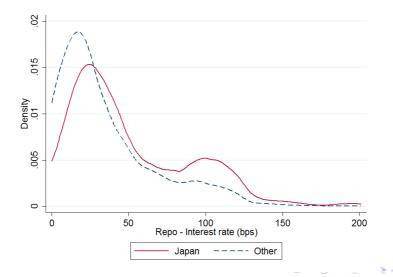
# Frictions in Money Markets and Business Models of Global Banks: Evidence from the Japan Repo Premium

Iñaki Aldasoro<sup>1</sup> Torsten Ehlers<sup>1</sup> Egemen Eren<sup>1</sup>

<sup>1</sup>Bank for International Settlements

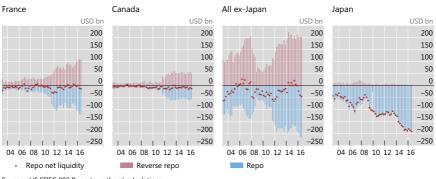
November 2017


#### European Central Bank workshop

Disclaimer: views are our own and not necessarily those of the BIS.

## Frictions in money markets

- ▶ There is a "Japan Repo Premium" in US money markets.
  - > JP banks pay more for repos with the *same* risk with US MMFs.


Figure 1: (Smoothed) Unconditional Distribution of Repo Rates with MMFs



E nac

## Business models of global banks

- All global banks are matched book repo intermediaries, except JP.
- $\blacktriangleright\,\sim$  10% JP repos are with MMFs, while 50-60% for FR and CA.
- ▶ Repo intermediation: MMF  $\rightarrow$  non-JP  $\rightarrow$  JP?



Sources: US FFIEC 002 Reports, authors' calculations.



## This paper in a nutshell

- Japanese banks are different from other non-US banks:
  - > JP long-term dollar loans dwarfs other non-US, since euro crisis.
  - ► Hence, they have large longer maturity dollar funding needs.
- Differences in business models & frictions in money markets:
  - Affect the price of dollar funding  $\rightarrow$  JRP
  - Shape dollar funding networks
- Price of dollar funding:
  - $\blacktriangleright$  Relationship frictions in repo  $\rightarrow$  bargaining power affects pricing.
  - JP banks concentrate repos to few MMFs  $\rightarrow \downarrow$  Bargaining power
  - This helps explain the Japan Repo Premium.
- Dollar funding networks:
  - MMFs provide longer maturity repos to older clients.
  - Repo intermediation by maturity transformation by non-JP banks.

- Economically significant spreads from doing so (~ 17 bps).
- Disruptions in repo markets spill over to the FX swap markets.

## Contributions to the related literature

- US dollar funding and business models of global banks (Ivashina, Scharfstein & Stein (2015); Bräuning & Ivashina (2017); Correa, Sapriza & Zlate (2017); Acharya & Schnabl (2010); Bruno & Shin (2015); McGuire & von Peter (2012); Pozsar (2017))
- Relationships in money markets (Chernenko & Sunderam (2014); Han & Nikolau (2016); Hu, Pan and Wang (2015); Ashcraft and Duffie (2007))
- CIP deviations (Du, Tepper & Verdelhan (2017); Sushko, Borio, McCauley & McGuire (2016); Rime, Schrimpf & Syrstad (2016); Avdjiev, Du, Koch & Shin (2016); Baba, Packer & Nagano (2008))

 Money market funds (Kacperczyk & Schnabl (2013); Di Maggio & Kacperczyk (2017); Christoffersen & Musto (2002); McCabe (2010))

### Data

#### Crane Data:

- MMF holdings snapshot. Monthly, 02/2011-09/2017.
- Date-fund-bank-instrument-value-price-remaining maturity
- Restrict to GSIB and active banks: Repos, ABCP, CP, CD
- 195,790 repos; 39 banks, 9 countries
- ▶ 525,503 ABCP, CP, CDs: 49 banks, 14 countries
- 333 distinct funds, 74 distinct fund families
- Cleaning: double counting and reporting errors.

#### FFIEC 002 filings:

- Balance sheets of US branches and agencies of foreign banks
- Quarterly: 1994Q1-2016Q4
- BIS International Banking Statistics
- Bloomberg (Basis), Markit (CDS), Annual reports, FR Y-9C

