Fiscal Multipliers and Financial Crises

Miguel Faria-e-Castro
Federal Reserve Bank of St. Louis
Public debt, Fiscal Policy and EMU Deepening
European Central Bank, November 20 2017

The views expressed on this presentation do not necessarily reflect the positions of the Federal Reserve Bank of St. Louis or the Federal Reserve System.
Fiscal policy response to the 2008 financial crisis

- “Conventional” fiscal stimulus
 1. Govt purchases (Drautzburg & Uhlig ’11; Conley & Dupor ’13)
 2. Transfers to households (Oh & Reis ’12; Parker et al. ’13; Kaplan & Violante ’14)

- Financial sector interventions
 3. Equity injections (Blinder & Zandi ’10; Philippon & Schnabl ’13)
 4. Credit guarantees (Philippon & Skreta ’12; Lucas ’16)

Large debate on the effectiveness and composition of the response

This paper:

1. How important was the fiscal policy response?
2. Which tools were the most important?
Fiscal policy response to the 2008 financial crisis

- “Conventional” fiscal stimulus
 1. Govt purchases (Drautzburg & Uhlig ’11; Conley & Dupor ’13)
 2. Transfers to households (Oh & Reis ’12; Parker et al. ’13; Kaplan & Violante ’14)

- Financial sector interventions
 3. Equity injections (Blinder & Zandi ’10; Philippon & Schnabl ’13)
 4. Credit guarantees (Philippon & Skreta ’12; Lucas ’16)

Large debate on the effectiveness and composition of the response

This paper:

1. How important was the fiscal policy response?
2. Which tools were the most important?
Fiscal policy response to the 2008 financial crisis

- “Conventional” fiscal stimulus
 1. Govt purchases (Drautzburg & Uhlig '11; Conley & Dupor '13)
 2. Transfers to households (Oh & Reis '12; Parker et al. '13; Kaplan & Violante '14)

- Financial sector interventions
 3. Equity injections (Blinder & Zandi '10; Philippon & Schnabl '13)
 4. Credit guarantees (Philippon & Skreta '12; Lucas '16)

Large debate on the effectiveness and composition of the response

This paper:

1. How important was the fiscal policy response?
2. Which tools were the most important?
Fiscal policy response to the 2008 financial crisis

- “Conventional” fiscal stimulus
 1. Govt purchases (Drautzburg & Uhlig '11; Conley & Dupor '13)
 2. Transfers to households (Oh & Reis '12; Parker et al. '13; Kaplan & Violante '14)

- Financial sector interventions
 3. Equity injections (Blinder & Zandi '10; Philippon & Schnabl '13)
 4. Credit guarantees (Philippon & Skreta '12; Lucas '16)

Large debate on the effectiveness and composition of the response

This paper:

1. How important was the fiscal policy response?
2. Which tools were the most important?
Approach and Results

1. Structural model of fiscal policy
 - Potential stabilization roles for each of the tools
 - State dependent effects of shocks and policies

2. Quantitative Exercise
 - Calibrated model + data on fiscal policy response
 - Estimate structural shocks given policy response
 - Study counterfactuals
 - Crisis and Great Recession without fiscal response

3. Results:
 - Aggregate consumption falls by 50% more without policy response
 - Transfers and equity injections most important
 - Fiscal multipliers extremely state dependent
 - New transmission channels for fiscal policy
Approach and Results

1. Structural model of fiscal policy
 - Potential stabilization roles for each of the tools
 - State dependent effects of shocks and policies

2. Quantitative Exercise
 - Calibrated model + data on fiscal policy response
 - Estimate structural shocks given policy response
 - Study counterfactuals
 - Crisis and Great Recession without fiscal response

3. Results:
 - Aggregate consumption falls by 50% more without policy response
 - Transfers and equity injections most important
 - Fiscal multipliers extremely state dependent
 - New transmission channels for fiscal policy
Approach and Results

1. Structural model of fiscal policy
 - Potential stabilization roles for each of the tools
 - State dependent effects of shocks and policies

2. Quantitative Exercise
 - Calibrated model + data on fiscal policy response
 - Estimate structural shocks given policy response
 - Study counterfactuals
 - Crisis and Great Recession without fiscal response

