What drives virtual currency adoption by retailers?*

Nicole Jonker *
Payments and Market Infrastructures Division
De Nederlandsche Bank

28 September 2017

Abstract:
Decentralised issued virtual currencies have the potential to drastically change the existing retail payment system and even the monetary system. Insight into the factors that influence their adoption are therefore crucial. Using a large representative sample of retailers, we find that acceptance of virtual currency payments is currently modest, but there is substantial interest among retailers to adopt virtual currency payments in the near future. Consumer demand, net transactional benefits and non-financial barriers influence adoption intention and actual acceptance of virtual currency payments by retailers. Regarding non financial factors our findings suggest that service providers who act as intermediaries between retailers, their customers and providers of payment instruments play a crucial role as facilitators of competition and innovation in the online retail payments market by lowering such barriers.

Keywords: virtual currencies, technology adoption, two-sided markets, retailers, network externalities, cost, facilitating conditions

JEL codes: D22, E42, G20, O33

* Corresponding author: Nicole Jonker, phone: +31-20-5242759, email: n.jonker@dnb.nl, address: De Nederlandsche Bank, Payments and Market Infrastructures Division, P.O. Box 98, 1000AB Amsterdam, The Netherlands. The author thanks Bas Koolstra and Monique Timmermans for their help in the early stage of this research, Hans Brits, Carin van der Cruijsen, Mirjam Plooij and participants of the DNB research seminar for their valuable comments and Marianne van Marwijk and Jaap Wils of research company Panteia for their help in collecting the data. All remaining errors are my own. The views expressed are mine and do not necessarily reflect those of the Nederlandsche Bank or the European System of Central Banks.
1. INTRODUCTION

This paper examines the adoption intention and actual acceptance of virtual currency (VC) payments by online retailers. Nakamoto (2008) introduced the world’s first decentralised VC, called bitcoin. A VC is ‘a virtual representation of a value, not issued by a central bank, credit institution or e-money institution, which in some circumstances can be used as an alternative of money’ (definition used in ECB, 2015), although it does not fullfill all functions of money.¹ Bitcoin enables payers and payees to directly sent value to each other electronically and anonymously without the need to use the services of trusted third parties, like financial institutions (Nakamoto, 2008). The software needed to run the bitcoin network is based on the innovative distributed ledger technology, which uses cryptographic techniques for the identification and validation of payments by network nodes; that are subsequently recorded decentrally in a public distributed ledger, called the blockchain. Since 2009 also, others launched (decentralised) VCs inspired by bitcoin, and its innovative payment technology, of which Ethereum, Litecoin, and Ripple are well-known examples.² There are currently more than 800 VCs with a value of USD 121 billion, which corresponds with 0.1 percent of global GDP (worlVCoinindex, 10 August 2017).

Since the introduction of bitcoin, VCs have received a lot of media attention worldwide, fuelled by the rise in the value of VCs relative to regular currencies, and the fluctuations therein, the close links they have with the shadow economy, but also because of the question whether VCs pose a serious threat to regular currencies. VCs have the potential to drastically change the existing retail payment ecosystem by making traditional financial institutions like banks, which act as intermediaries between consumers and retailers, superfluous. In addition, they can, when used widely, even affect the functioning of the the monetary system (Halperin, 2013; Stevens, 2017). They are therefore of interest to economists and central bankers. Furthermore, usage of VCs also entails risks for payers and payees. The network's decentralised nature obscures its members' responsibilities, meaning that none of them can be held accountable in the event of mishaps. In addition, payments and holdings in VCs of consumers are not covered by a government-guaranteed deposit guaranteed scheme nor can consumers rely on a compensation policy in case of fraud.

Insight into the factors which influence the adoption of such potentially disruptive payment technologies are therefore highly relevant. However, research on the adoption of VCs as a means of

¹ In this paper we do not consider VCs as money. According to the economic literature a VC should not be considered as money, as it does not fully fulfill the three functions of money, i.e. 1) medium of exchange, 2) store of value and 3) unit of account. Thus far, VCs only fulfill the role of medium of exchange to some extent as the adoption rate among consumers and retailers in general is still fairly low. VCs are hardly suitable to fulfill the other two rules due to the high volatility of their exchange rates relative to regular currencies, which causes huge fluctuations in the purchasing power of savings and in consumer prices of goods and services.

² For more information on the technology behind bitcoin, see Nakamoto (2008) and about decentralised and centralised VCs in general, see e.g. ECB (2015).
payment by users is still in its infancy. Schuh and Shy (2015) and Silinskyte (2014) study the adoption and usage of VCs among consumers, while Polasik, Piotrowska, Wisniewski, Kotkowski and Lightfoot (2015) shed light on the features of VC accepting vendors.

However, as far as we know, there are no studies available on the adoption of VCs among a large representative group of retailers who sell their products online. This paper fills this gap. Another novelty is that we enrich the economic literature with insights from other disciplines to analyse adoption decisions by retailers. Such an approach is supported by an increasing number of economists (see e.g. Hoff and Stiglitz, 2016) and turns out to be fruitful in the payment literature (see e.g. Cruijen, van der and Horst, van der, 2016). Given the technical complexity and the highly innovative features of VCs the technology adoption literature seems to be a natural candidate to borrow insights from. We address the following research question: Which factors influence the retailer’s adoption of virtual currencies? In our analyses we pay attention to the influence of consumer demand for VC payments, transactional benefits of receiving VC payments relative to other means of payment and non-financial barriers on retailers’ adoption intention and actual acceptance of VC payments.

We held the Virtual Currency Survey in November and December 2016 among 768 retailers who sell their products online to consumers inside (and outside) the Netherlands. We polled these retailers about their business, the acceptance of payment methods, their perceptions regarding VC payments as well as mainstream online payment methods, their attitudes towards VCs and their intention to adopt them as a means of payment. We use the resulting rich dataset to answer our research question. The Netherlands provide a good setting for this research, as it has a well-developed online retail market. The total value of online payments was EUR 20 billion in 2016 (Thuiswinkel.org, 2017) which corresponds with 13 percent market share in total retail trade.

The structure of this paper is as follows. Section 2 provides an overview on the literature on VCs and the factors influencing adoption decisions of novel payment instruments by retailers. We pay attention to both the two-sided markets literature and the technology adoption literature. Section 3 formulates and discusses the main research question, and three related sub questions on adoption intention and actual acceptance of VCs by retailers. Section 4 discusses the set-up of the Virtual Currency Survey and provides some descriptive statistics. Section 5 briefly describes the econometric models used for the in-depth analyses. Section 6 presents and discusses the estimation results and Section 7 summarises and concludes.
2. LITERATURE

2.1 Theoretical literature

2.1.1 Two-sided markets

A two-sided market is a market characterised by having two demand sides instead of one, and a platform which offers its product to both demand sides. This means that a ‘product’ will only be sold if both sides jointly decide to ‘purchase’ the product. The platform determines the total price paid for the jointly bought product and the individual prices paid by these two end-users. The VC payments market is an example of a two-sided market, just like the card payments market which has received a lot of academic attention, see Verdier (2011) or Jonker (2016) for overviews. In the VC payment market there is a platform (usually a network) which offers people the opportunity to transfer funds from one person’s account to the other person’s account using a particular VC X, such as bitcoin. This transaction will only take place if both the payer and the payee have adopted the VC X and agreed to use it for this specific transaction. If one of them prefers another payment method the transfer will not take place with X. This may happen if the net transactional benefits of another payment method or another VC Y exceeds that of using X for either the payer or the payee. With net transactional benefits we mean the difference between the benefits of a payment with a particular payment method minus the transactional costs associated with the payment.

In a two-sided market, network externalities at one side of the market positively influence demand at the other side. For consumers adopting VC X becomes more attractive the higher the share of retailers who accept it, while for retailers adoption of X becomes more attractive the higher the adoption rate of VC X among consumers. Generally, platforms who offer payment solutions try to maximise the platform’s output by setting the transaction fees of the payee and the payer in such a way that total output is maximised. In practice, payment platforms often charge consumers a zero transaction fee or even a negative fee (reward) and a positive transaction fee to retailers. The transaction fee of retailers may be higher than the cost associated with delivering the payment service to retailers as platforms try to cover part of the cost associated with delivering the payment service not to consumers but to retailers, as retailer demand is assumed to be less price elastic than consumer demand. A rationale for platforms to price their payment service in such a way is that they want to encourage consumers to adopt their payment method, and as the consumers’ adoption rate rises, so will the retailers’ adoption rate due to network externalities. Note that unlike payment card networks, many VC platforms, like e.g. Bitcoin, do not charge payees and payers transaction fees, but payers may voluntarily pay a fee, as an incentive to the miners in the network to process their transaction quickly. Intermediaries such as non-bank payment service providers (PSPs) which offer payment services to retailers charge transaction fees for accepting VC payments.
In the early two-sided market models, retailers were assumed to be homogeneous and to operate in a non-competitive market, in which either all retailers adopted a payment method or not (Baxter, 1983). However, in reality retailers in different sectors may perceive different benefits from adopting a payment instrument, leading to different adoption rates across sectors (Wright, 2004). In addition, retailers may face different cost structures and consequently have different adoption rates depending on the average transaction size or sales volume (McAndrews and Wang, 2008). Furthermore, adoption depends on market competition. Retailers who face competition may accept a payment method even though the net transactional benefits are negative. They do so in order to attract consumers from competing retailers, or to prevent losing customers to competitors (Rochet and Tirole, 2002; Vickers, 2005). In highly competitive markets platforms can therefore charge excessive fees to retailers. This has occurred in the debit and credit cards market in several jurisdictions worldwide and has led to various antitrust lawsuits and even price regulation by competition authorities, see Jonker (2016) for an overview.

