Pairwise Trading in the Money Market during the European Sovereign Debt Crisis

Edoardo Rainone

Bank of Italy
ECB, 6-7/11/17

Workshop on money markets, monetary policy implementation and central bank balance sheets

The views expressed in the paper are solely those of the author and do not necessarily represent the views of the Bank of Italy or the Eurosystem.

Table of Contents

Motivation

Econometric Model

Data

Empirical Analysis

Concluding Remarks

Table of Contents

Motivation

Econometric Model

Data

Empirical Analysis

Concluding Remarks

Motivation

- Banks keep reserves at the central bank
- to manage the reserve requirement, settle transactions and earn interests.
- The unsecured money market was the most important channel to reallocate liquidity
- before the recent financial crises.
- Crucial market for monetary policy, banking theory and the economics of payments.
- Average rates in this market (EURIBOR, EONIA, ..) affect banks decisions concerning loans to businesses and families,
- making it crucial also for macroeconomics and finance.
- Great attention was paid to the variation of money market aggregate outcomes during the recent sovereign debt crises.

Aggregate Evidence $\left[y_{t}\right]$

(a) Number of trades

(b) Total quantity exchanged

Market Side Evidence $\left[y_{l / b, t}\right]$

Number of trades

(d) Lenders

(e) Borrowers

Median, Interquartile range (dark shades), Interdecile range (light shades)

Market Side Evidence $\left[y_{l / b, t}\right]$

Rates

Median, Interquartile range (dark shades), Interdecile range (light shades)

Pairwise Evidence $\left[y_{i j, t}\right]$?

OTC Market

- Decentralized market, not anonymous bilateral trades.

- Aggregate figures are functions of pairwise outcomes.
$E O N I A_{t}=E\left[p_{i j, t}\right]$, trading volume ${ }_{t}=N_{t} * E\left[q_{i j, t}\right]$.
- $y_{i j, t}=f\left(x_{i, t}, x_{j, t}, \beta\right), y_{i j, t}=p_{i j, t}, q_{i j, t}, l_{i j, t}$.
- Scope of this paper: estimate β
- But first, how to estimate β ?

Why are these β s so important?

- Assess European market fragmentation (de Andoain et al., 2014; Mayordomo et al., 2015), segregation or integration, as well as explaining rate dispersion (Gaspar et al., 2008) and supply concentration, for instance.
- This is an important issue when banks are highly heterogeneous and belong to different nations. An high fragmentation may prevent a smooth and homogeneous pass-through mechanism.

ECB Economic Bulletin (1-17)

Composite indicator of the cost of borrowing for NFCs and for households for house purchase

Sources: ECB and ECB calculations.
Notes: The indicator for the total cost of lending is calculated by aggregating short and long-term rates using a 24 -month moving average of new business volumes. The cross-country dispersion displays the minimum and maximum range over a fixed sample of 12 euro area countries. The latest observation is for November 2016.

Related Literature

- Empirical and theoretical literature on liquidity hoarding and counterparty credit risk, see Afonso et al. (2011), Angelini et al. (2011), Heider et al. (2015), Caballero and Krishnamurthy (2008), Acharya and Skeie (2011);
- Large number of theories proposed to explain the features of bilateral trades in OTC markets (see Afonso and Lagos, 2015; Bech and Monnet, 2016; Blasques et al., 2016; Duffie et al., 2005, among the others);
- The empirical literature still lacks in providing formal econometric models and evidences to better understand these pairwise outcomes.

Contribution

- Empirical analysis (estimate β): Trading outcomes in the unsecured money market during the European sovereign debt crisis;
- Role of nationality and balance sheet structure on the probability to trade, and on bilateral rates and quantities.
- Econometric modelling (how to estimate β): Dyadic econometric model with shadow rates.

Table of Contents

Motivation

Econometric Model

Data

Empirical Analysis

Concluding Remarks

A Decentralized Market with Counterparty-risk Uncertainty

$$
y_{i j, t}=f\left(x_{i, t}, x_{j, t}, \beta\right), y_{i j, t}=l_{i j, t}, q_{i j, t}, p_{i j, t}
$$

- $I_{i j}$ A link is possible under a non-random meeting process
- $q_{i j}$ The exchanged quantity is influenced by non-random liquidity shocks
- $p_{i j}$ The rate reflects non-random monitoring and searching costs or default risk

Non-random unobservable features

Monitoring, Searching and Last Resort Counterparty

Suppose that the central bank sets a interest rate corridor with $p_{O D}$ and $p_{M L}$

Borrower payoff

$$
\begin{equation*}
\pi_{b}=p_{M L}-\left(p_{l b}+s_{b, l}\right) \tag{1}
\end{equation*}
$$

Lender payoff

$$
\begin{equation*}
\pi_{l}=i_{l b}\left(\hat{P D_{l}}(b)\right)-m_{l, b}-s_{l, b}-p_{O D} \tag{2}
\end{equation*}
$$

Suppose bank i receives an exogenous liquidity shock ξ_{i} that may represent client's payments or cash withdrawals.