# The Japan Repo Premium

|                    | (1)<br>Repo rate | (2)<br>Repo rate | (3)<br>Repo rate | (4)<br>Repo rate | (5)<br>Repo rate | (6)<br>Repo rate <sup>†</sup> |
|--------------------|------------------|------------------|------------------|------------------|------------------|-------------------------------|
| Log(value)         | -0.378**         | 0.0256           | -0.0718          | 0.394***         | 0.459***         | 0.161*                        |
|                    | (0.153)          | (0.106)          | (0.0971)         | (0.0874)         | (0.0857)         | (0.0898)                      |
| Rem. maturity      | 0.458***         | 0.347***         | 0.354***         | 0.349***         | 0.355***         |                               |
|                    | (0.0221)         | (0.0197)         | (0.0197)         | (0.0187)         | (0.0188)         |                               |
| Agency             |                  | 1.711***         | 1.681***         | 0.837***         |                  |                               |
|                    |                  | (0.261)          | (0.250)          | (0.296)          |                  |                               |
| Other coll.        |                  | 26.03***         | 26.61***         | 24.31***         |                  |                               |
|                    |                  | (0.963)          | (0.969)          | (0.882)          |                  |                               |
| 5Y CDS             |                  |                  | 0.0261***        | 0.0226***        | 0.0255***        | 0.00329**                     |
|                    |                  |                  | (0.00519)        | (0.00459)        | (0.00469)        | (0.00152)                     |
| JP                 | 4.519***         | 3.185***         | 2.972***         | 1.503*           | 1.276*           | 1.431**                       |
|                    | (1.298)          | (0.970)          | (0.968)          | (0.778)          | (0.724)          | (0.542)                       |
| Observations       | 184,705          | 184,705          | 172,798          | 172,796          | 172,043          | 24,627                        |
| R-squared          | 0.752            | 0.823            | 0.826            | 0.841            | 0.890            | 0.923                         |
| Date FE            | $\checkmark$     | $\checkmark$     | $\checkmark$     | $\checkmark$     | $\checkmark$     | $\checkmark$                  |
| Fund Type FE       | $\checkmark$     | $\checkmark$     | $\checkmark$     | $\checkmark$     | $\checkmark$     | $\checkmark$                  |
| Fund FE            |                  |                  |                  | $\checkmark$     | $\checkmark$     |                               |
| Date*Collateral FE |                  |                  |                  |                  | $\checkmark$     |                               |
| Date*Fund FE       |                  |                  |                  |                  | $\checkmark$     |                               |

<sup>†</sup>: specification (6) represents a regression only for overnight Treasury repos. Standard errors double-clustered at the bank-fund and time level in parentheses. \*\*\*, \*\*, \* denote significance at the 1, 5 and 10% level respectively.

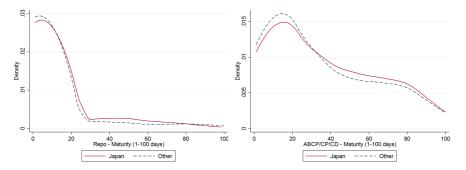
# The Japan Repo Premium

|                                    | (1)<br>Repo rate    | (2)<br>Repo rate     | (3)<br>Repo rate                  | (4)<br>Repo rate                  | (5)<br>Repo rate     | (6)<br>Repo rate <sup>†</sup> |
|------------------------------------|---------------------|----------------------|-----------------------------------|-----------------------------------|----------------------|-------------------------------|
| Log(value)                         | -0.378**<br>(0.153) | 0.0256 (0.106)       | -0.0718<br>(0.0971)               | 0.394***<br>(0.0874)              | 0.459***<br>(0.0857) | 0.161*<br>(0.0898)            |
| Rem. maturity                      | 0.458***            | 0.347***             | 0.354***                          | 0.349***                          | 0.355***             | (0.0090)                      |
| Agency                             | (0.0221)            | (0.0197)<br>1.711*** | (0.0197)<br>1.681***              | (0.0187)<br>0.837***              | (0.0188)             |                               |
| Other coll.                        |                     | (0.261)<br>26.03***  | (0.250)<br>26.61***               | (0.296)<br>24.31***               |                      |                               |
| 5Y CDS                             |                     | (0.963)              | (0.969)<br>0.0261***<br>(0.00519) | (0.882)<br>0.0226***<br>(0.00459) | 0.0255***            | 0.00329**                     |
| JP                                 | 4.519***<br>(1.298) | 3.185***<br>(0.970)  | 2.972***<br>(0.968)               | 1.503*<br>(0.778)                 | 1.276*<br>(0.724)    | 1.431**<br>(0.542)            |
| Observations                       | 184,705             | 184,705              | 172,798                           | 172,796                           | 172,043              | 24,627                        |
| R-squared                          | 0.752               | 0.823                | 0.826                             | 0.841                             | 0.890                | 0.923                         |
| Date FE                            | $\checkmark$        | $\checkmark$         | $\checkmark$                      | $\checkmark$                      | $\checkmark$         | $\checkmark$                  |
| Fund Type FE                       | $\checkmark$        | $\checkmark$         | $\checkmark$                      | $\checkmark$                      | $\checkmark$         | $\checkmark$                  |
| Fund FE                            |                     |                      |                                   | $\checkmark$                      | $\checkmark$         |                               |
| Date*Collateral FE<br>Date*Fund FE |                     |                      |                                   |                                   | $\checkmark$         |                               |

<sup>†</sup>: specification (6) represents a regression only for overnight Treasury repos. Standard errors double-clustered at the bank-fund and time level in parentheses. \*\*\*, \*\*, \* denote significance at the 1, 5 and 10% level respectively.