A distinguishing feature of using a VC compared to using a payment instrument based on a regular currency concerns the exchange rate between the virtual and the regular currency. Bolt and Van Oort (2016) present an economic framework for analysing the functioning of the VC market, and in particular the development of the exchange rate of the VC. Both the speculative demand by investors and the transaction demand by consumers and retailers influence the development of this exchange rate. Since their introduction VCs are known for the high volatility in exchange rate with regular currencies. This can be considered as a symptom of early development of the VC, as in the long run, when the adoption of the VC by consumers and retailers increases, there will be an equilibrium exchange rate between the virtual and regular currency, where the investors’ demand will lie a “floor” under the exchange rate.

2.1.2 Technology adoption literature
In this paper we also take into account findings from the technology adoption literature, see also Aydogan (2016) or Silinskyte (2014) for overviews. The technology adoption literature initially focused on the adoption of new technologies by organisations. Later on, the models used to analyse adoption by organisations were also used for consumers. The Technology Acceptance Model (TAM) developed by Davis (1989) is one of the most widespread technology adoption theories. In the TAM model the factors perceived usefulness (PU) and perceived ease of use (PEOU) jointly determine the adoption intention of a new technology by potential users. Davis defines perceived usefulness as “the degree to which a person believes that using a particular system would enhance his or her job performance” and perceived ease of use as “the degree to which a person believes that using a particular system would be free of effort”. According to TAM the greater the perceived usefulness and perceived ease of use of a new technology, the more positive people feel about it (attitude), which
increases their intention to adopt it and to actually use it. Although TAM provides a solid basic framework, researchers also felt a need to extent TAM and to improve its explanatory power by including additional determinants. Venkatesh, Morris, Davis and Davis (2003) introduce the Unified Theory of Acceptance and Use of Technology (UTAUT), in which they combine insights from TAM and seven other adoption models. UTAUT consists of four main factors determining adoption intention, i.e. performance expectancy (PE), effort expectancy (EE), social influence (SI) and facilitating conditions (FC). SI is defined as “the degree to which an individual perceives that important others believe he or she should use the new system” and FC as “the degree to which an individual believes that an organizational and technical infrastructure exists to support use of the system”. PE and EE are fairly similar to PU respectively PEOU from TAM.

2.2 Empirical literature

There are few empirical studies on payment technology adoption by retailers who sell their products online. Li, Ward and Zhang (2003) and Van Hove and Karimov (2006) examine the role of risk on retailers’ adoption of payment methods. Li et al. (2003) use information from 260 online eBay sellers and conclude that adoption choices reflect a balanced evaluation of the cost and convenience associated with the payment methods and the protection they provide to buyers against any risks associated with the product sold. Van Hove and Karimov (2016) surveyed 192 retailers active in five Central Asian countries and find that retailers who sell high risk products (high value physical products) online are more likely to accept low-risk, immediate payment instruments from buyers, so that they are certain that they will receive their money. However, if buyers also run risks due to the way products are being delivered, retailers become more prone to accept higher risk payment instruments (pay later, no payment guarantee) as well. This finding is in line with earlier findings by DNB (2007) on the Dutch online payment market.

Studies on the uptake of VCs by retailers are also scarce. Polasik et al. (2016) analyse the share of bitcoin payments in total retail sales using information of 108 bitcoin accepting retailers from different countries. The importance of bitcoin payments is relatively large among start-ups, small retailers, in developing countries or in countries with a large shadow economy. Interestingly, the share of bitcoin in total sales increases with the bitcoin awareness of potential customers, suggesting the existence of network externalities. Silinskyte (2014) examines bitcoin adoption among a small sample of 111 bitcoin users and non-users worldwide using the UTAUT model. She finds that adoption intention is significantly influenced by the respondents’ expectations regarding the performance of bitcoins and the amount of effort required to adopt them. Furthermore, actual bitcoin usage depends on facilitating conditions.

Schuh and Shy (2016) examine VC adoption among a representative sample of US consumers using the 2014-15 Survey of Consumer Payment Choice. Actual adoption turns out to be low; about
one percent or less of the consumers has ever owned VCs. People who expect an appreciation of a VC relative to regular currencies are more likely to hold them, suggesting that investment motives drive consumers’ adoption. However, people also use them to pay for goods and services and for remittance payments to other consumers, indicating that VCs also act as a means of payment.

3. RESEARCH QUESTIONS

Summarising, the academic literature provides several insights into which factors influence retailers’ decision to accept payments with a particular payment instrument from their customers. The literature also suggests that due to the heterogeneity of retailers they may think differently about the added value for their business to accept VC payments. Given this background, the aim of this study is to answer the following key research question:

Q: Which factors influence the retailer’s adoption intention / acceptance decision of VC payments?

There is some overlap in the economics and the technology adoption literature with respect to the factors influencing adoption decisions, such as net transactional benefits with performance expectancy and network externalities with social influence. There are, however, also insights from the technology adoption literature which do not have a direct counterpart in the economics literature, such as effort expectancy and facilitating conditions which reflect non-financial barriers. Therefore, we enrich our empirical analyses by taking non-financial barriers into account as well. Furthermore, we distinguish between the influence of these factors on adoption intention among retailers who do not accept virtual currency payments as well as on current acceptance among all retailers. To be more specific, we address the following sub-questions:

Qa: Does the retailer’s assessment of consumer adoption of VC payments influence his/her adoption intention / acceptance of VC payments?

In order to answer this question we use three measures for the retailer’s assessment of consumer demand. First of all, we use the retailer’s overall assessment of the adoption rate of VC payments by online shopping consumers. According to the two-sided market literature, the utility of adopting a payment instrument by retailers increases with the adoption rate by consumers. Consequently, we expect a positive relationship between the retailers’ assessment of the consumers’ adoption rate and their adoption intention/acceptance of VC payments. Secondly, studies on consumer adoption of new payment technologies show that age and gender are important (see e.g. Stavins, 2001, or Jonker, 2007). Early adoption declines with age and is relatively high among men. We therefore use the measures ‘Gender composition customers’ which indicates the retailer’s self-reported gender
composition of his/her customers and ‘Age composition customers’ which reflects the retailer’s self-reported age composition of his/her customers.³

Qb: Does the retailer’s assessment of the private net transactional benefits associated with accepting VC payments influence the adoption intention/acceptance of VC payments?

Whether a retailer accepts a specific payment instrument, depends on the net transactional benefits it provides. Net transactional benefits reflect the difference between the transactional benefits of payment transactions done with a particular payment instrument to the retailer (e.g. in terms of convenience or safety/security) and the retailer’s transaction fee. Net transactional benefits influence the retailer’s adoption intention positively. We use five indicators: ‘Relative safety’ which reflects fraud and cyber crime risk to the retailer related to VC payments relative to other payment instruments, ‘Relative labour time cost’ which reflects time needed to handle VC transactions by the retailers’ staff compared to other means of payment, ‘Relative transaction cost’ which reflects the relative level of transaction fees of VC payments compared to other instruments, ‘Exchange rate risk’ which reflects the perceived risk associated with fluctuations in the value of VC transactions relative to other means of payment in regular currencies and ‘Customers within euro area’ which indicates that all the retailer’s customers live in the euro area. We expect a positive impact of relative safety on adoption intention/acceptance and we expect that the two cost measures and perceived exchange rate risk exercise downwards pressure on retailers’ adoption intention/acceptance. With respect to retailers mainly having customers living in the euro area, we expect a negative impact, as they don’t experience the advantages of VC payments as clearly as the ones with customers from outside the euro area, such as no exchange rate fees and shorter transfer times.

Qc: Does the retailer’s perceived level of effort associated with accepting VC payments influence the adoption intention/acceptance of VC payments?

According to the technology adoption literature the lower retailers perceive the effort required to start working with a new technology within a firm the higher the adoption intention. We use two indicators for this non-financial barrier, i.e. ‘perceived ease of use’ and ‘perceived compatibility’. Both factors are expected to have a positive impact on retailers’ adoption intention/acceptance.

³ Gender is often known to the retailer, because customers are asked to indicate their gender when making an online purchase for addressing and billing purposes. Retailers may also have a fairly good view on their customers’ age profile, even though customers often do not have to provide information about their age. The products they sell may target at a specific age cohort and the first name provided for addressing/billing purposes may give an indication about a customer’s age due to trends in first names (Gerhards and Hackenbroch, 2000; Twenge, Abeke and Campell, 2010).
4. SURVEY

4.1 Data collection

The survey was held in November and December 2016 among 768 retailers in the Netherlands. We aimed at retailers who sell their products online, as VC payments are typically suitable for online payments and less suitable for point-of-sale payments. Research agency Panteia was responsible for the data collection. Panteia conducted telephone interviews in order to raise response and to ensure completion of the questionnaire by the responding retailers. Panteia’s interviewers contacted the person of the establishment who was responsible for retail payments (usually the owner) as we are interested in the drivers of the adoption decision. We used two sources to draw our sample. Most retailers were drawn randomly from the registers of database Reach of research company Van Dijk. Reach includes information on 3.6 million companies in the Netherlands. The sample drawn from Reach was stratified into ten retail sectors and five company sizes in order to ensure sufficient variation in the sample of retailers, especially with respect to firm size.\(^4\) Table A.1 in the annex provides an overview. In addition, Panteia contacted 102 retailers who sell products online, who were on a list of bitcoin accepting retailers in July 2016 and whose contact details (phone number) were available.\(^5\) We used this additional source in order to raise the number of VC accepting retailers in our sample.