Nash equilibrium interest rate and the liquidity exchanged

$$
\begin{gather*}
\tilde{p}_{l b}=\operatorname{argmax} f\left(\pi_{l}, \pi_{b}, \mu_{l}, \mu_{b}, w_{l b}\right) \tag{3}\\
\tilde{q}_{l b}=\operatorname{argmax} h\left(\xi_{l}, \xi_{b}, y_{l b}\right) \tag{4}
\end{gather*}
$$

- μ_{l} and μ_{b} are the borrower and lender bargaining powers;
- $w_{l b}$ and $y_{l b}$ are sets of observable and unobservable pair-specific characteristics.
see Blasques et al. (2016)

A Dyadic Econometric Model with Shadow Rates

Suppose that the rate function is linear in its arguments

$$
\begin{equation*}
p_{l b}=\beta_{0}+\beta_{1} x_{l b}+\alpha q_{l b}+\epsilon_{l b} \tag{5}
\end{equation*}
$$

observed if only if $\pi_{I} \geq 0 \cap \pi_{b} \geq 0$.
Let bank j have two shadow rates one as lender and one as borrower, $p_{L, j k}^{*}$ and $p_{B, j k}^{*}$ respectively,

$$
\begin{gather*}
p_{B, b}^{*}=\theta_{0 l}+\theta_{1} z_{l b}+\theta_{2 b} q_{l b}+\theta_{3} k_{b}+u_{B}, \tag{6}\\
p_{L, l}^{*}=\gamma_{0 b}+\gamma_{1} z_{l b}+\gamma_{2 l} q_{l b}+\gamma_{3} k_{l}+u_{L} . \tag{7}
\end{gather*}
$$

A loan and its rate are observed if $I\left(p_{l b} \geq p_{L, I}^{*}\right) I\left(p_{B, b}^{*} \geq p_{l b}\right)=1$.

A Dyadic Econometric Model with Shadow Rates

Each pair of banks is thus characterized by a plausible rate-quantity region, that is the intersection between the two areas respectively upper and lower-countered by (6) and (7).

(h) Supply intercept

(i) Demand intercept

A Dyadic Econometric Model with Shadow Rates

$$
\begin{gather*}
p_{l b}=p_{l b}^{*} s_{l} s_{b}, \\
p_{l b}^{*}=\beta_{0}+\beta_{1} x_{l b}+\alpha q_{l b}+\epsilon_{l b}, \\
s_{l}=I\left(s_{l}^{*} \geq 0\right), \\
s_{b}=I\left(s_{b}^{*} \geq 0\right), \\
s_{l}^{*}=\omega r_{l}+v_{L}, \tag{8}\\
s_{b}^{*}=\lambda r_{b}+v_{B}, \\
\left(\epsilon_{l b}, v_{B}, v_{L}\right) \sim f\left(\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{ccc}
\sigma_{\epsilon} & \sigma_{\epsilon v_{B}} & \sigma_{\epsilon v_{l}} \\
\sigma_{\epsilon v_{B}} & \sigma_{v_{B}} & \sigma_{v_{B} V_{L}} \\
\sigma_{\epsilon v_{L}} & \sigma_{v_{B} v_{l}} & \sigma_{v_{L}}
\end{array}\right]\right), \\
E\left[p_{l b} \mid s_{b}=1, s_{l}=1\right]=\beta_{0}+\beta_{1} x_{l b}+\alpha q_{l b}+E\left[\epsilon_{l b} \mid s_{b}=1, s_{l}=1\right], \tag{9}
\end{gather*}
$$

where $E\left[\epsilon_{l b} \mid s_{b}=1, s_{l}=1\right]$ may be different from zero, generating the selectivity bias.

Estimators

- Parametric Estimation (multivariate Mills ratios)

$$
\begin{align*}
E\left[p_{l b} \mid s_{b}=1, s_{l}=1\right] & =\beta_{0}+\beta_{1} x_{l b}+\alpha q_{l b} \tag{10}\\
& +\frac{\sigma_{\epsilon v_{B}}}{\sigma_{v_{B}}^{2}} \frac{\phi\left(\kappa^{*} r_{b}\right) \Phi\left(\left(\omega^{*} r_{l}-\rho_{v_{B} v_{L}} \kappa^{*} r_{b}\right) /\left(1-\rho_{v_{B} v_{L}}^{2}\right)^{\frac{1}{2}}\right)}{\boldsymbol{\Phi}^{2}\left(\kappa^{*} r_{b}, \omega^{*} r_{l}, \rho_{v_{B} v_{L}}\right)} \\
& +\frac{\sigma_{\epsilon v_{L}}}{\sigma_{v_{L}}^{2}} \frac{\phi\left(\omega^{*} r_{l}\right) \Phi\left(\left(\kappa^{*} r_{b}-\rho_{v_{B} v_{L}} \omega^{*} r_{l}\right) /\left(1-\rho_{v_{B} v_{L}}^{2}\right)^{\frac{1}{2}}\right)}{\boldsymbol{\Phi}^{2}\left(\kappa^{*} r_{b}, \omega^{*} r_{l}, \rho_{v_{B} v_{L}}\right)}
\end{align*}
$$