# Counterparty risk or cross-subsidization do not explain it

#### No Japan premium for riskier instruments & no cross-subsidization


|                               | (1)<br>Non-repo     | (2)<br>Non-repo    | (3)<br>Non-repo        | (4)<br>Full                    | (5)<br>Non-prime     |
|-------------------------------|---------------------|--------------------|------------------------|--------------------------------|----------------------|
| Log(value)                    | 0.325***<br>(0.104) | -0.130<br>(0.0950) | -0.165*<br>(0.0968)    | -0.501***<br>(0.0907)          | 0.175***<br>(0.0613) |
| Rem. maturity                 | 0.0621***           | 0.0615***          | 0.0644***              | 0.0879***                      | 0.0802***            |
|                               | (0.00512)           | (0.00501)          | (0.00503)              | (0.00605)                      | (0.0115)             |
| 5Y CDS                        |                     |                    | 0.0345***<br>(0.00525) | 0.0257***<br>(0.00337)         | 0.00225 (0.00200)    |
| JP                            | -3.875***           | -4.319***          | -4.073***              | -3.899***                      | 2.537***             |
| JP#repo                       | (0.382)             | (0.328)            | (0.336)                | (0.308)<br>5.282***<br>(0.893) | (0.431)              |
| Observations                  | 285,032             | 285,032            | 258,661                | 431,196                        | 85,182               |
| R-squared                     | 0.831               | 0.838              | 0.843                  | 0.868                          | 0.959                |
| Date FE                       | $\checkmark$        | $\checkmark$       | $\checkmark$           |                                |                      |
| Instrument FE<br>Date*Fund FE |                     | $\checkmark$       | $\checkmark$           | $\checkmark$                   | $\checkmark$         |

Columns (1)-(3) restrict the instrument to ABCP/CP/CD (i.e. non-repos). Column (4) considers the entire market (i.e. repos and non-repos) and interacts the JP dummy with a dummy for repo contracts; instrument fixed effects in this regression control separately for ABCP, CP, CD, and the three different types of collateral within repo contracts (Treasury, Government Agency and Other). Column (5) considers only Non-Prime funds (i.e. funds that only do repos). Standard errors double-clustered at the bank-fund and time level in parentheses. \*\*\*, \*\*, \* denote significance at the 1, 5 and 10% level respectively. Repo is absorbed in the instrument FE.

## Business models of global banks - Facts

- JP long-term dollar loans dwarf other non-US, since euro crisis.
   Both globally and in the US
- The maturity profile of MMF liabilities of JP banks is longer.

Figure 2: (Smoothed) Maturities: Repo versus non-repo



▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ④ Q ()

## Business models of global banks - Facts

- JP banks are net dollar suppliers to HQ, EU net receivers from HQ. Interoffice positions
- All global banks are matched-book repo intermediaries, except JP.
   Both globally and in the US

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Majority of JP repos not from MMFs, opposite for others.

## Hypothesis 1: Relationships matter in pricing of repos.

- ► 1.a. Relationships with *funds* matter in pricing of repos.
  - > The more "important" a *fund* is for a bank, the higher is the price.
  - The more "important" a bank is for a *fund*, the lower is the price.
- ▶ 1.b. Relationships with fund families matter in pricing of repos.
  - The more "important" a *fund family* is for a bank, the higher is the price.
  - The more "important" a bank is for a *fund family*, the lower is the price.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

#### Measuring relationships

► How important is a fund (or family BV<sup>{b,ff},m</sup>) for a bank, in a given market m (m ∈ {repo, non - repo}) and date t?

$$BV_t^{\{b,f\},m} = \frac{\sum_{b,f} Value_t^m}{\sum_{f=1}^{F_b} Value_t^{\{b\},m}}$$
(1)

►  $\uparrow BV_t^{\{b,f\},m}$  (or  $BV_t^{\{b,ff\},m}$ )  $\Rightarrow$   $\uparrow$  fund bargaining power

How important is a bank for a fund (family, FV<sup>{b,ft},m</sup>), in a given market m (m ∈ {repo, non - repo}) and date t?

$$FV_t^{\{b,f\},m} = \frac{\sum_{f,b} Value_t^m}{\sum_{b=1}^{B_f} Value_t^{\{f\},m}}$$
(2)

►  $\uparrow FV_t^{\{b,f\},m}$  (or  $FV_t^{\{b,ff\},m}$ )  $\Rightarrow \downarrow$  fund bargaining power

## Summary statistics of relationships

Japanese banks' repos are concentrated within a few fund families.

