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Causality: it’s (also) about predicting an answer to a
“What if I do question”

Jerzy Neyman Donald Rubin

potential outcome: what would have happened if we would
have assigned a certain treatment

a main task in causality: predict a potential outcome
of a certain treatment or in a certain environment

based on data where this particular treatment is not observed



a main task in causality: predict a potential outcome
of a certain treatment or in a certain environment

based on data where this particular treatment is not observed

many modern applications are faced with such prediction tasks:
I genomics: what would be the effect of knocking down (the

activity of) a gene on the growth rate of a plant?
we want to predict this without any data on such a gene
knock-out (e.g. no data for this particular perturbation)

I E-commerce: what would be the effect of showing
person “XYZ ” an advertisement on social media?
no data on such an advertisement campaign for “XYZ ” or
persons being similar to “XYZ ”

I economics: what would be the effect of a certain
intervention?
but there is no data for such a new intervention scenario



the “prediction aspect of causality” makes it
I less philosophical
I more pragmatic

and it will allow novel notions of “robustness”
(being very different from classical robustness)



there is a large body of important work on causal inference
(Haavelmo, Holland, Rubin, Robins, Dawid, Pearl, Spirtes, Glymour,
Scheines, Angrist, Imbens...)

“another” way of thinking and formalizing might be useful in the
context of large datasets with no designed (randomized)
experiments



there is a large body of important work on causal inference
(Haavelmo, Holland, Rubin, Robins, Dawid, Pearl, Spirtes, Glymour,
Scheines, Angrist, Imbens...)

“another” way of thinking and formalizing might be useful in the
context of large datasets with no designed (randomized)
experiments



Causality and robustness from Heterogeneous (large-scale) data

we will take advantage of heterogeneity
often arising with large-scale data where

i.i.d./homogeneity assumption is not appropriate



The setting
data from different known observed

environments or experimental conditions or

perturbations or sub-populations e ∈ E :

(X e,Y e) ∼ F e, e ∈ E
with response variables Y e and predictor variables X e

examples:
• data from 10 different countries
• data from different econ. scenarios (from diff. “time blocks”)

immigration in the UK



(X e,Y e) ∼ F e, e ∈ E︸︷︷︸
observedresponse variables Y e , predictor variables Xe

consider “many possible” but
mostly non-observed environments F ⊃ E︸︷︷︸

observed

examples for F :
• 10 countries and many other than the 10 countries
• scenarios until today and new unseen scenarios in the future

immigration in the UK

the unseen future



Prediction in heterogeneous environments

(X e,Y e) ∼ F e, e ∈ E︸︷︷︸
observed

mostly non-observed environments F ⊃ E︸︷︷︸
observed

problem:
predict Y given X such that the prediction works well
(is “robust”) for “many possible” environments e ∈ F
based on data from much fewer environments from E

that is: accurate prediction which “works for new scenarios”!



problem:
predict Y given X such that the prediction works well
(is “robust”) for “many possible” environments e ∈ F
based on data from much fewer environments from E

for example with linear models: for new (Y e,X e), find

argminβ max
e∈F

E|Y e − (X e)Tβ|2

we need a model, of course! (one which is good/“justifiable”)

and remember:
causality is predicting an answer to a

“what if I do/perturb question”!
that is: prediction for new unseen scenarios/environments
“equivalence”: causality⇐⇒ prediction in heterogeneous environments
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Prediction and causality

indeed, for linear models: in a nutshell

for F = {all perturbations not acting on Y directly},
argminβ max

e∈F
E|Y e − (X e)Tβ|2 = causal parameter

that is:
causal parameter optimizes
worst case loss w.r.t. “very many” unseen (“future”) scenarios

later:
we will discuss models for F and E which make these relations
more precise
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How to exploit heterogeneity? for causality or “robust” prediction

Causal inference using invariant prediction
Peters, PB and Meinshausen (2016)

a main message:

causal structure/components remain the same
for different sub-populations

while the non-causal components can change across
sub-populations

thus:
; look for “stability” of structures among

different sub-populations
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Invariance: a key assumption

Invariance Assumption (w.r.t. E)

there exists S∗ ⊆ {1, . . . ,d} such that:

L(Y e|X e
S∗) is invariant across e ∈ E

for linear model setting:
there exists a vector γ∗ with supp(γ∗) = S∗ = {j ; γ∗j 6= 0}
such that:

∀e ∈ E : Y e = X eγ∗ + εe, εe ⊥ X e
S∗

εe ∼ Fε the same for all e
X e has an arbitrary distribution, different across e

γ∗, S∗ is interesting in its own right!

namely the parameter and structure which remain invariant across experimental settings, or heterogeneous groups
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Invariance Assumption w.r.t. F

where F ⊃︸︷︷︸
much larger

E

now: the set S∗ and corresponding regression parameter γ∗ are
for a much larger class of environments than what we observe!
;

γ∗, S∗ is even more interesting in its own right!

since it says something about unseen new environments!



