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Contribution of this paper

Purpose/contribution is two-fold:
1 Introduce to the econometrics literature
machine learning methodologies for
designing efficient Bayesian algorithms
• Adopt the framework of “factor graphs”, and
use the Generalized Approximate Message
Passing (GAMP) algorithm introduced in
signal extraction and compressive sensing
• Combine these algorithms with standard
Bayesian “sparse learning” priors that induce
shrinkage

2 Introduce to a novel interpretation and
treatment of the time-varying parameter
regression as a shrinkage problem.
•Do not rely on state-space methods, rather use
shrinkage to determine how “fast” or “slow”
parameters should move.

Factor graphs

Starting point is factor graphs, message
passing, and the sum-product algorithm
•Factor graph: Bipartite graph that
represents the way a global distribution of
several random variables is decomposed into
a product of simpler functions (“factors”).
•Message passing: Dynamic programming
solutions, where a node collects a result
from a part of the graph and communicates
it to the next neighboring node via a
message.
•Sum-product algorithm: A rule
specifying the way each node collects all
messages in order to calculate the marginal
distribution of that message.

Simple example of factor graph:
Consider discrete variables x = (x1, x2, x3)
and joint mass function p that can be
decomposed as
p (x1, x2, x3, x4) = fa (x1) fb (x1, x2) fc (x2, x3) fd (x3) , (1)

Sum-product rule:
The message sent from variable xi to
factor node fj is equal to the product of all
messages arriving to node xi except from the
message coming from the target node fj:

µxi→fj = ∏
k∈N(xi),k 6=j

µfk→xi, (2)

where N(xi) is the set of neighboring (factor)
nodes to xi. Similarly, the message sent from
factor node fj to variable node xi is given by
the sum over the product of the factor function
fj itself and all the incoming messages, except
the messages from the target variable node xi:

µfj→xi = ∑
x\xi

fj (x) ∏
l∈N(xi),l 6=i

µxl→fj, (3)

where x \ xi is the set x
with the element xi removed.

The marginal distribution of variable xi is
simply the product of all messages received
only from factor nodes that are connected to
xi

p (xi) ∝ ∏
m∈N(xi)

µfm→xi. (4)

Time-varying parameter regression as a
high-dimensional problem

The starting point is the following time-varying
parameter regression with stochastic volatility of the
form

yt = xtβt + εt (5)
where yt is variable of interest, t = 1, ..., T , xt is a 1×p
vector of predictors, βt is a p× 1 vector of coefficients,
and εt ∼ N (0, σ2

t ). The “static regression” form of this
model is

y = Xβ + ε, (6)
where y = [y1, ..., yT ]′ and ε = [ε1, ..., εT ]′ are column
vectors stacking the observations yt and εt respectively,
β = [β′1, ..., β′T ]′ is a Tp × 1 vector, and X is the
following T × Tp matrix

X =



x1 01×p ... 01×p 01×p
01×p x2 ... 01×p 01×p
... . . . . . . . . . ...

01×p 01×p ... xT−1 01×p
01×p 01×p ... 01×p xT



. (7)

Estimation

•The Gram matrix (X′X) is of rank T → OLS has
not a unique solution
•Standard approach: Use ‘hierarchical prior’
p (βt|βt−1) ∼ N (βt−1, Q)
•This paper argues: estimate equation (6) using
regularization/shrinkage!
•Number of predictors in X grows both with p and
T (T = 700 and p = 50 gives q = 35000
columns) → This is exactly where message
passing inference comes handy.

Combine the “static regression” likelihood in (6) with
the sparse Bayesian learning prior of Tipping (2001)

p (βi|αi) = N
0, α−1

i

 , (8)
p (αi) = Gamma (1e− 10, 1e− 10) . (9)

—————————————————————-

Figure 1: Factor graph for the posterior distribution of β

♠ We can now design the GAMP algorithm using the
regression likelihood and the sparse Bayesian learning
prior. Its output is the marginal posterior p (β|y).
Derivation of the algorithm is messy (see paper), but
its worst case complexity is O(Tq) for q predictors!

Generic Form of Message Passing Algorithm

1: Initialize ̂
β

(0)
j = 0 and τ̂β,(0)

j = 100 ∀j = 1, ..., q, and set
ŝ

(0)
t = 0 ∀t = 1, ..., T .