Table 1: Average shares of funds  $(BV_t^{\{b,f\},m})$  and families  $(BV_t^{\{b,ff\},m})$  for banks , by instrument and country

|       | BV   | /{b,ff},m | BV    | r{b,f},m<br>t |
|-------|------|-----------|-------|---------------|
|       | Repo | Non-repo  | Repos | Non-repo      |
| Japan | 40.2 | 10.9      | 7.9   | 2.8           |
| Rest  | 14.3 | 10.6      | 2.9   | 3.5           |

Table 2: Average shares of banks for funds  $(FV_t^{\{b,f\},m})$  and fund families  $(FV_t^{\{b,f\},m})$ , by instrument and country

|       | FV   | <b>/</b> {b,ff},m<br>t | FV   | √{b,f},m<br>t |
|-------|------|------------------------|------|---------------|
|       | Repo | Repo Non-repo          |      | Non-repo      |
| Japan | 5.8  | 7.0                    | 12.3 | 7.3           |
| Rest  | 10.6 | 5.6                    | 14.1 | 6.0           |

## Relationship with fund family explains repo pricing

|                            | Fund (1.a.)  | Fund Family (1.b) |
|----------------------------|--------------|-------------------|
|                            | Repo rate    | Repo rate         |
| JP                         | 2.866***     | 1.502             |
|                            | (1.046)      | (1.098)           |
| $BV_{t-1}^{\{b,f\},repo}$  | 0.0118       |                   |
|                            | (0.0195)     |                   |
| $FV_{t-1}^{\{b,f\},repo}$  | -0.00221     |                   |
|                            | (0.0123)     |                   |
| $BV_{t-1}^{\{b,ff\},repo}$ |              | 0.0521***         |
|                            |              | (0.0123)          |
| $FV_{t-1}^{\{b,ff\},repo}$ |              | -0.0448***        |
| • •                        |              | (0.0114)          |
| Observations               | 156,542      | 168,104           |
| R-squared                  | 0.827        | 0.828             |
| Date FE                    | $\checkmark$ | $\checkmark$      |
| Fund Type FE               | $\checkmark$ | $\checkmark$      |
| Collateral FE              | $\checkmark$ | $\checkmark$      |
| Controls                   | $\checkmark$ | $\checkmark$      |

Standard errors double-clustered at the bank-fund and time level in parentheses. \*\*\*, \*\*, \* denote significance at the 1, 5 and 10% level respectively. Controls include Log(value), 5Y CDS, Rem. maturity.

### Hypothesis 2: Relationships matter in the entire market. Identification: The same fund family and the same bank have different values for BV and

FV in repo versus non-repo markets.

|                                    | Full Market  | Full Market  |
|------------------------------------|--------------|--------------|
|                                    | Rate         | Rate         |
| $BV_{t-1}^{\{b,ff\},m}$            | 0.0654***    | 0.0253*      |
|                                    | (0.0165)     | (0.0150)     |
| $FV_{t-1}^{\{b,ff\},m}$            | 0.0170       | 0.0529**     |
| 1-1                                | (0.0178)     | (0.0202)     |
| JP # $BV_{t-1}^{\{b, ff\}, m}$     | 0.0459**     | 0.0570***    |
| t = 1                              | (0.0214)     | (0.0208)     |
| JP # <i>FV</i> <sup>{b,ff},m</sup> | -0.181***    | -0.153***    |
| l = 1                              | (0.0497)     | (0.0476)     |
| Observations                       | 412,008      | 411,924      |
| R-squared                          | 0.825        | 0.861        |
| Date FE                            | $\checkmark$ |              |
| Fund Type FE                       | $\checkmark$ | $\checkmark$ |
| Instrument FE                      | $\checkmark$ | $\checkmark$ |
| FundFamily FE                      | $\checkmark$ |              |
| Bank FE                            | $\checkmark$ |              |
| Date*FundFamily FE                 |              | $\checkmark$ |
| Date*Bank FE                       |              | $\checkmark$ |
| Controls                           | $\checkmark$ | $\checkmark$ |

Standard errors double-clustered at the bank-fund and time level in parentheses. \*\*\*\*, \*\*, \* denote significance at the 1, 5 and 10% level respectively. Controls include Log(value), 5Y CDS, Rem. maturity. JP is captured in bank FE.

∃ \0 < \0</p>

*Hypothesis 3:* Given the long-term US dollar exposure of Japanese banks on the asset side, they have a relatively inelastic demand for longer-maturity US dollar funding.

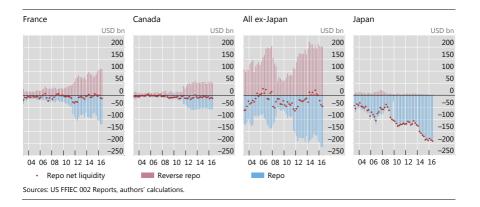
- ► 3.1. The Japan Repo Premium is larger for longer maturity repos.
- 3.2. Since non-repo markets are longer-term US dollar funding markets, the US MMF reform was a negative supply shock. As a result, in the non-repo market, the prices Japanese banks pay rose more than others.