Link to causality

mathematical formulation with structural equation models:

Y ← f (Xpa(Y ), ε),

Xj ← fj(Xpa(j), εj) (j = 1, . . . ,p)

ε, ε1, . . . , εp independent

X5

Y

X11

X10

X3

X8X7

X2

direct causal variables for Y : the parental variables of Y
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Link to causality
problem:
under what model for the environments/perturbations e can we
have an interesting description of the invariant sets S∗?

loosely speaking: assume that the perturbations e
I do not directly act on Y
I do not change the relation between X and Y
I may act arbitrarily on X (arbitrary shifts, scalings, etc.)

graphical description: E is random with realizations e

X Y

E

not depending on E
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Link to causality

easy to derive the following:

Proposition
• structural equation model for (Y ,X );
• model for F of perturbations: every e ∈ F

I does not directly act on Y
I does not change the relation between X and Y
I may act arbitrarily on X (arbitrary shifts, scalings, etc.)

Then: the causal variables pa(Y ) satisfy the invariance
assumption with respect to F

causal variables lead to invariance under arbitrarily strong
perturbations from F as described above
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I does not directly act on Y
I does not change the relation between X and Y
I may act arbitrarily on X (arbitrary shifts, scalings, etc.)

Then: the causal variables pa(Y ) satisfy the invariance assumption with
respect to F

as a consequence: for linear structural equation models

for F as above,
argminβ max

e∈F
E|Y e − (X e)Tβ|2 = β0

pa(Y )︸ ︷︷ ︸
causal parameter

if the perturbations in F would not be arbitrarily strong
; the worst-case optimizer is different! (see later)
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A real-world example and the assumptions

Y : growth rate of the plant
X : high-dim. covariates of gene expressions

perturbations e correspond to different gene knock-out exps.
e = 0: observational data
e = 1,2, . . . ,m: m single gene knock-out experiments

e acts in an arbitrary way on the expression of the targeted
gene knock-out plus perhaps on the expression of other genes;
but e is not acting directly on growth rate of plant

; thus: perturbations e
I do not directly act on Y

√

I do not change the relation between X and Y ?
I may act arbitrarily on X (arbitrary shifts, scalings, etc.)

√
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Causality⇐⇒ Invariance

we just argued: causal variables =⇒ invariance

known since a long time:
Haavelmo (1943)

Trygve Haavelmo
Nobel Prize in Economics 1989

(...; Goldberger, 1964; Aldrich, 1989;... ; Dawid and Didelez, 2010)

more novel: the reverse relation

causal structure, predictive robustness ⇐= invariance

; search for invariances in the data and infer causal structures
... identifiability issues! (Peters, PB & Meinshausen, 2016)
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Gene knock-down perturbations
Meinshausen, Hauser, Mooij, Peters, Versteeg & PB (2016)

goal: predict gene activities (expressions) in yeast for various
unobserved gene knock-down perturbations

prediction task with no data from red dots



data: gene expressions from observational data and other gene
knock-down perturbations (not the ones which we want to predict)

sample size: 160 observational and 1479 interventional single
gene knock-down data
dimensionality: p = 6170 measured genes

the environments for the method (for invariance assumption):
|E| = 2, encoding “observational” and “any intervention”

put one third of the interventional samples aside (test data) and
predict these interventions
validation: binarized values

strong effect (strong change): 1; otherwise: 0



predict binarized strong gene perturbations and
validate with hold-out sample

# INTERVENTION PREDICTIONS
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I : invariant prediction method
H: invariant prediction with some hidden variables



Invariance and novel robustness

I exact invariance and corresponding causality may be often
too ambitious

I the perturbations in future data might not be so strong
(as in the gene knock-out example)

more pragmatic:
construct “best” predictions in heterogeneous settings
; a novel robustness viewpoint