3. Results:
 - Aggregate consumption falls by \textbf{50\% more} without policy response
 - \textbf{Transfers} and \textbf{equity injections} most important
 - Fiscal multipliers extremely \textit{state dependent}
 - New transmission channels for fiscal policy
Nominal Rigidities \implies Government purchases
Incomplete Markets \implies Transfers
(Frictional) Financial Sector \implies Bank Recaps.
Credit Risk & Default \implies Credit Guarantees
Impulse and Propagation

- Aggregate shocks:
 1. TFP A_t
 2. Financial shock σ_t

$$\text{Household Default Rate}_t = f(LTV_t, \sigma_t^+)$$

- Financial shock: defaults \uparrow
 1. Bank equity \downarrow
 2. If bank constraint binds \Rightarrow spreads rise, lending falls
 3. Disposable income for borrowers \downarrow
 4. If borrower constraint binds \Rightarrow aggregate consumption \downarrow

Shock transmission depends on bank leverage and household leverage
Impulse and Propagation

- Aggregate shocks:
 1. TFP A_t
 2. Financial shock σ_t

\[
\text{Household Default Rate}_t = f(\text{LTV}_t, \sigma_t)
\]

- Financial shock: defaults \uparrow
 1. Bank equity \downarrow
 2. If bank constraint binds \Rightarrow spreads rise, lending falls
 3. Disposable income for borrowers \downarrow
 4. If borrower constraint binds \Rightarrow aggregate consumption \downarrow

Shock transmission depends on bank leverage and household leverage
Impulse and Propagation

- **Aggregate shocks:**
 1. TFP A_t
 2. Financial shock σ_t

 $$\text{Household Default Rate}_t = f(LTV_t, \sigma_t)$$

- **Financial shock: defaults \uparrow**
 1. Bank equity \downarrow
 2. If bank constraint binds \Rightarrow spreads rise, lending falls
 3. Disposable income for borrowers \downarrow
 4. If borrower constraint binds \Rightarrow aggregate consumption \downarrow

Shock transmission depends on bank leverage and household leverage
• Aggregate shocks:
 1. TFP A_t
 2. Financial shock σ_t

 Household Default Rate $t = f(LTV_t, \sigma_t)$

• Financial shock: defaults \uparrow
 1. Bank equity \downarrow
 2. If bank constraint binds \Rightarrow spreads rise, lending falls
 3. Disposable income for borrowers \downarrow
 4. If borrower constraint binds \Rightarrow aggregate consumption \downarrow

Shock transmission depends on bank leverage and household leverage
Impulse and Propagation

- **Aggregate shocks:**
 1. TFP A_t
 2. Financial shock σ_t

 Household Default Rate$_t = f(LTV_t, \sigma_t)$

- **Financial shock: defaults ↑**
 1. Bank equity ↓
 2. **If bank constraint binds** ⇒ spreads rise, lending falls
 3. Disposable income for borrowers ↓
 4. **If borrower constraint binds** ⇒ aggregate consumption ↓

Shock transmission depends on bank leverage and household leverage
• Aggregate shocks:
 1. TFP A_t
 2. Financial shock σ_t

\[
\text{Household Default Rate}_t = f(LTV_t, \sigma_t^+)
\]

• Financial shock: defaults ↑
 1. Bank equity ↓
 2. If bank constraint binds ⇒ spreads rise, lending falls
 3. Disposable income for borrowers ↓
 4. If borrower constraint binds ⇒ aggregate consumption ↓

Shock transmission depends on bank leverage and household leverage
Impulse and Propagation

• Aggregate shocks:
 1. TFP A_t
 2. Financial shock σ_t

 Household Default Rate$_t = f(LTV_t, \sigma_t)$

• Financial shock: defaults \uparrow
 1. Bank equity \downarrow
 2. If bank constraint binds \Rightarrow spreads rise, lending falls
 3. Disposable income for borrowers \downarrow
 4. If borrower constraint binds \Rightarrow aggregate consumption \downarrow

Shock transmission depends on bank leverage and household leverage
State Dependence: Financial Shock with Low Leverage

- GDP
- Cons. Borrower
- Value of the Bank
- Bank Cost of Funds
State Dependence: Financial Shock with High Leverage