## Hypothesis 3.1. JRP is larger for longer maturities.

|                            | Repo rate    |
|----------------------------|--------------|
| JP                         | -0.332       |
|                            | (1.128)      |
| JP # Rem.maturity          | 0.177**      |
|                            | (0.0888)     |
| $BV_{t-1}^{\{b,ff\},repo}$ | 0.0522***    |
|                            | (0.0125)     |
| $FV_{t-1}^{\{b,ff\},repo}$ | -0.0434***   |
| t = 1                      | (0.0115)     |
| Observations               | 168,104      |
| R-squared                  | 0.829        |
| Date FE                    | $\checkmark$ |
| Fund Type FE               | $\checkmark$ |
| Collateral FE              | $\checkmark$ |
| Controls                   | $\checkmark$ |
|                            |              |

Standard errors double-clustered at the bankfund and time level in parentheses. \*\*\*, \*\*, \* denote significance at the 1, 5 and 10% level respectively. Controls include Log(value), 5Y CDS, Rem. maturity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@


#### Hypothesis 3.2. MMF reform and the pricing of non-repos In the non-repo market, the prices Japanese banks pay rose more than others.

<u>Identification:</u> Since non-repo markets are longer-term US dollar funding markets, the US MMF reform was a negative supply shock.

|                                 | Rate                  |
|---------------------------------|-----------------------|
| $\Delta NonrepoFunding_{t,t-1}$ | -0.107***<br>(0.0246) |
| JP#post_reform                  | 3.138**<br>(1.350)    |
| Observations                    | 254,774               |
| R-squared                       | 0.863                 |
| Date FE                         | $\checkmark$          |
| Fund Type FE                    | $\checkmark$          |
| Instrument FE                   | $\checkmark$          |
| FundFamily FE                   | $\checkmark$          |
| Bank FE                         | $\checkmark$          |
| Controls                        | $\checkmark$          |
|                                 |                       |

Standard errors double-clustered at the bank-fund and time level in parentheses. \*\*\*, \*\*, \* denote significance at the 1, 5 and 10% level respectively. Controls include Log(value), 5Y CDS, Rem. maturity. JP and post\_reform are absorbed in bank and date FE, respectively. Post-reform is a dummy variable that is equal to 1 after October 2016.

## US dollar intermediation - puzzles remain



- Why do Japanese banks not do repos with MMFs?
  - Why not divide existing repos to more funds?
  - Why not bring the repos currently not with MMFs into this market?
- Is there room for intermediation where other banks provide terms that MMFs are unable/unwilling to provide?

## Why do JP banks not diversify existing repos with MMFs?

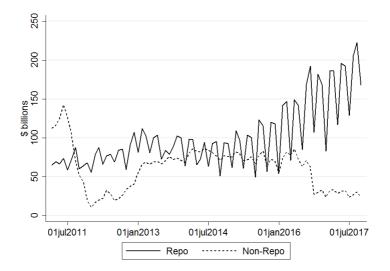
*Hypothesis 4:* Building relationships is costly. In particular, funds provide longer maturity repos to long-term clients.

|                    | Rem. maturity |
|--------------------|---------------|
| Reln length        | 0.0260        |
|                    | (0.0163)      |
| JP#ReIn length     | 0.130**       |
|                    | (0.0531)      |
| Observations       | 184,411       |
| R-squared          | 0.285         |
| Collateral FE      | $\checkmark$  |
| Fund Type FE       | $\checkmark$  |
| Date*FundFamily FE | $\checkmark$  |
| Date*Bank FE       | $\checkmark$  |

Standard errors double-clustered at the bank-fund and time level in parentheses. \*\*\*, \*\*, \* denote significance at the 1, 5 and 10% level respectively. JP is absorbed in date\*bank FE.

How much would other banks make by repo intermediation? If a non-JP bank borrows ON, lends to a JP bank at 30 days, charging the MMF price

This is an arbitrage for European banks since their leverage ratio calculation is only at quarter ends. Alternative to Fed funds arbitrage which earns around 8 bps.


|                    | Repo rate    |
|--------------------|--------------|
| Rem. maturity      | 0.342***     |
| -                  | (0.0193)     |
| JP                 | 1.189        |
|                    | (0.931)      |
| JP # Rem.Maturity  | 0.173*       |
|                    | (0.0883)     |
| 30-day int. spread | 16.6 bps     |
| Observations       | 172,798      |
| R-squared          | 0.827        |
| Date FE            | $\checkmark$ |
| Collateral FE      | $\checkmark$ |
| Fund Type FE       | $\checkmark$ |
| Controls           | $\checkmark$ |
|                    |              |

Standard errors double-clustered at the bankfund and time level in parentheses. \*\*\*, \*\*, \* denote significance at the 1, 5 and 10% level respectively. Controls include Log(value) and 5Y CDS.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

## Spillovers to other US dollar funding markets

Figure 3: French banks' repo and non-repo borrowing from MMFs



#### French quarter-end repo retreat and the JPY/USD basis

*Hypothesis 5.1. :* If FR banks intermediate repos to JP banks, q-end FR repo withdrawal should increase the JPY/USD basis.