Of the 768 retailers in the sample, 43 accept VC payments. 27 of them are from a bitcoin accepting list and 16 are from the registers of Reach. The latter figure indicates that VC acceptance of retailers in the Netherlands is fairly low, i.e. 2 percent of the retailers who are active in e-commerce. In our sample the share of VC accepting retailers is higher and amounts 6 percent. Most of the retailers accept iDEAL\(^6\) payments (79 percent), online credit transfers (61 percent), followed by Paypal (46 percent), credit card (43 percent), the Belgian payment solution Bancontact (22 percent), cash on delivery (21 percent), debit card on delivery (10 percent), Klarna/Afterpay and the German online payment solution Sofort (both 9 percent).

Most of the VC accepting retailers immediately exchange their turnover in VCs for euros (63 percent), 16 percent exchange them for euros when the exchange rate is favourable, 2 percent use them for payments and another 2 percent exchange them for a non-euro currency when the exchange rate is favourable. 16 percent do not know what happens with their VC receipts.

The questionnaire includes questions on the retailer’s view on the safety, transaction cost and labour time cost associated with VC transaction and five commonly used payment instruments for

\(^4\) According to Panteia/Statistics Netherlands more than 95 percent of the web shops has 10 or less employees. In our sample shops with more than 10 employees are overrepresented in order to have a sufficient number of medium sized and large shops to assess the influence of firm size on adoption decisions.

\(^5\) http://www.watisbitcoin.nl/

\(^6\) iDEAL is a payment solution used in the Netherlands, offered by banks and based on online banking. In 2015 it had a market share of 56 percent in the number of online payments (Betaalvereniging, 2016).
online purchases (iDEAL, credit transfer, credit card, direct debit, and Paypal) using a 7 point Likert scale. It also includes questions on VC adoption by online shopping consumers in general, characteristics of respondents’ customers, their payment behaviour, firm characteristics and demographic information on the respondents themselves. Furthermore, it contains questions related to the reasons to accept VC payments or not and the intention to accept VC payments. Lastly, the survey has questions related to the non-financial barriers related to VC acceptance.

Regarding the reasons given for VC acceptance, 42 percent of the retailers accept them to attract extra customers or because their customers ask for it (23 percent). Many retailers accept them because they are interested in new technology (21 percent) or because of the low transaction fees (7 percent). None of the retailers indicate that the privacy provided by VC payments to their customers plays a role. Neither do they indicate that the mitigation of exchange rate risk or shorter transfer time to their account influence their adoption decision.

Unfamiliarity with VCs is the most cited reason for non-acceptance (58 percent), followed by lack of consumer demand (36 percent), not feeling the need for acceptance (17 percent), lack of trust in VC (16 percent), acceptance not being common in their industry (12 percent), safety concerns (9 percent) and perceived complexity (5 percent). Overall, both the answers given by accepting and non-accepting retailers indicate that customers’ (expected) demand for VC influences the acceptance decision.

5. THE MODELS
5.1 Dependent variables

We construct two dependent variables: Acceptance and Adoption intention. The dependent variable Acceptance equals 1 for retailers who accept VC payments and zero for those who do not. 6 percent of the respondents accept VC and 94 percent do not. We use probit regressions to examine which factors influence retailers’ decisions with respect to VC acceptance.

The dependent variable Adoption intention takes a somewhat broader perspective than Acceptance. Retailers who do not accept VC payments were asked whether they consider accepting VC payments in the near future. They could choose between four answers, i.e. ‘no’, ‘maybe/perhaps eventually’, ‘yes’ and ‘don’t know’. Adoption intention takes on three values, i.e. 1 denoting the answer ‘no’, 2 denoting the answer ‘maybe/perhaps eventually’ and 3 referring to the answer ‘yes’. We exclude respondents who replied ‘don’t know’ and respondents who already accept VC payments from this analysis. 7 percent of the non-accepting retailers intend to accept VC payments soon, 19 percent reply that perhaps eventually they will accept them and 64 percent know for sure that they will not accept them. We estimate ordered probit regressions to examine which factors influence retailers’ intention to adopt virtual currencies. An ordered probit model is an extension of the binomial probit model. The main differences are that the dependent variable can take on more than two values and that these
values have a natural ordering. Differences in the levels of the dependent variable have a qualitative meaning instead of a purely metric one, which makes this model appropriate for the analysis of adoption intention (see e.g. Cameron and Trivedi (2010) for more information).

5.2 Explanatory variables
Below we describe the set of explanatory variables we use to answer research questions Qa-Qc as well as the set of other control variables.

5.2.1 Consumer adoption of VC payments
According to the two-sided markets literature retailers’ adoption decisions depend on the adoption on the other demand side, i.e. consumer demand. We use several variables reflecting consumer demand. Table 1 provides the average scores for these variables for VC accepting respondents and for those who do not. For the latter group group averages are given depending on the level of adoption intention. In addition, we provide the results of 2-sample t-tests which test whether the average responses in two groups differ significantly or not.

Consumer demand VC reflects the retailer’s answer to the question “What share of all consumers which made at least one online purchase in 2016 used virtual currencies at least once?”. On average, retailers expect that 8 percent of the consumers used VC in 2016. VC accepting retailers think that 6 percent of the online shopping consumers used VC, which is significantly lower than the 9 percent according to retailers who do not accept VCs. Retailers who do not accept VC yet, but who intend to do so, assess consumer adoption slightly higher than retailers who are certain that they are not going to accept VC payments (9 percent versus 8 percent). However, the difference is not statistically significant.7

The second and third measure for consumer demand consider the characteristics of the retailers’ own customers, i.e. their gender and age. VC accepting retailers indicate relatively more often than non VC accepting retailers that their customers are mainly people below the age of 30 (16 percent versus 13 percent). Of the latter group, the likelihood that retailers who intend to adopt VC payments have a relatively young clientele is with 19 percent almost twice as high than the 11 percent of the retailers who know for sure they are not going to accept VC, but these differences are not statistically significant. Regarding gender8, we find that among the VC accepting retailers there are relatively many with mainly male customers (26 percent) and relatively few with mainly female customers (7 percent).

7 In Tables 1 – 3, we used two-sample mean comparison t-tests, assuming unequal variances to tests whether groups averages are equal to each other or not.
8 We distinguish five classes: a retailers has mainly male customers, has more male than female customers, has as many male as female customers, has more female than male customers and has mainly female customers.
whereas the opposite holds for retailers who do not accept VC payments (12 percent mainly male customers and 25 percent mainly female customers). These differences are statically significant. We see a similar picture.

Table 1: Comparing retailers perceptions with respect to consumer demand for VC

<table>
<thead>
<tr>
<th>Variable</th>
<th>VC Acceptance</th>
<th>Results 2-sample t-tests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Consumer demand VC (in %)</td>
<td>6%</td>
<td>9%</td>
</tr>
<tr>
<td>Age profile own customers: mainly young (<30 yrs)</td>
<td>16%</td>
<td>13%</td>
</tr>
<tr>
<td>Gender profile own customers: mainly male</td>
<td>26%</td>
<td>12%</td>
</tr>
<tr>
<td>Gender profile own customers: mainly female</td>
<td>7%</td>
<td>25%</td>
</tr>
</tbody>
</table>

emerging when comparing the gender composition of retailers who intend to accept VC payments, who may accept VC payments and who know for sure they are not going to accept them, but these differences are not significant.

5.2.2 Private net transactional benefits of VC acceptance

Perceived risks and performance of VC payments compared to other instruments for online payments may also influence the adoption decision (see Table 2). The variable Exchange rate risk reflects the respondents’ perceived uncertainty in the cost associated with fluctuations in the exchange rate. They were asked the following question ‘How large do you perceive the exchange rate risks between virtual currencies and regular currencies?’ using a 1 (very low) to 7 (very high) scale.9 VC accepting retailers perceive the exchange rate risk as lower (average score 4.0) than the retailers who do not accept VC payments (average score 4.7). The difference in average scores is statistically significant at the 10 percent level. A similar pattern is visible within the group of non-accepting retailers distinguished by adoption intention, although these differences are not significant. The finding that VC accepting retailers perceive relatively low exchange rate risk may be explained by the role of payment service providers (PSPs) which facilitate VC acceptance. Most retailers in our sample who accept VC payments also make use of the services of a PSP (93 percent against 68 percent of the retailers who do not accept VC payments). These PSPs act as intermediaries between retailers, their customers and providers of transfers using specific payment instruments. They often offer retailers services to mitigate exchange rate risk, which is something non-accepting retailers may not be aware of.

9 The question is asked to the 552 retailers who had heard before of paying with VCs.
The results for the second measure *Customers within euro area* do not point at a relationship between the residence of the retailers’ customers and *Adoption intention* and *Acceptance*. This finding is counterintuitive, as especially retailers with customers outside the euro area may benefit from VC payments. In contrast to VC payments, cross-currency transfers using means of payment in regular currencies have relatively high transaction fees and/or long transfer times.

The third measure *Relatively favourable cost VC* equals the ratio of the perceived attractiveness of the cost for accepting VC payments to the average perceived attractiveness of the cost of accepting payments with five other commonly used online payment instruments. Perceived attractiveness of the cost is based on the answer to the question *‘How high do you perceive the cost for companies of payment instrument x? By cost we mean fees paid to banks and payment service providers’. Respondents could provide an answer on a 1 (very high) to 7 (very low) scale. A ratio higher (lower) than 1 implies that the retailer perceives the cost for accepting VC payments as more favourable, i.e. lower (less favourable, i.e. higher) than the average cost for the five other mainstream payment instruments. Also for perceived safety and labour time cost for the retailers’ staff a ratio higher (lower) than 1 implies that VC payments are perceived as more (less) favourable than the average of the other five payment methods.\(^\text{10}\)

Table 2: Retailers’ perceptions towards virtual currencies relative to other payment instruments

<table>
<thead>
<tr>
<th>Variable</th>
<th>VC acceptance</th>
<th>Result 2-sample t-tests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>1. Exchange rate risks (1=very low, 7=very high))</td>
<td>4.00</td>
<td>4.67</td>
</tr>
<tr>
<td>2. Customers within euro area</td>
<td>0.74</td>
<td>0.78</td>
</tr>
<tr>
<td>3. Relatively favourable cost VC</td>
<td>1.65</td>
<td>1.15</td>
</tr>
<tr>
<td>4. Relatively favourable safety VC</td>
<td>0.98</td>
<td>0.74</td>
</tr>
<tr>
<td>5. Relative favourable labour time cost VC</td>
<td>1.11</td>
<td>0.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adoption intention VC</th>
<th>Result 2-sample t-tests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>1. Exchange rate risks (1=very low, 7=very high)</td>
<td>4.33</td>
</tr>
<tr>
<td>2. Customers within euro area</td>
<td>0.87</td>
</tr>
<tr>
<td>3. Relatively favourable cost VC</td>
<td>1.30</td>
</tr>
<tr>
<td>4. Relatively favourable safety VC</td>
<td>0.85</td>
</tr>
<tr>
<td>5. Relatively favourable labour time cost VC</td>
<td>0.98</td>
</tr>
</tbody>
</table>

The survey results show that retailers who accept VC payments perceive them as more favourably than non accepting retailers for all three perception factors. The differences are significant at the 1

\(^{10}\) Perceived safety is based on the retailer’s answer to the question “*How do you perceive the safety for companies of payments with payment instrument x? Safety concerns fraud and cybercrime*”. The respondents could provide an answer on a (very unsafe) to 7 (very safe) scale. Perceived labour time cost is based on the retailer’s answer to the question “*How do you perceive the time needed for a company to handle payments with payment instrument x*?”. The respondents could provide an answer on a 1 (hardly labour intensive) to 7 (very labour intensive) scale. In order to ensure an equal interpretation of the scores for all three perceptions (low score=bad, high score=good), the scores given to perceived cost and perceived labour time cost have been reversed for the the calculation of the relative perceived cost and labour time cost.
percent level. In general, retailers who accept VC payments consider them as equally safe as the other five payment methods. Furthermore, they perceive them as less costly in terms of fees and with respect to labour time cost than the other means of payment. Interestingly, also retailers who do not accept VC payments perceive VC payments as relatively cheap. This holds even for retailers who will not accept VC payments. Regarding the other two perception factors, retailers who do not accept VC payments clearly perceive their attractiveness as less favourable than the average attractiveness of the other payment methods. VC payments score particularly low on safety. Retailers who intend to accept VC payments in the future have a significantly more positive attitude regarding the relative safety of VC payments than retailers who may accept VC payments, but they do not differ from them with respect to their judgment of the attractiveness of relative cost and relative labour time cost. Retailers who may accept VC payments do differ significantly from retailers who will not accept VC payments with respect to these latter two relative perceptions.

Non-financial adoption barriers

We use two constructs from the technology adoption literature that reflect non-financial adoption barriers, i.e. perceived ease of use/learning cost and perceived compatibility of VC payment with existing working procedures. For each of the constructs respondents could provide their opinion on two statements, all using a 7 point-Likert scale, ranging from strongly disagree (1) to strongly agree (7). The questions are listed below:

Perceived ease of use:

1. It’s easy for me and my staff to learn to accept payments in virtual currencies
2. It’s for me and my staff clear and easy to understand how we receive payments in virtual currencies

Perceived compatibility:

3. The acceptance of virtual currency payments fits well with all other aspects of our firm
4. The acceptance of virtual currency payments fits well with the way I and/or my staff want to receive payments for our products

Table 3 provides average group scores per construct. VC accepting retailers feel significantly more positive with both perceived ease of use and compatibility than the other retailers. Retailers who do not accept virtual currencies yet, but state they will do so, score significantly higher than those who state they may accept them in the future. The latter group scores significantly higher than the retailers who know for sure they are not going to accept VC payments. The results suggest that retailers who are quite certain about VC acceptance, foresee a smooth transition towards VC acceptance within their
firm, compared to retailers who are still hesitant. Their expectations are supported by the experiences of VC accepting retailers, as they are even more positive than the ones who intend to adopt them.

Table 3: Retailers’ attitude towards virtual currencies

<table>
<thead>
<tr>
<th>Construct</th>
<th>Acceptance virtual currencies</th>
<th>2-sample t-tests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>1. Perceived ease of use</td>
<td>5.67</td>
<td>2.80</td>
</tr>
<tr>
<td>2. Perceived compatibility</td>
<td>5.29</td>
<td>2.58</td>
</tr>
</tbody>
</table>

Adoption intention VC

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>Maybe</th>
<th>No</th>
<th>2-sample t-tests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes vs Maybe</td>
</tr>
<tr>
<td>1. Perceived ease of use</td>
<td>4.43</td>
<td>2.98</td>
<td>2.57</td>
<td>P=0.00</td>
</tr>
<tr>
<td>2. Perceived compatibility</td>
<td>4.49</td>
<td>3.45</td>
<td>1.99</td>
<td>P=0.00</td>
</tr>
</tbody>
</table>

Other variables

We also include variables which reflect demographic characteristics of the retailers (age and educational level) as well as firm characteristics (founding date, firm size measured by the number of employees, whether the shop makes use of the services of a payment service provider or not) in the set of control variables as well as sector variables. In addition, we control for the competitiveness of the market.

6. ESTIMATION RESULTS

This section presents and discusses the estimation results of the regression analyses. Table 4 shows the estimation results for the dependent variable Adoption intention measuring the relative intention to accept VC payments by retailers who do not accept VC payments yet using the ordered probit regression model and Table 5 presents the results for the dependent variable Acceptance based on information of all respondents using the probit regression model. In order to check for the robustness of the estimated effects and to assess the added value of the three sets of key variables, we estimate models only containing the basic variables and the set of variables related to a specific research question (Model 1 for Qa, Model 2 for Qb and Model 3 for Qc), and we estimate a model including all variables (Full Model), for which we present the estimated parameter coefficients (β) and average marginal effects (AMEs).11

11 Average marginal effects (AMEs) are marginal effects which are averaged across the respondents in the sample, and evaluated relative to the corresponding reference category, see e.g. Cameron and Trivedi (2010). For adoption intention, the AMEs show the impact of the explanatory variables on the probabilities that the retailer does not intend to adoption VC payments (AME on adoption intention = ‘no’) and that the adoption intention is very high (AME on adoption intention = ‘yes’), relative to the reference group. So, for the binomial explanatory variable ‘PSP’, the AMEs show how the probabilities adoption intention is ‘yes’ and ‘no’ would change if a retailer made use of the services of a PSP to accept online payments from customers, compared to one who does not make use of a PSP. For a continuous variable such as ‘age’ the AMEs show the change in probabilities if the retailer’s age increases by 1 year.
6.1 Effect of consumer adoption VC payments

We find that two of the three indicators of the retailer’s assessment of consumer adoption of VC payments significantly influence the intention to adopt VC payments (Model 1 and Full Model, Table 4) and that one indicator influences the acceptance decision (Model 1 and Full Model, Table 5). In line with the two-sided market literature, adoption intention is positively influenced by the retailer’s overall assessment of VC adoption by online shopping consumers. The average marginal effects indicate that a one percentage point higher assessment of VC adoption by consumers, increases the probability that a retailer wants to adopt VC payments by 0.2 percentage points and decreases the probability that (s)he does not intent to adopt them by 0.5 percentage points. The results also show a significant effect of gender composition of the retailer’s customers. Retailers whose clientele mainly consists of women are 4.1 percentage points less likely to be quite certain to adopt VC payments and 9.6 percentage points more likely not to be willing to adopt VC payments than retailers who have a mixed clientele with respect to gender (reference group). The age structure of the retailer’s customers does not affect adoption intention.