- Semiparametric Estimation (power series)

$$
\begin{equation*}
E\left[p_{l \mid} \mid s_{b}=1, s_{l}=1\right]=\beta_{0}+\beta_{1} x_{l b}+\alpha q_{l b}+\sum_{k=1}^{q} \gamma_{k} \tau_{l b}^{k-1} . \tag{11}
\end{equation*}
$$

Table of Contents

Motivation

Econometric Model

Data

Empirical Analysis

Concluding Remarks

Data Challanges

- Bilateral Trades
- Representative sample of interbank loans in euro
- No complete statistical archive
- EONIA panel
- e-MID
- Spanish MID
- Data on Greek banks
- T2
- Solved with money market statistical reporting (MMSR)?
- Banks Characteristics
- Include meaningful information
- Banks operating in euro, but not necessarily European
- Bankscope
- SNL
- International Groups Structures
- Lots of CBmoney moved intragroup
- Need of word-wide group structure
- SWIFT BIC directory

Data

Bilateral Trades

The market for CB money is generated by the reserve requirement and liquidity needs (on the demand side) and has CB RTGS system as an institutionally designed support, as standard in modern economic systems.

From TARGET2 data we can identify loans applying the Furfine (1999) algorithm, see Arciero et al. (2016) (or Frutos et al. (2016) ?) when i is strictly positive and Rainone and Vacirca (2015) when they can be zero or negative.

Banks Characteristics

Balance sheet composition from Bankscope

Maintenance period	2009-03-11-2009-04-07			
Variable Description	mean	std	min	max
Loan				
Rate Interest rate paid	0.83	0.20	0.21	2.50
Quantity Quantity exchanged (millions)	16.19	53.42	0.05	1033.16
Lender				
A loan Loans expressed as percentages of lender total assets	0.57	0.20	0.00	0.90
A fix as Fixed assets expressed as percentages of lender total assets	0.01	0.01	0.00	0.14
A non ern Non -earning assets expressed as percentages of lender total assets	0.07	0.07	0.00	0.96
L dep sh fun Deposits and short-term funding expressed as percentages	0.62	0.17	0.00	0.99
L oth int bea Other interest bearing liabilities expressed as percentages of lender total assets	0.25	0.17	0.00	0.87
L oth res Other reserves expressed as percentages of lender total as-	0.01	0.01	0.00	0.13
L equ Equity expressed as percentages of lender total assets	0.08	0.04	0.00	0.60
A tot asset Total assets expressed in millions of euros	10.00	2.22	3.06	14.54

ECB, 6-7/11/17
$23 / 50$

Table of Contents

Motivation

Econometric Model

Data

Empirical Analysis

Concluding Remarks

Set up

- Repeated cross section
- each maintenance period
- lagged controls (previous activity and links)
- 1st step: link formation (shadow rate equations)
- 2nd step: rates and quantities
- correction for potential endogeneity
- Graphical representation
- Balance sheet
- Nationality

1st Step - Probability to trade - Lender balance sheet

1st Step - Probability to trade - Borrower balance sheet

Borrower A non ern

Borrower L dep sh fun

1st Step - Probability to trade - Lender nationality

1st Step - Probability to trade - Borrower nationality

Borrower UK

Borrower NL

Borrower IE

Rates - Borrower nationality

Rates - Lender nationality

Quantities - Lender nationality

Quantities - Borrower nationality

Table of Contents

Motivation

Econometric Model

Data

Empirical Analysis

Concluding Remarks

Concluding Remarks

- Dyadic model with shadow rates
- Joint analysis of link formation, rates and quantities
- Against bias when counterparties endogenously select each other (monitoring and searching costs).
- Few parameters impacted, but necessary.
- Study the trade patterns during the European debt crises.
- Before the Eurosystem LTROs, we found that
- Decreased market access to low equity and illiquid borrowers (Coherent with lenders' active monitoring)
- Dispersion in rates is mainly driven by borrowers' nationality
- Differential liquidity rationing explained by lenders' nationality

Extensions and limits

- Extensions
- Bilateral \rightarrow Multilateral;
- to mimic a portfolio choice problem
- to fit better the interbank network topology
- Endogenizing the quantities;
- Not linear specification;
- Including more pair-specific variables.
- to capture homophilic behavior
- to explain better the matching process
- Model time and network dimensions jointly
- Limits
- One market perspective (partial equilibrium)
- Rely on exclusion restrictions
- Estimated microstructure (Furfine algo)
- Imperfect info on balance sheet structure
- No info on searching and matching process
- Missing time line from trade to settlement
- Aggregation criterion

THANK YOU!

edoardo.rainone@bancaditalia.it

Appendix

A Simple Example with Unobservable Costs

- $x_{b}=\{0,1\}, 1$ if the borrower is in country $\mathrm{A}, \beta_{b}>0$ (riskier).
- Searching costs are different from zero only for banks in country A -i.e. $s_{1}>s_{0}=0$. Rates for country A are upper bounded.
- $\epsilon_{l b}$ is correlated with s_{b}.