*Hypothesis 5.2. :* Only short maturities would be affected, since soon after repo goes back to normal.

| $\Delta$ JPY/USD basis versus $\Delta$ repos with MMF by French banks |         |        |        |        |        |        |
|-----------------------------------------------------------------------|---------|--------|--------|--------|--------|--------|
|                                                                       | (1)     | (2)    | (3)    | (4)    | (5)    | (6)    |
|                                                                       | 1W      | 1M     | ЗM     | 1Y     | 3Y     | 5Y     |
| Δ FR repo                                                             | -1.27** | 0.37   | -0.03  | -0.01  | -0.03  | -0.01  |
|                                                                       | (0.57)  | (0.22) | (0.09) | (0.04) | (0.03) | (0.04) |
| Observations                                                          | 24      | 24     | 23     | 25     | 25     | 25     |
| R-squared                                                             | 0.39    | 0.13   | 0.01   | 0.01   | 0.02   | 0.00   |

 $\triangle$  JPY/USD basis versus  $\triangle$  repos with MMF by European banks

Robust standard errors in parentheses. \*\*\*, \*\*, \* denote significance at the 1, 5 and 10% level respectively. Changes are computed as  $Month_{OE} - Month_{OE-1}$ 

#### French quarter-end repo retreat and the JPY/USD basis

*Hypothesis 5.1. :* If FR banks intermediate repos to JP banks, q-end FR repo withdrawal should increase the JPY/USD basis.

*Hypothesis 5.2. :* Only short maturities would be affected, since soon after repo goes back to normal.

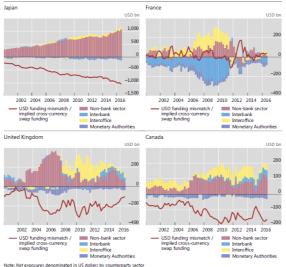
| $\Delta$ JPY/USD basis versus $\Delta$ repos with MMF by French banks |                   |        |        |        |        |        |  |  |
|-----------------------------------------------------------------------|-------------------|--------|--------|--------|--------|--------|--|--|
|                                                                       | (1)               | (2)    | (3)    | (4)    | (5)    | (6)    |  |  |
|                                                                       | 1W 1M 3M 1Y 3Y 5Y |        |        |        |        |        |  |  |
| Δ FR repo                                                             | -1.27**           | 0.37   | -0.03  | -0.01  | -0.03  | -0.01  |  |  |
|                                                                       | (0.57)            | (0.22) | (0.09) | (0.04) | (0.03) | (0.04) |  |  |
| Observations                                                          | 24                | 24     | 23     | 25     | 25     | 25     |  |  |
| R-squared                                                             | 0.39              | 0.13   | 0.01   | 0.01   | 0.02   | 0.00   |  |  |

 $\Delta$  JPY/USD basis versus  $\Delta$  repos with MMF by European banks

|              |        |        |        | -,     |        |        |
|--------------|--------|--------|--------|--------|--------|--------|
|              | (1)    | (2)    | (3)    | (4)    | (5)    | (6)    |
|              | 1W     | 1M     | ЗM     | 1Y     | 3Y     | 5Y     |
| Δ EA repo    | -1.25* | 0.27*  | -0.03  | 0.01   | -0.00  | 0.01   |
|              | (0.67) | (0.16) | (0.09) | (0.03) | (0.03) | (0.04) |
| Observations | 24     | 25     | 23     | 25     | 25     | 25     |
| R-squared    | 0.35   | 0.07   | 0.00   | 0.00   | 0.00   | 0.00   |

Robust standard errors in parentheses. \*\*\*, \*\*, \* denote significance at the 1, 5 and 10% level respectively. Changes are computed as  $Month_{QE} - Month_{QE-1}$ 

## Conclusion

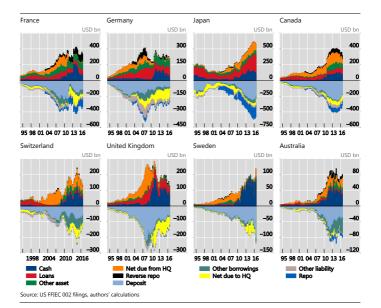

- Frictions in money markets:
  - Identity of the borrower/relationships/bargaining matters in pricing in money markets.
- Business models of global banks have diverged since 2011:
  - JP banks continue to have inelastic long-term dollar demand.
  - Euro banks changed from loans to repo int. and FFR arbitrage.
- The combination of frictions + diverging models:
  - Affect the price of dollar funding
  - Shape dollar funding networks
- Repo + Unsecured + FX swap markets are interconnected.
- Policy implications for emerging post-crisis fault lines.