- GDP
- Cons. Borrower
- Value of the Bank
- Bank Cost of Funds
Quantitative Exercise

1. Calibrate model to U.S. pre-crisis
 - Match moments on household and bank balance sheets

2. Use data to estimate sequences of structural shocks
 - $\{A_t, \sigma_t\}_{t=2000Q1}^{T=2015Q4}$

 - $Y^T \equiv$ Observed Macro Variables $^T = \{C_t, \text{spread}_t\}_t$

 - $\Omega^T \equiv$ Observed Fiscal Policy Response $^T = \{G_t, T^b_t, s^k_t, s^d_t\}_t$

3. What $\{\hat{A}_t, \hat{\sigma}_t\}_t^T$ make the model match Y^T given Ω^T?

4. Use estimated $\{\hat{A}_t, \hat{\sigma}_t\}_t^T$ to study counterfactual paths for Ω^T
1. Calibrate model to U.S. pre-crisis
 • Match moments on household and bank balance sheets

2. Use data to estimate sequences of structural shocks

\[\{ A_t, \sigma_t \}_{t=2000Q1}^{T=2015Q4} \]

 • \(Y^T \equiv \text{Observed Macro Variables}^T = \{ C_t, \text{spread}_t \}_t^T \)
 • \(\Omega^T \equiv \text{Observed Fiscal Policy Response}^T = \{ G_t, T^b_t, s^k_t, s^d_t \}_t^T \)

3. What \(\{ \hat{A}_t, \hat{\sigma}_t \}_t^T \) make the model match \(Y^T \) given \(\Omega^T \)?

4. Use estimated \(\{ \hat{A}_t, \hat{\sigma}_t \}_t^T \) to study counterfactual paths for \(\Omega^T \).
Quantitative Exercise

1. Calibrate model to U.S. pre-crisis
 - Match moments on household and bank balance sheets

2. Use data to estimate sequences of structural shocks
 \[
 \{A_t, \sigma_t\}_{t=2000Q1}^{T=2015Q4}
 \]
 - \(Y^T \equiv \text{Observed Macro Variables}^T = \{C_t, \text{spread}_t\}_t^T\)
 - \(\Omega^T \equiv \text{Observed Fiscal Policy Response}^T = \{G_t, T^b_t, s^k_t, s^d_t\}_t^T\)

3. What \(\{\hat{A}_t, \hat{\sigma}_t\}_t^T\) make the model match \(Y^T\) given \(\Omega^T\)?

4. Use estimated \(\{\hat{A}_t, \hat{\sigma}_t\}_t^T\) to study counterfactual paths for \(\Omega^T\)
Quantitative Exercise

1. Calibrate model to U.S. pre-crisis
 - Match moments on household and bank balance sheets

2. Use data to estimate sequences of structural shocks
 \[\{ A_t, \sigma_t \}_{t=2000Q1}^{T=2015Q4} \]
 - \(Y^T \equiv \text{Observed Macro Variables}^T = \{ C_t, \text{spread}_t \}_t^T \)
 - \(\Omega^T \equiv \text{Observed Fiscal Policy Response}^T = \{ G_t, T_t^b, s^k_t, s^d_t \}_t^T \)

3. What \(\{ \hat{A}_t, \hat{\sigma}_t \}_t^T \) make the model match \(Y^T \) given \(\Omega^T \)?

4. Use estimated \(\{ \hat{A}_t, \hat{\sigma}_t \}_t^T \) to study counterfactual paths for \(\Omega^T \)
Main Counterfactual: No Fiscal Policy

Consumption

Lending Spread

% dev. from trend

Data

Counterfactual

2007Q1 2008Q3 2013Q4

0 50 100 150 200 250

2007Q1 2008Q3 2013Q4

0 50 100 150 200 250
Time Series for Fiscal Multipliers

GDP Multiplier, Purchases

GDP Multiplier, Transfers

GDP Multiplier, Recaps

GDP Multiplier, Guarantees
Two channels:

1. Borrower Constraint \Rightarrow standard MPC channel

2. Borrower Const. $+$ Bank Const. \Rightarrow new channel
 - Transfers \Rightarrow house prices \uparrow (only when borrowers are constrained)
 - Default rates fall, banks post fewer losses
 - Lending \uparrow, spreads \downarrow (only when banks are constrained)
 - Disposable income \uparrow