Endogenous Borrower Searching Costs

- $E\left(p_{l b} \mid x_{b}=0\right)-E\left(p_{l b} \mid x_{b}=1\right)$ is zero instead of β_{b}.

Empirical Specification

- Repeated cross-section of first and second stage for each MP,
- Parametric estimator as default,
- To ease the computational burden we assume that $\theta_{2 b}$ and $\gamma_{2 l}$ are equal to zero,
- Outcome controls: $x_{b l, t}=\left[B_{l, t}, C_{l, t}, B_{b, t}, C_{b, t}, g_{l b, t-1}\right]$,
- Selection equation controls: $z_{b l, t}=\left[B_{l, t}, C_{l, t}, B_{b, t}, C_{b, t}\right]$, $k_{b}=\left[\bar{p}_{b, t-1}^{B}, q_{b, t-1}^{B}, n_{b, t-1}^{B}\right], k_{l}=\left[\bar{p}_{l, t-1}^{L}, q_{l, t-1}^{L}, n_{l, t-1}^{L}\right]$.
- $B_{i, t}$ and $C_{i, t}$ contain respectively the information about the balance sheet structure and nationality of bank i at time t.
- $g_{i j, t-1}$ is equal to 1 whether a loan with i as borrower and j as lender was observed at time $t-1$,
- $\bar{p}_{i, t}^{B}$ and $\bar{p}_{i, t}^{L}$ are the average rates experienced respectively as borrower and as lender at time t by bank i, while $q_{i, t}^{B}$ and $q_{i, t}^{L}$ are the values exchanged respectively as borrower and as lender at time t by the bank i.
- $n_{i, t}^{B}$ and $n_{i, t}^{L}$ are the number of counterparties respectively as borrower and as lender at time t by the bank i.
- These last three variables can be powerful explanatory variables respectively for borrower and lender shadow rates and work as exclusion restrictions in the estimation process. The presence of many financial crises during the time span considered provides frequent exogenous shocks to banks' shadow rates. For example, many lenders left the market suddenly.

Banks Characteristics
 Group Structure and Head Nationality from SWIFT directory

Maintenance period		2009-03-11-2009-04-07			
Variable	Description	mean	std	\min	max
IT	Dummy variable taking value equal to 1 if the lender is from this country (or set of countries) and zero otherwise.	0.44	0.50	0.00	1.00
FR	"")	0.05	0.21	0.00	1.00
ES	""	0.05	0.22	0.00	1.00
NL	","	0.03	0.16	0.00	1.00
GR	","	0.03	0.16	0.00	1.00
IE	""	0.02	0.13	0.00	1.00
UK	","	0.02	0.13	0.00	1.00
US/JAP/EX	""	0.03	0.16	0.00	1.00
AT	""	0.06	0.24	0.00	1.00
PT	""	0.04	0.19	0.00	1.00
LU	""	0.01	0.11	0.00	1.00
CY	""	0.01	0.11	0.00	1.00
CH	""	0.00	0.07	0.00	1.00
FI	""	0.00	0.06	0.00	1.00
EUEX	","	0.08	0.27	0.00	1.00
BE	""	0.00	0.06	0.00	1.00

Time span
from may 2008 to the end of 2012
Edoardo Rainone (Bank of Italy)
ECB, 6-7/11/17
$41 / 50$

Snapshot (2010-01-20-2010-02-09) - Quantities

	Simple regression		Selection correction		T-stat difference	
Mills Borrower			$\begin{gathered} -115.0199 * * * \\ (23.9951) \end{gathered}$			
Mills Lender	$\begin{gathered} -85.5174 \text { *** } \\ (17.8718) \end{gathered}$					
	Lender	Borrower	Lender	Borrower	Lender	Borrower
A loan	$\begin{gathered} 6.3986 \\ (7.8825) \end{gathered}$	$\begin{gathered} -6.1036 \\ (8.6316) \end{gathered}$	$\begin{aligned} & -0.8143 \\ & (7.7816) \end{aligned}$	$\begin{gathered} -14.1645 * \\ (8.5254) \end{gathered}$	$\begin{gathered} 0.6512 \\ {[0.7425]} \end{gathered}$	$\begin{aligned} & 0.6644 \\ & 0.7467 \end{aligned}$
A fix as	-205.9081	-214.8743	-144.4210	-27.0155	-0.2707	-0.7261
	(161.9778)	(183.5641)	(159.2448)	(182.3413)	[0.3933]	[0.2340]
A non ern	66.8535 **	-67.6508 **	$73.2480^{* * *}$	-72.5851 **	-0.1600	0.1076
	(28.5485)	(32.7724)	(27.9638)	(32.0641)	[0.4365]	[0.5428]
L dep sh fun	34.8874	-44.4600	18.3525	-19.3109	0.4476	-0.6039
	(26.3047)	(29.4818)	(25.9386)	(29.4155)	[0.6727]	[0.2730]
L oth int bea	34.4045	-37.5091	30.1779	-23.8505	0.1122	-0.3289
	(26.9349)	(29.5910)	(26.3464)	(29.1361)	[0.5446]	[0.3711]
L oth res	-94.2805	-464.5184	-26.2109	-478.2933	-0.1601	0.0284
	(303.8844)	(346.9461)	(297.3783)	(339.3746)	[0.4364]	0.5113]
L equ	26.2915	55.8195	15.5751	42.4104	0.1941	0.1410
	(39.4601)	(67.9548)	(38.6153)	(66.5232)	[0.5769]	[0.5561]
A tot asset	0.8051	0.2353	-1.7011 *	-1.8950 *	1.9349	1.3480
	(0.8898)	(1.1078)	(0.9412)	(1.1271)	[0.9734]	[0.9110]