# **APPENDIX**

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

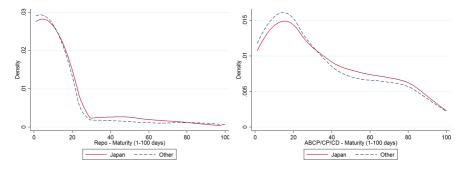
#### Balance sheets: Globally

#### Figure 4: US dollar exposures by country




Note: Net exposures denominated in US dollars by counterparty sector

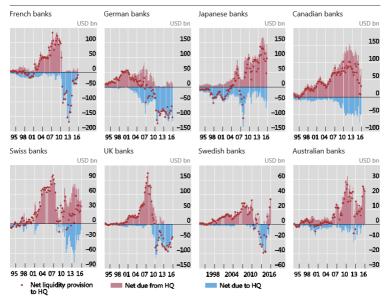
Source: BIS locational banking statistics by nationality, BIS consolidated banking statistics


▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

## Balance sheets: US branches and agencies



## Japanese MMF liabilities are longer-term than others

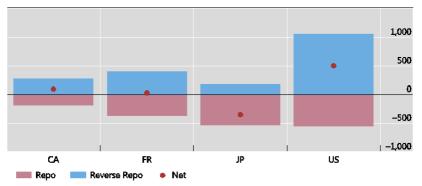





Back to presentation

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

# Interoffice positions




Source: US FFIEC 002 Call Reports, authors' calculations

## Matched books at the consolidated level

Figure 6: Repo books by country - Consolidated level

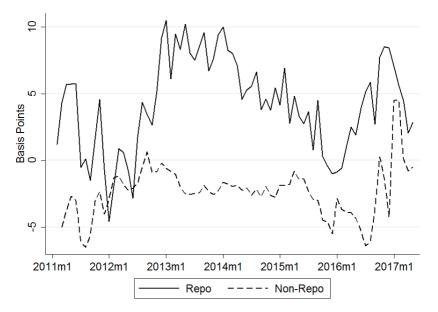
In billions of US dollars



Notes: Aggregate by country for all banks active in the MMF data. Data for CA is for end-October 2016, for JP is end-March 2016 and for FR and the US is end-December 2016. Includes the aggregate repo book at the consolidated level, encompassing all currencies and geographies.

Sources: Banks' Annual Reports, FR-Y9C Reports (Federal Reserve).

## CDS spreads: Japanese banks have the lowest


| Bank nationality | Mean  | SD   | Min  | 5 perc | 95 perc | Max   |
|------------------|-------|------|------|--------|---------|-------|
| Australia        | 97.1  | 38.3 | 47.3 | 54.6   | 168.7   | 222.3 |
| Canada           | 71.1  | 27.7 | 10.2 | 24.0   | 118.2   | 167.5 |
| Switzerland      | 97.6  | 42.4 | 40.8 | 47.5   | 179.1   | 205.9 |
| China            | 142.1 | 31.1 | 94.7 | 103.4  | 207.6   | 291.9 |
| Germany          | 143.3 | 59.2 | 59.3 | 71.6   | 259.7   | 318.5 |
| Spain            | 179.0 | 95.6 | 69.5 | 72.2   | 389.6   | 424.2 |
| Finland          | 80.6  | 35.1 | 39.5 | 40.6   | 163.3   | 189.3 |
| France           | 129.0 | 73.4 | 51.6 | 59.7   | 278.1   | 382.7 |
| United Kingdom   | 123.7 | 64.7 | 43.7 | 55.5   | 271.6   | 368.2 |
| Japan            | 80.9  | 35.5 | 18.1 | 30.7   | 156.5   | 212.5 |
| Netherlands      | 98.3  | 50.9 | 41.6 | 49.5   | 205.8   | 300.7 |
| Sweden           | 84.5  | 42.4 | 34.5 | 40.5   | 176.6   | 227.1 |
| United States    | 113.9 | 76.6 | 31.9 | 39.9   | 278.1   | 502.2 |

#### Table 3: Summary Statistics on CDS spreads, by country

Notes: The table presents the summary statistics of CDS spreads for the banks in our final sample, aggregated by country.