New channel active when both constraints bind
State Dependent Multipliers: Mechanism

Two channels:

1. Borrower Constraint ⇒ standard MPC channel

2. Borrower Const. + Bank Const. ⇒ new channel

- Transfers ⇒ house prices ↑ (only when borrowers are constrained)
- Default rates fall, banks post fewer losses
- Lending ↑, spreads ↓ (only when banks are constrained)
- Disposable income ↑

New channel active when both constraints bind
State Dependent Multipliers: Mechanism

Two channels:

1. Borrower Constraint \Rightarrow standard MPC channel

2. Borrower Const. + Bank Const. \Rightarrow new channel

- Transfers \Rightarrow house prices \uparrow (only when borrowers are constrained)
- Default rates fall, banks post fewer losses
- Lending \uparrow, spreads \downarrow (only when banks are constrained)
- Disposable income \uparrow

New channel active when both constraints bind
Two channels:

1. Borrower Constraint \Rightarrow standard MPC channel

2. Borrower Const. $+$ Bank Const. \Rightarrow new channel

- Transfers \Rightarrow house prices \uparrow (only when borrowers are constrained)
- Default rates fall, banks post fewer losses
- Lending \uparrow, spreads \downarrow (only when banks are constrained)
- Disposable income \uparrow

New channel active when both constraints bind
Two channels:

1. **Borrower Constraint** \(\Rightarrow\) standard MPC channel

2. **Borrower Const. + Bank Const.** \(\Rightarrow\) *new channel*

- Transfers \(\Rightarrow\) house prices \(\uparrow\) *(only when borrowers are constrained)*

- Default rates fall, banks post fewer losses

- Lending \(\uparrow\), spreads \(\downarrow\) *(only when banks are constrained)*

- Disposable income \(\uparrow\)

New channel active when both constraints bind
State Dependent Multipliers: Mechanism

Two channels:

1. Borrower Constraint \Rightarrow standard MPC channel

2. Borrower Const. + Bank Const. \Rightarrow new channel

- Transfers \Rightarrow house prices \uparrow (only when borrowers are constrained)
- Default rates fall, banks post fewer losses
- Lending \uparrow, spreads \downarrow (only when banks are constrained)
- Disposable income \uparrow

New channel active when both constraints bind
State Dependent Multipliers: Mechanism

Two channels:

1. Borrower Constraint \Rightarrow standard MPC channel

2. Borrower Const. + Bank Const. \Rightarrow new channel

- Transfers \Rightarrow house prices \uparrow (only when borrowers are constrained)
- Default rates fall, banks post fewer losses
- Lending \uparrow, spreads \downarrow (only when banks are constrained)
- Disposable income \uparrow

New channel active when both constraints bind
State Dependent Multipliers: Mechanism

Two channels:

1. Borrower Constraint ⇒ standard MPC channel

2. Borrower Const. + Bank Const. ⇒ new channel

- Transfers ⇒ house prices ↑ (only when borrowers are constrained)
- Default rates fall, banks post fewer losses
- Lending ↑, spreads ↓ (only when banks are constrained)
- Disposable income ↑

New channel active when both constraints bind
Conclusion

This Paper

• Analysis of fiscal policy response to the Great Recession
• Structural Model + Data

Contribution

• Conventional stimulus and financial sector interventions
 • Important for normative analysis
 • Quantitative evaluation
• New transmission channels for fiscal policy
 • Household-bank balance sheet interactions
 • State dependent effects
This Paper

- Analysis of fiscal policy response to the Great Recession
- Structural Model + Data

Contribution

- Conventional stimulus and financial sector interventions
 - Important for normative analysis
 - Quantitative evaluation
- New transmission channels for fiscal policy
 - Household-bank balance sheet interactions
 - State dependent effects
Conclusion

This Paper

● Analysis of fiscal policy response to the Great Recession
● Structural Model + Data

Contribution

● Conventional stimulus and financial sector interventions
 ● Important for normative analysis
 ● Quantitative evaluation
● New transmission channels for fiscal policy
 ● Household-bank balance sheet interactions
 ● State dependent effects
Borrowers: Debt and Default

- Face value B_{t-1}^b,
- Fraction γ matures every period
- Family construct (Landvoigt, 2015)

1. Borrower enters period with states
 \[h_{t-1}, B_{t-1}^b \]

2. Continuum of members $i \in [0, 1]$, each with
 \[h_{t-1}, B_{t-1}^b, \nu_t(i) \]
 where $\nu_t(i) \sim F_t^b \in [0, \infty)$

3. Each member i can:
 3.1 Repay maturing debt γB_{t-1}^b, and keep houses worth $\nu_t(i)p_t h_{t-1}$
 or
 3.2 Default on maturing debt, lose collateral
Borrower Family Problem

\[V^b_t(B^b_{t-1}, h_{t-1}) = \max_{c^b_t, n^b_t, h_t, B^b_t, \iota(\nu)} \left\{ u(c^b_t, n^b_t) + \xi^b \log(h_t) + \beta \mathbb{E}_t V^b_{t+1} \right\} \]

subject to budget constraint

\[
c^b_t + \frac{\gamma B^b_{t-1}}{\Pi_t} \int [1 - \iota(\nu)] dF^b_t(\nu) + p^b_t h_t \leq \left\{ \begin{array}{l}
\text{debt repayment} \\
\text{house purchase}
\end{array} \right. \\
(1 - \tau) w^b_t n^b_t + Q^b_{t} B^b_{t,\text{new}} + p^b_t h_{t-1} \int \nu [1 - \gamma \iota(\nu)] dF^b_t(\nu) - T_t + T^b_t \leq \left\{ \begin{array}{l}
\text{new debt} \\
\text{sale of non-forecl. houses} \\
\text{Transfers}
\end{array} \right.
\]

and borrowing constraint

\[B^b_{t,\text{new}} \leq m p^b_t h_t \]
Borrower Default

Default iff $\nu \leq \nu^*_t$,

$$\nu^*_t = \frac{B^b_{t-1}}{\Pi_t p_t h_{t-1}} \approx \text{Loan-to-Value}$$

- $F^b_t = \text{Beta}(1, \sigma^b_t)$
- $\sigma^b_t \sim \text{two-state Markov}$
- Mean preserving spread

Lenders earn (per unit of debt)

$$Z^{\text{loans}}_t = (1 - \gamma)Q^b_t + \gamma \left\{ 1 - F^b_t(\nu^*_t) + \left(1 - \lambda^b_t\right) \int_0^{\nu^*_t} \nu \frac{p_t h_{t-1}}{B^b_{t-1}/\Pi_t} dF^b_t \right\}$$
Financial Intermediaries

- Fixed income portfolios, maturity transformation, risky deposits
- Fraction $1 - \theta$ of earnings paid out as dividends every period
- Invest in loan securities b_t, raise deposits d_t

Problem for intermediary $j \in [0, 1]$ with current earnings $e_{j,t}$

$$V_t^k(e_{j,t}) = \max_{b_{j,t}, d_{j,t}} \left\{ (1 - \theta)e_{j,t} + \mathbb{E}_t \left[\Lambda^s_{t,t+1} \max \{0, V_{t+1}^k(e_{j,t+1})\} \right] \right\}$$

subject to

flow of funds: $Q_b^b b_{j,t} = \theta e_{j,t}(1 + s_t^k) + Q_d^d d_{j,t}$

capital req.: $\kappa Q_b^b b_{j,t} \leq \mathbb{E}_t \left[\Lambda^s_{t,t+1} \max \{0, V_{t+1}^k(e_{j,t+1})\} \right]$

LoM earnings: $e_{j,t+1} = u_{j,t+1} Z_{t+1}^{loans} \frac{b_{j,t}}{\Pi_{t+1}} - \frac{d_{j,t}}{\Pi_{t+1}}$
Financial Intermediaries