Empirical Analysis
Concluding Remarks

Simple regression

IT	$\begin{gathered} -5.3730 \\ (5.5120) \end{gathered}$	$\begin{gathered} 2.1513 \\ (6.3591) \end{gathered}$
FR	6.4208	9.6956
	(7.8721)	(9.4197)
ES	7.3184	-9.9276
	(9.1304)	(8.8161)
NL	0.1365	-20.6351
	(9.7475)	(12.6118)
GR	10.7974	-10.2980
	(17.1602)	(18.2703)
UK	9.5135	-8.0704
	(11.5314)	(9.5098)
US/JAP/EX	-0.8014	9.2517
	(10.5874)	(13.3213)
AT	-2.7670	-5.0445
	(5.8758)	(6.6712)
PT	5.3247	-22.1638**
	(8.7659)	(9.5934)
CY		-27.2089
		(16.7152)
EUEX	-0.9160	-22.6624***
	(6.8343)	(7.8358)
Rates at t-1	-2797.4123 *	1946.0673
	(1601.9363)	(1630.5859)
Value at t-1	0.0546 ***	$0.0203^{* * *}$
	(0.0037)	(0.0066)
\# counterparts at t-1	1.4814	-1.8501
	(1.2597)	(1.2955)
Connection at t-1	$13.4627^{* * *}$	
\bar{R}^{2}	0.3402	
Time interval		
Maturity		
dOBbainvaions(Bank of Italy)		

Selection correction

-0.8136	10.9651 *
(5.4327)	(6.3753)
-7.8743	35.6712 ***
(8.0154)	(10.6393)
8.7138	-9.1562
(8.9429)	(8.6224)
-7.6851	-15.2179
(9.6375)	(12.3784)
10.9168	-5.7408
(16.7803)	(17.8894)
1.9895	-11.9184
(11.4826)	(9.3498)
-0.5150	14.4930
(10.3590)	(13.0572)
1.7754	-0.4491
(5.8060)	(6.5636)
7.1816	-14.7469
(8.5896)	(9.4998)
	-18.2724
	(16.3943)
-1.4285	-16.1408 **
(6.7206)	(7.7185)
-2922.3237*	733.2042
(1566.9273)	(1618.2008)
0.0395 ***	-0.0261 **
(0.0048)	(0.0114)
0.9372	-1.2246
(1.2412)	(1.2749)
$12.9965^{* * *}$	
(2.7323)	
0.3692	
2010-01-20-2010-02-09	
1 to 3 days	

T-stat difference
$\left.\begin{array}{cc}\hline-0.5891 & -0.9788 \\ {[0.2780]} & {[0.1640]} \\ 1.2724 & -1.8280 \\ {[0.8982]} & {[0.0339]} \\ -0.1092 & -0.0625 \\ {[0.4565]} & {[0.4751]} \\ 0.5706 & -0.3066 \\ {[0.7158]} & {[0.3796]} \\ -0.0050 & -0.1782 \\ {[0.4980]} & {[0.4293]} \\ 0.4623 & 0.2885 \\ {[0.6780]} & {[0.6135]} \\ -0.0193 & -0.2810 \\ {[0.4923]} & {[0.3894]} \\ -0.5499 & -0.4910 \\ {[0.2913]} & {[0.3118]} \\ -0.1513 & -0.5494 \\ {[0.4399]} & {[0.2914]} \\ & -0.3817 \\ 0.0535 & {[0.3514]} \\ {[0.5213]} & {[0.5929} \\ 0.0557 & 0.2767] \\ {[0.5222]} & {[0.5280} \\ 2.5184 & 3.5207 \\ {[0.9940]} & {[0.9998]} \\ 0.3077 & -0.3441 \\ {[0.6208]} & {[0.3654]} \\ 0.1194\end{array}\right]$

