0 rt+k)

cSt = siEtc
S
t+i � �

i�1X
k=0

sk
�
rt+k � (1� s)EtcHt+k

�
(22)

cSt = siEtc
S
t+i + �Et

i�1X
k=0

sk
�
qSt;t+k + (1� s)EtcHt+k

�
(23)

Using the de�nition of stochastic discount factor:

�qSt;t+i = cSt � sEtcSt+1 � (1� s)EtcHt+1 + cSt+1 � sEtcSt+2 � (1� s)EtcHt+2 +
:::+ cSt+i�1 � sEtcSt+i � (1� s)EtcHt+i

�qSt;t+i + c
S
t+i = cSt + (1� s)Et

iX
k=1

�
cSt+k � cHt+k

�
Now loglinearize the intertemporal budget constraint

Et

1X
i=0

�i
�
qSt;t+i + c

S
t+i

�
= Et

1X
i=0

�i
�
qSt;t+i + y

S
t+i

�

Add to each side (� � 1)
1X
i=0

�iEtq
S
t;t+i

Et

1X
i=0

�i
�
�qSt;t+i + c

S
t+i

�
= Et

1X
i=0

�i
�
�qSt;t+i + y

S
t+i

�
By virtue of the Euler equation the LHS simpli�es
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1

1� � c
S
t + (1� s)Et

1X
i=0

�i
iX

k=1

�
cSt+k � cHt+k

�
= �

1X
i=0

�iEtq
S
t;t+i +

1X
i=0

�iEty
S
t+i

1

1� � c
S
t +

1� s
1� �Et

1X
i=1

�i
�
cSt+i � cHt+i

�
= �

1X
i=0

�iEtq
S
t;t+i +

1X
i=0

�iEty
S
t+i

Develop RHS
1X
i=0

�iEtq
e
t;t+i using qt;t = 0; this is as above in general case and replace to

obtain (multiplying by 1� �)

cSt = � (1� s)Et
1X
i=1

�i
�
cSt+i � cHt+i

�
� ��

1X
i=0

�iEtrt+i + (1� �)
1X
i=0

�iEty
S
t+i

= ���rt + (1� �) ySt � (1� s)Et
1X
i=1

�i
�
cSt+i � cHt+i

�
� ��

1X
i=1

�iEtrt+i + (1� �)
1X
i=1

�iEty
S
t+i

Now replace expression for expected consumption tomorrow

�cSt+1 = � (1� s)Et
1X
i=1

�i+1
�
cSt+i+1 � cHt+i+1

�
���

1X
i=0

�i+1Etrt+1+i+(1� �)
1X
i=0

�i+1Ety
S
t+1+i

to obtain the consumption function:

cSt = ���rt+(1� �) ySt �(1� s)Et
1X
i=1

�i
�
cSt+i � cHt+i

�
���

1X
i=1

�iEtrt+i+(1� �)
1X
i=1

�iEty
S
t+i

or in recursive form:

cSt = ���rt + (1� �) ySt � (1� s) �
�
Etc

S
t+1 � EtcHt+1

�
+ �Etc

S
t+1

= ���rt + (1� �) ySt + �sEtcSt+1 + � (1� s)EtcHt+1

Aggregate and use cHt = y
H
t = �yt to obtain (using the notation for � =

s+(1���s)�
1��� )

ct = [1� � (1� ��)] yt � (1� �)��rt + �� (1� ��)Etct+1:
To �nd the e¤ects of FG we iterate forward:

ct = � (1� �)��
1X
i=0

[�� (1� ��)]iEtrt+i + [1� � (1� ��)]
1X
i=0

[�� (1� ��)]iEtyt+i

Speci�cally, for any k from 0 to T the total e¤ect is (by direct di¤erentiation of the
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forward-iterated Euler equation (12))


F (k) � dct+k
d (�rt+T )

=
1� �
1� ����

T�k;

for any k from 0 to T . The direct FG e¤ect 
FD corresponds to the derivative of the �rst
sum in (15):


FD �
dct+k

d (�rt+T )
jyt+k=y = �� (1� �) [�� (1� ��)]

T :

The indirect FG e¤ect corresponds to the second term in (15):


FI � dct+k
d (�rt+T )

jrt+k=r = [1� � (1� ��)]
TX
i=0

[�� (1� ��)]i dct+i
d (�rt+T )

=
1� �
1� ��� [1� � (1� ��)]

TX
i=0

[�� (1� ��)]i �T�i

=
1� �
1� ����

T
n
1� [� (1� ��)]1+T

o
which delivers the indirect share in the main text.
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