### Time series of the Japan Repo Premium

Figure 7: Average relative prices paid by JP banks, by market



・ロト・御ト・注下・注下・注下の人で、

## The Japan Repo Premium: vis-à-vis each country

|                    | (1)<br>Repo rate | (2)<br>Repo rate | (3)<br>Repo rate | (4)<br>Repo rate | (5)<br>Repo rate | (6)<br>Repo rate <sup>†</sup> |
|--------------------|------------------|------------------|------------------|------------------|------------------|-------------------------------|
| Log(value)         | -0.373**         | 0.00851          | -0.0525          | 0.422***         | 0.484***         | 0.137                         |
|                    | (0.150)          | (0.105)          | (0.0962)         | (0.0869)         | (0.0857)         | (0.0877)                      |
| Rem. maturity      | 0.443***         | 0.339***         | 0.346***         | 0.342***         | 0.350***         |                               |
|                    | (0.0220)         | (0.0194)         | (0.0195)         | (0.0186)         | (0.0187)         |                               |
| 5Y CDS             |                  |                  | 0.0259***        | 0.0241***        | 0.0269***        | 0.00263*                      |
|                    |                  |                  | (0.00526)        | (0.00488)        | (0.00495)        | (0.00139)                     |
| AU                 | -2.330           | -0.0516          | -0.287           | -0.156           | -0.420           | -1.497                        |
|                    | (4.751)          | (3.084)          | (3.049)          | (3.247)          | (1.430)          | (1.256)                       |
| CA                 | -6.305***        | -5.146***        | -4.568***        | -2.441***        | -2.111**         | -1.557***                     |
|                    | (1.359)          | (1.052)          | (1.065)          | (0.870)          | (0.834)          | (0.520)                       |
| СН                 | 0.416            | -1.137           | -0.944           | 0.0470           | 0.0313           | -1.256**                      |
|                    | (1.736)          | (1.223)          | (1.212)          | (1.005)          | (0.946)          | (0.557)                       |
| DE                 | -6.304***        | -2.706**         | -2.475**         | -1.178           | -0.676           | -0.360                        |
| 50                 | (1.471)          | (1.026)          | (1.025)          | (0.836)          | (0.791)          | (0.736)                       |
| FR                 | -6.003***        | -3.870***        | -4.133***        | -2.706***        | -2.231***        | -1.169**                      |
|                    | (1.317)          | (0.960)          | (0.973)          | (0.779)          | (0.737)          | (0.570)                       |
| GB                 | -4.265***        | -3.032***        | -3.271***        | -2.054**         | -1.824**         | -1.543***                     |
|                    | (1.504)          | (1.080)          | (1.055)          | (0.919)          | (0.875)          | (0.557)                       |
| NL                 | -7.338***        | -5.610***        | -6.166***        | -2.647**         | -2.737**         | -1.656**                      |
|                    | (1.384)          | (1.103)          | (1.385)          | (1.152)          | (1.072)          | (0.652)                       |
| US                 | -3.136**         | -1.966*          | -1.991*          | -0.626           | -0.561           | -1.816***                     |
|                    | (1.436)          | (1.049)          | (1.049)          | (0.820)          | (0.766)          | (0.583)                       |
| Observations       | 184,705          | 184,705          | 172,798          | 172,796          | 172,043          | 24,627                        |
| R-squared          | 0.755            | 0.824            | 0.828            | 0.842            | 0.891            | 0.923                         |
| Date FE            | $\checkmark$     | $\checkmark$     | $\checkmark$     | $\checkmark$     | $\checkmark$     | $\checkmark$                  |
| Fund Type FE       | $\checkmark$     | $\checkmark$     | $\checkmark$     | $\checkmark$     | $\checkmark$     | $\checkmark$                  |
| Collateral FE      |                  | $\checkmark$     | $\checkmark$     | $\checkmark$     |                  |                               |
| Fund FE            |                  |                  |                  | $\checkmark$     | $\checkmark$     |                               |
| Date*Collateral FE |                  |                  |                  |                  | $\checkmark$     |                               |
| Date*Fund FE       |                  |                  |                  |                  | $\checkmark$     |                               |

# No Japan Premium in ABCP/CP/CD: vis-à-vis each country

|               | (1)<br>Rate  | (2)<br>Rate           | (3)<br>Rate  |
|---------------|--------------|-----------------------|--------------|
|               |              |                       |              |
| AU            | 6.746***     | 7.304***              | 6.906***     |
|               | (0.558)      | (0.594)               | (0.611)      |
| CA            | 5.108***     | 4.752***              | 5.686***     |
|               | (0.536)      | (0.502)               | (0.571)      |
| CH            | 5.327***     | 5.371***              | 4.907***     |
|               | (0.763)      | (0.620)               | (0.655)      |
| CN            | 12.10***     | 10.66***              | 7.875***     |
|               | (1.515)      | (1.477)               | (1.567)      |
| DE            | 4.616***     | 6.029***              | 5.103***     |
|               | (0.731)      | (0.726)               | (0.757)      |
| ES            | 2.657        | 2.255                 | -2.288       |
|               | (1.868)      | (2.037)               | (1.727)      |
| FI            | 1.210        | 0.843                 | 1.161        |
|               | (1.307)      | (1.281)               | (1.258)      |
| FR            | -0.000420    | 1.837**               | 0.464        |
|               | (0.961)      | (0.861)               | (0.795)      |
| GB            | 3.009***     | 4.708***              | 3.066***     |
|               | (0.661)      | (0.632)               | (0.635)      |
| NL            | 3.211***     | 3.738***              | 4.438***     |
|               | (0.587)      | (0.514)               | (0.530)      |
| SE            | -0.274       | -0.952                | -0.687       |
|               | (0.694)      | (0.728)               | (0.690)      |
| US            | 3.329***     | 4.493***              | 3.902***     |
|               | (0.649)      | (0.537)               | (0.576)      |
| BE            | 13.47***     | 13.15***              | . ,          |
|               | (2.485)      | (2.492)               |              |
| Observations  | 285,032      | 285,032               | 258,661      |
| R-squared     | 0.835        | 0.841                 | 0.846        |
| Date FE       | ~            | <ul> <li>✓</li> </ul> | ~            |
| Instrument FE |              | 1                     | 1            |
| Date*Fund FE  |              | -                     | -            |
| Controls      | $\checkmark$ | $\checkmark$          | $\checkmark$ |
|               | -            | 2                     | -            |

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで