The Economics of Sovereign Debt, Bailouts and the Eurozone Crisis

Pierre Olivier Gourinchas, Philippe Martin, and Todd Messer

Discussion:
Fernando Broner
CREI, Universitat Pompeu Fabra, and Barcelona GSE
November 2017
Question

- What is the role of bailouts within a monetary union?
Question

- What is the role of bailouts within a monetary union?

Methodology

- Estimate implicit transfers in official lending to Euro periphery
- Develop simple, transparent, flexible model to address this and other related questions
Main ingredients

- Non-contingent borrowing by Euro periphery governments
- Private lenders from Euro core
- Bailouts from core to periphery governments
Main ingredients

- Non-contingent borrowing by Euro periphery governments
- Private lenders from Euro core
- Bailouts from core to periphery governments

Main forces

- Bailouts allow for "orderly partial defaults"
- Private lenders do not internalize cost of bailout by their governments
Results

- Estimated bailouts are sizable
Results

- Estimated bailouts are sizable

- *Southern View*: Ex post bailouts are efficient
 - creditors appropriate surplus
Results

- Estimated bailouts are sizable

- *Southern View*: Ex post bailouts are efficient
 - creditors appropriate surplus

- *Northern View*: Ex ante bailouts may or may not be efficient
 - excessive borrowing due to risk shifting
 - transfer from lender to borrower
Results

- Estimated bailouts are sizable

- *Southern View*: Ex post bailouts are efficient
 - creditors appropriate surplus

- *Northern View*: Ex ante bailouts may or may not be efficient
 - excessive borrowing due to risk shifting
 - transfer from lender to borrower

- Overall, bailouts
 - benefit periphery
 - may benefit core, but only if they avoid default on pre-existing debt
Results

- Estimated bailouts are sizable

- *Southern View*: Ex post bailouts are efficient
 - creditors appropriate surplus

- *Northern View*: Ex ante bailouts may or may not be efficient
 - excessive borrowing due to risk shifting
 - transfer from lender to borrower

- Overall, bailouts
 - benefit periphery
 - may benefit core, but only if they avoid default on pre-existing debt

- Extensions
 - default vs. exit, debt monetization
Estimation of bailouts: Comments

- Very informative description of role of official lenders

- Estimate size of transfers from difference in interest rates between loans from
 - IMF (assumed to not imply any transfer)
 - Euro sources

- A caveat
 - IMF loans on average shorter maturity
 - yield curve often inverts during crises
 - might overestimate transfers
The Yield Curve in 2015

Jan-15
Dec-14
Jul-14
Syriza wins the elections
Greece regain access to Financial Markets

Source: Bank of Greece
The Yield Curve in 2015

June: EU Bailout plan is rejected in referendum

September: Austerity plan is approved

Source: Bank of Greece
A simple model

- Two periods \(t \in \{0, 1\} \), two countries \(c \in \{i, g\} \)

- Technology

\[
y^g = (y + \varepsilon, y - \varepsilon) \\
y^i = (y - \varepsilon, y + \varepsilon - \phi_1 \cdot I_{def})
\]

\[
\phi_1 = \begin{cases}
\phi & \text{w.p. } p \\
\infty & \text{w.p. } 1 - p
\end{cases}
\]

where \(\phi < \varepsilon \)

- Preferences

\[
U^i = u(c^i_0) + u(c^i_1) \quad \text{and} \quad U^g = c^g_0 + c^g_1
\]

- Governments \(G^c \in \{G^i, G^g\} \) maximize domestic utility

 - \(G^i \) can force \(i \) residents to repay \(g \) residents
 - \(G^g \) can pay \(\tau_1 \) to \(G^i \) to encourage enforcement
A simple model

- Assume $p = 0$

- Full enforcement

$\tau_1 = 0$

$\frac{1}{R^i} = q = 1$

$b = \varepsilon$

$c^i_0 = c^i_1 = c^g_0 = c^g_1 = y$

- Efficient trade

- Assume $p < 1$ from now on
A simple model

- Assume
 - $p = 0.5$
 - there are contingent assets
 - no bailouts

- No default and no "wasted liquidity"

\[
\begin{align*}
\text{Low} & : b_{low} = \phi \quad \text{and} \quad b_{high} = \varepsilon + 0.33 \cdot (\varepsilon - \phi) \\
q_{low} = q_{high} = 0.5 \\
c_{low}^i = y + \varepsilon - \phi \quad \text{and} \quad c_{0}^i = c_{high}^i = y - 0.33 \cdot (\varepsilon - \phi) \\
c_{low}^g = y - \varepsilon + \phi \quad \text{and} \quad c_{0}^g = c_{high}^g = y + 0.33 \cdot (\varepsilon - \phi)
\end{align*}
\]