2: r = 1
3: while ‖ ̂

β(r) − ̂
β(r−1)‖ → 0 do

4: 1) Output Messages Step:
5: for t = 1 to T do
6: ĉ
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10: end for
11: 2) Input Messages Step:
12: for j = 1 to q do
13:
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17: end for
18: r = r + 1
19: end while
20: Obtain mean and variance of β as ̂

β =
 ̂
β

(r)
1 , ...,

̂
β(r)
q

 and
τβ =

τ̂β,(r)1 , ..., τ̂β,(r)q



Expressions for gout and gin depend on form of prior and likelihood,
but are easy to derive.

Forecasting US Inflation

Forecasting model is of the form
πht+h − πt = φt,0 + ftθt(L) + ∆πtγt(L) + et+h, (10)

using the FRED-MD data (i.e. forecast exercise a-la
Stock and Watson (1999) JME).
———————————————————————–

Table 1: Forecast performance (MSFEs)
CPI PCE deflator

h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12
KP-AR 0.970 0.879 0.849∗∗∗ 0.834∗∗∗ 1.018 0.845∗∗∗ 0.806∗∗∗ 0.783∗∗∗
GK-AR 0.999 1.008 1.009 1.005 0.999 0.996 1.005 0.999
TVP-AR 0.949 0.867∗∗∗ 0.828∗∗∗ 0.837∗∗∗ 1.010 0.793∗∗∗ 0.720∗∗∗ 0.732∗∗∗
UCSV 1.027 0.970 0.911∗∗ 0.916∗ 1.064 0.841∗∗∗ 0.810∗∗∗ 0.761∗∗∗
TVD 0.957 0.867∗∗∗ 0.862∗∗∗ 0.850∗∗∗ 1.015 0.787∗∗∗ 0.744∗∗∗ 0.742∗∗∗
TVS 1.175 0.960 0.963 1.005 1.041 0.8578∗∗∗ 0.817∗∗∗ 0.814∗∗∗
BMA 0.982∗ 0.588∗∗∗ 0.542∗∗∗ 0.531∗∗∗ 1.014 0.713∗∗∗ 0.663∗∗∗ 0.654∗∗∗
TVP-BMA 1.090 0.770∗∗∗ 0.772∗∗ 0.629∗∗ 1.158 0.842∗∗ 0.798∗ 0.812
TVP-GAMP 0.923∗∗ 0.461∗∗∗ 0.421∗∗∗ 0.413∗∗∗ 0.982 0.614∗∗∗ 0.584∗∗∗ 0.565∗∗∗

Model acronyms are as follows: KP-AR: Koop and Potter (2007) structural breaks AR(p) model; GK-AR: Giordani and Kohn (2008)

structural breaks AR(p) model; TVP-AR: Pettenuzzo and Timmermann (2017) time-varying parameter AR(p) model; UCSV: Stock and

Watson (2007) unobserved components stochastic volatility; TVD: Chan et al. (2012) time-varying dimension regression TVS: Kalli and

Griffin (2014) time-varying sparsity regression BMA: George and McCulloch (1993) stochastic search variable selection regresison

TVP-BMA: Groen et al. (2012) time-varying Bayesian model averaging model TVP-GAMP: Shrinkage representation of time-varying

parameter regression, with message passing estimation. Next to MSFE values the results of the Diebold-Mariano statistic are

presented, with ∗ significance at the 10% level; ∗∗ at the 5% level; ∗∗∗ at the 1% level.

Table 2: Forecast performance (logPL)
CPI PCE deflator

h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12
KP-AR 0.060 0.135 -0.006 0.023 -0.033 0.071 0.044 0.016
GK-AR -0.027 0.033 0.025 -0.027 -0.066 0.000 0.009 0.009
TVP-AR 0.216 0.095 0.045 0.071 0.068 0.157 0.116 0.118
UCSV 0.184 0.031 0.033 -0.002 0.051 0.065 0.062 0.081
TVD -8.107 -2.665 -1.862 -1.859 -9.103 -2.887 -1.784 -1.559
TVS 0.032 0.154 0.100 0.058 0.004 0.149 0.167 0.103
BMA 0.019 0.303 0.279 0.292 -0.035 0.203 0.211 0.203
TVP-BMA 0.149 0.394 0.379 0.358 0.024 0.277 0.323 0.290
GAMP 0.017 0.528 0.422 0.381 0.046 0.258 0.279 0.266