We have mixed results regarding the influence of perceived consumer adoption on retailers’ current VC acceptance (see Model 1 and Full model, Table 5). As expected, we find a negative impact of having mainly female customers on VC acceptance; these retailers are 0.8 percentage points less likely to accept VC payments than retailers with a mixed clientele. However, the result of general consumer adoption seems at first sight counterintuitive; it has a negative impact on retailer’s VC acceptance (Model 1) or no effect at all (Full model). A possible explanation may be retailers who already accept VC payments have learned about actual consumer usage of VCs, and have developed a more realistic view on actual consumer adoption than non-accepting retailers. 44 percent of the VC accepting retailers in our survey did not receive any VC payments in 2016 and 42 percent reported an up to 5 percents share of VC payments on total payments, which point at much lower consumer adoption than the average estimated consumer adoption of 8.7 percent by non accepting retailers (Table 1). As with consumer adoption, the age structure of the retailer’s clientele does not influence retailers’current VC acceptance.
<table>
<thead>
<tr>
<th>TABLE 4: Adoption intention virtual currency payments by retailers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable: Adoption intention</td>
</tr>
<tr>
<td>Retailer characteristics</td>
</tr>
<tr>
<td>Age (yes)</td>
</tr>
<tr>
<td>β</td>
</tr>
<tr>
<td>(0.005)</td>
</tr>
<tr>
<td>Education: Bachelor degree</td>
</tr>
<tr>
<td>(0.116)</td>
</tr>
<tr>
<td>Education: Master degree</td>
</tr>
<tr>
<td>(0.157)</td>
</tr>
<tr>
<td>Firm age: less than 2 years</td>
</tr>
<tr>
<td>(0.155)</td>
</tr>
<tr>
<td>Firm age: 2 – 5 years</td>
</tr>
<tr>
<td>(0.139)</td>
</tr>
<tr>
<td>Firm size: 1 person</td>
</tr>
<tr>
<td>(0.193)</td>
</tr>
<tr>
<td>Firm size: 2 – 4 people</td>
</tr>
<tr>
<td>(0.198)</td>
</tr>
<tr>
<td>Firm size: 5 – 19 people</td>
</tr>
<tr>
<td>(0.187)</td>
</tr>
<tr>
<td>Uses services PSP</td>
</tr>
<tr>
<td>(0.122)</td>
</tr>
<tr>
<td>Sector: media</td>
</tr>
<tr>
<td>(0.186)</td>
</tr>
<tr>
<td>Sector: electronics</td>
</tr>
<tr>
<td>(0.191)</td>
</tr>
<tr>
<td>Competition: no to weak</td>
</tr>
<tr>
<td>(0.191)</td>
</tr>
<tr>
<td>Competition: strong to perfect</td>
</tr>
<tr>
<td>(0.121)</td>
</tr>
<tr>
<td>Consumer adoption VC</td>
</tr>
<tr>
<td>(0.157)</td>
</tr>
<tr>
<td>Customers: mainly female</td>
</tr>
<tr>
<td>(0.134)</td>
</tr>
<tr>
<td>Customers: mainly 30 years or younger</td>
</tr>
<tr>
<td>(0.153)</td>
</tr>
<tr>
<td>Perceived degree of consumer adoption VC</td>
</tr>
<tr>
<td>(0.006)</td>
</tr>
<tr>
<td>Missing value Perceived degree of consumer adoption VC</td>
</tr>
<tr>
<td>(0.145)</td>
</tr>
<tr>
<td>Retailer’s net transactional benefits</td>
</tr>
<tr>
<td>(0.115)</td>
</tr>
<tr>
<td>Relatively favourable cost VC</td>
</tr>
<tr>
<td>(0.204)</td>
</tr>
<tr>
<td>Relatively favourable labour time cost VC</td>
</tr>
<tr>
<td>(0.183)</td>
</tr>
<tr>
<td>Exchange rate risk VC</td>
</tr>
</tbody>
</table>

17
Table 4 continued

<table>
<thead>
<tr>
<th>Dependent variable: Adoption intention</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Full model</th>
<th>AME Acceptance=no</th>
<th>AME Acceptance=yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retailer's other adoption barriers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived ease of use</td>
<td>-0.004</td>
<td>-0.005</td>
<td>0.001</td>
<td>-0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.042)</td>
<td>(0.011)</td>
<td>(0.005)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived compatibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.381***</td>
<td>0.382***</td>
<td>-0.102***</td>
<td>0.044***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.043)</td>
<td>(0.009)</td>
<td>(0.006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_1</td>
<td>0.170</td>
<td>0.690*</td>
<td>1.063***</td>
<td>1.631***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.316)</td>
<td>(0.412)</td>
<td>(0.369)</td>
<td>(0.570)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_2</td>
<td>1.166***</td>
<td>1.693***</td>
<td>2.332***</td>
<td>2.951***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.319)</td>
<td>(0.416)</td>
<td>(0.387)</td>
<td>(0.594)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes. The table shows coefficients (β) and average marginal effects (AMEs) based on ordered probit regressions with Adoption intention as dependent variable. Robust standard errors are between parentheses. The sample excludes retailers who accept VC payments or did not know their adoption intention. Reference characteristics of the firm are: firm’s age higher than 5 years, firm size: 20 people and more, does not make use of the services of a PSP, sector: other than media or electronics, the firm experiences moderate competition, has a mixed clientele with respect to gender (more male than female, as many male as female, more female than male), the age of the firm’s clientele is mixed or mainly consists of people aged 31 years and older, the firm accepts payments within and outside the euro area. *p<.1, **p<.05, *** p<.01 (two-sided t-tests).

6.2 Effect of net transactional benefits

The estimation results show that three of the five factors reflecting the retailer’s net transactional benefits associated with VC acceptance significantly influence adoption intention (Model 2 and Full Model, Table 4), and that four of them relate significantly with VC acceptance (Model 2, Table 5).

Retailers who anticipate relatively favourable cost for VC transactions compared to other payment instruments have a relatively favourable attitude towards VC adoption. The estimated average marginal effects indicate that a 1 point increase in the relatively favourable cost ratio (indicating a more favourable relative cost position of VC payments) decreases the probability that retailers do not intend to adopt VC by 5.7 percentage points and increases the probability that they want to adopt VC by 2.5 percentage points (see Full model, Table 4).

We also find that retailers who expect relatively less labour time cost for handling VC payments compared to other payment instruments have a relatively high tendency to adopt VC payments. In addition, the perceived exchange rate risk between VC and regular currencies by retailers has a negative impact on adoption intention. However, the estimated effects for ‘Exchange rate risk VC’ and ‘Relatively favourable labour time cost VC’ are statistically significant in model 2, but not in the full model, where also the indicators of non-financial adoption barriers are included as control variables.
As the magnitude of the estimated effects is also smaller in the full model than in models 1 – 3 it may be the case that the estimates suffer from multicollinearity bias. We examine this in section 6.5.

TABLE 5: Acceptance virtual currency payments by retailers

<table>
<thead>
<tr>
<th>Dependent variable: Acceptance</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Full model</th>
<th>AME Acceptance=yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retailer characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>-0.030***</td>
<td>-0.025***</td>
<td>-0.018</td>
<td>-0.021**</td>
<td>-0.003***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.011)</td>
<td>(0.010)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Education: Bachelor degree</td>
<td>0.098</td>
<td>0.023</td>
<td>0.030</td>
<td>0.079</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.192)</td>
<td>(0.199)</td>
<td>(0.241)</td>
<td>(0.264)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Education: Master degree</td>
<td>0.328</td>
<td>0.233</td>
<td>-0.024</td>
<td>-0.114</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(0.224)</td>
<td>(0.235)</td>
<td>(0.293)</td>
<td>(0.356)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Firm age: less than 2 years</td>
<td>-0.206</td>
<td>-0.289</td>
<td>-0.188</td>
<td>-0.137</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(0.275)</td>
<td>(0.300)</td>
<td>(0.363)</td>
<td>(0.368)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Firm age: 2 – 5 years</td>
<td>0.261</td>
<td>0.265</td>
<td>0.124</td>
<td>0.118</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.218)</td>
<td>(0.244)</td>
<td>(0.275)</td>
<td>(0.284)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Firm size: 1 person</td>
<td>0.176</td>
<td>-0.106</td>
<td>-0.367</td>
<td>-0.473</td>
<td>-0.075</td>
</tr>
<tr>
<td></td>
<td>(0.315)</td>
<td>(0.204)</td>
<td>(0.401)</td>
<td>(0.415)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>Firm size: 2 – 4 people</td>
<td>0.245</td>
<td>0.127</td>
<td>-0.232</td>
<td>-0.208</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(0.314)</td>
<td>(0.315)</td>
<td>(0.405)</td>
<td>(0.404)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Firm size: 5 – 19 people</td>
<td>-0.663**</td>
<td>-0.732*</td>
<td>-1.369***</td>
<td>-1.285**</td>
<td>-0.010**</td>
</tr>
<tr>
<td></td>
<td>(0.392)</td>
<td>(0.418)</td>
<td>(0.579)</td>
<td>(0.598)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>Uses services PSP</td>
<td>0.753***</td>
<td>0.715***</td>
<td>0.523</td>
<td>0.449</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>(0.230)</td>
<td>(0.256)</td>
<td>(0.343)</td>
<td>(0.328)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>Sector: media</td>
<td>0.014</td>
<td>0.139</td>
<td>0.052</td>
<td>0.165</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(0.296)</td>
<td>(0.330)</td>
<td>(0.354)</td>
<td>(0.348)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>Sector: electronics</td>
<td>-0.151</td>
<td>0.024</td>
<td>-0.345</td>
<td>-0.562*</td>
<td>-0.005*</td>
</tr>
<tr>
<td></td>
<td>(0.254)</td>
<td>(0.247)</td>
<td>(0.306)</td>
<td>(0.331)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Competition: no to weak</td>
<td>0.059</td>
<td>0.186</td>
<td>0.021</td>
<td>0.071</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.332)</td>
<td>(0.332)</td>
<td>(0.511)</td>
<td>(0.510)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>Competition: strong to perfect</td>
<td>0.276</td>
<td>0.435*</td>
<td>-0.040</td>
<td>0.023</td>
<td>0.00042</td>
</tr>
<tr>
<td></td>
<td>(0.217)</td>
<td>(0.226)</td>
<td>(0.271)</td>
<td>(0.291)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Consumer adoption VC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customers: mainly male</td>
<td>0.345*</td>
<td></td>
<td>0.012</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.208)</td>
<td></td>
<td>(0.276)</td>
<td>(0.005)</td>
<td></td>
</tr>
<tr>
<td>Customers: mainly female</td>
<td>-0.628***</td>
<td></td>
<td>-0.829**</td>
<td>-0.008**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.283)</td>
<td></td>
<td>(0.388)</td>
<td>(0.07)</td>
<td></td>
</tr>
<tr>
<td>Customers: mainly 30 years or younger</td>
<td>-0.074</td>
<td></td>
<td>-0.003</td>
<td>-0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.251)</td>
<td></td>
<td>(0.305)</td>
<td>(0.05)</td>
<td></td>
</tr>
<tr>
<td>Perceived degree of Consumer adoption VC</td>
<td>-0.029**</td>
<td></td>
<td>-0.008</td>
<td>-0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td></td>
<td>(0.174)</td>
<td>(0.003)</td>
<td></td>
</tr>
<tr>
<td>Retailer’s net transactional benefits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relatively favourable cost VC</td>
<td>0.435***</td>
<td>0.283</td>
<td>0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.128)</td>
<td></td>
<td>(0.174)</td>
<td>(0.005)</td>
<td></td>
</tr>
<tr>
<td>Relatively favourable labour time cost VC</td>
<td>0.546*</td>
<td>0.191</td>
<td>0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.309)</td>
<td></td>
<td>(0.416)</td>
<td>(0.006)</td>
<td></td>
</tr>
<tr>
<td>Relatively favourable safety VC</td>
<td>0.606**</td>
<td>0.591</td>
<td>0.100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.268)</td>
<td></td>
<td>(0.365)</td>
<td>(0.008)</td>
<td></td>
</tr>
<tr>
<td>Exchange rate risk VC</td>
<td>-0.111*</td>
<td>-0.086</td>
<td>-0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.063)</td>
<td></td>
<td>(0.063)</td>
<td>(0.002)</td>
<td></td>
</tr>
<tr>
<td>Customers: within euro area</td>
<td>-0.326</td>
<td>0.132</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5 continued