- Constrained efficient trade
A simple model

- Assume
 - \(p = 0.5 \)
 - no contingent assets
 - no bailouts

- Default

\[
q = 0.5 \\
\begin{align*}
 b &= 1.33 \cdot \varepsilon \\
c_{\text{low}}^i &= y + \varepsilon - \phi \quad \text{and} \quad c_{\text{high}}^i = y - 0.33 \cdot \varepsilon \\
c_{0}^g &= y - \varepsilon \quad \text{and} \quad c_{\text{low}}^g = c_{\text{high}}^g = y + 0.33 \cdot \varepsilon
\end{align*}
\]

or wasted liquidity

\[
q = 1 \\
\begin{align*}
 b &= \phi \\
c_{0}^i &= y - \varepsilon + \phi \quad \text{and} \quad c_{\text{low}}^i = c_{\text{high}}^i = y + \varepsilon - \phi \\
c_{0}^g &= y + \varepsilon - \phi \quad \text{and} \quad c_{\text{low}}^g = c_{\text{high}}^g = y - \varepsilon + \phi
\end{align*}
\]

- Inefficient asset trade
A simple model

- Assume
 - \(p = 0.5 \)
 - no contingent assets
 - bailouts financed by taxing bond holders

- No default and no "wasted liquidity"
 \[b = \varepsilon + 0.33 \cdot (\varepsilon - \phi) \]
 \[q = 0.5 + 0.5 \cdot \frac{\phi}{\varepsilon + 0.33 \cdot (\varepsilon - \phi)} \]
 \[\tau_{low} = 1.33 \cdot (\varepsilon - \phi) \text{ and } \tau_{high} = 0 \]
 \[c_{low}^{i} = y + \varepsilon - \phi \text{ and } c_{0}^{i} = c_{high}^{i} = y - 0.33 \cdot (\varepsilon - \phi) \]
 \[c_{low}^{g} = y - \varepsilon + \phi \text{ and } c_{0}^{g} = c_{high}^{g} = y + 0.33 \cdot (\varepsilon - \phi) \]

- Constrained efficient trade

- Bailouts allow for "orderly partial default" in low state
 - ex post: efficient, \(g \) appropriates entire surplus
 - ex ante: efficient, \(i \) and \(g \) both better off
A simple model

• Assume
 – $p = 0.5$
 – no contingent assets
 – bailouts financed by lump-sum taxes

• No default and no "wasted liquidity"

\[q = 1 \]

\[u'(y - \varepsilon + b) = 0.5 \cdot u'(y + \varepsilon + \tau_{\text{low}} - b) + 0.5 \cdot u'(y + \varepsilon - b) \]

\[\tau_{\text{low}} = b - \phi \text{ and } \tau_{\text{high}} = 0 \]

\[c^i_0 = y - \varepsilon + b, \quad c^i_{\text{low}} = y + \varepsilon + \tau_{\text{low}} - b \text{ and } c^i_{\text{high}} = y + \varepsilon - b \]

\[c^g_0 = y + \varepsilon - b, \quad c^g_{\text{low}} = y - \varepsilon - \tau_{\text{low}} + b \text{ and } c^g_{\text{high}} = y - \varepsilon + b \]

• But
 – intertemporal trade is distorted: overborrowing
 * $q = 1$ even though i, as a whole, defaults partially in low state
 – ex-ante transfer from g to i

• Ex ante, bailouts
 – benefit i and may benefit or hurt g
Comments

- Paper emphasizes that bailouts may benefit creditors ex ante
 - this is not that surprising given potential benefits discussed above

- Paper assumes pre-existing debt
 - this might not be necessary
 - also, is $t = 0$ truly ex-ante if there is pre-existing debt?

- Even if bailouts hurt g ex ante, there might be better policies than committing not to bailout
 - within model, make τ_0 contingent on default and asset trade at $t = 0$
 - more generally, limits on public debt and macro prudential regulation

- My view: In Euro crisis
 - important liquidity/rollover component
 - transfers were probably not as large
 - official interventions helped both i and g, possibly even from ex-ante point of view
Overall assessment

- Very interesting and informative analysis of Eurozone official lending

- Elegant, rich and flexible theoretical framework

- Look forward to next version of the paper!