Anchor regression and causal regularization
(Rothenhäusler, Meinshausen, PB & Peters, 2018)

the environments from before, denoted as e:
they are now outcomes of a variable A︸︷︷︸

anchor
(once before, we denoted it as E)

X Y

H

A

Y ← X Tβ0 + εY

+ Hδ

,

X ← ATα0 + εX

+ Hγ

,

Instrumental variables regression model
(cf. Angrist, Imbens, Lemieux, Newey, Rosenbaum, Rubin,...)

hidden/latent variables are of major concern ; include them in the model
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Anchor regression with hidden confounders

the environments from before, denoted as e:
they are now outcomes of a variable A︸︷︷︸

anchor

X

Y

H
A

allowing also for feedback loops

A is an “anchor”X
Y
H

 = B

X
Y
H

+ ε+ MA

X
Y
H

 = (I − B)−1(ε+ MA)



IV regression is a special case of anchor regression

IV regression

X

Y

H
A

anchor regression

X

Y

H
A

allowing also for feedback loops



Causal regularization

motivation: invariance assumption for residuals

X

Y

H
A

when IV model does not hold
it can be shown (non-trivial!) that

A uncorrelated with (Y − Xb)⇐⇒ (Y − Xb) is ”shift-invariant”



A uncorrelated with (Y − Xb)⇐⇒ (Y − Xb) is ”shift-invariant”

thus, we want to encourage orthogonality of A with the residuals

something like

β̃ = argminb‖Y − Xb‖22/n + ξ‖AT (Y − Xb)/n‖22
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thus, we want to encourage orthogonality of A with the residuals

anchor regression estimator:

β̂ = argminb‖(I − ΠA)(Y − Xb)‖22/n + γ‖ΠA(Y − Xb)‖22/n

+ λ‖b‖1

ΠA = A(AT A)−1AT (projection onto column space of A)

I for γ = 1: ordinary least squares

I for γ = 0: adjusting for heterogeneity due to A
e.g. A are the first principal components of X capturing confounding
(often used in GWAS)

I for γ =∞: two-stage least squares in IV
I for 0 ≤ γ <∞: general causal regularization
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A uncorrelated with (Y − Xb)⇐⇒ (Y − Xb) is ”shift-invariant”

thus, we want to encourage orthogonality of A with the residuals

anchor regression estimator:

β̂ = argminb‖(I − ΠA)(Y − Xb)‖22/n + γ‖ΠA(Y − Xb)‖22/n + λ‖b‖1
ΠA = A(AT A)−1AT (projection onto column space of A)

I for γ = 1: ordinary least squares
I for γ = 0: adjusting for heterogeneity due to A

e.g. A are the first principal components of X capturing confounding
(often used in GWAS)

I for γ =∞: two-stage least squares in IV model
I for 0 ≤ γ <∞: general causal regularization + Lasso-pen.



there is a fundamental identifiability problem
since the model is more complicated than in IV regression

X

Y

H
A

but causal regularization solves for

argminβ max
e∈F

E|Y e − (X e)Tβ|2

for a certain class of perturbations F



Model for F : (new) shifts in the (test) data

shift vectors v (either random or deterministic) acting on
(components of) X ,Y ,H

model for observed heterogeneous data (“corresponding to E”)X
Y
H

 = B

X
Y
H

+ ε+ MA

model for unobserved perturbations F (in test data)X v

Y v

Hv

 = B

X v

Y v

Hv

+ ε+ v

v ∈ span(M)



Model for unobserved perturbations F

consider shift interventions v acting on (X ,Y ,H):X v

Y v

Hv

 = (I − B)−1(ε+ v)

X

Y

HA

shifts v in the span(M)︸ ︷︷ ︸
rel. to child(A)

, whose “strength” equals γ

Cγ = {v ; v = Mδ for some δ with E[δδT ] � γE[AAT ]}
I γ = 1: v is up to the order of MA which describes

heterogeneity in the observed data
I γ � 1: v a strong perturbation being an amplification of

the observed heterogeneity MA



Novel robustness against unobserved perturbations in F

PA the population projection onto A: PAZ = E[Z |A]

Theorem (Rothenhäusler, Meinshauen, PB & Peters, 2018)
For any b

max
v∈Cγ

E[|Y v − X v b|2] = E
[∣∣(Id− PA)(Y − Xb)