<table>
<thead>
<tr>
<th>Dependent variable: Acceptance</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Full model</th>
<th>AME Acceptance=yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-financial adoption barriers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived ease of use</td>
<td>0.362***</td>
<td>0.372***</td>
<td>0.006***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.071)</td>
<td>(0.080)</td>
<td>(0.004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived compatibility</td>
<td>0.300***</td>
<td>0.275***</td>
<td>0.004***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.069)</td>
<td>(0.070)</td>
<td>(0.003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-1.221***</td>
<td>-2.407***</td>
<td>-3.451***</td>
<td>-3.697***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.447)</td>
<td>(0.632)</td>
<td>(0.604)</td>
<td>(0.842)</td>
<td></td>
</tr>
<tr>
<td>No. of observations</td>
<td>761</td>
<td>761</td>
<td>521</td>
<td>521</td>
<td></td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-133.99</td>
<td>-121.19</td>
<td>-84.46</td>
<td>-75.07</td>
<td></td>
</tr>
<tr>
<td>Pseudo R-squared</td>
<td>0.190</td>
<td>0.267</td>
<td>0.431</td>
<td>0.494</td>
<td></td>
</tr>
</tbody>
</table>

Notes. The table shows coefficients (β) and average marginal effects (AME) based on probit regressions with virtual currency acceptance as dependent variable. Robust standard errors are between parentheses. Reference characteristics of the firm are: firm’s age higher than 5 years, firm size: 20 people and more, does not make use of the services of a PSP, sector: other than media or electronics, the firm experiences moderate competition, has a mixed clientele with respect to gender, the age of the firm’s clientele is mixed or mainly people aged 31 years and older, the firm accepts payments from inside and outside the euro area. *p<.1, **p<.05, ***p<.01 (two-sided t-tests).

Furthermore, the indicator ‘Customers: within euro area’ is significant and has the expected sign in the full model. The average marginal effect indicates that retailers who only trade with customers inside the euro area are 7.3 percentage points more likely not to intend to accept VC payments than retailers who sell both inside and outside the euro area.

The results of the variables reflecting net transactional benefits on VC acceptance are to a large extent in line with those for adoption intention. Model 2 shows significant results with the expected sign for the explanatory variables ‘Relatively favourable cost VC’, ‘Relatively favourable labour time cost VC’ and ‘Exchange rate risk VC’. In addition, the estimation results point at a significant positive correlation between ‘Relatively favourable safety VC’ and VC acceptance. However, as in the adoption intention model, in the full model none of these four variables turn out to be significant, although ‘Relatively favourable cost VC’ and ‘Relatively favourable safety VC’ come with p-values of 0.103 respectively 0.105 very close to significance at the 10 percent level. Interestingly, relative safety was not significant in the adoption intention equation (Table 4, model 2 and full model), but turns out significant in the acceptance model (Table 5, model 2). There may be two explanations for this difference. It may be the case that retailers with most confidence in the safety of VC payments were the first to accept them. An alternative explanation may be that the causality is the other way round; once retailers accept VC payments they learn that these payments have relatively few safety issues. Regarding the residence of the customers, we do not find a significant effect for having customers from within the euro area on VC acceptance, unlike VC adoption intention.
6.3 Effect of non-financial barriers

Regarding the drivers reflecting non-financial barriers to adopt a new technology by a retailer, we find positive effects for ‘Perceived compatibility’ of accepting VC payments with the firm’s current working procedures on adoption intention. This holds for both model 3 and the full model. The average marginal effects indicate that a 1 point higher score for perceived compatibility (1-7 scale) decreases the probability that a retailer does not intend to accept VC payments by 10.2 percentage points and increases the probability that (s)he intends to adopt them by 4.4 percentage points. However, we do not find a significant impact of ‘Perceived ease of use’ on adoption intention. This indicates that either the extent in which retailers think it will be easy for their staff to learn to use a new technology does not influence adoption intention or that due to multicollinearity between ‘Perceived ease of use’ and ‘Perceived compatibility’ (correlation between the two indicators is 0.52, see Table B.2) the estimate for ‘Perceived ease of use’ is biased downwards.

Both drivers correlate positively and significantly with VC acceptance (Model 3 and full model, Table 5). Regarding ‘Perceived ease of use’, we feel this may imply that retailers who have already adopted VC anticipated relatively low learning cost compared to non-accepting retailers anticipate, but it may also be the case that they found it easier to learn to handle VC transactions ex ante than they expected a priori. A similar interpretation may be given to ‘Perceived compatibility’. The average marginal effects indicate that a 1 point higher score given for ‘Perceived ease of use’ and ‘Perceived compatibility’ go together with a 0.6 respectively 0.4 percentage point higher VC acceptance rate.

6.4 Effect of other control variables

Next to variables reflecting consumer demand, net transactional benefits and non-financial adoption barriers, we include control variables reflecting characteristics of the respondents, firms and sector.

We find that adoption intention and VC acceptance are both negatively related with the respondents’ age, although the estimated average marginal effect for adoption intention is larger than for acceptance. A 1 year increase in age corresponds with a 0.4 percentage point higher probability that the retailer does not intend to accept VC payments and a 0.2 percentage point higher probability that (s)he intends to accept VC payments. The age effect on actual acceptance is smaller: a 1 year increase in age results in a 0.06 percentage point lower probability that a retailer actually accepts VC payments. The respondent’s educational level does not influence adoption intention and actual acceptance.
Regarding firm characteristics, we find a negative effect of the firm’s age, with firms existing less than 5 years having a significantly higher adoption intention than firms which exist 5 years or longer. However, firm’s age does not affect actual acceptance. Firm size as measured by staff size does not influence adoption intention, but turns out to relate significantly with current acceptance. Firms with 5-19 employees are 1.0 percentage point less likely to accept VC payments than firms with 20 or more employees (reference group). Furthermore, adoption intention is positively related with whether the retailer uses the services of a PSP to handle customer payments. The average marginal effect of the intention not to adopt VC payments drops by 7.3 percentage points if a retailers uses a PSP, while the intention to accept VC increases by 3.1 percentage points. Actual acceptance increases by 0.6 percentage points, though this effect is not significant in the Full model. Note however, that PSP usage is statistically significant in models 1 and 2, and the estimated coefficients are also higher than in model 3 or the full model. Maybe, the variables ‘Perceived ease of use’ and/or ‘Perceived compatibility’ pick up some of the effect of using a PSP. If a retailer uses the services of a PSP, which acts as an intermediary between the retailer and its customers, VC acceptance may not lead to changes in the working processes of the firm itself as it has outsourced customer payment handling to the PSP. Likewise, the retailer’s own staff does not have to learn new skills to handle payments with the new payment method, as this only holds for the PSP’s staff. However, note that there are no indications of multicollinearity between using a PSP and the two non-financial barriers (see section 6.5).

Regarding sector, we find that retailers who are active in the sectors ‘Media’ or ‘Electronics’ have a significantly more positive attitude towards VC adoption than retailers active in other sectors (reference group). However, with respect to current acceptance, we do not find a significant sector effect. We only find a negative effect for retailers active in the electronics sector, but this only holds in the full model, not for models 1–3. Regarding competition, we do not find any effect of it on adoption intention, but according to models 1 and 2 in Table 5, retailers who face strong to perfect competition are more likely to accept VC payments than retailers who face moderate competition (reference group). However, this effect is not present in model 3 and the full model.