ECB, 6-7/11/17 $43 / 50$

Snapshot (2010-01-20-2010-02-09) - Rates

	Simple regression		Selection correction		T-stat difference	
Mills Borrower			$\begin{gathered} 0.0398^{* *} \\ (0.0163) \end{gathered}$			
Mills Lender	$\begin{gathered} 0.0475 * * * \\ (0.0182) \end{gathered}$					
	Lender	Borrower	Lender	Borrower	Lender	Borrower
A loan	$\begin{gathered} 0.0163 \\ (0.0133) \end{gathered}$	$\begin{gathered} -0.0460^{* * *} \\ (0.0145) \end{gathered}$	$\begin{gathered} 0.0145 \\ (0.0136) \end{gathered}$	$\begin{gathered} -0.0396^{* * *} \\ (0.0149) \end{gathered}$	$\begin{gathered} 0.0841 \\ {[0.5335]} \end{gathered}$	$\begin{gathered} -0.0298 \\ {[0.4881]} \end{gathered}$
A fix as	$\begin{gathered} 0.2910 \\ (0.2739) \end{gathered}$	$\begin{gathered} 0.9290^{* * *} \\ (0.2981) \end{gathered}$	$\begin{gathered} 0.3530 \\ (0.2753) \end{gathered}$	$\begin{gathered} 1.0132 * * * \\ (0.3061) \end{gathered}$	$\begin{gathered} -0.2312 \\ {[0.4086]} \end{gathered}$	$\begin{gathered} -0.4014 \\ {[0.3441]} \end{gathered}$
A non ern	$\begin{gathered} 0.1006^{* *} \\ (0.0488) \end{gathered}$	$\begin{aligned} & -0.0532 \\ & (0.0554) \end{aligned}$	$\begin{gathered} 0.1114^{* *} \\ (0.0491) \end{gathered}$	$\begin{gathered} -0.0619 \\ (0.0570) \end{gathered}$	$\begin{gathered} 0.0468 \\ {[0.5187]} \end{gathered}$	$\begin{gathered} -0.0175 \\ {[0.4930]} \end{gathered}$
L dep sh fun	$\begin{gathered} 0.1067^{* *} \\ (0.0444) \end{gathered}$	$\begin{gathered} 0.0345 \\ (0.0487) \end{gathered}$	$\begin{gathered} 0.1316^{* * *} \\ (0.0452) \end{gathered}$	$\begin{gathered} 0.0327 \\ (0.0526) \end{gathered}$	$\begin{gathered} -0.2102 \\ {[0.4168]} \end{gathered}$	$\begin{gathered} -0.0476 \\ {[0.4810]} \end{gathered}$
L oth int bea	$\begin{gathered} 0.0461 \\ (0.0458) \end{gathered}$	$\begin{gathered} 0.0573 \\ (0.0491) \end{gathered}$	$\begin{gathered} 0.0689 \\ (0.0467) \end{gathered}$	$\begin{gathered} 0.0556 \\ (0.0535) \end{gathered}$	$\begin{gathered} -0.0939 \\ {[0.4626]} \end{gathered}$	$\begin{gathered} -0.1052 \\ {[0.4581]} \end{gathered}$
L oth res	$\begin{gathered} -0.0826 \\ (0.5045) \end{gathered}$	$\begin{gathered} -0.4602 \\ (0.5828) \end{gathered}$	$\begin{gathered} 0.1963 \\ (0.5165) \end{gathered}$	$\begin{gathered} -0.6389 \\ (0.5985) \end{gathered}$	$\begin{gathered} -0.1107 \\ {[0.4559]} \end{gathered}$	$\begin{gathered} 0.1622 \\ {[0.5644]} \end{gathered}$
L equ	$\begin{gathered} 0.0258 \\ (0.0667) \end{gathered}$	$\begin{gathered} 0.3316^{* * *} \\ (0.1155) \end{gathered}$	$\begin{gathered} 0.0457 \\ (0.0677) \end{gathered}$	$\begin{gathered} 0.3033^{* *} \\ (0.1177) \end{gathered}$	$\begin{gathered} -0.1446 \\ {[0.4425]} \end{gathered}$	$\begin{gathered} 0.0104 \\ {[0.5042]} \end{gathered}$
A tot asset	$\begin{gathered} 0.0066^{* * *} \\ (0.0015) \end{gathered}$	$\begin{gathered} -0.0052^{* * *} \\ (0.0018) \end{gathered}$	$\begin{gathered} 0.0080^{* * *} \\ (0.0016) \end{gathered}$	$\begin{gathered} -0.0047^{* *} \\ (0.0021) \end{gathered}$	$\begin{gathered} -1.2526 \\ {[0.1053]} \end{gathered}$	$\begin{gathered} -1.1767 \\ {[0.1198]} \end{gathered}$