∣∣2]+ γE
[∣∣PA(Y − Xb)

∣∣2]
worst case shift interventions←→ regularization!

for any b

argminb

worst case test error︷ ︸︸ ︷
max
v∈Cγ

E
[∣∣Y v − X v b

∣∣2]
=

argminb

E
[∣∣(Id− PA)(Y − Xb)

∣∣2]+ γE
[∣∣PA(Y − Xb)

∣∣2]︸ ︷︷ ︸
criterion on training population sample
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and “therefore”

β̂ = argminb‖(I − ΠA)(Y − Xb)‖22/n + γ‖ΠA(Y − Xb)‖22 (+λ‖b‖1)

protects against worst case shift intervention scenarios
and leads to predictive stability



Justification of β̂ in the high-dimensional scenario

Theorem (Rothenhäusler, Meinshausen, PB & Peters, 2018)
assume:

I a “causal” compatibility condition on X (weaker than the
standard compatibility condition);

I (sub-) Gaussian error;
I dim(A) ≤ C <∞ for some C;

Then, for Rγ(b) = maxv∈Cγ
E|Y v − X v b|2 and any γ ≥ 0:

Rγ(β̂γ) = min
b

Rγ(b)︸ ︷︷ ︸
optimal

+OP(sγ
√

log(d)/n),

sγ = supp(βγ), βγ = argminbRγ(b)



Bike rentals: robust prediction

data from UCI machine learning repository
hourly counts of bike rentals between 2011 and 2012 of the
“Capital Bikeshare” in Washington D.C.
sample size n = 17′379

goal: predict bike rentals based on the d = 4 covariates
temperature, feeling temperature, humidity, windspeed

use discrete anchor variable = “time”:
block of consecutive time points from every day is one level

results are adjusted for hour, working day, weekday, holiday

want to evaluate worst case risk

max
v

E[(Y v − X v β̂)2]



worst case risk

max
v

E[(Y v − X v β̂)2]

can show (under the model assumptions) that this corresponds
to quantiles of E[(Y − X β̂)2|A]:

max
v∈Cγ

E[(Y v − X v β̂)2] = αγ − quantile of E[(Y − X β̂)2|A]

γ large ⇐⇒ α = αγ large

thus:
for perturbations with large v we have to look at high quantiles
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large γ lead to better cross-validated performance for high
quantiles of E[(Y − X β̂)2|A] corresponding to worst case risk

maxv∈Cγ
E[(Y v − X v β̂)2] for large class Cγ
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large γ good for high quantiles of
CV squared error; and vice-versa
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up to 25% performance gain for
high quantiles of CV squared error



It’s simply transformed variables

β̂ = argminb‖(I − ΠA)(Y − Xb)‖22/n + γ‖ΠA(Y − Xb)‖22/n + λ‖b‖1
ΠA = A(AT A)−1AT (projection onto column space of A)

build

X̃ = (I − ΠA)X +
√
γΠAX = (I − (1−√γ)ΠA)X

Ỹ = (I − ΠA)Y +
√
γΠAY = (I − (1−√γ)ΠA)Y

then: OLS/Lasso on (Ỹ , X̃ ) leads to unpenalized /`1-norm
penalized anchor regression

can also use nonlinear techniques with Ỹ , X̃ as input
; work in progress



Random Forests with Ỹ , X̃ as input

Air pollution in Chinese cities
sample size n ≈ 290′000, p = 10 covariables, 5 Chinese cities
anchors: the 5 different cities (different environments)

goal: predict air pollution of one city based on others
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small values of γ are good ; the unseen perturbations are
“orthogonal” to the observed heterogeneity in the data



perhaps these ideas are also
useful in the context of forecasting in economics

(e.g. unemployment, GDP,... :
currently a master thesis in collaboration with the KOF Swiss
Economic Institute, ETH Zurich)



Conclusions

Invariance and Stability←→ Causality
causal components remain the same for

different sub-populations, experimental settings or “regimes”

Shift perturbations←→ Causal regularization
; predictive stability, robustness

; there are interesting and perhaps “surprising” connections
between causality and predictive stability/robustness



make heterogeneity or non-stationarity your friend
(rather than your enemy)!



make heterogeneity or non-stationarity your friend
(rather than your enemy)!



more on quantiles of CV squared error performance
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