6.5 Robustness check

The explanatory power of the estimated models for Adoption intention and Acceptance increase increase considerably when including the two non-financial adoption barriers ‘Perceived ease of use’ and ‘Perceived compatibility’ as explanatory variables. This indicates that enriching economic models with insights from the technology adoption literature when analysing the uptake of new payment technologies may be promising. The results also show that some of the explanatory variables which are significant in models 1 and/or 2 are not significant anymore when including these two indicators as explanatory variables.
There may be two possible explanations for this. First, the different composition of the retailers in the sample in Models 1 and 2 compared to Models 3 and the Full model may affect the estimation results. Many respondents find it difficult to express their ‘Perceived ease of use’ or ‘Perceived compatibility’ of working with VC payments. These people are included in the regressions of Models 1 and 2, but not of Model 3 and the Full model. We have re-estimated Models 1 and 2 for both Adoption intention and Acceptance using retailers with responses on ‘Perceived ease of use’ and ‘Perceived compatibility’ (Table B.1, Annex B). It turns out that the estimation results for Models 1 and 2 are robust to the adjusted sample; the estimated effects of the variables reflecting usage of a PSP, consumer adoption of VC and retailer’s net transactional benefits remain fairly the same, as well as the estimated explanatory power of the models. There are only a few variables which were not significant anymore at the 10% level, though the magnitude of the estimated effect remains fairly the same.

A second explanation may be that explanatory variables suffer from multicollinearity with the explanatory variables ‘Perceived ease of use’ and ‘Perceived compatibility’. According to the correlation matrix in Table B.2 there are no signs of strong correlation between these and the other explanatory variables. Apart from the strong correlation of 0.52 between ‘Perceived ease of use’ and ‘Perceived compatibility’, there is moderate correlation ranging between 0.15 and 0.19 between the variables ‘Perceived ease of use’ and ‘Using services PSP’, ‘Relative favourable cost VC’ and ‘Relative favourable labour cost VC’ and between the variables ‘Perceived compatibility’ and ‘Sector Electronic’, ‘Relatively favourable cost VC’, ‘Relatively favourable labour time cost VC’ and ‘Relatively favourable safety VC’. Also the Variance Inflation Factors (VIFs) of the explanatory variables do not point at multicollinearity (See Table B.3 in Appendix B). The average VIF is 1.45, the minimum VIF found is 1.08 and the maximum is 3.17. As a rule of thumb a VIF smaller than 10 is fine.

Given that especially the estimated effects of ‘Using services PSP’, ‘Relatively favourable cost VC’ and ‘Relatively favourable labour time cost VC’ become smaller and insignificant after including non-financial adoption barriers as explanatory variables suggests that these variables are to some extent alike. Therefore, when discussing the results for Qb (net transactional benefits) in the concluding remarks we will focus on the results for Model 2. Furthermore, the moderate, positive correlation between ‘Using services PSP’ and ‘Perceived ease of use’ and ‘Perceived compatibility’ indicates that PSP usage actually acts as a facilitating condition for online retailers to accept VC payments by removing or lowering non financial adoption barriers.

7 CONCLUDING REMARKS
Currently, the acceptance of VC payments by retailers who sell their products online is modest. However, there is substantial interest among retailers to adopt VC payment in the near future, indicating that acceptance may rise (rapidly) once certain (perceived) barriers are lowered. The reason why acceptance has remained limited thus far is because many retailers feel no to limited added value of accepting VC as a means of payment compared to other payment instruments. However, the experiences of VC accepting retailers are positive; they point at clear advantages of VC with respect to transaction cost and labour time cost compared to other payment instruments, and they perceive the exchange rate risk between the VC and regular currencies as neutral.

In addition, retailers who accept VC payments are very positive about the ease of use of accepting them and their compatibility with their firm’s current working procedures, whereas retailers who don’t, have a rather negative view with respect to these non-financial adoption barriers. The survey outcomes suggest an important role for PSPs who offer payment services for accepting VC payments in this respect. These PSPs facilitate the acceptance of VC payments by mitigating risk (e.g. volatility in exchange rate) and by handling the VC payments on behalf of retailers. In that respect, PSPs fulfil an important role in the 21st century payment industry. They may enhance innovation and competition in the provision of payment services by acting as intermediaries between (new) players and retailers.

A crucial factor limiting VC adoption by retailers thus far turns out to be low consumer demand for VC payments. Further research is needed to gain more insight into the factors influencing consumer adoption and the barriers consumers encounter. If these barriers are removed, consumer adoption of VC payments may increase, and due to network eternalities, so may the adoption by retailers.
References

Annex A. Sample characteristics

Table A.1. Decomposition sample by industry and firm size (number of workers)

<table>
<thead>
<tr>
<th>Industry</th>
<th>Number of workers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Retail trade: Consumer electronics, telecom & a white goods</td>
<td>31</td>
</tr>
<tr>
<td>Retail trade: home, garden & kitchen</td>
<td>57</td>
</tr>
<tr>
<td>Media & entertainment</td>
<td>43</td>
</tr>
<tr>
<td>Fashion</td>
<td>77</td>
</tr>
<tr>
<td>Travel (flights, hotels, etc.)</td>
<td>2</td>
</tr>
<tr>
<td>Sports & recreation</td>
<td>23</td>
</tr>
<tr>
<td>Tickets (parks, events, etc.)</td>
<td>1</td>
</tr>
<tr>
<td>Food & drinks</td>
<td>25</td>
</tr>
<tr>
<td>Health & personal care</td>
<td>20</td>
</tr>
<tr>
<td>Other products/services</td>
<td>57</td>
</tr>
<tr>
<td>Total</td>
<td>336</td>
</tr>
</tbody>
</table>
Annex B. Robustness check

TABLE B.1: Adoption intention and acceptance virtual currency payments using restricted and unrestricted samples

<table>
<thead>
<tr>
<th></th>
<th>Dependent variable: Adoption intention</th>
<th>Dependent variable: Acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1 (Table 4)</td>
<td>Model 2 (Table 4)</td>
</tr>
<tr>
<td></td>
<td>(Model 1 restricted sample)</td>
<td>(Model 2 restricted sample)</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>-0.022**</td>
<td>-0.019***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Education: Bachelor degree</td>
<td>0.087</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>(0.116)</td>
<td>(0.132)</td>
</tr>
<tr>
<td>Education: Master degree</td>
<td>0.038</td>
<td>0.062</td>
</tr>
<tr>
<td></td>
<td>(0.157)</td>
<td>(0.181)</td>
</tr>
<tr>
<td>Firm age: less than 2 years</td>
<td>0.224</td>
<td>0.349*</td>
</tr>
<tr>
<td></td>
<td>(0.139)</td>
<td>(0.165)</td>
</tr>
<tr>
<td>Firm age: 2 – 5 years</td>
<td>0.264*</td>
<td>0.392**</td>
</tr>
<tr>
<td></td>
<td>(0.193)</td>
<td>(0.218)</td>
</tr>
<tr>
<td>Firm size: 1 person</td>
<td>0.010</td>
<td>-0.095</td>
</tr>
<tr>
<td></td>
<td>(0.198)</td>
<td>(0.222)</td>
</tr>
<tr>
<td>Firm size: 2 – 4 people</td>
<td>0.004</td>
<td>-0.108</td>
</tr>
<tr>
<td></td>
<td>(0.187)</td>
<td>(0.210)</td>
</tr>
<tr>
<td>Uses services PSP</td>
<td>0.328***</td>
<td>0.407***</td>
</tr>
<tr>
<td></td>
<td>(0.122)</td>
<td>(0.150)</td>
</tr>
<tr>
<td>Sector: media</td>
<td>0.338*</td>
<td>0.330</td>
</tr>
<tr>
<td></td>
<td>(0.186)</td>
<td>(0.224)</td>
</tr>
<tr>
<td>Sector: electronics</td>
<td>0.510***</td>
<td>0.712**</td>
</tr>
<tr>
<td></td>
<td>(0.191)</td>
<td>(0.227)</td>
</tr>
<tr>
<td>Competition: no to weak</td>
<td>0.071</td>
<td>0.122</td>
</tr>
<tr>
<td></td>
<td>(0.191)</td>
<td>(0.241)</td>
</tr>
<tr>
<td>Competition: strong to perfect</td>
<td>-0.046</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>(0.121)</td>
<td>(0.147)</td>
</tr>
<tr>
<td>Customer adoption VC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customers: mainly male</td>
<td>-0.024</td>
<td>-0.090</td>
</tr>
<tr>
<td></td>
<td>(0.157)</td>
<td>(0.174)</td>
</tr>
<tr>
<td>Customers: mainly female</td>
<td>-0.283**</td>
<td>-0.293*</td>
</tr>
<tr>
<td></td>
<td>(0.134)</td>
<td>(0.164)</td>
</tr>
<tr>
<td>Customers: mainly 30 years or younger</td>
<td>0.037</td>
<td>-0.072</td>
</tr>
<tr>
<td></td>
<td>(0.153)</td>
<td>(0.182)</td>
</tr>
<tr>
<td>Assessment consumer adoption VC</td>
<td>0.016**</td>
<td>0.018**</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>MV assessment consumer adoption VC</td>
<td>-0.399***</td>
<td>0.143</td>
</tr>
<tr>
<td></td>
<td>(0.145)</td>
<td>(0.189)</td>
</tr>
</tbody>
</table>