	Simple regression		Selection correction		T-stat difference	
IT	0.0096	0.0011	0.0162 *	-0.0032	-0.3541	0.7159
	(0.0089)	(0.0094)	(0.0094)	(0.0096)	[0.3617]	[0.7629]
FR	-0.0029	-0.0038	-0.0017	0.0020	-0.0252	0.2393
	(0.0131)	(0.0157)	(0.0141)	(0.0219)	[0.4900]	[0.5945]
ES	0.0138	-0.0061	0.0159	-0.0054	0.2196	0.2542
	(0.0156)	(0.0150)	(0.0157)	(0.0152)	[0.5869]	[0.6003]
NL	-0.0128	0.0061	-0.0124	0.0038	-0.1127	0.4059
	(0.0168)	(0.0219)	(0.0170)	(0.0221)	[0.4551]	[0.6576]
GR	-0.0411	0.0784 **	-0.0352	0.0749 **	-0.0169	0.2719
	(0.0296)	(0.0315)	(0.0297)	(0.0316)	[0.4933]	0.6071]
UK	-0.0079	0.0079	-0.0226	0.0039	-0.0523	0.2362
	(0.0199)	(0.0160)	(0.0212)	(0.0165)	[0.4791]	0.5933]
US/JAP/EX	-0.0311^{*}	-0.0294	$-0.0345 *$	-0.0345	0.2097	0.4740
	(0.0179)	(0.0230)	(0.0183)	(0.0232)	$\text { [} 0.5830 \text {] }$	[0.6822]
AT	-0.0089	-0.0150	-0.0064	-0.0138	0.0799	0.5175
	(0.0099)	(0.0113)	(0.0100)	(0.0114)	[0.5319]	[0.6975]
PT	0.0310 **	$0.0566^{* * *}$	0.0360 **	$0.0561^{* * *}$	-0.0056	0.4380
	(0.0145)	(0.0166)	(0.0146)	(0.0167)	[0.4978]	[0.6693]
CY		0.1003 ***		$0.0973^{* * *}$		0.3012
		(0.0289)		(0.0289)		[0.6183]
EUEX	-0.0104	0.0110	-0.0114	0.0094	0.1273	0.3548
	(0.0116)	(0.0135)	(0.0119)	(0.0142)	[0.5506]	0.6386]
Constant	0.1089		-0.0734		1.0777	
	(0.0744)		(0.0987)		[0.8593]	
Connection at t-1	-0.0081 *		-0.0076 *		-0.6167	
	(0.0045)		(0.0046)		[0.2688]	
Quantity exchanged	(0.0000		-0.0000		-0.7851	
	(0.0001)		(0.0001)		[0.2163]	
\bar{R}^{2}	0.2080		0.2172			
Time interval			2010-01-20-2010-02-09			
Maturity			1 to 3 days			
Observations			1067			

Edoardo Rainone (Bank of Italy)
ECB, 6-7/11/17

Diagnostics - Mills ratios non linearity

Rate equation. Diagnostics. Mills ratios non linearity and percentages of uncensored lenders and borrowers.

Diagnostics - Functional assumptions

Dependent Variable: bilateral rate

Diagnostics - Functional assumptions

	Parametric		Semiparametric	
	Lender	Borrower	Lender	Borrower
GR	$\begin{gathered} -0.0411 \\ (0.0296) \end{gathered}$	$\begin{gathered} 0.0784 * * \\ (0.0315) \end{gathered}$	$\begin{gathered} -0.0352 \\ (0.0297) \end{gathered}$	$\begin{gathered} 0.0749 \text { ** } \\ (0.0316) \end{gathered}$
UK	$\begin{aligned} & -0.0079 \\ & (0.0199) \end{aligned}$	$\begin{gathered} 0.0079 \\ (0.0160) \end{gathered}$	$\begin{gathered} -0.0226 \\ (0.0212) \end{gathered}$	$\begin{gathered} 0.0039 \\ (0.0165) \end{gathered}$
US/JAP/EX	$\begin{gathered} -0.0311 * * \\ (0.0179) \end{gathered}$	$\begin{gathered} -0.0294 \\ (0.0230) \end{gathered}$	$\begin{gathered} -0.0345 * \\ (0.0183) \end{gathered}$	$\begin{aligned} & -0.0345 \\ & (0.0232) \end{aligned}$
AT	$\begin{aligned} & -0.0089 \\ & (0.0099) \end{aligned}$	$\begin{aligned} & -0.0150 \\ & (0.0113) \end{aligned}$	$\begin{gathered} -0.0064 \\ (0.0100) \end{gathered}$	$\begin{gathered} -0.0138 \\ (0.0114) \end{gathered}$
PT	$\begin{gathered} 0.0310 \text { ** } \\ (0.0145) \end{gathered}$	$\begin{gathered} 0.0566 \text { *** } \\ (0.0166) \end{gathered}$	$\begin{gathered} 0.0360 \text { ** } \\ (0.0146) \end{gathered}$	$\begin{gathered} 0.0561 \text { *** } \\ (0.0167) \end{gathered}$
CY		$\begin{gathered} 0.1003 * * * \\ (0.0289) \end{gathered}$		$\begin{gathered} 0.0973^{* * *} \\ (0.0289) \end{gathered}$
EUEX	$\begin{gathered} -0.0104 \\ (0.0116) \end{gathered}$	$\begin{gathered} 0.0110 \\ (0.0135) \end{gathered}$	$\begin{gathered} -0.0114 \\ (0.0119) \end{gathered}$	$\begin{gathered} 0.0094 \\ (0.0142) \end{gathered}$

Connection at $t-1$	-0.0081^{*}	-0.0076^{*}
	(0.0045)	(0.0046)
Quantity exchanged	0.0000	-0.0000
	(0.0001)	(0.0001)
Constant	0.1089	-0.0734
	(0.0744)	(0.0987)