- \(u_{j,t} \sim F^d \subseteq [u, \bar{u}] \)
- Default iff
 \[u_{j,t} < u^*_t \equiv \frac{d_{j,t-1}}{Z^\text{loans}_t b_{j,t-1}} \approx \text{Leverage} \]
- Aggregation \(\Rightarrow \) representative bank
 \[\int_{[0,1]} \mathbb{E}_t \left[\frac{\Lambda^s_{t,t+1}}{\Pi_{t+1}} \max \{ 0, V^k_{t+1}(e_{j,t+1}) \} \right] dj \equiv \Phi_t \theta E_t \]
- Spreads reflect Credit Risk + Current + Future binding constraints
- Long-term debt \(\Rightarrow \) Pecuniary Externalities \(\Rightarrow \) Financial Accelerator
- Payoff per unit of deposits,

\[
Z_{t}^{\text{deposits}} = s_{t}^{d} + (1-s_{t}^{d}) \begin{cases}
& 1 - F^d(u^*_t) + (1 - \lambda^d) \int_{0}^{u^*_t} u \frac{Z^\text{loans}_t B^b_{t-1}}{D_{t-1}} dF^d \text{ repaid} \\
\text{guaranteed} & \text{liquidated}
\end{cases}
\]
Closing the Model

Standard DSGE model w/ nominal rigidities

- Producers \rightarrow Phillips Curve
- Savers \rightarrow Euler Equation (IS)
- Housing in fixed supply, $h_t = 1$
- Central Bank \rightarrow Taylor Rule

\[
\frac{1}{Q_t} = \frac{1}{\bar{Q}} \left[\frac{\Pi_t}{\Pi} \right]^{\phi_\pi} \left[\frac{Y_t}{Y} \right]^{\phi_y}
\]

- Aggregate resource constraint,

\[
C_t + G_t + \text{DWL Default}_t = A_t N_t \left[1 - d(\Pi_t) \right]
= Y_t \quad \text{Menu Costs}
\]
Fiscal Authority

Budget constraint,

\[\tau Y_t + T_t + Q_t B_t^g - \bar{G} - \frac{B_{t-1}^g}{\Pi_t} = \text{Net Cost from Discretionary Measures}_t \]

Standard Surplus

Fiscal rule for taxes,

\[T_t = \phi_\tau \log \left(\frac{B_{t-1}^g}{\bar{B}^g} \right) \]

Net Cost from Discretionary Measures,

\[(G_t - \bar{G}) + \chi T_t^b + s_t^k \theta E_t + s_t^d \frac{D_{t-1}}{\Pi_t} \times (1 - \text{Recovery Rate}_t) \]
Calibration

1. **Crises**

\[\sigma_t^b = [\sigma_t^{b,\text{normal}}, \sigma_t^{b,\text{crisis}}] \]

and

\[\mathbf{P}^\sigma = \begin{bmatrix} .995 & .005 \\ .2 & .8 \end{bmatrix} \]

2. **Households**

<table>
<thead>
<tr>
<th>Target</th>
<th>Target Parameter</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction Borrowers</td>
<td>Parker et al. (2013)</td>
<td>(\chi = 0.475)</td>
</tr>
<tr>
<td>Avg. Maturity</td>
<td>5 years</td>
<td>(\gamma = 1/20)</td>
</tr>
<tr>
<td>Max LTV Ratio</td>
<td>80%</td>
<td>(m = 0.0383)</td>
</tr>
<tr>
<td>Debt/GDP</td>
<td>80%</td>
<td>(\xi = 0.1565)</td>
</tr>
<tr>
<td>Avg. Delinquency Rate</td>
<td>2%</td>
<td>(\sigma_t^{b,\text{normal}} = 8.205)</td>
</tr>
</tbody>
</table>

3. **Banks**

\[
F^d(u) = \frac{u^\sigma - u^\sigma}{\bar{u}^\sigma - u^\sigma}
\]

<table>
<thead>
<tr>
<th>Target</th>
<th>Target</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book Leverage</td>
<td>10</td>
<td>(\kappa = 0.1)</td>
</tr>
<tr>
<td>Payout Rate</td>
<td>15%</td>
<td>(\theta = 0.85)</td>
</tr>
<tr>
<td>Avg. Lending Spread</td>
<td>2%</td>
<td>(\varpi = 0.0105)</td>
</tr>
<tr>
<td>CDS-Implied Def. Prob.</td>
<td>2% in recessions</td>
<td>(u = 0.88, \sigma^d = 1.5)</td>
</tr>
</tbody>
</table>
Smoothing Shocks

TFP

% Deviation from SS

2000Q1 2008Q3 2015Q4

Credit Risk Shock

% Deviation from SS

2000Q1 2008Q3 2015Q4