Retailer’s net transactional benefits

	Model 1 (Table 5)	Model 2 (Table 5)
	(Model 1 restricted sample)	(Model 2 restricted sample)
Relatively favourable cost VC	0.233**	0.217*
	(0.115)	(0.119)
Relative favourable labour time cost VC	0.458**	0.428*
	(0.204)	(0.220)
Relatively favourable safety VC	0.201	0.128
	(0.183)	(0.211)
Exchange rate risk VC	-0.066*	-0.063
	(0.039)	(0.039)

***p < 0.001, **p < 0.01, *p < 0.05
<table>
<thead>
<tr>
<th>Model</th>
<th>Dependent variable: Adoption intention</th>
<th>Dependent variable: Acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1 restricted sample</td>
<td>Model 2 restricted sample</td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>β</td>
</tr>
<tr>
<td>Customers: within euro area</td>
<td>0.099 (0.126)</td>
<td>0.180 (0.149)</td>
</tr>
<tr>
<td>μ₁ (adoption intention)/C (acceptance)</td>
<td>0.171 (0.316)</td>
<td>0.279 (0.363)</td>
</tr>
<tr>
<td></td>
<td>-1.221*** (0.447)</td>
<td>-1.058*** (0.476)</td>
</tr>
<tr>
<td>μ₂</td>
<td>1.166*** (0.319)</td>
<td>1.339*** (0.366)</td>
</tr>
<tr>
<td>No. of observations</td>
<td>650</td>
<td>444</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-458.38</td>
<td>-340.86</td>
</tr>
<tr>
<td>Pseudo R-squared</td>
<td>0.083</td>
<td>0.086</td>
</tr>
</tbody>
</table>

Notes. The table shows coefficients (β) and average marginal effects (Mfx) based on ordered probit regressions with adoption intention as dependent variable. Robust standard errors are between parentheses. The sample excludes retailers who accept virtual currency payments. Reference characteristics of the firm are: firm’s age higher than 5 years, firm size: 20 people and more, does not make use of the services of a PSP, sector: other than media or electronics, the firm experiences moderate competition, has a mixed clientele with respect to gender, the age of the firm’s clientele is mixed or mainly people aged 31 years and older, the firm accepts payments within and outside the euro area. *p<.1, **p<.05, *** p<.01 (two-sided t-tests).
TABLE B2.: Correlation matrix key explanatory variables

Based on 521 respondents

<table>
<thead>
<tr>
<th>Uses services PSP</th>
<th>Sector: media</th>
<th>Sector: electronics</th>
<th>No-weak competition</th>
<th>Strong - perfect Competition</th>
<th>Customers mainly male</th>
<th>Customers mainly female</th>
<th>Customers mainly <=30 yrs</th>
<th>Consumer adoption VC</th>
<th>Relatively favourable cost VC</th>
<th>Relatively favourable labour time cost VC</th>
<th>Relatively favourable safety VC</th>
<th>Exchange Rate Risk VC</th>
<th>Customers within euro area</th>
<th>Perceived ease of use</th>
<th>Perceived Compatability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uses services PSP</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Sector: media</td>
<td>-0.17</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Sector: electronics</td>
<td>0.17</td>
<td>-0.10</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Competition: no to weak</td>
<td>-0.04</td>
<td>0.04</td>
<td>-0.04</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Competition: strong to perfect</td>
<td>0.01</td>
<td>0.00</td>
<td>0.06</td>
<td>-0.51</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Customers: mainly male</td>
<td>0.02</td>
<td>0.03</td>
<td>-0.09</td>
<td>0.08</td>
<td>-0.03</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customers: mainly female</td>
<td>0.04</td>
<td>-0.10</td>
<td>-0.16</td>
<td>-0.07</td>
<td>0.06</td>
<td>-0.22</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customers: mainly 30 years or younger</td>
<td>0.11</td>
<td>-0.07</td>
<td>0.13</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment consumer adoption VC</td>
<td>-0.15</td>
<td>-0.06</td>
<td>-0.08</td>
<td>-0.00</td>
<td>-0.03</td>
<td>0.01</td>
<td>0.15</td>
<td>-0.01</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relatively favourable cost VC</td>
<td>0.05</td>
<td>-0.10</td>
<td>0.04</td>
<td>0.01</td>
<td>0.02</td>
<td>-0.01</td>
<td>-0.06</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relatively favourable labour time cost VC</td>
<td>0.07</td>
<td>-0.08</td>
<td>0.07</td>
<td>-0.07</td>
<td>0.04</td>
<td>0.06</td>
<td>-0.00</td>
<td>0.01</td>
<td>-0.00</td>
<td>0.31</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relatively favourable safety VC</td>
<td>0.03</td>
<td>-0.10</td>
<td>0.04</td>
<td>0.02</td>
<td>-0.00</td>
<td>0.10</td>
<td>0.01</td>
<td>-0.07</td>
<td>0.03</td>
<td>0.23</td>
<td>0.23</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exchange Rate Risk VC</td>
<td>-0.02</td>
<td>-0.03</td>
<td>-0.00</td>
<td>-0.13</td>
<td>0.10</td>
<td>-0.01</td>
<td>-0.03</td>
<td>0.01</td>
<td>-0.10</td>
<td>-0.07</td>
<td>-0.11</td>
<td>-0.14</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customers: within euro area</td>
<td>0.04</td>
<td>-0.13</td>
<td>0.07</td>
<td>-0.08</td>
<td>0.10</td>
<td>-0.12</td>
<td>-0.04</td>
<td>0.09</td>
<td>0.10</td>
<td>0.11</td>
<td>0.11</td>
<td>-0.04</td>
<td>-0.07</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Perceived ease of use</td>
<td>0.15</td>
<td>-0.02</td>
<td>0.14</td>
<td>-0.03</td>
<td>0.08</td>
<td>0.03</td>
<td>-0.06</td>
<td>0.07</td>
<td>-0.09</td>
<td>0.17</td>
<td>0.17</td>
<td>0.14</td>
<td>-0.05</td>
<td>-0.05</td>
<td>1.00</td>
</tr>
<tr>
<td>Perceived compatability</td>
<td>0.19</td>
<td>-0.03</td>
<td>0.18</td>
<td>-0.03</td>
<td>0.09</td>
<td>0.09</td>
<td>-0.07</td>
<td>0.13</td>
<td>-0.07</td>
<td>0.19</td>
<td>0.19</td>
<td>0.18</td>
<td>-0.10</td>
<td>-0.04</td>
<td>0.52</td>
</tr>
</tbody>
</table>
TABLE B.3: Variance inflation matrix explanatory variables

Based on 521 respondents

<table>
<thead>
<tr>
<th>Variable</th>
<th>VIF</th>
<th>SQRT (VIF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>1.34</td>
<td>1.16</td>
</tr>
<tr>
<td>Education: Bachelor degree</td>
<td>1.24</td>
<td>1.11</td>
</tr>
<tr>
<td>Education: Master degree</td>
<td>1.26</td>
<td>1.12</td>
</tr>
<tr>
<td>Firm age: less than 2 years</td>
<td>1.69</td>
<td>1.30</td>
</tr>
<tr>
<td>Firm age: 2 – 5 years</td>
<td>1.62</td>
<td>1.27</td>
</tr>
<tr>
<td>Firm size: 1 worker</td>
<td>3.17</td>
<td>1.78</td>
</tr>
<tr>
<td>Firm size: 2 – 5 workers</td>
<td>2.70</td>
<td>1.64</td>
</tr>
<tr>
<td>Firm size: 6 – 19 workers</td>
<td>1.91</td>
<td>1.38</td>
</tr>
<tr>
<td>Uses services PSP</td>
<td>1.14</td>
<td>1.07</td>
</tr>
<tr>
<td>Sector: media</td>
<td>1.13</td>
<td>1.06</td>
</tr>
<tr>
<td>Sector: electronics</td>
<td>1.16</td>
<td>1.08</td>
</tr>
<tr>
<td>Competition: no to weak</td>
<td>1.43</td>
<td>1.19</td>
</tr>
<tr>
<td>Competition: strong to perfect</td>
<td>1.41</td>
<td>1.19</td>
</tr>
<tr>
<td>Customers: mainly male</td>
<td>1.12</td>
<td>1.06</td>
</tr>
<tr>
<td>Customers: mainly female</td>
<td>1.27</td>
<td>1.13</td>
</tr>
<tr>
<td>Customers: mainly 30 years or younger</td>
<td>1.13</td>
<td>1.06</td>
</tr>
<tr>
<td>Assessment consumer adoption VC</td>
<td>1.14</td>
<td>1.07</td>
</tr>
<tr>
<td>Relatively favourable cost VC</td>
<td>1.18</td>
<td>1.09</td>
</tr>
<tr>
<td>Relatively favourable labour time cost VC</td>
<td>1.26</td>
<td>1.12</td>
</tr>
<tr>
<td>Relatively favourable safety VC</td>
<td>1.19</td>
<td>1.09</td>
</tr>
<tr>
<td>Exchange rate risk VC</td>
<td>1.08</td>
<td>1.04</td>
</tr>
<tr>
<td>Customers: within euro area</td>
<td>1.13</td>
<td>1.07</td>
</tr>
<tr>
<td>Perceived ease of use</td>
<td>1.47</td>
<td>1.21</td>
</tr>
<tr>
<td>Perceived compatibility</td>
<td>1.54</td>
<td>1.24</td>
</tr>
<tr>
<td>Mean VIF</td>
<td>1.45</td>
<td></td>
</tr>
</tbody>
</table>