Time interval	$2010-01-20-2010-02-09$
Maturity	1 to 3 days
Observations	1067

Diagnostics - Exclusion restrictions

Dependent Variable: estimated residuals

Rate equation

	Simple regression	Selection correction	Δ	Simple regression	Selection correction	Δ
Borrower rates at $t-1$	$\begin{gathered} 4.6453 * * * \\ (1.7471) \end{gathered}$	$\begin{gathered} 4.3973 * * \\ (1.7450) \end{gathered}$	$\begin{gathered} 0.0710 \\ (0.4717) \end{gathered}$	$\begin{gathered} -0.0000 \\ (1030.8095) \end{gathered}$	$\begin{gathered} 0.0000 \\ (1006.9246) \end{gathered}$	$\begin{aligned} & -0.0000 \\ & (0.5000) \end{aligned}$
Borrower value at $t-1$	$\begin{gathered} -0.0000 \text { *** } \\ (0.0000) \end{gathered}$	$\begin{gathered} -0.0000^{*} \\ (0.0000) \end{gathered}$	$\begin{gathered} -0.4401 \\ (0.3300) \end{gathered}$	$\begin{gathered} 0.0000 \\ (0.0040) \end{gathered}$	$\begin{gathered} 0.0000 \\ (0.0039) \end{gathered}$	$\begin{gathered} 0.0000 \\ (0.5000) \end{gathered}$
Borrower \# of cntrprts $t-1$	$\begin{gathered} -0.0034 * * \\ (0.0014) \end{gathered}$	$\begin{gathered} -0.0032 * * \\ (0.0014) \end{gathered}$	$\begin{gathered} -0.0820 \\ (0.4673) \end{gathered}$	$\begin{gathered} 0.0000 \\ (0.8129) \end{gathered}$	$\begin{aligned} & -0.0000 \\ & (0.7940) \end{aligned}$	$\begin{gathered} 0.0000 \\ (0.5000) \end{gathered}$
Lender rates at $t-1$	$\begin{gathered} 12.9894 * * * \\ (2.1933) \end{gathered}$	$\begin{gathered} 12.4827 \text { *** } \\ (2.1905) \end{gathered}$	$\begin{gathered} 0.1156 \\ (0.4540) \end{gathered}$	$\begin{gathered} -0.0000 \\ (1294.0245) \end{gathered}$	$\begin{gathered} -0.0000 \\ (1264.0406) \end{gathered}$	$\begin{aligned} & -0.0000 \\ & (0.5000) \end{aligned}$
Lender value at $t-1$	$\begin{aligned} & -0.0000 \\ & (0.0000) \end{aligned}$	$\begin{gathered} 0.0000 \\ (0.0000) \end{gathered}$	$\begin{gathered} -0.2960 \\ (0.3837) \end{gathered}$	$\begin{gathered} 0.0000 \\ (0.0031) \end{gathered}$	$\begin{gathered} 0.0000 \\ (0.0030) \end{gathered}$	$\begin{aligned} & -0.0000 \\ & (0.5000) \end{aligned}$
Lender \# of cntrprts $t-1$	$\begin{gathered} -0.0107^{* * *} \\ (0.0017) \end{gathered}$	$\begin{gathered} -0.01011^{* * *} \\ (0.0017) \end{gathered}$	$\begin{gathered} -0.1677 \\ (0.4334) \end{gathered}$	$\begin{gathered} 0.0000 \\ (1.0158) \end{gathered}$	$\begin{gathered} 0.0000 \\ (0.9923) \end{gathered}$	$\begin{gathered} 0.0000 \\ (0.5000) \end{gathered}$
Time interval	2010-01-20-2010-02-09					
Maturity	1 to 3 days					
Observations						

1 to 3 days 1067

Estimation with False Positive

The rate equation in vector terms:

$$
\begin{equation*}
P=\beta_{0}+\beta_{1} X+\epsilon \tag{12}
\end{equation*}
$$

Suppose loans can be split in true and false, then $P=\left[P_{T}^{\prime} ; P_{F}^{\prime}\right]^{\prime}$ and $X=\left[X_{T}^{\prime} ; X_{F}^{\prime}\right]^{\prime}$ and

$$
\begin{align*}
P_{T} & =\beta_{0, T}+\beta_{1, T} X_{T}+\epsilon_{T} \tag{13}\\
P_{F} & =\beta_{0, F}+\beta_{1, F} X_{F}+\epsilon_{F} \tag{14}
\end{align*}
$$

For $\hat{\beta}_{O L S}$ to be a consistent estimator of $\beta_{T}=\left[\beta_{0, T}^{\prime} ; \beta_{0, F}^{\prime}\right]^{\prime}$ we need the following assumptions.
A1 $\beta_{F}=\beta_{T}$
A2 $E\left(X_{T} \epsilon_{T}\right)=E\left(X_{F} \epsilon_{F}\right)=0$
If the algorithm is randomly picking false loans across pairs of banks, it is plausible to think that the relationship between X, Y and ϵ is not structurally different between the true loans subpopulation and the whole sample.
A1 and A2 are less strong assumptions, they allow for systematic inclusion of pairs of banks in the sample as long as they are associated with random rates. Bias emerges when the pair is systematically wrongly included and associated with non random rates.
We aggregate loans across the maintenance period, thus our variables are less prone to measurement error.

